AUTOMATIC COMPUTATION AND DATA
DECOMPOSITION FOR MULTIPROCESSORS

Jennifer-Ann Monique Anderson

Technical Report: CSL-TR-97-719
March 1997

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, CA 94305-9040

Abstract

Memory subsystem efficiency is critical to achieving high performance on paralel ma-
chines. The memory subsystem organization of modern multiprocessor architecturesmakes
their performance highly sensitive to both the distribution of the computation and the layout
of thedata. A key issuein programming these machinesis selecting the computation decom-
position and data decomposition, the mapping of the computation and data, respectively,
across the processors of the machine.

A popular approach to the decomposition problemisto require programmersto perform
the decomposition analysi sthemsel ves, and to communicatethat i nformation to the compiler
using languageextensions. Thisthesis presentsanew compiler algorithm that automatically
cal culates computation and datadecompositionsfor dense-matrix scientific codes. Thecore
of the algorithm is based on alinear algebra framework for expressing and calculating the
computation and data decompositions. Using the linear algebra model, the algorithm
generates a system of equations that specifies the conditions the desired decompositions
must satisfy. The decompositions are then calculated systematically by solving the system
of equations. Since the best decompositions may change as different phases of the program
are executed, the algorithm also considersre-organizing the datadynamically. The analysis
is performed both within and across procedure boundaries so that entire programs can be
analyzed.

We have incorporated our techniques into the SUIF parallelizing compiler system. We
evaluated the effectiveness of thealgorithm by applying the compiler to asuite of benchmark
programs, and compared the performance of the resulting code to the performance obtained
without using our techniques. We found that our decomposition analysis and optimization
can lead to significant increases in program performance.

Key Words and Phrases. parallelization, compiler optimization, data decomposition,
computation decomposition

(© Copyright 1997 by Jennifer-Ann Monique Anderson
All Rights Reserved

Acknowledgements

| would liketo thank my advisor MonicaLam for her enthusiasm and support. Shededicated
agreat deal of time and energy to this work, and she always encouraged me to do my very
best. | also feel fortunate to have had John Hennessy and Anoop Gupta on my thesis
committee. | thank them for their insightful comments and guidance.

| had the privilege of working with many smart and talented people during my time at
Stanford. Saman Amarasinghe wrote a lot of code that was integral to getting the SUIF
parallelizer used in this thesis up and running. Also, the interprocedural decomposition
algorithm described in Chapter 6 isbuilt on top of Saman’slinear inequality framework for
parallelizing compilers. Saman isinsightful, motivated and creative, and | always enjoyed
workingwith him. The compiler-directed page col oring optimization described in Chapter 2
isjoint work with Ed Bugnion, who is both very talented and great fun to work with. | also
wish to thank all the members of the SUIF compiler group, including Saman Amarasinghe,
Robert French, Mary Hall, David Heine, Shih-Wei Liao, Amy Lim, Dror Maydan, Todd
Mowry, Brian Murphy, Jason Nieh, Jeff Oplinger, Karen Pieper, Martin Rinard, Patrick
Sathyanathan, Dan Scales, Brian Schmidt, Mike Smith, Steve Tjiang, Chau-Wen Tseng
Bob Wilson, Chris Wilson and Michael Wolf. In particular, Bob Wilson and Chris Wilson
wrote much of the code that forms the base of the SUIF system, and Chris has done an
amazing job of keeping the entire SUIF system running smoothly.

| would also like to thank Digital’s Western Research Lab for awarding me a graduate
fellowship. Anita Borg was my mentor at WRL, and she is a great source of advice and
moral support.

| am fortunate to have awonderful set of family and friends that encouraged me during
my time in graduate school. | thank my parents for instilling in me alove alearning that

led me to pursue this degree. Above al, | would like to thank my husband Grant for his
constant love, understanding and support. | consider myself extremely fortunate to have

such awonderful husband.
Thiswork was supported in part by ARPA contractsDABT63-91-K-0003and DABT63-

94-C-0054, and a fellowship from Digital’s Western Research Lab.

Vi

Contents

Acknowledgements

1 Introduction

11

12
1.3
14

Multiprocessor Memory Hierarchies.
1.1.1 CommunicationlLatencies
1.1.2 Multiprocessor CacheEffects
ProblemStatement
Thesis Overview and Contributions

ThesisOrganization

2 Compiler Overview

2.1
2.2
2.3

24
2.5

2.6
2.7

Domainof Applications
Pre-ParallelizationAnalyses
Paralelization Analysis
231 Choicesof Pardlelism
232 Globa Considerations
Decomposition AnalysisOverview
Parallel Code Generation and Optimization
251 Distributed Address Space Machines
25.2 Shared Address Space Machines
Uniprocessor Locality Optimizations

3 Computation and Data Decomposition Basics

vii

O o W N B

11
13

14
16
17
17
18
22
23
24
24
25
26
27

28

3.1 Machineand CommunicationModels 28

3.2 Mathematical DecompositionModel 31
3.21 \Virtual Processor Mapping 31
3211 Propertiesof Affine Decompositions 32

3.21.2 Relationship between Computationand Data 34

3.22 Physical Processor Mapping 36

33 Summary. 38
4 A Static-Decomposition Algorithm 39
4.1 Finding Virtual Processor Mappings 39
411 Genera Approach for Finding Affine Decompositions 40
41.2 BasicLinear Decompositions L. 41
4121 FormulatingtheEquations 42

41.2.2 Examplesof Basic Linear Decompositions 43

4123 SolvingtheEquations. 46

4.1.3 Linear Decompositionswith Replication 64
4131 Formulating Equationswith Replication 65

4132 Examplesof Linear Decompositionswith Replication . 69

4133 Solving Equationswith Replication 70

4134 Broadcast and Multicast Communication 71

414 Linear Decompositionswith Synchronization 73
4141 Formulating Equationswith Synchronization 74

4142 Examplesof Linear Decompositions with Synchronization 74

4143 Solving Equations with Synchronization 76

415 Algorithm Summary: Linear Decompositions 76
41.6 Finding Offset Decompositions 77

4.2 Finding Physical Processor Mappings 80
43 SUMMAY o o 82
5 A Dynamic-Decomposition Algorithm 84
5.1 Formulation of the Dynamic DecompositionProblem 84
5.1.1 Program Representation 85

6

512 ProblemStatement.
5.2 Complexity of the Dynamic Decomposition Problem
5.3 Finding Dynamic Decompositions
54 A Dynamic DecompositionExample
55 RelatedWork
551 Communication-FreeParallelism
552 DaaPadlelism
553 LoopNestPardlelism
554 DIsCcussSon e
5.6 Summary.

An Inter procedural Decomposition Algorithm
6.1 Whenisinterprocedural AnalysisNeeded?
6.2 Finding Virtual Processor Mappings
6.2.1 Mapping Affine FunctionsAcrossCalls
6.22 Bottom-upTraversal
6.2.2.1 Propagating Decompositionsinto Calling Procedures . .
6.2.2.2 Propagating Array Accesses into Calling Procedures . .
6.22.3 MovinguptheCal Graph
6.23 Top-downTraversal
6.3 Finding Physical Processor Mappings
6.4 An Interprocedural DecompositionExample.
6.5 Issuesin Interprocedural Decomposition Analysis
6.5.1 Unnecessary StorageReuseo
6.52 ArrayReshapes L.
6.5.3 Insufficient Type Information
6.6 Librariesand User-Defined Decompositions.
6.7 SUMMAIY

Experimental Results
7.1 Experimental Setup
7.1.1 Target Architectures

117
118
120
121
124
124
130
132
133
135
135
142
143
144
146
147
148

712 TheSUIFCompiler 151

7.1.3 Methodology 151

7.14 ApplicationSuite 155

7.2 Experimental Results L. 158
7.2.1 Didgributed Shared Address Space Machine 158

7.2.2 Centralized Shared Address Space Machine 166

723 SummaryofResults L 177

8 Conclusons 179
8.1 Contributions 180
82 FutureWork 182
Bibliography 183

List of Tables

11

7.1
7.2
7.3

14

7.5
7.6

Typical remote memory accesstimes. 4
Descriptions of thebenchmarks. 155
Data set sizesof thebenchmarks. 156
Paralel coverage and 32-processor speedups for the benchmarks on the

DASH multiprocessor. 157
Paralel coverage and 8-processor speedups for the benchmarks on the

Digital AlphaServer. 158
Summary of results on the Stanford DASH Multiprocessor. 168
Summary of resultson the AlphaServer 8400. 178

Xi

List of Figures

11
12

21

2.2

31
3.2
3.3
3.4

41
4.2
4.3

4.4

4.5

4.6

4.7
4.8

An example to illustrate multiprocessor memory hierarchy issues. .
Speedups for the SPEC95 benchmark tomcatv on the AlphaServer 8400. .

Thedesignof aparallelizing compiler system for both shared and distributed
addressspacemachines.
[llustration of parallel execution.

Basic machine model used by the decompositionanalysis.
Sampl e affine decompositions onto a virtual processor space.
Two-step model of computation and data decompositions.
Example of HPF decompositionsand the corresponding virtual and physical
processor mappings under our decompositionmodel. L.

Code examples used to illustrate linear decompositions.
A sampleinterferencegraph. L.
Algorithms for mapping between linear data decompositions and linear
computation decompositions. L.
Algorithm for propagating the nullspaces of linear decomposition matrices
betweenloopnestsandarrays.
Algorithm for calculating the nullspaces of the basic linear decomposition
MariCeS. o
Algorithm for calculating the linear decomposition matrices.
Code used to illustrate linear decompositionswith replication.
Example showing linear data decompositions onto a one-dimensional vir-
tual processor space with different types of replication.

Xii

8

15
20

29
34
36

37

44
48

51

57

58

62

65

66

4.9
4.10
411

4.12

4.13

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8

6.1
6.2
6.3
6.4

6.5

6.6

6.7

6.8
6.9

An exampleof dimensionreplication.
Algorithmsfor calculating linear data decompositions with replication. . .
Algorithm for calculating the null spaces of the linear decomposition matri-
ceswith multicast and synchronization.
Algorithm for calculating linear decompositionswith replication, multicast
and synchronization.
Algorithm for finding static decompositions.

Code example used to illustrate dynamic decompositions.
Example communicationgraphs.
Example communication graph with hierarchical structure.
Driver algorithm for finding dynamic decompositions.
Core agorithm for finding dynamic decompositions.
Algorithm for finding dynamic decompositions at a single level of the
communicationgraph. L
Merging loop nests using interferencegraphs.
Communication graph with static decompositionregions.

Code examples used to illustrate interprocedural decomposition analysis. .
Algorithm for creating call verticesin the caller’s communication graph. .
Algorithm for gathering the array accessesin acallee procedure.
Algorithm for propagating decomposition constraints up the call graph
representingtheprogram.
Algorithm for recording linear decompositionsin the callee’s communica-
tion graph from call verticesin the caller’scommunicationgraph.
Algorithm for propagating linear data decompositions down the call graph
representingtheprogram.o
Interprocedural algorithm for finding decompositions.
Sample code with multipleprocedures.
Call graph and the corresponding communi cation graphs during the bottom-
uptraversal.

Xiii

72

78

79
82

86
87
95
96
97

98
101
104

119

126

131

132

134

136

137

138

139

6.10 Call graph and the corresponding communication graphs during the top-
downtraversal. 141

7.1 Anoverview of the SUIF parallelizing compiler for shared address space

machines. 153
7.2 Speedupsfor ADI integration on the DASH Multiprocessor. 159
7.3 Speedupsfor LU decomposition on the DASH Multiprocessor. 160
7.4 Speedups for five-point stencil onthe DASH Multiprocessor. 162
7.5 Speedupsfor vpenta onthe DASH Multiprocessor. 163
7.6 Speedupsfor erlebacher onthe DASH Multiprocessor. 164
7.7 Speedupsfor swim onthe DASH Multiprocessor. 165
7.8 Speedupsfor tomcatv onthe DASH Multiprocessor. 165
7.9 Speedupsfor ADI integration on the AlphaServer 8400. 167
7.10 Speedupsfor LU decomposition on the AlphaServer 8400. 169
7.11 Speedups for five-point stencil onthe AlphaServer 8400.. 171
7.12 Speedupsfor vpenta onthe AlphaServer 8400. 172
7.13 Speedupsfor applu onthe AlphaServer 8400. 173
7.14 Speedupsfor erlebacher on the AlphaServer 8400. 173
7.15 Speedupsfor simple onthe AlphaServer 8400. 174
7.16 Speedupsfor swim onthe AlphaServer 8400. 175
7.17 Speedupsfor tomcatv onthe AlphaServer 8400. 177

Xiv

Chapter 1
| ntroduction

Processor speeds in modern computer systems are outpacing the memory speeds. The
result is that the latency of memory accesses is a bottleneck to achieving high processor
utilization. To bridge the gap between processor and memory speeds, computer designers
typically use a hierarchy based on different speeds and sizes of memories. Smaller, faster
memories or caches are placed close to the processors while successively larger, ower
memories are placed farther away from the processors.

The gap between processor speeds and memory speeds is expected to widen. Inthelast
decade, microprocessor performance has been steadily improving at arate of 50% to 100%
every year[39]. Meanwhile, the access times for DRAMS, the components that comprise
computer main memories, have been improving at the rate of only 7% per year[39]. As
a result, memory subsystem performance will continue to have a great impact on overall
computer system performance.

Making effective use of amemory hierarchy relieson a program’slocality of reference:
if adataitem is accessed then that dataitem, or data near it, is likely to be accessed again
in the near future. Performance benefits if we are able to keep recently accessed data items
in the fastest memories. However, it has been notorioudy difficult for scientific codes to
make effective use of amemory hierarchy. Infact, various past machines built for scientific
computations such as the Cray C90, Cydrome Cydra-5[65] and the Multiflow Trace[24]
were al built without caches.

2 CHAPTER 1. INTRODUCTION

Realizing good memory hierarchy performance on multiprocessors is even more im-
portant to application performance than on uniprocessors, but also more difficult. Not only
are multiprocessor memory hierarchies supersets of the uniprocessor hierarchy, but the ap-
plication must also ensure that uniprocessor locality is not compromised by multiprocessor
considerations. Any benefits to program performance due to increased parallelism can be
quickly outweighed if the program ends up stalled waiting for data. Thus to achieve good
performance on parallel systems, programs must take into account both parallelism and
locality.

1.1 Multiprocessor Memory Hierarchies

There are two principal classes of memory architectures for parallel machines: distributed
address space machines and shared address space machines. Distributed address space
machines are built from a set of processors connected by a communication network. Each
processor has its own local memory that it can access directly; messages have to be sent
across the network for a processor to access data stored in another processor’'s memory.
Examples of distributed address space machines include the Intel Paragon, IBM SP-2 and
clustersof workstations. In contrast, shared address space machines present the programmer
with asingle memory space that all processors can access. Many of these machines support
hardware cache coherence to keep data consistent across the processors. Shared address
space machines may either have a single shared memory that can be uniformly accessed
by al the processors, or the memories may be physically distributed across the processors.
The former class of machines are often called centralized shared address space machines,
while the latter class of machines are called distributed shared address space machines.
Distributing the memories across the processors removes the need for a single shared bus
going from all the processors caches to the memory and thus makes it easier to scale to
moreprocessors. Today many computer vendors(e.g. Sun, Digital Equipment, Sequent and
Compaq) offer centralized shared address space machines. Examples of distributed shared
address space systems include the Stanford DASH[55] and FLASH[54] multiprocessors
and MIT ALEWIFE[2] research machines, and the Convex Exemplar, Cray T3D/E and
Silicon Graphics Origin commercial machines.

1.1. MULTIPROCESSOR MEMORY HIERARCHIES 3

Therearetwo key reasonsfor why it ismoredifficult to get good memory subsystem per-
formance on multiprocessorsover uniprocessors. longlatenciesdueto inter-processor com-
munication, and multiprocessor-specific cache misses on machines with coherent caches.
We discuss each of these reasons in more detail in the following two sections.

1.1.1 Communication Latencies

On current paralel machines, it can cost anywhere from 50 to over 10,000 processor
clock cycles to communicate data between processorg[39]. The exact communication cost
depends on the memory architecture of the machine, the type of interconnection network
and the size of the system.

On machines with a centralized memory, cache coherenceistypically maintained using
an invalidation-based protocol. Data written by one processor is invalidated in the other
processors caches; subsequent reads by the other processors missin the cache and have to
be read from memory. Communication can thus result in cache misses, and the data must
be fetched from main memory.

On machines with physically distributed memories, the memory access times are non-
uniform. The memory latency to access another processor’s memory can be significantly
higher than the latency to local memory. In effect, the remote memories on these machines
form yet another level in the memory hierarchy. Distributed shared address space machines
that support cache coherence in hardware also typically use invalidation-based cache-
coherence protocols(e.g. SGI Origin). On these machines, communication resultsin cache
misses where the data must be fetched from the other processor’s remote memory. On
non-coherent distributed shared address space machines (e.g. Cray T3D/E) remote data
istypically not cached, and al remote references result in accesses to another processor’s
memory.

On distributed address space machines, processors must send explicit messages to
communicate data. The cost of communication isthe timeto send a message to the remote
processor and for the receiving processor to process the message. Explicit communication
through message-passing involves software and is much more expensive than implicit
communication through cache-coherence hardware. For example, Table 1.1 shows the

4 CHAPTER 1. INTRODUCTION

typical remote memory latencies for a variety of machines with physicaly distributed
memories. The first column lists the machines and the second column shows whether the
machines have a shared or distributed address space. The third and fourth columns list the
processors used at each node of the machine and the processor cycle times, respectively.
Thefinal column givestypical remote accesstimes. For the shared address space machines,
the valueistheremoteload latency; for the distributed address space machines, thevalueis
the round-trip message time (for one word messages). For comparison, accesses that hitin
the cache typically take one processor cycle. All the remote access time datais from [39],
unless otherwise noted.

Machine Address Processor Remote
Space Processor | Cycle Time | Access Time
Organization (ns) (ns)
SGI Origin[69] shared R10000 5.0 500 - 1100
Cray T3E[66] shared 21164 3.3 1000 - 2000
Convex Exemplar shared PA8000 55 2000
TMC CM-5 distributed Sparc 30.0 10000
Intel Paragon distributed i860 20.0 10000 - 30000
IBM SP-2 distributed RS6000 13.0 30000 - 100000

Table 1.1: Typical remote memory access times. For the shared address space machines,
the value is the remote load latency; for the distributed address space machines, the value
is the round-trip message time.

The long memory latencies mean that the amount of inter-processor communication in
the program is a critical factor for performance. Thus it is important for computations to
have good temporal locality. A computation has temporal locality if it re-uses much of
the data it has been accessing; programs with high temporal locality tend to require less
communication.

It is important to take communication and temporal locality into consideration when
deciding how to parallelize a loop nest and how to assign the iterations to processors.
Consider the code shown in Figure 1.1(a). This code is representative of the tomcatv
benchmark from the SPEC92 and SPEC95 benchmark suites. While all the iterations in
the first two-deep loop nest can run in paralel, only the inner loop of the second loop nest

1.1. MULTIPROCESSOR MEMORY HIERARCHIES

real x[N, N, y[N, N, z[N N
for time = 1 to nsteps do

for 2, = 1 to N do /* doall */
for iy = 1 to N do /* doall */
X[21, 2] = Y[11, 22 + Z[11, 22]

for i, = 2 to N-1 do
for 7 = 1 to N do [* doall */
X[il, Zz] = 0.333 * (X[il, Zz] + X[11, io- 1] + X[11, Zz+1])

end for

€
Cache Lines
Processor / \A
Number

0 I :

A | TR
P-1

BN ==

(b) (©)

Figure 1.1: An example to illustrate multiprocessor memory hierarchy issues. (a) sample

code, (b) origina data mapping and (c) optimized data mapping. The light grey arrows
show the memory layout order.

6 CHAPTER 1. INTRODUCTION

is parallelizable (parallel 1oops are aso known as doall loops and are annotated with the
comment /* doall */ in thefigure). Consider what happens to the data access patterns when
we distribute the paralel loops in this example. Assume that when aloop is distributed,
each processor executes equal-sized blocks of consecutive iterations. If we distribute both
parallel loops in the first loop nest, each processor accesses a two-dimensional block of
array elements for each of the arrays. If we distribute the one parallel loop in the second
loop nest, each processor accesses a block of rowsfor each array. There is communication
between the two loop nests since the data accessed by each processor differs. However, we
can eliminate the communication by distributing only the inner loop in the first loop nest.
Now, each processor accesses the same datain both of theloop nests—ablock of contiguous
rowsfor each array. Inthisway, no inter-processor communication is necessary throughout
the entire computation. Figure 1.1(b) shows the data accessed by each processor when only
the inner parallel loopsin both of the loop nests are distributed across the processors. The
light grey arrowsin the figure show the memory layout order.

1.1.2 Multiprocessor Cache Effects

On multiprocessors that support a shared address space via cache coherence, it is not
sufficient to just minimize the essential cache misses caused by communication. Due to
characteristics found in typical data caches, multiprocessors also experience non-essential
cache misses that can significantly hurt performance[28, 29].

In cache-coherent machines, the cache line size is the default coherence unit. When
a processor performs a write, the entire cache line is invalidated in al other processor’s
caches. Intoday’s machines, cache linesaretypically 16 to 128 byteslong. A computation
has spatial locality if it uses multiplewordsin acacheline beforethelineisdisplaced from
the cache. While spatial locality isa consideration for both uni- and multiprocessors, false
sharing is unique to multiprocessors. False sharing results when different processors use
different data that happen to be co-located on the same cache line. Even if a processor
re-uses adata item, the item may no longer be in the cache due to an intervening access by
another processor to another word in the same cache line.

Assuming the FORTRAN convention that arrays are allocated in column-magjor order,

1.1. MULTIPROCESSOR MEMORY HIERARCHIES 7

there is a significant amount of false sharing in the example from Figure 1.1(b). If the
number of rows accessed by each processor is smaller than the number of array elements
in acache ling, then every cachelineis shared by at |east two processors. Each time one of
these linesisaccessed, unwanted data are brought into the cache. Also, when one processor
writes part of the cache line, that line is invalidated in the other processor’s cache. This
particular combination of computation mapping and data layout will result in poor cache
performance.

Another problematic characteristic of data caches is that they typicaly have a small
set-associativity; that is, each memory location can only be cached in a small number of
cache locations. Conflict misses occur whenever different memory locations contend for
the same cache location. Since each processor only operates on a subset of the data, the
addresses accessed by each processor may be distributed throughout the shared address
Space.

Consider what happensto theexamplein Figure 1.1(b) if the arraysare of size 256 x 256
and the target machine has a direct-mapped data cache of size 8 KB. Assuming that each
element is 4 bytes, the elements in every 8th column will map to the same cache location
and cause conflict misses. This problem exists even if the caches are set-associative, given
that existing caches usually only have a small degree of associativity.

In general, the memory subsystem performance of multiprocessor code depends on how
the computationisdistributed aswell ashow thedataarelaid out. Instead of s mply obeying
the data layout convention used by the input language (e.g. column-mgor in FORTRAN
and row-major in C), we can improvethe cache performance by customizing the datalayout
for the specific program. Once we determinethe datathat each processor is going to access,
we can further optimize multiprocessor cache performance by making the data accessed
by each processor contiguous in the shared address space. Such a layout enhances spatial
locality, minimizes false sharing and also minimizes conflict misses. Customizing the
datalayout benefitsall cache-coherent machines, including both centralized and distributed
shared address space systems. An optimized data layout that makes each processor’s data
contiguous for the example from Figure 1.1(b) is shown in Figure 1.1(c).

Figure1.2illustratestheimpact of multiprocessor cache effectson program performance
for the full tomcatv benchmark from the SPEC95 benchmark suite. The figure shows the

8 CHAPTER 1. INTRODUCTION

speedup over the best sequential version for three versions of the benchmark running on
a centralized shared address space machine, an 8-processor 300 MHz Digital AlphaServer
8400. The curvelabeled base shows the speedup obtained without any analysisto eliminate
communication across loop nests. In this version of the program, we simply distribute
iterations of the outermost paralel loop in each loop nest across the processors. The
curve labeled comp sched corresponds to Figure 1.1(b), and shows the speedup when the
computation is scheduled so as to eliminate communication across loop nests. Finally,
the curved labeled comp sched + data transform shows the speedup obtained when the
computation is scheduled to eliminate communication and the data layout is customized
to make each processor’s data contiguous. This last curve corresponds to Figure 1.1(c).
Even though the comp sched program has essentially no communication, the performance
is still quite poor due to poor spatial locality and false sharing. Only after the data has
been transformed does the program achieve scalable performance. Whereas the speedup
for the base programisonly 2.9 on eight processors, the speedup for the comp sched + data
transform versionis 7.5.

- tomcatv - - - linear speedup
—=— base
—e— comp sched

—— comp sched + datatransform

Speedup

O R, N WA Ul O N @

Figure 1.2: Speedupsfor the SPEC95 benchmark tomcatv on the AlphaServer 8400.

1.2. PROBLEM STATEMENT 9

1.2 Problem Statement

To achieve good performance on parallel systems, programs must make effective use of the
computer’'s memory hierarchy as well as its ability to perform computation in parallel. If
we can co-locate the data with the processor that accesses the data, then we can minimize
the problems specific to multiprocessor memory hierarchies. This means that we have
to find a mapping of the data to the processors of the parallel machine, as well as a
mapping of the computation to the processors of the machine. In thisthesiswe use theterm
data decomposition to refer to the data-to-processor mapping and the term computation
decomposition to refer to the computati on-to-processor mapping.

Selecting a good computation and data decomposition for a program is a difficult
problem. Firgt, there are many possible ways to assign the data and computation across the
processors of the machine. The data decomposition may need to change dynamically as
the program executes, for example, if different phases of the program operate on the data
in different ways.

Second, the choicesof dataand computation decomposition areinter-related; it isimpor-
tant to examine both the opportunities for parallelism and the locality of datato determine
the decompositions. For example, if the only available parallelismin a computation liesin
operating on different elements of an array ssimultaneoudly, then allocating those elements
to the same processor renders the parallelism unusable. The data decomposition dictated
by the available parallelism in one loop nest affects the decision of how to parallelize the
next loop nest, and how to distribute the computation to minimize communication.

Third, decomposition analysis must be performed across the entire program. It is not
sufficient to just analyze one procedure at atime. If the datadecompositions of thevariables
do not match across procedures, then the program could potentially incur large amounts of
communication at every procedure call entry and call return.

A popular approach to the decomposition problem is to solicit the programmer’s help
in determining the data decompositions. A number of parallelizing compiler systems have
been devel oped that rely on the user to specify the data-to-processor mapping using language
extensiong[21, 31, 49, 64, 74, 82]. The compiler then infers the computation mapping
using the owner-computes rule[20, 64, 82]: the processor that is assigned a data element

10 CHAPTER 1. INTRODUCTION

performs all computation that writes that element. The High Performance FORTRAN
(HPF) standard devel oped by a consortium of academic and commercial organizations also
relies upon user-specified data decompositiong48]. These compiler systems are geared
towards scientific codes and primarily target distributed address space machines. While
the languages provide significant benefit to the programmer by eliminating the tedious job
of managing the different address spaces explicitly, the programmer is still faced with a
very difficult programming problem. The tight coupling between the mapping of data and
computation means that the programmer must, in effect, also analyze the parallelization
of the program when specifying the data decompositions. As the best decomposition may
change based on the architecture of the machine, the programmer must fully master the
machine details. Furthermore, the data decompositions may need to be modified to make
the program run efficiently on a different architecture.

Parallelizing compilersfor shared address space machines currently do not perform any
decomposition analysis; they make no attempt to schedule computation that accesses the
same data onto the same processor. These compilers start with a sequential program, but
they only analyze oneloop nest at atime and will typically always distribute the outermost
parallel loop inaloop nest. Of course, the resulting programs still run correctly; however,
they may not run as efficiently as possible due to communication, false sharing and poor
gpatial locality.

In short, current parallelizing compiler systems for distributed address space machines
require programmersto performthe decomposition analysi sthemsel vesand to communi cate
that information to the compiler using language extensions. For shared address space
machines, current parallelizing compilers do not implement decomposition analysis at
al. A compiler that automatically finds the computation and data decompositions for a
program relieves programmers from doing the complex analysis themselves and leads to
more efficient code. The compiler can then take as input a sequential program — without
language extensions for decompositions — and generate high-performance code for both
distributed and shared address space machines.

1.3. THESISOVERVIEW AND CONTRIBUTIONS 11

1.3 ThesisOverview and Contributions

The computation and data decomposition of a program is critical to performance on a
wide variety of parallel machines. Yet, selecting a good decomposition for a program on
a particular machine is a complex optimization problem. This thesis presents a compiler
algorithm that automatically calculates computation and data decompositions for dense
matrix computations that result in efficient, high-performance code. The contributions of
thisthesis are asfollows:

Decomposition Framework. We have developed a linear algebra framework for ex-
pressing and cal culating decompositions. We model decompositionsin two steps. first an
affine function! maps the computation and data onto a virtual processor space, and second
a folding function maps the virtual processor space onto the physical processors of the
target machine. Using this framework, our algorithm generates a system of equations that
specifies the conditions that the desired decompositions must satisfy. We then calculate
the decompositions systematically by solving the systems of equations. Our mathematical
model allows arich set of target decompositions and is not limited to an arbitrary set of
possible decompositions.

Decomposition Algorithm. Our compiler algorithmfor finding decompositionsisthefirst
complete algorithm based on a linear algebra framework. Our decomposition algorithm
operates by partitioning the program into regions that have the same data assignment for
all the computation in the region. Within each region, we use the mathematical model to
generate a system of equations that describes the decompositions. Communication occurs
across regions as the data must be reorganized. The regions are found incrementally
by gathering constraints on the data and computation that must be assigned to the same
processor in order for a solution to exist to the set of equations. The constraints are
gathered starting with the most frequently executed loops in the program. This approach
builds regions of the program that have no data reorganization that are as large as possible,
and places any necessary communication in the least executed sections of the code. Within

LAn affine function is a linear function plus a constant offset.

12 CHAPTER 1. INTRODUCTION

the regions, the decompositions we find are optimal in that they are guaranteed to have
the largest degree of parallelism with no data reorganization. The algorithm also handles
replication of data and explicit synchronization within loop nests.

Our decomposition algorithm has several key features. It is the first algorithm that
calculates decompositions directly while smultaneously modeling the benefits of paral-
lelization and the cost of communication. It alows data to be reorganized, if necessary,
to benefit the overall execution time of the program. Our algorithm finds decompositions
incrementally, and as aresult it scales to handle complete programs. Finally, our algorithm
also incorporates replication and synchronization which are often needed to generate good
code for realistic programs.

Inter procedural Decompositions. Our decomposition agorithm is the first to analyze
both within and across procedure boundaries so that consi stent decompositions can befound
throughout the entire program. The interprocedural decomposition algorithm visits each
procedure twice, once in a bottom-up traversal of the call graph and once in a top-down
traversal of the call graph. The bottom-up pass uses the base decomposition algorithm to
incrementally gather constraints on the decompositions and the top-down pass records the
final decompositions at each procedure. Our mathematical representation of decomposi-
tions, coupled with the incremental solving method, allows us to succinctly summarize all
the necessary information on decompositions within a procedure. Thuswhen the algorithm
analyzesaprocedure, it does not haveto re-solvefor the decompositionsfor any procedures
that are called by the current procedure.

Implementation and Evaluation. The algorithms described in this thesis have all been
implemented as part of the SUIF paralelizing compiler system[76]. To evaluate the ef-
fectiveness of our proposed algorithm, we applied the compiler to a suite of benchmark
programs. We ran the compiler-generated code on the Stanford DA SH multiprocessor[55]
and aDigital AlphaServer 8400, and present acomprehensive study of the resulting perfor-
mance. Our experiments show that on both of these machines, our decomposition analysis
and optimization improves program performance by as much as a factor of four.

1.4. THESIS ORGANIZATION 13

1.4 ThessOrganization

In thisthesiswe describe our model and algorithm for finding computation and data decom-
positions. We evaluate the effectiveness of the algorithm by looking at the performance
achieved by the compiler-optimized code. We begin in Chapter 2 by describing how the de-
composition analysis fits into the context of a complete parallelizing compiler system. We
also show that once the decompositions are calculated, the compilation techniques needed
for both shared and distributed address space machines are similar. Chapter 3 describes our
assumptions about the target architectures and presents the mathematical framework we
use to represent decompositions. Chapters4 and 5 present the details of the intraprocedural
decomposition algorithm. In Chapter 6 we then describe the interprocedura version of
the decomposition agorithm. In Chapter 7 we compare the performance of the optimized
code against un-optimized code and analyze the results. We conclude in Chapter 8 by
summarizing the contributions of thisthesis.

Chapter 2
Compiler Overview

A parallelizing compiler takes a sequential program as input and automatically trandatesit
into parallel codefor thetarget machine. In thischapter we describe how the decomposition
analysis described in this thesis fits into the context of a complete parallelizing compiler
system. We found that there are many similarities in the compiler techniques needed for
both shared and distributed address space machines. Thisled usto design aunified compiler
framework for both kinds of architectures.

Our implementation platform is the SUIF compiler system[76]. The SUIF compiler
takes as input sequential FORTRAN-77 or C programs. The source programs are first
trandated into the SUIF compiler’sintermediate representation. All program analysis and
optimization passes operate on the SUIF representation. The optimized and parallelized
SUIF programisthen converted into acombination of C and/or FORTRAN and iscompiled
by the native compiler on the target machine. The SUIF output contains calls to a portable
run-time library, which islinked in by the native compiler.

The design of acomplete compiler framework that incorporates decomposition analysis
is shown in Figure 2.1. The compiler first runs pre-parallelization analyses to gather
information needed by the subsequent passes. The parallelization phase transforms the
code to find the maximum degree of loop-level parallelism, and these |oops are then passed
on to the decomposition phase. The computation and data decompositions are used to
generate paralel code for both distributed and shared address space machines. Finally, the
compiler further optimizesthe uniprocessor code that runson each individual processor. In

14

15

§>

Ana

Pre-Parallelizatior

lyses

\

i

Parallelization

Decom

:

Comp and Data

position

/

\

Shared Address
Parallel Code Gen

Distributed Addres
Parallel Code Ge

2]

\

/

Optimi

Uniprocessor

zations

\

i

C/Fo@

\

i

Parallelized
Executable

Figure 2.1: The design of a parallelizing compiler system for both shared and distributed

address space machines.

16 CHAPTER 2. COMPILER OVERVIEW

the remainder of this chapter, we first define the scope of input programsthat are amenable
to automatic parallelization and decomposition analysis. We then discuss the key compiler
phases in more detail, with an emphasis on how the decomposition analysis interfaces with
each of the phases.

2.1 Domain of Applications

Scientific codes are currently the most common domain for parallelizing compilers. These
programstend to make heavy use of loopsto operate over array data structures. Loops can
be parallelized by executing different iterations concurrently. In order to parallelize aloop,
the parallel version must have the same semantics as the original sequential version. This
condition imposes ordering constraintsamong theiterationsin aloop nest. If two iterations
may access the same memory location, and at least one of the accesses is a write, then it
can change the semantics to reorder the iterations. Thus there is an ordering constraint,
or data dependence, between the iterations and they must execute in the original serial
order. Thisanalysisis caled data dependence analysis and is based on integer program-
ming theory[14, 59, 62]. A loop can execute in parallel if and only if there are no data
dependences carried by that loop. Data dependence analysis, and thus automatic paral-
lelization, istypically restricted to the domain of affine functions. Specifically, we analyze
loop nests of the following general form (the compiler normalizes the step sizesto 1[5]):

for 11 = L to Uy do

X[fi(e1), falia), ...y fm(id)] = ...
for i, = Lz(il) to Uz(il) do
X[fi'(i1,72), f2'(11,72), - .-, fo (i1,42)] = ...

for 1y = Ll(il, ce ,il_l) to U](il, RN il—l) do

X[f@), 2@, o) f"@] = ...

end for

end for
end for

2.2. PRE-PARALLELIZATION ANALYSES 17

In this loop nest format, L, ... L; are affine functions that compute the lower bound of
each loop, and U; ... U, are affine functions that compute the upper bounds. The access
functions for each dimension of the arrays, fi... f,., fi'... f» and fi"”... f,.," are dso
affine functions. In al cases, the loop bounds and array accesses are affine functions of
outer nested loop indices and symbolic constants.

2.2 Pre-Parallelization Analyses

The compiler runs pre-parallelization symbolic analyses to extract information necessary
for subsequent parallelization and optimization passes. These analyses include scalar
variable analysessuch as constant propagation, induction variableidentification and forward
propagation, as well as reduction recognition on scalar and array variables.

At this point, it is also desirable for the compiler to transform the code so that each
loop nest has as few array accesses as possible. Having fewer array accesses per loop
nest reduces the likelihood that the accesses will cause conflicting requirements on the
computation decomposition for the loop nest. The loop fission transformation can be
used to split a single loop into multiple loops that have the smallest number of statements
possible. Each of the new loops has the same loop bounds as the original, but contains
a subset of the statementg11, 51]. After the decomposition analysis, loop fusion can be
used to regroup compatible loop nestg19]. Loop fission and loop fusion are not currently
implemented in the SUIF compiler.

2.3 Paralldization Analysis

The parallelization analysis transforms the code using unimodular transformations to ex-
pose the maximum degree of loop-level parallelism, while minimizing the frequency of
synchronization. It tries to generate the coarsest granularity of parallelism by placing the
largest degree of parallelismin the outermost positions of the loop nest. Since no synchron-
ization is needed between iterations of aparallel loop, pushing the parallel |oops outermost
reduces the frequency of synchronization. Algorithmsfor analyzing and maximizing par-
alelism within aloop nest have been well-studied, for example see[5, 77, 79, 80, 83]. The

18 CHAPTER 2. COMPILER OVERVIEW

following two subsections describe the interface between the paraléelization analysis and
the decomposition analysis in more detail.

2.3.1 Choicesof Parallelism

The SUIF compiler uses the algorithm developed by Wolf and Lam[77, 79] to put the loop
nests in a canonical form consisting of a nest of the largest possible fully permutable loop
nests. A loop nest is fully permutable if any arbitrary permutation of the loops within the
nestislegal. A fully permutable loop nest of depth [has the property that it can always be
transformed to make [— 1 degrees of parallelism, that is, [— 1 parallel loopg43, 79]. In
the special case where the loop nest has no loop-carried dependences, it has [degrees of
parallelism.

The compiler transforms the code to create the largest possible fully permutable nests,
starting from the outermost loops. This form exposes the maximum degree of parallelism
withintheloop nest[77]. The compiler also marksthoseloopsinthe nest that are doall |oops
and moves them to the outermost possible position within each fully permutable nest. A
doall loop issmply aparallel loop and can thus executein parallel with no synchronization.
The maximum degree of parallelism for the entire loop nest is the sum of the degree of
parallelism contained in each of the fully permutable subnests.

In a fully permutable loop nest of depth /, the [— 1 degrees of parallelism can be
exploited in many ways. One possibility is to transform the code to have [— 1 doall
loopg] 77], and then distribute iterations of the doall |oops across the processors. However,
it is also possible to distribute iterations of a loop with loop-carried dependences. In this
case, explicit synchronization and communication are required to enforce the dependences
within the computation of theloop. Loops that are distributed across processors, but require
explicit synchronization between iterations, are called doacross loops. Opportunities for
exploiting parallelismwith doacross|oops occur when afully permutableloop nest contains
at least two loops (if thereis only a single loop then the synchronization between iterations
makestheloop run sequentially and thereisno parallelism). Toillustratethe different kinds
of parallelism that are available within fully permutable loop nests, consider the following
example representative of an ADI (Alternating Direction Implicit) integration:

2.3. PARALLELIZATION ANALYSIS 19

real X[N, N|

[* Loop nest 1 */

for 7 = 1 to N do [* doall */
for i, = 2 to N do

X[i1, 12] = fu(X[i1, 2], X[i1, i2- 1])

[* Loop nest 2 */
for ¢4 = 1 to N do /* doall */
for ¢ = 2 to N do

X[iz, Zl] = fz(X[iz, Zl] , X[iz- 1, Zl])

The outer loopsare doall loops and both loop nestsare fully permutable. When iterations of
the doall loops are run in parallel, neither communication nor synchronization is required
within each of the loop nests.

Figure 2.2(a) shows the original iteration space for the loop nests. In the figure, the
vertical axiscorrespondsto the outer 71 loop, the horizontal axis correspondsto theinner i,
loop and each node represents one iteration in the loop nest. The arrows represent the data
dependences between the iterations; the data dependences show the ordering constraints
among the nodesthat are required to guarantee the same semantics asthe original sequential
version. The figure applies to both loop nests 1 and 2 since they have the same iteration
gpace. Figure 2.2(b) shows the parallel execution of loop ¢; for both loop nests. The
shaded regionsin the figure show iterations that are assigned to the same processor. Since
the iterations that are ordered by data dependences all execute sequentially on the same
processor, no synchronization is needed within the loop nest.

In addition to the doall parallelism in the ADI example, doacross paralelism is also
available in both loop nests. Figure 2.2(c) showsthe parallel execution of the:, loop using
doacross paralelism. Let ;" be an iteration of the :; loop, and let ;" be an iteration of the
i» loop. If processor p executes i, = i’ and processor p + 1 executes i, = iy’ + 1, then
p must communicate al the array elements it writesto p + 1. Synchronization is needed
because processor p + 1 cannot executeiteration (z1,22) = (21,22 4 1) until p has executed
iteration (¢1,72) = (21,42"). Parallelismis available along a diagonal or wavefront in the

20

CHAPTER 2. COMPILER OVERVIEW

(€)

(b)

OO OO GO

OO OO GO

O O OO

O OO OO

(d)

Figure 2.2: (&) Original iteration space for the loop nests in the ADI example. (b)—(d)
Iteration spaces showing different ways to execute the loop nests in parallel. The arrows
represent data dependences, and the iterations in each shaded region are assigned to the

Same Processor.

2.3. PARALLELIZATION ANALYSIS 21

iteration space, i.e. p can execute iteration (i1,72) = (41’ + 1,72’), while p + 1 executes
(i1,12) = (i1, 32 + 1).

Another way to look at the paralelism in this example is to say that in Figure 2.2(b)
we allocated iterations along the direction (0, 1) to each processor, that is, al pairs of
iterations that differ by (0,1) are assigned to the same processor. In Figure 2.2(c) we
alocated iterations along the direction (1,0) to each processor. In fact, it is possible to
exploit parallelism by allocating to each processor iterations along any direction within the
two axes.

When using doacrossparallelism, itisnot very efficient to synchronize and communicate
for every iteration of theloop. A general techniquethat isused to reducethe synchronization
frequency and communicationvolumeof parallel loopsisloop blocking[78, 80] (also known
as tiling, unroll-and-jam and stripmine-and-interchange). Blocking transforms a loop nest
of depth / into a loop nest of depth 2/. The inner / loops iterate over a fixed number of
iterations (given by the block size), while the outer loops iterate across the inner blocks of
iterations.

By blocking and then only parallelizing the outer loops, the synchronization frequency
isreduced by the size of the block. The reduction in communication volume from blocking
is afunction of the loop’s data dependences. Two array accesses are dependent within a
loop : if there is a data dependent pair of iterations ’ and ”. The references are said to
be dependent with distance d; = ¢ — ¢”. If the array accesses in aloop have small, finite
dependence distances such that 0 < d; < b, where b isthe block size, then only d; elements
at each block boundary need to move.

Fully permutable loop nests have several properties that are important for efficiently
exploiting doacrossparallelism. First, thefact that theloop nestsarefully permutablemeans
that doacrossparallelismislegal, and theloop nest can be completely blocked[43, 77]. Also,
for afully permutableloop nest of depth /, when the dependences are distancesthen we know
that d; > Ofor al loops: = 1...[[77]. Theresult of thisis that doacross parallelism and
blocking can be applied along any dimension in theiteration space of such fully permutable
loop nests.

Since the compiler first transforms the loop nests into the canonical form of nests of
fully permutable subnests, the blocking transformation is easily applied. Figure 2.2(d)

22 CHAPTER 2. COMPILER OVERVIEW

shows the parallel execution of the i, loop from the on-going ADI example using doacross
parallelism and blocking.

2.3.2 Global Considerations

If we look at each loop nest individually, then distributing the iterations in the direction of
the doall loops is preferable, as neither communication nor synchronization is necessary
within the loop. However, thisis not always the case when we analyze multiple loop nests
together. Going back to the ADI example, consider what happens if we only try to exploit
theparallelisminthedoall loops. Thedoall loop in thefirst loop nest accessesrowsof array
x, whereas iterations of the doall loop in the second loop nest accesses columns of array
2. Communication will occur between the loop nests because the data must be completely
reorganized as the data decomposition switches between rows and columns.

We can avoid reorganizing the arrays between the two loop nestsin the ADI example by
using doacross parallelismin one of theloop nests. For example, inthe second loop nest the
loop with the loop-carried dependence (the ¢, loop), accesses rows of the array. If iterations
of thisloop are distributed across the processors, then in both loop nests processors access
rowsof thearrays. Communication and synchronization are now required within the second
loop nest. However, since we use loop blocking to reduce the communication volume and
synchronization frequency, the overhead incurred within the oneloop nest istypically much
less than the overhead to reorganize the data between the loop nests.

As this example illustrates, only exploiting the parallelism in the doall loops may not
result in the best overall performance. In general, there may be tradeoffs between the best
local loop-level decompositions, and the best overall global decompositions. Thus the
loop-level analysis in our compiler transforms the code to expose the maximum degree
of loop-level parallelism, but does not make decisions as to how that parallelismis to be
implemented. Theloop-level analysisleavesthe codein acanonical format of nestsof fully
permutableloop nests, from which the coarsest degree of parallelism can be easily derived.

2.4. DECOMPOSITION ANALY SIS OVERVIEW 23

2.4 Decomposition Analysis Overview

The decomposition analysis takes as input the loop nests in the canonical form of nests of
fully permutable loop nests. It analyzes the array accesses within the loop nest to calculate
the mappings of data and computation onto the processors of the target machine. For each
loop nest and for each array accessed in each loop nest, the decomposition analysis outputs
asystem of linear inequalities that describes the processor mappings.

The decomposition analysis only examines affine array accesses, and any non-affine
accesses are ignored. All affine array access within a loop nest are examined, regardless
of control-flow within the loop nest. Any non-perfectly nested accesses are treated as
if they were perfectly nested, but with conditional guards (this is the model used by the
SUIF compiler’s parallelization analysig 77]). For example, for the following generalized
two-deep loop nest with non-perfectly nested accesses:

for 1 =1L; to U; do
X[f1(z)] = ...
for i, = Ly(71) to Uy(e1) do
y[(i1, 72), f2'(i1,72)] = ...
end for
z[[A"(@)] = ..

end for
The compiler models the code as:

for i1=1L, to U; do
for i, = Ly(21) to Uy(e1) do
if ix=Ly(i1) then X[fi(éi1)] = ...
y[fA'(i1.12), f2'(i1.12)] = ...
if 42 =U0U(i1) then z[f1"(i1)] = ...
end for
end for

Of course, thismodel isonly legal if and only if the innermost ¢, loop in the original code
executes at |east one iteration whenever the outermost z; loop does. If we cannot provethis

24 CHAPTER 2. COMPILER OVERVIEW

condition statically, then we must insert explicit checks. Since the decomposition analysis
does not take control-flow within the body each loop nest into account, it ignoresthe guards
and treats the non-perfectly nested accesses as if they were perfectly nested.

2.5 Parallel Code Generation and Optimization

The parallel code generator takes as input the linear inequalities representing the computa-
tion and datadecompositions, and emits SPM D (single-program, multiple-data) parallelized
code. The generated code is parameterized by the number of processors; each processor
gets the total number of processors and its own processor identifier from calls to the run-
time library. In this section, we describe parallel code generation for both distributed
address space machines and shared address space machines. In the current SUIF compiler,
only shared address space code generation is supported. Here we discuss the necessary
steps to generate parallel code for both types of machines to show how the decomposition
information is used, and to underscore the similarities between the techniques.

2.5.1 Distributed Address Space Machines

A parallel code generator for distributed address space machines is responsible for the
following three main tasks:

1. Distribute the computation according to the computation decomposition. The bounds
of the distributed loops are generated by applying a series of projection transforma-
tions to the polyhedron represented by the computation decomposition’s system of
linear inequalitieg 7, 8]. The resulting loop bounds are parameterized by the pro-
cessor identifier so that each processor executes only the iterations that it has been
assigned.

2. Allocate memory locally in each processor’s address space for its portion of the
distributed arrays. The global array addresses in the original program are then
trandated into local addresses. Each processor’s portion of the arraysis given by the
data decomposition.

2.5. PARALLEL CODE GENERATION AND OPTIMIZATION 25

3. Generate communication code (i.e. send and receive messages) whenever aprocessor
accesses remote data. The decompositions are used to identify accesses to non-
local elements. The data and computation decompositions, along with the array
accesses, are composed into a single system of linear inequalities. The projection
transformation is applied to the resulting system of inequalities to calcul ate the non-
local accesses and the identity of the sending and receiving processors 7] .

2.5.2 Shared Address Space Machines

When using decompositioninformation, theparallel code generator for shared address space
machines is similar to the paralel code generator for distributed address space machines.
It also performsthree main tasks, described below. Theitems listed as optional are strictly
optimizations and are not required for generating a correct parallel program.

1. Schedule the computation according to the computation decomposition. This step
is performed in exactly the same way as for distributed address space machines,
described in Step 1 of Section 2.5.1.

2. (optional) Make each processor’s data contiguous in the shared address space. This
improves the spatial locality of the application and eliminates cache conflicts and
false sharing. The compiler manages the data placement both within a single array
and across multiple arrays.

To make the data of a single array accessed by each processor contiguous, the
compiler transforms the data layout of the array in the virtual address space, and
trandatesthe array addressesin the original program into new addresseq9]. The data
each processor accesses for each array is given by the array’s data decomposition.
These data transformations are analogous to global to local address trandation for
distributed address space machines, described in Step 2 of Section 2.5.1.

To make the data across multiple arrays contiguous, we devel oped atechnique called
compiler-directed page coloring[18]. The operating system’s page mapping policy
determines the location of memory pages in physically indexed caches (externa
caches for most current processors are physically indexed). The compiler supplies

26 CHAPTER 2. COMPILER OVERVIEW

the data decompositions of all the arrays to arun-timelibrary. The run-timelibrary
then usesthat information to direct the operating system'’s page all ocation policy into
making each processor’ sdata contiguousin the physical address space. The operating
system uses these hints to determine the virtual-to-physical page mapping when the
pages are allocated.

3. (optional) Eliminate unnecessary synchronization. On shared address space ma-
chines, communication is performed by the hardware and explicit communication
code (as described in Step 3 of Section 2.5.1) is unnecessary. Although commu-
nication analysis to identify accesses to non-local data is not required to ensure
correctness, the same analysis can be used to optimize synchronization. Without
any optimization, synchronization is implemented by inserting barriers at the end of
each parallel loop to prevent potential data races. These barriers, however, cause
overhead and can inhibit parallelism. By using the computation and data decom-
positions to identify exactly when and where accesses to non-local data occur, the
compiler can eliminate unnecessary barrier synchronization or replace them with
efficient point-to-point synchronization[73].

2.6 Uniprocessor Locality Optimizations

After generating the SPMD parallelized code, the compiler further optimizes the code
that runs on each of theindividual processors. In particular, the compiler optimizesfor the
memory hierarchy in asingle processor. The parallelization and decomposition analysisare
run before the uniprocessor locality optimizations because interprocessor communication
is the most expensive form of data movement in the memory hierarchy and minimizing
such communication is the most critical locality optimization.

The compiler’s uniprocessor data locality optimizing algorithm uses the same loop
transformationframework astheparallelization analysig[77, 78]. Weapply the uniprocessor
locality algorithm to the subnest consisting of the distributed parallel loops and their inner
loops. The original loop structure differsfrom this subnest by having additional sequential
loops outside the parallel loops. Since these sequential oops must be placed outermost due

2.7. SUMMARY 27

to legality reasons, the uniprocessor data locality is not compromised by parallelization.

Finally, to avoid acommon source of cache conflictsin the on-chip cache, the compiler
inserts padding between arraysin the virtual processor space[11]. This causes the starting
addresses of the arraysto map to different locations in the cache.

2.7 Summary

This chapter described the context of the decomposition analysis within a complete paral-
lelizing compiler system. The current domain of parallelizing compilersis scientific codes;
in particular, when cal culating computation and data decompositions, we only analyze loop
boundsand array accessesthat are affinefunctionsof outer nested |oop indicesand symbolic
constants.

The decomposition analysisrelies on a pre-pass to optimize the parallelism within each
individual loop nest. The parall€elization analysis pre-pass putsthe loop nestsin a canonical
form consisting of a nest of the largest possible fully permutable loop nests. This format
exposes the maximum degree of loop-level parallelism, but does not constrain how the
parallelism isto be implemented.

Once the computation and data decompositions are calculated, the parallel code genera-
tor uses the decompositionsto create SPMD parallelized code. The transformations needed
to generate optimized code for both shared and distributed address space machines are very
similar. A unified compiler framework can thus be used for both kinds of architectures.

Chapter 3

Computation and Data Decomposition
Basics

Decomposition analysis maps a program’s computation and data onto the processors of
a target machine. This chapter lays the foundation for the decomposition algorithm by
describing our parallel architecture model, and by defining our representation of compu-
tation and data decompositions. In Section 3.1 we present the basic machine model that
our decomposition algorithm targets. There are many different parallel architectures, and
it is important to understand how the choice of machine model impacts the quality of the
resulting decompositions. We al so categorize the types of communication based on the data
movement patterns, and discuss the communication costs on the target machine. Then in
Section 3.2 we describe the mathematical framework we have developed for representing
and calculating decompositions. We aso discuss the key properties of the mathematical
decomposition model that are fundamental to the decomposition algorithm.

3.1 Machineand Communication Models

The decomposition analysis models a machine with physically distributed memories, and
each memory isassociated with one processor. ThisarchitectureisshowninFigure3.1. The
decompositions calculated by the compiler map the computation onto the processors, and
map the data onto the local memories associated with the processors. The decomposition

28

3.1. MACHINE AND COMMUNICATION MODELS 29

anaysis always models a separate memory for each processor, despite thefact that multiple
processors may actually share memory on the true target machine. For example, thisisthe
case for centralized shared address space machines, or for machines where each node is
itself a centralized shared address space machine (e.g. Stanford DASH, SGI Origin). Re-
gardless of the memory configuration of the true target machine, the fundamental problems
we are solving are how to allocate the computation so as to minimize communication while
mai ntai ning sufficient parallelism, and how to allocate the datafor good memory hierarchy
performance. By targeting amachine with separate memoriesfor each processor, we calcu-
late decompositions such that each individual processor accesses the same data as much as
possible. The resulting computation decompositions thus minimize inter-processor com-
munication, independent of the memory architecture. The resulting data decompositions
specify exactly which data are accessed by each individual processor. Thisinformationis
then used to tailor the data alocation for the specific target architectures. For example, as
described in Section 2.5.2, on shared address space machines the parallel code generator
uses the data decompositions to transform the data layout so that each processor’s dataare
contiguous in the shared address space.

Processo Processo Processor o o o (Processo

|Cache| |Cache] |Cache] |Cache]
Memory Memory Memory Memory

Interconnection Network

Figure 3.1: Basic machine model used by the decomposition analysis.

30 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

The interconnection network of the target machine is a key factor in determining the
cost of communication. There are many different network topologies that can be used to
build the interconnection network for parallel architectures. We model a fully-connected
interconnection network, whereall processors aredirectly connected to one another. Exam-
ples of fully-connected networksinclude crossbars and buses. The decomposition analysis
assumes that the communication time between any two processors is the same, regardless
of the specific processors involved. Thus, the main factor in determining the cost to access
a data element is whether that access is to the local processor or to a remote processor.
Hot-spotting effects can cause the communication timeto a particular processor to become
disproportionately large, making the communication costs between different pairs of pro-
cessors non-uniform. In this case, the remote access times continue to dominate the local
access times, and the decomposition analysis will still optimize to eliminate the remote
accesses. In general, our communication model is reasonable for most parallel machines
today, since the ratio of local access time to remote access time is typically much greater
than the ratio of the maximum remote access time to the minimum remote access time. The
decomposition analysis models local accesses as having zero cost and models all remote
accesses as having equal cost. As aresult, the communication costs calculated by the de-
composition algorithm are directly proportional to the amount of data accessed by remote
processors.

The communication patterns in applications determine the amount of datathat is being
moved. We make the distinction between two communication patterns, nearest-neighbor
communication and data-reorganization communication. When the communication pattern
is nearest-neighbor shifts of data, then the amount of data transferred can be significantly
reduced by assigning blocks of contiguous iterations of a distributed loop to the same
processor. In this way, any nearest-neighbor communication between the iterationsin the
same block is eliminated. We describe our use of blocking for reducing the cost of nearest-
neighbor communicationin moredetail in Section 4.2. Data-reorgani zation communication
is unstructured and requires general movement of the entire data structure, for example,
transposing a distributed array. We thus consider nearest-neighbor communication to be
inexpensive compared to data-reorganization communication.

3.2. MATHEMATICAL DECOMPOSITION MODEL 31

3.2 Mathematical Decomposition M odel

This section describes our mathematical framework for expressing and cal culating decom-
positions. Werepresent decompositionsastwo separate components. First, thecomputation
and data are mapped onto a virtual processor space. The virtual processor space has as
many processors as is needed to fit the number of loop iterations and the sizes of the ar-
rays. Second, the processors of the virtual processor space are mapped onto the physical
processors of the target machine. This representation is general enough to express a broad
class of decompositions, including all the decompositions available to HPF programmers.
Section 3.2.1 defines the data and computation mappings onto the virtual processor space,
and Section 3.2.2 describesthe virtual processor mapping onto the physical processor space.

3.2.1 Virtual Processor Mapping

A loop nest of depth / defines an iteration space Z. Each iteration of the loop nest is
identified by itsindex vector v’ = (1,2, ...,%). Anarray of dimension m defines an array
space A, and each element in the array isaccessed by anindex vector @ = (a1, az, ..., am).
Similarly, an n-dimensional processor array defines a processor space 7. We consider
affinearray access functions f : 7 — A, f(7) = F7+ (, where I isalinear transformation
and 5 isaconstant vector. The mappings of computation and dataonto the virtual processor
space are represented by affine functions and are called affine decompositions.

Definition 3.2.1 Let @ = (a1, az, ..., a,,) beanindex vector for an m-dimensional array.
The affine data decomposition of the array onto an n-dimensional processor space is an
affinefunctiond : A — P, where

- —

d(d) =Dad+6
Disann x m linear transformation matrix and & isa constant vector.

Definition 3.2.2 Let i’ = (¢1,12,...,7;) be an index vector for a loop nest of depth /. The
affinecomputation decomposition of theloop nest onto an »n-dimensional processor space

32 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

isan affinefunction ¢ : 7 — P, where
vy =Cr4+4
C'isann x [linear transformation matrix and ¥ is a constant vector.

We also define the linear decomposition as the linear transformation part of the affine
decomposition and the offset decomposition as the constant part of the affine decomposition.
Mathematically, the linear data and computation decompositions are represented by the
matrices D and C from the above definitions, and the offset decompositions are represented
by the constant vectors § and 7, respectively.

In our model, all the statementswithin aloop nest are treated as a single unit. For each
iteration 2" of aloop nest, the affine computation decomposition function &(2) specifies the
virtual processor which executes all statements of iteration 2. We do not consider finding
separate affine functionsfor each statement within the loop nest.

3.21.1 Propertiesof Affine Decompositions

In this section we describe several key mathematical properties of affine decompositions.
The range of an array access function f(7) = F7+ C is the subspace of the array space
accessed by that reference, and is denoted by S

S = range (f) (3.1)

For an array of dimension m, whenever rank (/') < m, then S is a proper subset of the
array space, S C A.

Let d be the affine data decomposition from Definition 3.2.1. Two array elements
di1, dp € S aredlocated to the same virtual processor if and only if

d(d@) = d(@)
Dii+6 = Dip+6,

3.2. MATHEMATICAL DECOMPOSITION MODEL 33

that is,
D(Eil — 62) =0or 61 — 62 € N(D)

Here A(D) is nullspace of the matrix D, where the nullspace of amatrix D is the vector
space consisting of al vectors @ such that Da = 0. Conversely, any two array elements
such that (d1,dz € S) A ((@1— d2) € N(D)) are assigned to different virtual processors
and are considered distributed.

Let ¢ be the affine computation decomposition from Definition 3.2.2. Two iterations
71,12 € 1 are executed on the same virtual processor if and only if

dn) = diz)

Ch+i = (B+7,

that is,
C(Z)l — 72) = O7 or 71 — 72 € N(C)

where N'(C') isnullspace of thematrix C'. Any twoiterationszy, 7> € Z suchthat (74 —72) ¢
N(C') are said to be distributed and are run on different virtual processors.

Definition 3.2.3 Given an affine computation decomposition function ¢(?) = C7+ 4 for a
loop nest, the degree of parallelism is the rank of the linear computation decomposition
matrix C'. Thisisequivalent to / — dim(\(C)), where [is the depth of the [oop nest.

Figure 3.2 shows sample affine decompositions onto a virtual processor space and the
corresponding affine functions. Figure 3.2(a) shows affine data decompositions for a two-
dimensional array onto a one-dimensional virtual processor space. Figure 3.2(b) shows
affine computation decompositions for atwo-deep loop nest onto a one-dimensional virtual
processor space. In the figure, the elements are shaded to identify their positions.

Givenaloopiteration or array element, the affine decomposition assignsthat iteration or
array element to aspecific virtual processor. The data and computation that are assigned to
the same processor are represented mathematically by the nullspaces of the matrices D and
C', respectively. For example, for both affine data decompositions shown in Figure 3.2(a),
elements along the direction (0,1) (i.e. each row) are assigned to the same processor
and thus V(D) = span{(0,1)}. In the first affine computation decomposition shown in

34 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

»
»

(@) Arrays %)
(@]
()]
EEEE S| mEENE mninln
I EEEN S| mEEN Bulnl=
OooOd OooOd EEENE
O000 o000 EEEE
a
A(8) = pass [1@H+[o] [—10H+N
b L o EEEN
(B) Loops 2 EEEN
 EEEN g ODomm Oood
EEEN g OOmM 0ood
OOoOoOd OCOm M
o000 mEl [
i : .
| |
o) = Gleg MHW@ MHWJ

Figure 3.2: Sample affine decompositions onto a virtual processor space: (d) affine data
decompositions and (b) affine computation decompositions. The elements are shaded to
identify their positions.

Figure 3.2(b), iterations along the direction (1,0) (i.e. iterations of ;) are on the same
processor and AV (C') = span{(1,0)}. In the second affine computation decomposition
iterationsalong (0, 1) (i.e. iterationsof ¢,) are assigned to the same processor and V' (C') =

span {(0,1)}.
3.21.2 Relationship between Computation and Data

The computation and data in a program are related by the array access functions. Let the
affine computation decomposition for aloop nest j be represented by ¢;(7) = C;(7) + 7;,

3.2. MATHEMATICAL DECOMPOSITION MODEL 35

and let the affine data decomposition for an array « be represented by d,.(@) = D, (@) + 6,.
Furthermore, let Z,;j be the kth array access function for array « in loop nest 5. No
communication is required if it is possible to define an affine computation decomposition
for each loop nest 5 and an affine datadecompositionfor each array = such that thefollowing
eguation holdsfor all array access functions &:

D.(F5@) + & = G0 +7; (32)

A trivial solution that guarantees zero communication is to place al the data on a
single processor by setting the affine data decompositions such that V., d, = 0. By
Equation 3.2, thismeansthat the affine computation decompositionsaresuchthat vy, ¢; = 0,
and all the computation executes sequentially. Therefore for al loop nests j, NV(C;) would
span the entire iteration space Z, and for al arrays =, N (D,) would span the entire
array space A. The objective, however, is to maximize parallelism while incurring as
little communication as possible. Maximizing parallelism means finding affine data and
computation decompositions such that for all loop nests j, rank (C';) isaslarge as possible,
or equivaently, N'(C;) isas small as possible.

If itispossibleto find asinglenon-trivial, affine decomposition with no communication,
then there exist many equivalent affine decompositions with the same degree of parallelism
and no communication. For example, given a communication-free affine decomposition
we could aways transpose all the data and computation and still have no communication.

Communi cation due to mismatchesin the linear transformation part of an affine decom-
position are expensive since they require data reorganization for entire arrays. In contrast,
communication at the offset level is typically inexpensive nearest-neighbor communica
tion. We thus also consider the version of Equation 3.2 that omits the offsets. Only
nearest-neighbor communication is required if it is possible to define alinear computation
decompositionfor eachloop nest 5 and alinear datadecompositionfor each array « such that
the following equation holdsfor all array access functions k. Letting fj(f) = FL(D)+ k

z?

Doy (1) = C4(7) (3.3)

J

36 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

3.2.2 Physical Processor M apping

The virtual processors in each dimension are mapped onto the physical processors of the
target machine via one of the following folding functions. BLOCK, CYCLIC or BLOCK-
cycLic(b), wherebistheblock size. A BLock folding function meansthat [ﬁ—ﬂ contiguous
virtual processors are assigned to each physical processor, where P, isthe number of virtua
processors and P, is the number of physical processors. With a cyctLic folding function
each virtual processor is mapped to a physical processor using a round-robin assignment.
Similarly, with BLOCK-CYcCLIC(b), b contiguous virtual processors are assigned round-robin
to the physical processors.

array access

Arrays t(i) = Fi+ Loops

HiEEin g ﬁ - HiEEn
40000 giedee, fieconpualon, D000
I:H:ll:ll:l d(é) = Da+9d C() —C|+y DDDD
L»az L»iz
HiEEn
Virtual Processors RN
HiEEn
HiEEn

block / cyclic / block-cyclic

Physical Processors ™ i M i M i M g

Interconnection Network

Figure 3.3: Two-step model of computation and data decompositions.

3.2. MATHEMATICAL DECOMPOSITION MODEL 37

real x(N,N), y(N,N, z(N N

template T(2*N+3, 3*N), distribute(block, *)
align x(1,J) with T(I,J)

align y(1,J) with T(Il, 3*J)

align z(1,J) with T(2*1+3,J)

4 EEEE
) s HEEE
8 A A DDDD
S| % mmmm ' mEEm
8 EEEE EEEE 0ooo

Elaluln laluls L
0000, 0000,
X y z

atnetncton: 16240 00700 207+

folding function: block block block

Figure 3.4: Example of HPF decompositions and the corresponding virtual and physical
processor mappings under our decomposition model.

A complete decomposition thus consists of an affine function for the virtual processor
mapping plus a folding function for the physical processor mapping. This is shown in
Figure 3.3.

Thetwo-step model used by our compiler can represent asuperset of the decompositions
availableto HPF programmers. The affine decompositionsin our model determinethearray
alignmentsin HPF. Therank of thelinear transformation part of the affine function specifies
the number of distributed dimensions — this corresponds to the dimensions in the HPF

38 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

di stri but e statement that arenot markedas“* . Thefoldingfunctions(BLOCK, CYCLIC
and BLOCK-CYcCLIC) correspond directly to those used in the di st ri but e statement in
HPF. For example, Figure 3.4 shows sample HPF distributions with the corresponding
virtual and physical processor mappings under our model. The t enpl at e directive
declaresatwo-dimensional template of size (2N +3) x 3N andthedi st r i but e directive
distributes the first dimension across a one-dimensional processor space. The array = is
aligned directly onto thetemplate. Thefirst dimension of array y isaligned directly onto the
template, and the second dimension is aligned with a stride of 3. Note that even though «
and y have different alignmentsin the second dimension, their decompositionsin our model
areidentical since the second dimensionislocal to each processor. The first dimension of
array z isaligned with a stride of 2 and an offset of 3. The stride trandates directly to the
linear transformation matrix of the affine decomposition, and the offset becomes the offset
decomposition.

3.3 Summary

Inthischapter wefirst described the machinemodel used by the decompositionanalysis. We
model amachinewith physically distributed memories, and each memory isassociated with
asingle processor. We assume that the communi cation time between any two processorsis
thesame, regardlessof the specific processorsinvolved. Thusthemainfactor indetermining
the cost to access a data element is whether that access is to the local processor or to a
remote processor.

Next we described our mathematical model of decompositions. We model decompo-
sitions in two steps: first an affine function maps the computation and data onto a virtual
processor space, and second a folding functions maps the virtual processor space onto the
physical processors of the target machine. We also presented a system of equations that
describesthe rel ationship between the computation and datadecompositions such that there
IS N0 communication.

Chapter 4
A Static-Decomposition Algorithm

We begin the presentation of our decomposition algorithm in this chapter by considering
the restricted problem of calculating static decompositions. A decomposition is static
when there is a single data decomposition for each array throughout the entire program
region being analyzed. We present an algorithm that finds static computation and data
decompositions with the maximum degree of parallelism. In the following chapter, we will
use the stati c-decomposition algorithm as acomponent of the algorithm for finding dynamic
decompositions, in which the data decompositions are allowed to change across different
loop nests.

The static-decomposition agorithm is based on the two-step mathematical model of
decompositions presented in the previous chapter. In Section 4.1 we present the algorithm
for finding static decompositions onto the virtual processor space. Then in Section 4.2 we
describe how the virtual processor space is mapped onto the physical processor space.

4.1 Finding Virtual Processor Mappings

Our agorithm for mapping computation and data onto the virtual processor space generates
affine decompositions. The algorithm sets up a system of equations that the desired affine
decompositions must satisfy, and then solves for the decompositions. The key issues we
address are how to formulate the system of equations, and then how to solve the equations
efficiently. We begin in Section 4.1.1 by giving an overview of the strategy behind the

39

40 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm, and the subsequent sections present the details of the algorithm.

4.1.1 General Approach for Finding Affine Decompositions

From Section 3.2.1.2, we know that the dataare always|ocal to the processor accessing the
datawhen Equation 3.2 holdsfor all arrays =, loop nests j and array accesses £:

D.(f5(D) + 6, = () +7;

We can aways find a strictly communication-free decomposition by creating a system
of these equations, and then solving directly for the affine computation decompositions,
C;(7) + 7;, and the affine data decompositions, 1,,(@) + &,.

Often, however, the only solution with strictly no communication is the trivial solution
that maps all the data and computation onto a single processor. Since each equation in the
system represents a requirement on the data and computation decompositions, it is possible
that the only solution that satisfies all these requirementsisthetrivia solution. Thus rather
than requiring that Equation 3.2 strictly holds for all accesses to every array in every loop
nest, we relax the equations to allow limited types of communication. As described in
Section 3.2.1.2, communication due to mismatches in the linear transformation part of an
affine decomposition are more expensive than mismatches in the offset part. Our strategy
isto split the affine decomposition problem into two main steps. wefirst solvefor the linear
decompositions — this determines the linear transformation part of the affine function that
represents an affine decomposition, and then we solve for the offset decompositions.

To calculate the linear decompositions, we use the version of Equation 3.2 that omits
the offsets, Equation 3.3. Thiswill lead to a solution where the linear decompositions have
no data-reorgani zation communication, but may still have nearest neighbor communication
due to offsets. Then after finding the linear computation and data decompositions ';
and D,, respectively, the algorithm finds the offset decompositions +; and &, to form the
complete affine decompositions.

When the decompositions are truly communication-free, no synchronization is nec-
essary. However, linear decompositions that allow nearest-neighbor communication can
require synchronization within and/or across loop nests. Since the parallelism is not as

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 41

effective in loop nests that require synchronization as in loop nests with no synchroniza-
tion, we would prefer to find alinear decomposition where synchronization is only needed
outside the loop nest, rather than a linear decomposition where synchronization is needed
within the loop nest. Based on this observation, we first restrict our attention to problem
of calculating linear decompositionsthat have no synchronization within the loop nests. In
other words, at this point we only consider distributing iterations of outermost doall loops.
We refer to these decompositions as basic linear decompositions. The loop nests in the
program have been transformed into nests of fully permutable loop nests by the previous
parallelization phase, and the parallel loops have been moved to the outermost possible
position within each fully permutable nest (Section 2.3.1). The algorithm for calculating
basic linear decompositions is presented in Section 4.1.2. We describe how to generate a
system of equations that represents basic linear decompositions, and discuss how to solve
for the decompositions.

Next, we consider additional forms of communication and synchronization. Sec-
tion 4.1.3 shows how we modify the system of equations for basic linear decompositions
to alow replication communication. Then, in Section 4.1.4 we again modify the system of
equations to add regular synchronization within fully permutable loop nests. Section 4.1.5
gives a summary of the full linear decomposition algorithm. Finaly, in Section 4.1.6, we
describe how to find the offset decompositions that compl ete the affine decompositions.

4.1.2 BasicLinear Decompositions

Our agorithm for finding basic linear decompositions has the important property that it
finds basic linear decompositions that have the maximum degree of parallelism possible
(we prove this property in Theorem 4.1.8). We require that the bounds of the loops are
sufficiently large to keep all the processors of the target machine busy. In other words, we
only care about how many loops are parallelized, not which individual loops. If it can be
determined statically that the bounds of a loop are small, then that loop is not considered
parallelizable.

In Section 4.1.2.1 we describe how to formulate the system of equations that describes
basic linear decompositions, and show some examplesin Section 4.1.2.2. We then present

42 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

our method for solving the system of equationsin Section 4.1.2.3.

41.2.1 Formulatingthe Equations

Basic linear decompositions have no data-reorganization communication and no synchron-
ization within theloop nests. No synchronization within aloop nest meansthat iterations of
loops that are not outermost parallel loops must be assigned to the same processor. These
eguations are called the synchronization equations. No data-reorganization communication
within and across loop nests means that using Equation 3.3, we must ensure that for all
loop nests ;, for all access functions % to arrays« intheloop nests, D, F.(7) = C;(7). The
eguations that result from this requirement are called the communication equations.

Synchronization Equations. The synchronization equations describe the loops that are
assigned to the same processor. As we are only considering the case where there is no
synchronization within aloop nest, any loops that are not outermost parallel loops must be
assigned to the same processor. Formally, for aloop nest 5 of depth /, let loops 1.. . s be
the outermost parallel loopsin the loop nest. Thenfor al loopsg = (s + 1)...1, iterations
7and 7+ €; must be assigned to the same processor, where ¢; is the ¢th elementary vector
of dimension / *:

Ci(T+ €) = ()
Ci((T+¢) =7 = 0
Ci(eq) =0
Thus for each loop nest j, and for each loop ¢ = (s + 1) ... [we generate the following:

Citég) = 0 (4.1)

We also generate synchronization equations for loops with small bounds to guarantee that
they will execute on the same processor.

Communication Equations. The communication equations must be satisfied for thereto
be no data-reorganization communication. We simplify Equation 3.3, D, I}, (7) = C;(7),

1The ¢th elementary vector, written ¢;, has a 1 in the ¢th position and zero in all other positions.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 43

by eliminating the iteration space vector ¢ on both sides of the communication equation to
give Dijj = ;. The equation must now hold for all integer vectorsof length /, where!is
the depth of the loop nest, whether or not they are actually within the bounds of the loops.
For each loop nest 7, for each array « and for each array access function £, we generate:

Together, the synchronization and communication equations represent the necessary
conditions for a linear decomposition that allows only nearest-neighbor communication
and no synchronization within a loop nest. There can be many possible solutions to this
system of equations, including thetrivial solution that assignsall the computation and datato
asingle processor. The objective, however, isto find a solution with the maximum degree
of paralelism. Mathematically, this corresponds to finding linear data and computation
decompositions such that for all loop nests j, rank (C;) is aslarge as possible.

4.1.2.2 Examplesof Basic Linear Decompositions

For the single loop nest shown in Figure 4.1(a), the array access functions for the four
I'eferenceSX[21, 12, Z3] ,X[11, 12, 13- 1] ,y[21, N-2o+1, Z3] and y[11, 12, Z3] are

100 i 0
LM =010 | + |0].
00 1| |is) 0
1 00] [i])
20 = |01 0 io| + | 0|,
00 1| |is) =
(1 0 0] [4] [0
1 = |0 -1 0 | + | N+1]| and
0 0 1] |is) 0
(100 B [0
2() = 01o] Ll + |0
(001 i | 0

44 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

respectively. These array accesses are affine functions of the form f(f) = Fi+ f Since
here we are only concerned with the linear transformation part of the affine functions, we
consider only the array access matrices:

100 1 0 O 100
Fh=Fh4=1010|, Fp=]0 -1 0/, F4=|010
0 01 0O 0 1 0 01
real X[N, N, N, Y[N, N, N|
[* Loop nest 1 */
for ¢4 = 1 to N do /* doall */
for 2 = 1 to N do /* doall */
for i3 = 1 to N do
X[21, 02, 23] = X[21, 12, 23- 1] + y[21, Nooo+d, 23] + y[1, 12, 23]
@

real x[N, N, Y[N, N, z[N, N]
/* Loop nest 1 */

for ¢4 = 1 to N do /* doall */
for 2 = 1 to N do /* doall */
X[21, 2] = Y[11, 22 + Z[11, 22]

[* Loop nest 2 */

for ¢4 = 1 to N do /* doall */
for 2 = 1 to N do /* doall */
Y[, 221 = yl21, 2] + X[22, 21]
(b)

Figure 4.1: Code examples used to illustrate linear decompositions. (&) single loop nest
and (b) multiple loop nests.

The innermost ¢3 loop is not parallel, which results in the following synchronization
eguation:
Ci(é3) =0

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 45

This equation ensures that all iterations of the i3 loop are assigned to the same processor.
The communication equations are as follows:

D.FY = (4
D.F% = (4
D,FY = ¢4
D,Fy = 4

These equations ensure that for each iteration of the loop nest, the processor that executes
that iteration must also be assigned elements F;” of array = and elements F4 and F2 of
array y. The complete set of equations for the example are as follows, after eliminating all
redundant equations:

0

Ch 0 - 0
1
(100

D, OlO] =
001
(1 0 0

D, 0 10| = Cy
0 0 1
(100

D, 01o] =
001

A solution with the maximum degree of parallelism for these equationsis:
C(1=100], D,=D,=[10 0]

The degree of paralelism is rank (C;)) = 1. This solution corresponds to distributing
iterations of the 7; loop across the processors.

To find basic linear decompositions across multiple loop nests, the equations for each
individual loop nest are ssimply merged into asingle system of equations. For example, the

46 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

complete set of communication equations for the two loop nestsin Figure4.1(b) is:

10 01

D, = D, - O,
(0 1| 10|
(1 0] (1 0]

D, = D, - O,
(0 1 (0 1
Lo

Dz — Cl
. O 1 -

There are no synchronization equations since there are no loops with dependences. This
example also illustrates why the system of equations describes a static decomposition, and
not a dynamic decomposition. For each array x there is only one decomposition variable
D, acrossall loop nests, and thus the solution will have asingle linear data decomposition
for each array. A solution with the largest possible degree of parallelism for these equations
is

(1=Cp=[11], D,=D,=D.=[1 1]

The degree of parallelism for thisexampleisrank (C;) = rank (C;) = 1.

4.1.2.3 Solvingthe Equations

This section describes how we solve the system of equations that describes alinear decom-
position. The objectiveisto find a solution with the maximum degree of parallelism. Itis
also important that the solution iscomputed incrementally: we need to be able to efficiently
build up the solution and avoid re-sol ving the equations unnecessarily as we examine larger
and larger regions of the program. Even though in this chapter we are considering the sub-
problem of finding static decompositionsfor asingleregionin the program, later werely on
the incremental nature of the algorithm in Chapter 5 for finding dynamic decompositions
and in Chapter 6 for finding interprocedural decompositions.

Given alinear computation decomposition matrix C'; for aloop nest j, the degree of
parallelism is represented mathematically by rank (C;) (Definition 3.2.3). Let / be the
depth of loop nest 7, then rank (C;) = I — dim(N/(C;)). Thus maximizing the degree of
parallelism means finding linear decompositions such that rank (C;) isaslarge as possible,

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS a7

or equivalently, the dimensionality of M'(C;) isas small aspossible.

In general, for arrays x and loop nests j, the nullspaces of the linear decomposition
matrices D, and C; represent the data and computation that are assigned to the same
processor, respectively. We observe that the data and computation that go on the same
processor isthe major factor that determinesthe amount of parallelism and communication,
not theindividual processor to which thedataand computationareassigned. Therearemany
different, yet equivalent, linear decompositions with the same nullspaces. An important
characteristic of our algorithm is that we first find the nullspaces that are guaranteed to
lead to the desired linear decompositions. We find the smallest possible nullspaces for
which a solution to the system of equations exists. Then a smple calculation is used to
find the corresponding linear transformation matrices. The nullspaces serve as a succinct
representation of the constraints on what data and computation must be assigned to the
same processor. When a new equation is added to the system, we need only update the
nullspaces, not re-solve the entire system of equations.

Based on our mathematical framework, presented in [10], Bau et a. have developed
an aternative method for solving a system of equations to calculate maximum rank affine
decompositiong[15]. Their solution, however, requires re-solving the entire system of
eguations whenever a new equation is added.

Solver Representation

Tosolvefor thelinear decompositions, we represent the computation and datain the program
region by a bipartite interference graph, &, = (V., V,). The loop nests form one set of
vertices V., and the arrays form the other set of vertices V;. There is an undirected edge
between an array and aloop nest for each array access function for the array intheloop nest.
For example, the interference graph for the code in Figure 4.1(b) isshown in Figure 4.2.

An edge eg’;j € F corresponds to the £th array access function, Fjj, for array « in
loop nest 5. The linear decompositions for array = and loop nest ; are related by the
communication equation, Dijj = ;. Animportant property of the interference graph
representation isthat if there is an edge between array + and loop nest j, we can calculate
alinear computation decomposition C'; given the linear data decomposition D,., and vice-
versa. We use this property later in subsequent sections to calculate the nullspaces of the

48 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

1 _ |10
I:xl 01
1 _716
Py 01
1 _ 716
le 01
I:1 _ 101
1 X2 1Q
le o
1 _ |10
P2 = g1

Figure 4.2: The interference graph corresponding to the code in Figure 4.1(b). The bold
edges show a cycle in the graph.

linear decomposition matrices and a so to calculate the final linear decompositions.

Mapping from the linear data decomposition to the linear computation decomposition
is straightforward. Given the m x [array access matrix Fl’fj and n x m linear data
decomposition matrix 1,,, we find the n x [linear computation decomposition matrix C';
by setting C'; = Dijj. Mapping from the linear computation decomposition to the linear
data decomposition requires solving for the n x m linear data decomposition matrix D.,,
given the m x [array access matrix Fﬁj and the n x [linear computation decomposition
matrix C';. To show that a solution always exists for D,., we must consider the following
three cases:

1. The system Dijj = (; hasasingle solution for D,.

2. The system Dijj = (; is under-constrained and has infinitely many solutions for
D... This occurs when the rank of the m x [matrix Fl’fj is less than the number of
rows, rank (1) < m. Inthis case asolution does exist, but there are free variables
in the solution which are completely arbitrary. We solve for D, and then fill in
the free variables afterwards. For example, the following loop nest results in an

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 49

under-constrained system:

real X[N, N|

/* Loop nest 1 */

for ;7 = 1 to N do
X[, 1] = ...

1
The array access matrix for array = in loop nest 1 above is F'Y = [0] . Here

rank(Fxll) =landm = 2. Ifwelet C; = [1],then

D.FY = (O
1

DxH _ (1]
D, = [1 dlZ]

where d;, can be any arbitrary value. Informally, what happens in this case is that
the second dimension of array « is not completely accessed by the given array access
function, F'%. The linear data decomposition of the second dimension of = can thus
be anything—it still will not cause data-reorgani zation communication when the array
access is executed.

3. Thesystem D, F¥; = C; is over-constrained and has no solution for D,.. This could
potentially happen if the rank of the m x [matrix Fl’fj is less than the number of
columns, rank (F%) < 1. Specifically, the system D, F¥; = C; is equivalent to
(F¥)TD," = ;" and only hasasolution when range (CjT) C range ((Fjj)T) [72].
Our agorithm ensuresthat asolution exists by generating C'; such that this condition
isalways met (see Equation 4.4 and Lemma4.1.2 below). For example, consider the
following code:

50 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

real x[N|

[* Loop nest 2 */

for 7 = 1 to N do
for , = 1 to N do

= X[]

The array access matrix for array = in loop nest 2 above is F%, = [10] Here
rank (%) = 1and | = 2. If welet C, = | 1 0 |, thenwe have

nf10] = [10]
b - [1]

In this case, range (CZT) = range ((FJ}Z)T) = span{(1,0)} and a solution exists.
Informally, what happensisthat all iterations of the i, loop access the same element
of array =. Thusthe i, loop must be assigned to the same processor, that is, A'(C>)
must contain span {(0, 1)}, or equivaently, range (CZT) must be in span{(1,0)}.
Otherwise, the elements of array = would have to be allocated to multiple processors
at the same time, and this is not possible without communication (in Section 4.1.3
we relax the model to allow replication communication in some such cases).

The mapping between linear computation and data decompositions are shown in algo-
rithm form in Figure 4.3.

Calculating the Nullspaces

The first step in solving the system of equations is to calculate the nullspaces of the linear
decomposition matrices. This corresponds to calculating the data and computation that
must be assigned to the same processor so as to guarantee a solution to the synchronization
and communi cation equations.

What data and computation must be assigned to the same processor? There are four
constraints that we place on the nullspaces of the linear decomposition matrices. The

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 51

algorithm Linear_Comp_Decomp

(F7%; : matrix,
D, : matrix)
return
(C; - matrix)
CJ‘ = DxFij;
return Cj;
end algorithm;
algorithm Linear_Data Decomp
(F7%; : matrix,
C'; © matrix)
return
(D, : matrix)

D, =solvefor D, in D, F}, = C;;
[* asolution is guaranteed to exist, see page 48 */
return D,;
end algorithm;

Figure 4.3: Algorithms for mapping between linear data decompositions and linear com-
putation decompositions.

constraints on the nullspaces are represented as a set of basis vectors. In the rest of this
section we describe each of the four constraints and present an algorithm to calculate
them. The first constraint is derived from the synchronization equations and the remaining
constraints are derived from the communi cation equations. We show that if asolution to the
system of synchronization and communication equations exists, then the nullspaces of the
resulting linear decomposition matrices must contain the space spanned by the constraints
(Theorem 4.1.6).

(1) Synchronization Constraints. The synchronization equations (Equation 4.1) gener-
ate synchronization constraints on the nullspaces of the linear computation decomposition
matrices. For each loop nest j, we have a synchronization equation C;(é;) = O, for all

52 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

loops ¢ that are not outermost parallel loops. Each synchronization equation leads directly
to a constraint on the nullspace of C';:

6_; - N(C]) (43)

The following lemma shows that Equation 4.3 is a necessary condition for solving the
synchronization equations.

Lemma 4.1.1 For all loop nests ; with loops ¢ that are not outermost parallel loops,
if a solution to the synchronization equation C';(¢;) = 0 (Equation 4.1) exists, then the
synchronization constraint ¢, € N (C;) (Equation 4.3) is satisfied.

Proof: Thisfollowsdirectly from Equation 4.1. O

(2) Computation Communication Constraints. The communication equations (Equa-
tion 4.2) generate computation communication constraints on the nullspaces of the linear
computation decomposition matrices. If two iterations 73 and > of loop nest ; access the
same element of array x, then 77 and > must be mapped onto the same processor. Con-
sider an array access function Fl’?j in loop nest ;. Iterations 1 and 7> access the same
element of array = when F(71) = F(%), that is, (7 — ») = 0. Letting# = 71 — &,
FE(#) = 0and 7 € N(F)). Using Equation 4.2, if I’ € NV(D,.F¥) then ¥ € N(C;).
Since V' (D, FE) D N(FE), theni € NV'(FY) impliesthat I € A/(C;). Thisleads to the
following constraint on the nullspace of C';:

Vie N(FE),T e N(C)) (4.4)
The following lemma shows that Equation 4.4 is a necessary condition for solving the

communication equations.

Lemma 4.1.2 For all arrays =, loop nests ; and array accesses £, if a solution to the
communication equation Dijj = (; (Equation 4.2) exists, then the computation commu-
nication constraint V¢ € A'(F%), 7 € M(C;) (Equation 4.4) is satisfied.

Proof: To prove this lemma, we show that if a solution to D, F¥, = C; exists, then
N(FE) € N(C;). We know from linear algebra that a solution only exists when

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 53

range (CjT) C range ((Fjj)T)[YZ]. Also for any matrix A, N'(A) L range (AT), that
is, \(A) is the orthogonal subspace to range (A”). Thus A'(F%) € N(C;). O

(3) Data Communication Constraints. The communication equations (Equation 4.2)
also generate data communication constraints on the nullspaces of the data decomposition
matrices. If twoarray elementsa; and @, of array x areaccessed by the sameiteration of loop
nest 7, then ¢, and @, must be mapped onto the same processor. Furthermore, if elements
of different arrays are accessed by the same iteration, then they must be assigned to the
same processor. Thiscan also cause constraints on the null spaces of the datadecomposition
matricesif different loop nests place conflicting requirements on the arrays.

To calculate the data communi cation constraints, we first look at the interference graph
Gy = (V.,Vq, E). For two vertices v, v, € (V; U V), if there is a cycle in the graph
(Vgy - vy Uy, ..., 0;), then there are multiple distinct paths from v, to v,. If there are
multiple paths between two vertices, thenit ispossiblefor theloop neststo cause conflicting
requirements on the decompositions of the arrays.

We now show how a cycle in the interference graph can lead to a constraint on the
nullspaces of thelinear data decomposition matrices. For each ssimple cycle in the interfer-
encegraph, let v, and v,, be two verticesin thecycle. Then therearetwo distinct pathsfrom
vertex v, to vertex vy, Viy, = (vpy ..., 05, ... 0y) @A Viyy = (Vg ..., 01, ... 0y), Where
v, # v.. Assume without loss of generality that v, and v, are datavertices, i.e. v,,v, € V;.
All cycles in a bipartite graph contain an even number of vertices, since the graph only
contains edges between verticesin the set V. and the set V;. Thus any cycle will contain at
least two data vertices and the assumption isvalid. We define a path access function, #,,,
such that for a path V,,, we have D, = D, H,,,.. Informally, the path access function gives
the mapping between D, and D, when we consider only the array access functions along
the path V,.,. We calculate H.,, by first setting D,, to the identity matrix and then finding all
the linear decompositions along the path using algorithms Li near _Conp_Deconp and
Li near _Dat a_Deconp until reaching D,. Thusfor pathsV..,, and V., , we havetwo path
access functions 4., and H..,, suchthat D, = D.H,,, and D, = D, H,,,, respectively.

54 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

This gives the following equations:

Dy :Dxnyl - Dxnyz
D,(Hyy, — Hyy,) = 0

and leads to the following constraint on the nullspace of D
range ((Hayy — Hoyp)) S N(Dy) (4.5)

The data communication constraint is calculated for all arrays in each smple cyclein the
interference graph. This includes the degenerate cycle formed by multiple array access
functionsfor asingle array in the same loop nest. If an array isinvolved in multiple cycles
and multiple constraints are found, then the constraints are combined. Constraints are
combined by summing the vector spaces that represent the different constraints.

For example, consider the ssmple cycle in the interference graph in Figure 4.2. Let v,
and v, represent the data vertices for arrays = and y, respectively. Similarly, let v, and v,
represent the computation verticesfor loop nests 1 and 2, respectively. There are two paths
from vertex v, to vertex vy, V,y; = (vy, v1,v,) and Vo, = (vg, v2,vy). Thisresultsin the
following equations for path V.., , :

Do,y = D,
10

D, = D,
01

and the following equations for path V., ,:

D, H, = D,

Ty

01
D, = D,
10

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 55

Thus,
Dgg(Hl,yl — H

xyz) = 6
(Lo5)-124))
D, - =
01 10
(10 01
w([33]-[4) <

1 -1
rang<9(__1 A D C N(D.)

ol

Simplifyingthe equation resultsinaconstraint onthe nullspaceof D,., span{(1,—1)} C
N(D,). Similar analysis leads to the same constraint on the nullspace of D,,
span {(1,-1)} € N(D,). The following lemma shows that Equation 4.5 is a necessary
condition for solving the communication equations.

Lemma 4.1.3 For all arrays x, loop nests j and array accesses k, if a solution to the
communication equation D, Fl’fj = (; (Equation 4.2) exists, then the data communication
constraints range ((H..,, — H.,,)) € N'(D.), where I, and ,,, are two distinct path
access functions (Equation 4.5), is satisfied.

Proof: We prove thislemmaby contradiction. We assume that a solution to the commu-
nication equations exists and that the data communication constraint isnot satisfied. This
meansthat there exists linear decompositions .., D, and path accessfunctions #4,., |, H..,,
such that D, H,,; = D, and Dy H,,, = D, but range (1, — H.,,)) € N'(D.). Thus
D.H,.,, # D.H,,,and D, # D, whichisacontradiction. Thus the original assumption
that the data communication constraint is not satisfied must be false, thereby proving the
lemma. O

(4) Propagation Constraints. The previous three constraints determine which data ele-
mentswithin the same array are assigned to the same processor, and which iterationswithin
the same loop nest are assigned to the same processor. The loops in each loop nest that are
executed on the same processor force elements of the arrays referenced in that loop nest to
be allocated local to the same processor. Similarly, the local array elementsforceiterations
of the loop nests that access those elements to be executed on the same processor. This
constraint specifies how the nullspaces are propagated between loop nests and arrays.

56 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

If two iterations 1 and 2> in loop nest ; are mapped to the same processor, then the data
of array « they access must a so be mapped to the same processor. We have C; (1) = C}(i2)
and C;(71—72) = 0, thusfori'= 7 — 7,7 € N(C;). Using Equation 4.2, D, F.i = C;i = 0
andthus F£.¢ € N'(D,). Formally,

N(D,) 2 span{5 | § = FhiTe N(C))} (4.6)

Similarly, twoiterationsz; and 2, inloop nest ; must be mapped to the same processor if
the dataof array = they access are mapped to the same processor. Again, let ¢ = 7; — 7> and
using Equation 4.2, D, 5 = C; = 0. Thus? € N(C;) when F5# € N(D,). Letting
Sk, = range (I1%),

N(Cy) 2 span{i'| FT'e (N (D,) N SE)} (4.7)

In the following lemma we show that it is necessary to propagate the nullspaces between
the data and computation to solve for the communication equations 4.2.

Lemma 4.1.4 For all arrays =, loop nests j and array accesses £, if a solution to the
communication equation Dijj = (C; (Equation 4.2) exists, then the data and computation
propagation constraints (Equation 4.6, Equation 4.7) are satisfied.

Proof: Thisfollowsdirectly from Equations 4.6 and 4.7. O

Thecompletealgorithm for finding the nullspaces of basiclinear decomposition matrices
is shown in Figures 4.4 and 4.5. Figure 4.4 contains Pr opagat e_Nul | spaces, the
algorithm used for propagating the nullspaces. The algorithmisiterative—it calculatesthe
effects of the loop nests on the arrays using Equation 4.6, and the effects of the arrays on
the loop nests using Equation 4.7. This continues until a fixed-point for the nullspaces is
found. Figure 4.5 shows Basi ¢ _Nul | spaces, the main algorithm for calculating the
nullspaces on a given interference graph.

Since algorithm Pr opagat e Nul | spaces shownin Figure 4.4 is an iterative algo-
rithm that completes only when afixed-point is reached, we show in the following theorem
that the algorithm does terminate.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS

57

algorithm Update Arrays
(G, : interference_graph, /* G, = (V,, Vy, I2) */
v; © computation_vertex, /* v; € V. */
A : set of vector_space)

foreach array « and array access ¥, such that ¢!, € £ do
N(D,) = N(D,) +span {3 | § = F5I,T € N(C;)}; * Equation 4.6 */
A=A+ N(D,);
end foreach;
end algorithm;

algorithm Update_L oops
(G5 @ interference_graph, /* Gs = (V., Vg, E) */
v, . datavertex, /* v; € V. */
IM : set of vector_space)

foreach loop nest ; and array access Fl’?j such that eg’;j € K do
N(Cy) = N(Cy) + span{&| (FT € (N (D,) N S%))}; 1* Equation 4.7 */
M =T+ N(C));
end foreach;
end algorithm;

algorithm Propagate Nullspaces
(G, : interference_graph, /* G, = (V,, Vy, I2) */
I" : set of vector_space,
A : set of vector_space)

while changes do
if changed(v,. € V;;) then Update_Loops(Gs, v, IN);
if changed(v; € V.) then Update_Arrays(Gs, v;, D),
end while;
end algorithm;

Figure 4.4: Algorithm for propagating the nullspaces of linear decomposition matrices

between loop nests and arrays.

58 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Init_Nullspaces
(G, : interference_graph, /* G, = (V,, Vy, I2) */
ConstrC_List : list of constraint,
ConstrD_List : list of constraint)
return
(T : set of vector_space,
A : set of vector_space)

foreach v, € V. do V' (C;) = ConstrC_List;
foreach v, € V; do N (D,) = ConstrD_List;
r= U W)

Vv Ve

A= | (V(D.));

VUEEVd

return (I',4);
end algorithm;

algorithm Basic_Nullspaces
(G, : interference_graph) /* G, = (V,., Vy, E) */
return
(T : set of vector_space,
A : set of vector_space)

ConstrC_List : list of constraint;
ConstrD_List : list of constraint;

ConstrC_List = /* Equations 4.3, 4.4 */;
ConstrD_List = /* Equation 4.5 */;
(T, &) = Init_Nullspaces(G's, ConstrC_List, ConstrD _List);

Propagate_Nullspaces(G,, I, A);
return (I',4);
end algorithm;

Figure 4.5: Algorithm for calculating the nullspaces of the basic linear decomposition
matrices.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 59

Theorem 4.1.5 Algorithm Pr opagat e _Nul | spaces isguaranteed to terminate.

Proof: Foral v, € V; andforall v; € V., the vector spaces V' (D,.) and V' (C;) increase
in size monotonically as the algorithm progresses. In the worst case, the nullspaces will
gpan the entire space and the algorithm will terminate. O

The following theorem shows that the nullspaces found by Basi ¢_Nul | spaces are
necessary for finding the nullspaces of the matrices that satisfy the system of equations
formed by the synchronization and communication equations (sufficiency isproved later, in
Section4.1.2.3 whenwe cal culatetheactual linear decomposition matrices). Inother words,
if asolutionto the system of equationsexists, then the nullspaces of thelinear decomposition
matrices from that solution must be at least as large as the nullspaces calculated from our
constraints. Asaresult, the algorithm finds the smallest nullspaces that guarantee a solution
to the equations. Since the nullspace represents the data and computation that are allocated
to the same processor, finding the smallest nullspaces means that the algorithm is finding
the maximum parallelism such that there is no synchronization within each loop nest and
only nearest-neighbor communication.

Theorem 4.1.6 For all arrays x, loop nests j and array accesses k, if a solution exists to
the system of equations formed by the synchronization equations C;(¢;) = 0 (Equation 4.1)
and the communication equations Dijj = (; (Equation 4.2), then the nullspaces of
the linear decomposition matrices contain the space spanned by the nullspaces found by
algorithmBasi ¢ _Nul | spaces, and the nullspaces are the smallest possible subspaces.

Proof: Thenullspacesfound by algorithmBasi ¢ _Nul | spaces arethenullspacesgiven
by constraints (1)—(4) using Equations 4.3, 4.4, 4.5, 4.6 and 4.7. The necessity of these four
constraints was shown in lemmata4.1.1, 4.1.2, 4.1.3 and 4.1.4. The nullspaces found by
the algorithm are the smallest possible subspaces because algorithm only ever adds vectors
to the nullspaces in order to ensure that one of the constraintsis satisfied. O

For an example of how Basi ¢ _Nul | spaces works, consider the interference graph
from Figure 4.2 and the corresponding code from Figure 4.1(b). The nullspaces of the
linear computation decomposition matrices are initialized to V' (C) = N(C2) = 0, that
is, there are no synchronization constraints nor computation communication constraints.

60 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

The nullspaces of the linear data decomposition matrices are initialized to NV'(D,) =
N(D,) = span{(1,—1)} dueto adata communication constraint, and N’ (D) = (. First,
the routine Updat e _Loops is caled with data vertex v,. Equation 4.7 is applied to
computation vertices v, and v, resulting in M'(C1) = N(C2) = span{(1,—1)}. Next
routine Updat e _Ar r ays is called with computation vertex »;. Equation 4.6 is applied to
dataverticesv,., v, and v, togive N'(D,.) = N(D,) = N(D.) = span{(1,—1)}. Routine
Updat e_Ar r ays isaso caled with computation vertex v, but all the arrays have already
been updated so the call has no effect. Finaly, Updat e_Loops is called for each of the
datavertices; the calls have no effect and the algorithm terminates.

Calculating the Decomposition M atrices

After calculating the nullspaces of the linear decomposition matrices for each array and for

each loop nest, next we calculate the actual linear decomposition matrices. Thefirst stepis
to determine the number of virtual processor dimensions. The number of virtual processor
dimensionsn is

no= max(dim(s,) - dim(\ (D)) (4.8)
where
S, = 3 range(F;?j)
Vei]EE

S, representsthetotal space of array « that isaccessed, typically theentirearray. Thisequa-
tionwill yield avalue of n such that all the parallelism foundintheBasi ¢ _Nul | spaces
algorithm from Figure 4.5 is exploited. For the example from Figure4.2, n = 1.

When calculating the linear decomposition matrices, we take advantage of the fact that
thereis a one-to-one correspondence between edges in the interference graph and the com-
munication equations. This meansthat each connected component of theinterference graph
corresponds to a set of arrays and loop nests that have inter-related linear decompositions.
The linear decompositions of the vertices in different connected components correspond
to independent systems of equations. We thus solve for the linear decompositionsin each

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 61

connected component of the interference graph separately. Also, since the decompositions
in each connected component are all relative to one another, we can choose one arbitrary
linear decomposition matrix and derive the rest of the linear decomposition matricesin the
connected component. The algorithm chooses an n x m linear data decomposition matrix
D, for anarray y of dimension m such that A'(D,) isthe nullspace that was calculated by
theBasi c _Nul | spaces agorithm.

Starting from the vertex representing array y in the interference graph, we traverse the
remaining vertices in the connected component in breadth-first order. Given the linear
data decomposition D,,, we find the linear computation decomposition C'; for aloop nest
J that references array y using agorithm Li near _Conp_Deconp. Similarly, given the
computation decomposition C;, we find the data decomposition matrix D, for another
array « accessed in loop nest j using algorithm Li near _Dat a_Deconp. When there
are multiple array access functions for an array in a loop nest we use the one with the
maximum rank. The remaining linear decomposition matricesin the connected component
are calculated in a similar fashion. After al the linear decompositions are calculated,
any unspecified entries in the matrices are filled in (see Section 4.1.2.3). Note that when
calculating the linear decomposition matrices, non-integer values in the matrices can result.
Since the virtual processor numbers must be integers, the linear decompositions must map
the data and computation into integer values. We eliminate any non-integer values in the
matrices by multiplying through by the least common multiple of the denominators of the
fractions. The agorithm for finding linear decomposition matrices, Cal c _Matri ces, is
shown in Figure 4.6.

Thefollowing theorem showsthat theBasi ¢ _Nul | spaces algorithmissufficient for
finding the null spaces of the matricesthat satisfy the system of equations. Thetheorem also
shows that algorithm Cal ¢ _Mat ri ces constructs the matrices that have the nullspaces
found by Basi c_Nul | spaces.

Theorem 4.1.7 Algorithm Cal c_Mat ri ces finds a solution to the system of equations
formed by the synchronization equations (Equation 4.1) and the communication equations
(Equation 4.2) such that the linear decomposition matrices have the nullspaces found by
algorithrmBasi ¢ _Nul | spaces.

Proof: We prove this theorem by induction. The base case is the array y for which we

62 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Calc_Matrices
(G, : interference_graph, /* G, = (V.,Vy, E)*/
I" : set of vector_space,
A : set of vector_space)
/* Nullspaces calculated by Basi ¢ _Nul | spaces */

v, . data_vertex;
n . integer;
factor : integer;

foreach connected component &G, € G, do
(n,v,) = mex(dim(Sy) —dim(N(D,))); [I* Equation 4.8*/
yeVy

D, = n x m matrix with nullspace N'(D,); /* m = dim(y) */

/* Find linear decomposition matrices for all vertices*/
foreach v, € V;/, v; € V." in breadth-first order starting from v, do
forv; € V., k such that Fl’fj ismax rank, C'; = Linear_Comp_Decomp(Fjj, D,);
for v, € Vy/, k such that Fl’?j ismax rank, D, = Linear_DataLDecomp(Fjj, Cy);
end foreach;

[* Ensure all entries are integral */
factor = least common multiple of denominators;
foreach v, € V;/, v; € V. do
D, =factor - D,;
C; = factor - Cj;
end foreach;
end foreach;
end algorithm;

Figure4.6: Algorithm for calculating the linear decomposition matrices.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 63

chose an arbitrary decomposition matrix that has the specified nullspace. For the inductive
step, we show that as each linear decomposition matrix is calculated, it has the correct
nullspace and the synchronization and communication equations hold. There aretwo cases,
calculating linear data decompositions and cal culating linear computation decompositions.

First we show that given a linear data decomposition D, for array =, we calculate a
linear computation decomposition C'; for loop nest ; that has the correct nullspace and that
the synchronization and communication equations are satisfied. The communication equa-
tions are satisfied by construction because these equations are used to calculate C'; given
D, in agorithm Li near Conp_Deconp called from Cal c_Matri ces. The synch-
ronization equations involving loop nest ; are satisfied by the synchronization constraint
(Equation 4.3), and the propagation constraint (Equation 4.7) ensuresthat \V'(C';) iscorrect.

Next we show that given alinear computation decomposition C'; for aloop nest 5, we
calculate alinear data decomposition D, for array « that has the correct null space and that
the synchronization and communication equations are satisfied. Again in this case, the
communication equations are satisfied by construction because these equations are used
to calculate D, given C; in algorithm Li near _Dat a_Deconp. Note that we know a
solution to the communi cation equations exists because of the computation communication
constraint (Equation 4.4) and the data communication constraint (Equation 4.5). We do
not need to consider the synchronization equations as they are functions of only the linear
computation decompositions, and have no effect on the linear datadecompositions. Finally,
the propagation constraint (Equation 4.6) ensures that A'(D,.) is correct. O

The following theorem shows that algorithm Cal ¢ _Mat r i ces iscorrect, and that the
solution hasthe property that it finds basic linear decompositionswith the maximum degree
of parallelism.

Theorem 4.1.8 Algorithm Cal ¢ _Mat ri ces finds basic linear decompositions that have
the maximum degree of parallelism.

Proof: Theorem4.1.7 showed that thelinear decompositionsfound by thea gorithm satisfy
the synchronization and communication equations. The linear decompositions it finds are
basic linear decompositions as the solution has no data-reorgani zation communication and
thereisno synchronization within each loop nest. Theorem 4.1.6 shows that the nullspaces

64 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

of the linear decomposition matrices are as small as possible. Thusthe agorithmisfinding
the basic linear decompositions with the maximum degree of parallelism. O

For an example of the Cal c_Mat ri ces algorithm, consider the on-going example
from Figure 4.2. The Basi c_Nul | spaces algorithm found that the nullspaces were
N(D;) = N(Dy) = N(D.) = span {(1,-1)}, and V(C1) = NV(C2) = span{(1, —1)}.
The algorithm first sets D, = [11] It then traverses the vertices in the order (1,
2, y, z) to calculate the remaining linear decomposition matrices. The resulting linear
decompositions are:

(1=Cp=[11], D,=D,=D.=[1 1]

Thisisthe same result we showed when we first introduced the examplein Section 4.1.2.2.

4.1.3 Linear Decompositions with Replication

In this section we describe how to extend the agorithm for finding basic linear decomposi-
tionsto allow arestricted form of communication, replication. Replication of read-only data
is a commonly-used technique for improving the performance of paralel machines. The
algorithm we present in this section finds the amount of read-only data replication needed
to maintain the degree of paralelism inherent in the read-write data without introducing
additional communication.

We consider two types of replication: constant replication and dimension replication.
Constant replication createsafixed number of copiesof an entirearray. Different processors
may access the same elements of the array at the same time. For example, consider the
code for loop nest 1 in Figure 4.7. Assume that we are given the linear computation
decompositionC; = [2] i.e. iterationsof the:, loop aredistributed across the processors
with astride of 2. Then each processor needs to access both elementsy|[;] andy[2* 4]
of array y. We can use constant replication to create two copies of y, each with a different
data decomposition. Figure 4.8(a) shows the two linear data decompositionsfor array 4 in
this example onto a one-dimensional virtual processor space.

Dimension replication duplicates data across al the processors along a dimension of
the virtual processor space. In loop nest 2 from Figure 4.7, if we assume that the linear

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 65

real Xx[2*N], y[2*N, z[N N

/* Loop Nest 1 */

for 7 = 1 to N do [* doall */
X[2*%41] = y[a] + y[2*%4]

/* Loop Nest 2 */
for 7 = 1 to N do [* doall */
for i, = 2 to N do
z[11, 22] = z[11,22-1] + y[22]

Figure 4.7: Code used toillustrate linear decompositions with replication.

computation decomposition is €, = [10] then all processors must access the entire
array y. We can apply dimension replication to y and replicate along all processors in
the first (and only) dimension of the processor space. Figure 4.8(b) shows the linear
data decompositions for the array in this case. Note that with dimension replication, it
IS not necessary to replicate the entire array —we can also apply dimension replication to
subsections of an array.

The increase in space requirements to accommodate constant replication is a linear
function of the array size, whereas the extra space needed for dimension replication is a
function of both the number of processors and the array size. With constant replication,
each copy of the array has a different data decomposition. With dimension replication,
there is a single data decomposition for each array that is repeated for al processors along
the replicated processor dimension.

4.1.3.1 Formulating Equationswith Replication

All read-only arrays are candidates for replication. We will also replicate any arrays
with read accesses that are of lower dimension than the maximum array dimension found
in the program. A pre-pass examines the array accesses and marks all such arrays as
replicatable. To find the linear decompositionswith replication, wefirst calculate the linear
decompositions ignoring all read accesses to the replicatable data. The communication

66 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

Processors

JOEE

=y

<
QD

=

(@)

OCEM, a
OCEE o
OO

—— =

OJCOEN 5,
y

Da = 0 [aﬂ

(b)

Processors

Figure 4.8: Example showing linear data decompositions onto a one-dimensional virtual
processor space with different types of replication: (a) constant replication and (b) dimen-
sion replication. The elements are shaded to identify their positions.

eguations and corresponding constraints that would have resulted from these read accesses
are eliminated. Removing these constraints potentially allows linear decompositions that
have a greater degree of paralelism. We then use the linear computation decompositions
for each loop nest to derive the linear data decompositions for the replicatable arrays.

The key issue in calculating linear data decompositions for replicatable arrays from
a given linear computation decomposition is how to model the relationship between the
computation and data with replication. In the remainder of this section, we describe how

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 67

to formulate the equations that allow constant and dimension replication, but still do not
allow arbitrary data-reorganization communication.

Without replication, the system of equations we generated only alowed a single linear
data decomposition D, for each array . To model constant replication, we allow multiple
datadecompositions for each replicatable array =, onefor each read access Fjj of = inloop
nest ;. We denote the linear data decomposition for array = corresponding to the array
access F}. by DY

To model dimension replication, we use a subspace of the full virtual processor space.
The linear data decompositions for the replicatable arrays are calculated to map onto the
subspace. Then all processors that are in the full processor space, but not in the subspace,
are alocated copies of the data that are allocated to the corresponding processor in the
subspace. We call this subspace of the virtual processor space the replication subspace.
For the examplefrom Figure4.8(b), Figure 4.9 showsthe mapping of array y in both thefull
processor space and the replication subspace. The full processor space isone-dimensional,
and the replication subspace has zero dimensions, i.e. the entire array is mapped onto
the first processor. All processors are alocated copies of array y since the entire array is
allocated to a single processor in the replication subspace.

ot OOHM,a
S| OOMM a
$| OOHEN . a
o COONME 4 COOEE 5
o » -1 | — %
I
y y
Full virtual Replication
processor space subspace

Figure 4.9: An example of dimension replication that shows the correspondence between
the full virtual processor space and the replication subspace. The elements are shaded to
identify their positions.

Let C; be the computation decomposition matrix for a loop nest ; that accesses a

68 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

replicatable array . C'; maps iterations onto the full processor space. To relate the full
processor space to the replication subspace, for each array access £k we use an n x n
projection matrix Rij. A projection matrix is a symmetric matrix that also equals its
square, eg. kY. = (R:)T and R, = (RY;)%. Wecall R’ the replication matrix for the
given array access.

Togeneratethelinear datadecompositionswith both dimension and constant replication,
we use a modified version of the communication equation D, FF. = C;. Given the
linear computation decomposition C'; for all loop nests ; and the read accesses Fﬁj to
all replicatable arrays x, we generate the following replication equations:

D’;jFl’?j = Rij(]j (4.9)
We solve these equations to find a linear data decomposition D* . and areplication matrix
RE.

The replication matrix RY; maps the processor space, range(C;), onto the subspace
range(D,). When the replication equations are satisfied, the datais local to the processor
accessing that data in the replication subspace. Aside from any constant replication, there
IS no data-reorganization communication in the replication subspace. Communication
due to dimension replication occurs along the dimensions that are projected away when
mapping from the full space onto the replication subspace. The nullspace of R%;, N'(RE)),
corresponds to those dimensions along which there is dimension replication. Thus when
RE . isthe identity matrix, V(%) = § and thereis no dimension replication.

Definition 4.1.1 Given an n x n replication matrix k. for an array access F};, the
degree of replication is the number of processor dimensions along which the data is
copied. Mathematically, the degree of replicationisgiven by dim(\ (%)), or equivalently,

n — rank (Rg’;j).

The replication equations represent the necessary conditions for linear data decom-
positions that allow constant and dimension replication, but still do not allow arbitrary
data-reorganization communication. There can be many possible solutions to these equa-
tions. For example, atrivia solutionisto always map all the data onto a single processor in
the replication subspace, and then replicate the entire array across al the processors. The

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 69

objective, however, isto find a solution with the minimum degree of dimension replication.
This corresponds to finding replication matrices R’ such that rank (Rij) is as large as
possible, or equivalently, N(Rg’;j) isas small as possible.

4.1.3.2 Examplesof Linear Decompositionswith Replication

Consider the two loop nests from Figure 4.8. Array y is marked replicatable since it isa
read-only array. We first generate the synchronization and communication equations for
the two loop nestsignoring all accesses to array y:

O _O] = 0
1

D, [2] = (1

n. |1 °] _ ¢
101

A solution with the largest degree of parallelism for these equationsis
C(i=[2]. Ca=[1 0], D.=[1], D.=[1 0]

Now we generate a system of replication equations (Equation 4.9) to find the linear data
decompositions for array y:

pL [1] = Ry O
Dy 2] = Ry O
DL [0 1] = R,
plugging in C'; and ', from above,
Dh (1] = Ry 2]
py 2] = Ry [2]

70 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

A solution with the smallest degree of replicationis:

ph=]2], Ry =]1]
pt=[1], Ry=[1]
pL=[0]. RL=[0]

4.1.3.3 Solving Equationswith Replication

This section describes how we solve the replication equations. For each replication equation
Dr.Fr = RE.C;, C; and I}, aregiven and wesolvefor both DY, and k.. Theobjectiveis
to find a solution that has the minimum degree of replication. We find replication matrices
Rk such that rank (Rg’;j) is as large as possible, or equivalently, V'(R..) is as small as
possible. Note that each replication equation is an independent equation; there are distinct
free variables D!, and R, for each equation. This s in contrast to the interdependent
system of equationswe generated for finding basic linear decompositions (Section 4.1.2.3);
in that case we were solving for a single linear computation decomposition for each loop
nest and a single linear data decomposition for each array.

We solve the replication equation D}, %, = RE.C; by first finding the nullspace of the
replication matrix, \'(R%,), that isas small as possible. We then cal culate the actual matrix
R, and finally solve for the linear data decomposition DF.. Under what conditions is
dimension replication necessary? If two iterationsz; and 2, of loop nest j access the same
element of areplicatablearray x, then that element must be replicated across the processors
executing 7; and 5. For an array access Fﬁj, iterations 7; and 7, access the same element of
array « when F5(71) = FE.(7), thatis, F¥(7 — 1) = O. Letting 7 = 7 — 7, F£.(f) = 0
and I’ € N(F},). Using Equation 4.9, D, F*.7 = R*.C;# = 0. Thent € N(R%,C;), and
N(R,;C;) 2 N(C;). Formaly,

N(RE) = span{ Oy | e N(FE). ¢ N(C))} (4.10)

This replicates only along dimensions that use the same data and thus require dimension
replication, i.e. the processors executing iterations along dimensions? € A(F%).
After finding V'(RE;), we set R to an arbitrary projection matrix that has the given

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 71

nullspace \V'(RE,). We then solve for DY, in the replication equation kY.C; = D} F?,
using algorithm Li near _Dat a_Deconp from Figure 4.3. Figure 4.10 shows the details
of the Cal c_Repl i cat i on algorithm for calculating the replication matrices and linear
data decompositions.

The issue remains of whether a solution always exists for D once we have found
Rg’;j. Without replication, we could always apply algorithm Li near _Dat a_Deconp to
find the linear data decomposition given an array access function and a linear computa-
tion decomposition. The computation communication constraint (Equation 4.4) ensured
that a solution to the communication equation D* . I'*. = (' always existed by making

wit'zj
N(FF) € N(C;). With replication, asolution for D}, in RY.C; = D% FF. exists when
range ((12%,C;)") C range ((1%)7)[72). This is equivalent to \V'(RYC;) 2 N(FE),
which is true by construction of V'(R%,) in Equation 4.10. With dimension replication we
are relaxing the previous computation communication constraint and are no longer requir-
ing that \V(F¥) C N(C;); however, since A'(RE,C;) D N(FF) we are guaranteed that a
solution for D, existsin the replication subspace.

Theagorithm Cal ¢ _Repl i cat i on allowsfor as much replication asis necessary to
maintain the same degree of parallelism in the non-replicatable data. It does not consider
trading off parallelism to limit the amount of replication needed. As a result, the amount
of replication called for could be much greater than is practical on the target machine. We
can limit the degree of replication by projecting the virtual processor space onto a smaller

physical processor space (see Section 4.2).

4.1.3.4 Broadcast and Multicast Communication

Broadcast communication occurswhenever one processor sendsdatato all other processors.
A related concept is multicast communication, where one processor communicates data to
a subset of the processors. Many parallel machines offer primitives that support efficient
broadcast and multicast communication. Dimension replication can be viewed as akind of
multicast communication. With dimension replication, the data assigned to one processor
in the replication subspace is copied to all processors along the replicated dimensionsin the
full processor space. I1n other words, each processor in the replication subspace multicasts
its data to the subset of processors along the replicated dimensions.

72 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Replicated_Data Decomp

(F7%; : matrix,
C'; © matrix)
return
k. H
(Dy,; * matrix)
RE - matrix;

N(RE) = span {CiT | T N(FE), T ¢ N(C;)}; I* Equation 410 */
RE.=n x n projection matrix with nullspace \'(R: ,);
I* n isthe dimensionality the virtual processor space, and equals rows C';) */

D*; = Linear_Data Decomp(F,,
return D ;

zy?

end algorithm;

Rijcj);

algorithm Calc_Replication
(G5 @ interferencegraph) /* Gy = (V., Vi, F) */

V., : set of dataLvertex;
C; @ matrix;

V,;' = replicatable arraysin V;

foreach v, € V' and read array access F}; suchthat ¢¥, € £ do
C; = linear decomposition for computation vertex v;;
D?. = Replicated_Data Decomp(F%,, C);
end foreach;
end algorithm;

Figure 4.10: Algorithmsfor calculating linear data decompositions with replication.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 73

We can model multicast communication along full dimensionsin the processor space as
dimension replication. Thisis arestricted form of multicast, since we are not copying the
datato arbitrary subsets of the processors. The basic ideaisthat we allow multicast commu-
nication by applying dimension replication to only the read accesses of a non-replicatable
array. The key issue isthen how to modify the system of equationsto only allow multicast
communication. For replicatable data, we ssimply eliminated all the constraintsthat derived
from the read accesses to that data. However, we can not smply ignore all read accesses
to non-replicatable data; this would result in a large amount of general communication.
We note that in our model of dimension replication, for an array access Fl’fj of arepli-
catable array « in loop nest j, there is some degree of dimension replication whenever
dim(V(R.;)) > O (Definition 4.1.1). By Equation 4.10, we know that only iterationsin
N(F¥) can ever cause dimension replication — these are exactly the iterations that access
the same elements of array =. The computation communication constraint (Equation 4.4)
isthe constraint that causesiterationsin \'(/) to execute on the same processor. Thusto
generate multicast communication, we eliminate the constraints caused by accesses where
N (F;?j) # (). Sincewekeep the other constraints, we are not allowing general replication of
x, Just multicast communication. Wethen usetheBasi ¢ _Nul | spaces algorithmto find
the nullspaces of the linear decomposition matrices with the modified constraints. Finally,
we calculate Rg’;j and the linear data decomposition D, in the same way as replicatable
arraysusing algorithm Repl i cat ed_Dat a_Deconp.

4.1.4 Linear Decompositions with Synchronization

Up to this point we have only considered linear decompositions with no synchronization
within each loop nest. We only allowed iterations of outermost doall loopsto be distributed
across the processors. However, aswe saw in Section 2.3.2, only exploiting the parallelism
in doall loops may not result in the best overall decomposition. In some cases, we can
get better performance by using doacross parallelism in the loop nests. In this section we
describe how to find linear decompositionsthat also allow synchronization within fully per-
mutable loop nests by distributing iterations of doacross loops. The linear decompositions
we find still maintain the property that there is no data-reorganization communication.

74 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

The outermost paralel loops in the entire loop nest are within the outermost fully
permutable subnest. When finding linear decompositions with synchronization, we first
consider exploiting doacross parallelism in the outermost fully permutable subnest. The
linear decomposition algorithm can be re-applied to exploit parallelism within inner fully
permutable subnests, starting with the outer parallel loops in that subnest. To find linear
decompositionswith synchronization withinafully permutableloop nest, we use essentially
the same agorithm that was used for finding basic linear decompositions in Section 4.1.2.
We need only update the synchronization equations and corresponding constraints on the
nullspaces of the linear decomposition matrices; the rest of the algorithm is unchanged.
The updated synchronization equations are presented in Section 4.1.4.1 and Section 4.1.4.2
shows an example. Finally, Section 4.1.4.3 describes how the equations are solved.

4141 Formulating Equationswith Synchronization

The purpose of the original synchronization equations was to avoid all synchronization
within the loop nest, and all loops that were not outermost doall 1oops were assigned to
the same processor. However, in Section 2.3.1 we saw that we can efficiently distribute
iterations of doacross |oops with finite distances across processors. Thus we now relax the
synchronization equations, and do not assign iterations of such loopsto the same processor.
Formally, for aloop nest ; of depth /, if aloop at nesting level » has a dependence that
is not a finite distance, or the loop is not in the current fully permutable subnest, then all
iterations 7’ and 7+ ¢;. in the loop nest must be allocated to the same processor, where ¢;. is
the rth elementary vector of dimension /. This gives the equation:

Ci(e) = 0 (4.11)

4.1.4.2 Examplesof Linear Decompositionswith Synchronization

Consider the following example of an ADI (Alternating Direction Implicit) integration,
originaly shown in Section 2.3.1:

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 75

[* Loop nest 1 */
for 7 = 1 to N do [* doall */
for i, = 2 to N do
X[21, 22] = fi(X[i1, 22] , X[21, 22- 1])
[* Loop nest 2 */
for 7 = 1 to N do [* doall */
for i, = 2 to N do
X[22, 21] = fa(X[i2,21] , X[22-1,41])
For this example, the original set of synchronization and communication equations for a
basic linear decomposition from Section 4.1.2.1 are as follows:

0 S
C1 =0
1
O)
C> =0
1
1 O
D, = (
O 1
O 1
Dac — CZ
1 O

The maximum rank solution for these equationsis
C1=0Cr=D,=1

However, theloopsin both loop nest 1 and loop nest 2 are fully permutable and have depen-
dences that can by represented by distances, i.e. (0,1). We eliminate the synchronization
eguations and the complete set of equations becomes:

Dac — Cl

76 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

A maximum rank solution for these equationsis

10 01
) CZ:
01 10

Note that the algorithm yields a solution that distributes the full iteration and array spaces,
and does not over-constrain the decompositions unnecessarily. In both loop nests, we
distribute both the outer doall loop and the inner doacross loop. This solution can have
idle processors, because of the ordering constraints between the processors in the doacross
loops. The idle processors are dealt with in the virtual-to-physical mapping, described in
Section 4.2.

Cl:Dl’:

4.1.4.3 Solving Equationswith Synchronization

The previous section presented the equations to describe linear decompositions that allow
synchronization within a loop nest. To solve these equations we need only modify the
synchronization constraint on the nullspace of thelinear computation decomposition matri-
ces. For aloop nest j, weonly include e, € NV(C;) for those loops at nesting level r with
dependences that are not finite distances, or that are not within the current fully permutable
subnest. Wethen use Cal ¢ _Mat ri ces to calculate the linear decomposition matrices.

4.1.5 Algorithm Summary: Linear Decompositions

So far in this chapter, we presented an algorithm for finding basic linear decompositions.
We then extended the basi ¢ algorithm to support replication, multicast and synchronization.
How dotheseall fit together? Our approachistofirst try tofind abasiclinear decomposition.
At this point we will aso replicate any replicatable arrays. Clearly, if a non-trivial basic
linear decomposition can be found then it is preferable. However, it is possible that a
non-trivial basic linear decomposition does not exist, and the only solution is to put all
the data and computation on a single processor. In this case, we then use multicast and
synchronization to eliminate some of the constraints. Multicast and synchronization both
allow more potential parallelism, but at the cost of additional overhead.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 77

The complete algorithm for finding linear decompositions requires only a small up-
date to the Basi ¢ _Nul | spaces agorithm from Figure 4.5. The new version of the
algorithm is shown in Figures 4.11 and 4.12. Figure 4.11 shows the new version of
Basi c_Nul | spaces, caled Cal c_Nul | spaces. Figure 4.12 contains the complete
algorithm for calculating linear decompositions, Cal c_Li near _Deconps.

Thefirst step of Cal ¢ _Nul | spaces isto calculate the nullspaces of the linear decom-
position matrices starting with the complete set of constraintsin Equations 4.3, 4.4 and 4.5
from Section 4.1.2.3. The nullspaces are examined to determine the degree of parallelism.
If there is sufficient parallelism, then the algorithm terminates (at this point thisis exactly
the same astheorigina Basi ¢c_Nul | spaces algorithm). Otherwise, a the next step the
constraints are re-initialized to allow for multicast, and next synchronization. At each step
the null spaces are recal culated, and the algorithm terminatesif at any step it determinesthat
thereis sufficient parallelism.

4.1.6 Finding Offset Decompositions

A compl ete affine decomposition consists of alinear decomposition and an offset decompo-
sition. The previous sections of thischapter have described our algorithm finding the linear
decompositions. In this section we describe how to calculate the offset decompositions.
We can use Equation 3.2 to find the offset computation decomposition given the offset
data decomposition, and vice-versa. Given a complete affine data decomposition, D, (a) +
5., for array « referenced in aloop nest j (with the array access function FED) + Ej) the
computation offset 7; is:
5= Ducl 46 (4.12)

The offset data decomposition, 5y, for another array y accessed in the sameloopis:

—

6, =7; — D, jj (4.13)

As we expect communication at the offset level to be relatively inexpensive nearest-
neighbor communication, we will not force a loop to execute on a single processor to
avoid communication duejust to offsets. However, wetry to minimize any communication

78 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Calc_Nullspaces

(G, : interference_graph, /* G, = (V.,Vy, E)*/
I" : set of vector_space,

A set of vector_space,

ConstrC_Table: array of (list of constraint),
ConstrD _Table: array of (list of constraint))

return
(T : set of vector_space,
A : set of vector_space)

enum Decomp_Kind { Basic, Multicast, Synchronization };
curr_kind : integer = current Decomp_Kind for G;

Propagate Nullspaces(Gs, I, D);
if sufficient parallelismreturn (I, 4);

for £ = curr_kind +1 to max(Decomp_Kind) do
set Decomp_Kind for G, to k;
(T, &) = Init_Nullspaces(G's, ConstrC_Tabl e[k], ConstrD_Table[£]);
Propagate_Nullspaces(G,, I, A);
if sufficient parallelismreturn (I, 4);
end for;

return (I, A);
end algorithm;

Figure4.11: Algorithm for calculating the nullspaces of the linear decomposition matrices
with multicast and synchronization.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 79

algorithm Init_Constraint_Tables
return
(ConstrC_Table: array of (list of constraint),
ConstrD _Table: array of (list of constraint))

enum Decomp_Kind { Basic, Multicast, Synchronization };

ConstrC_Table[Basic] = /* Equations 4.3, 4.4 */;
ConstrD_Table[Basic] = /* Equation 4.5 */;

ConstrC_Table[Multicast] = /* Equation 4.3 */;
ConstrD_Table[Multicast] = /* Equation 4.5 */;

ConstrC_Table[Synchronization] = /* Equation 4.11 */;
ConstrD_Tabl g Synchronization] = /* Equation 4.5 */;

return (ConstrC_Table, ConstrD_Table);
end algorithm;

algorithm Calc_Linear_Decomps
(G5 @ interferencegraph) /* Gy = (V., Vi, F) */

ConstrC_Table : array of (list of constraint);
ConstrD _Table: array of (list of constraint);
IM : set of vector_space;
A : set of vector_space;

mark replicatable arrays,
(ConstrC_Table,ConstrD_Table) = Init_Constraint_Tables;

set Decomp_Kind for GG, to Basic;
(T, A) = Init_Nullspaces(,, ConstrC_Table[Basic], ConstrD _Table[Basic]);
(I, A) = Calc_Nullspaces(Gs, I, A, ContrC_Table, ConstrD_Table);
Cac_Matrices(G,, I, B);
if replication then Calc_Replication(G);

end algorithm;

Figure 4.12: Algorithm for calculating linear decompositions with replication, multicast
and synchronization.

80 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

caused by conflicting offsets whenever possible. The offsets are calculated after the linear
decomposition matrices have already been determined. We use a smple greedy strategy to
find the offset decompositions. We start with an array vertex in the interference graph and
et its offset decomposition to 0. We then traverse the vertices in the interference graphin
breadth-first order and set the computation and data offsets using Equations 4.12 and 4.13,
respectively. Whenever thereisa choice of edges, we select the edge with the largest offset.
Note that when calculating the offset decompositions in this manner, negative values can
result. Sincewe use the convention that the virtual processor numbersare al non-negative,
offset decompositions must map the data and computation into non-negative integer values.
We eliminate any negative numbersin the offsets by shifting the offsets decompositions by
the largest negative number in each processor dimension.

4.2 Finding Physical Processor M appings

In this section we describe how we map the virtual processor space onto the physical
processor space. The goal of this step isto effectively utilize the limited physical resources
and to further optimize communication for the target architecture.

At this point, the virtual processor space has n dimensions where n is the maximum
degree of parallelism (given by Equation 4.8). Since distributing as many dimensions
as possible tends to increase the computation to communication ratio[71, 81], by default
we partition the virtual processor space into n-dimensional units. We thus treat physical
processors of the target machine as a'so having n dimensions.

We consider three possible folding functions for each dimension that is distributed:
BLOCK, CYCLIC and BLOCK-CYCLIC(b). Let P, be the number of virtual processors in a
given dimension and P, be the number of physical processors. A BLOCK folding function
meansthat [ﬁ—ﬂ contiguousvirtual processors are assigned to each physical processor. With
acycLic folding function, each virtual processor is mapped to aphysical processorsusing a
round-robin assignment. Similarly, with BLOCK-CYcCLIC(b), b contiguous virtual processors
are assigned round-robin across the physical processors. The number of contiguous virtual
processors mapped to each physical processor, or block size, for the folding functions is
thus Hj—ﬂ , 1 and b for BLOCK, cycLic and BLOCK-CYCLIC(b), respectively.

4.2. FINDING PHY SICAL PROCESSOR MAPPINGS 81

To calculate the folding function, each loop nest is examined to gather any constraints
that loop nest may have on the folding function. If the execution time of each iterationin a
distributed loop ishighly variable, acycLic folding function is needed to improve the load
balance. Anexample of such codeisif adistributed loop with loop index variable: contains
an inner loop whose bounds are afunction of . If aloop nest has alarge amount of nearest
neighbor communication, then a BLock folding function is needed to reduce the amount
of communication. Assigning contiguous blocks of virtual processors to each physical
processor eliminates any nearest-neighbor communication between processors in the same
block. Thisis particularly important if we are using synchronization within a distributed
doacross loop, as the BLOcK folding function not only reduces the communication volume
but also helps reduce the frequency of synchronization. If we find both cycLic and BLOCK
constraintsfor avirtual processor dimension, thenwe useaBLOCK-CYcLICcfolding function.
If there are no constraints on the folding function imposed by any of the loop nests, then by
default we use aBLOCK folding function.

The affine functions that map the data and computation onto the virtual processor space
are composed with the folding function that mapsthe virtual processor space onto the phys-
ical processor space. The full decompositions are represented by linear inequalities. Given
affine computation decompositions ¢(7) and data decompositions d(a) in each dimension,
and the folding function with block size b, the corresponding inequalities are:

c(?) < bp+1
d@) < bp+1

bp

<
bp <

where p represents the processor number.

We perform one additional optimization in the virtual-to-physical processor mapping.
It is possible that the number of virtual processor dimensions is larger than the nesting
depth of aloop nest. As a result, there will be idle processors as only a fraction of the
processors will ever be busy. For example, this can happen when loop nests access only
subsections of an array. We use the affine computation decompositions to find any idle
processor dimensions, that is, virtual processor dimensions where the computation islocal
to asingle processor. Let n’ be the number of non-idle virtual processor dimensions. Then
we only map the »” non-idle virtual processor dimensions onto an »’-dimensional physical

82 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

processor space. An overview of the complete static decomposition algorithm is shown in
Figure 4.13.

algorithm Static_Decomps
G, interference graph;
(s = build interference graph;
Calc_Linear_Decomps(Gy);
calculate the offset decompositionsfor G,;

calculate the virtual-to-physical mapping for G;
end algorithm;

Figure4.13: Algorithm for finding static decompositions.

4.3 Summary

In this chapter, we presented an algorithm for calculating static decompositions. Starting
from the array access functions for a set of arrays accessed within a set of loop nests, the
algorithm cal cul ates a data decomposition for each array and a computation decomposition
for each loop nest.

Thea gorithmisbased on thetwo-step mathematical model of decompositionspresented
in the previous chapter. Firg, it finds an affine decomposition onto the virtual processor
space and then it maps the virtual processor space onto the physical processor space. The
algorithm for calculating affine decompositions onto the virtual processors is again split
into two phases, based on the observation that the communication due to mismatchesin the
linear transformation part of the affine decomposition are more expensive than mismatches
in the offset part. Thus the algorithm first solves for the linear decomposition, and then
solves for the offset decomposition to form the compl ete affine decomposition.

To calculate linear decompositions, wefirst considered therestricted case of basic linear
decompositions. The algorithm works by setting up a system of equations that represents

4.3. SUMMARY 83

the necessary conditionsthat avalid basic linear decomposition must satisfy. Theagorithm
solves the equations by first calculating the nullspaces of the matrices that represent the
linear decompositions, and then calculating the specific matrices in a separate step. The
null spaces represent the data and computation that are assigned to the same processor, and
thus determine the degree of paralelism in the computation. The algorithm is optimal in
that it is guaranteed to find basic linear decompositions with smallest possible nullspaces,
and thus the maximum degree of parallelism.

Next we extended the basic linear decomposition algorithm to allow restricted forms
of communication, replication and multicast. Finally, we added the ability to have regular
synchronization within fully permutable [oop nests.

Note that the algorithm for finding static decompositions finds the maximum degree
of paralelism given that there is only one decomposition for each (non-replicatable) ar-
ray. It does not consider any tradeoffs between data-reorganization communication and
parallelism. In the worse case, the algorithm can still return with al the data and compu-
tation on a single processor. This indicates that data reorganization is needed, and that the
decompositions must be allowed to change dynamically.

Chapter 5
A Dynamic-Decomposition Algorithm

In this chapter we describe our algorithm for finding dynamic decompositions. A decom-
position is dynamic if the data decompositions are alowed to change across different loop
nests. The static-decomposition algorithm from the previous chapter is used as a build-
ing block in the dynamic-decomposition algorithm. We begin in Section 5.1 by formally
specifying the dynamic decomposition problem. Section 5.2 discusses the complexity of
the problem and shows that finding optimal dynamic decompositionsis NP-complete. Our
algorithm for finding dynamic decompositions is described in Section 5.3 and a detailed
example is presented in Section 5.4. Finally, in Section 5.5 we discuss related work on
decomposition algorithms.

5.1 Formulation of the Dynamic Decomposition Problem

This section describes our formulation of the dynamic decomposition problem. First,
Section 5.1.1 explains the program representation and cost model that serve asinputsto the
dynamic-decomposition algorithm. Then, in Section 5.1.2 we present a formal statement
of the problem.

5.1. FORMULATION OF THE DYNAMIC DECOMPOSITION PROBLEM 85

5.1.1 Program Representation

We represent each procedure in the program using a communication graph. The vertices
in the graph correspond to the loop nests in the procedure with one or more degrees of
parallelism. Each of theloop nestsisin the form of nests of fully permutableloop nests (see
Section 2.3.1). Each vertex hasatablewith / 4 1 associated weights, where [isthe depth of
the loop nest represented by that vertex. For each loop: € {1...[} intheloop nest, table
entry : is an estimate of the execution time if that loop is distributed across the processors.
We also add afinal entry to the table with an estimate of the sequential execution time if
the entire loop nest is run locally on a single processor. We only need a single weight per
loop because of the assumption that all distributed loops are sufficiently largeto keep all the
processors busy (Section 4.1.2). Our current implementation uses static estimates for the
loop execution times. The compiler examinesthe code and estimates thetimeto execute the
computation in the loop nest. The execution time for the parallel loops is the computation
time divided by the number of processors, plus the cost of any necessary synchronization.

The edges in the communication graph represent potential communicationin the proce-
dure. The edges are undirected, and an edge («, v) with weight w(u, v) indicatesthat if the
data decompositions for the arrays accessed in « are not equal to the data decompositions
for those same arraysin v, then the communication cost isat most w(w, v). Thereisan edge
between two vertices v and v if the data decomposition for any array in vertex « can ever
reach vertex v. The edges are analogous to standard def-use chainsand are found in aman-
ner similar to the standard reaching definitions data flow problem[3]. The key differences
are that we calculate the edges only for array data, and we treat all array accesses within
aloop nest as both a use and a definition of that array. There is at most one edge between
any two vertices v and v; asingle edge is used even if there are multiple arraysin « with
decompositions that reach v. Figure 5.2(a) shows the communication graph for the code
from Figure 5.1. In the figure, all vertices are labeled with the numbers of the loop nests
they represent. The edges are annotated with the list of arraysthat produced the edge. For
example, thereis an edge between vertices 2.1 and 2.4 because the data decompositions of
arrays = and z reach from loop nest 2.1 to loop nest 2.4. Array « reaches along the path
(2.1, 2.2, 2.4) since it is not accessed at vertex 2.2, and array = reaches aong both paths
(2.1,2.2,2.4) and (2.1, 2.3, 2.4).

86 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

real x[N, N, Y[N, N, z[N, N
/* Loop nest 1 */

for ;74 = 1 to N do [* doall */
for i, = 1 to N do [* doall */
X[21, 22] = fi(21, 22)
Y[i1, 22 = fa 21, 22)
z[i1, 4] = f3(ia, i2)
end for
end for
[* Loop 2 */

for time =1 to T do
/* Loop nest 2.1 */

for 7 = 1 to N do [* doall */
for , = 1 to N do [* doall */
X[11, 22] = X[91,22] + z[11, 17]
yli1, 22l = y[i1, 2] + z[11, 22]
end for
end for

if (expr) then
/* Loop nest 2.2 */
for ;7 = 1 to N do [* doall */
for i, = 1 to N do

Y[21, 02] = Yy[21, 22] + Y[21, N-ip+]1]

else
[* Loop nest 2.3 */
for 7, = 1 to N do /* doall */

for 2 = 1 to N do /* doall */
Y[21, 02] = X[21, 22] + X[N-23+1, 79]

end if
[* Loop nest 2.4 */
for 7 = 1 to N do [* doall */
for i, = 1 to N do [* doall */
z[i1, o] = X[41,42] + y[ig, 2] + z[1, 47
end for

Figure5.1: Code example used to illustrate dynamic decompositions.

5.1. FORMULATION OF THE DYNAMIC DECOMPOSITION PROBLEM 87

9

X,¥,Z

;
¥§

X,Z
(a)
Zl
GO
2
3N
ZZl ZZZ 223 Z24
T Ty
1.75N°T
KEY:
— 2 —
Zy = (100N, 100N, 100N°) Z,2= (75NT, 75N°T)
Zy1=Zp4 = (100NT, 100N T, 1OON>T) Z,3= (25NT,25NT, 25N°T)
(b)

Figure 5.2: Example communication graphs for the code in Figure 5.1: (a) the commu-
nication graph annotated with the lists of arrays that produced each edge, and (b) the
communication graph annotated with vertex and edge weights. All vertices are labeled

with the numbers of the loops they represent.

88 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

The weight of edge (u,v), w(u,v), is computed from the frequency with which data
decompositions in vertex u will reach the other vertex v, and the amount of data in the
arrays. If welet A, . represent the set of al arraysthat reach from vertex u to v, then the
weight of edge (u,v) S

wlu,v) = Y lu,v,2)wl]) (5.1)
TEA(u,0)

where(u, v, x) isthefrequency of execution along the path from« to v for array «, w(k) is
thetimeit takesto move £ data elements on the target machine, and | « | isthe size of array
x. The frequency of execution «(u, v, x) can differ for different arrays on the same edge
(u, v), depending on the path along which the decomposition for each array reaches from v
to v. Thismodel of edges and associated weights treats each array as a unit — it represents
communicating entire arrays between the two vertices. Once an array is communicated
along (u, v), thenit isreorganized and can have a different data decomposition in « than in
V.

The complete communication graph with vertex weights and edge weights for the
sample code in Figure 5.1 is shown in Figure 5.2(b). The figure assumes that the t hen
branch of the i f statement is taken 75% of the time. For the vertex weights, we assume
that the time to execute each loop body takes 100 cycles to execute sequentially, and that
running any loop in parallel speeds up the execution by afactor of V. In this example, all
vertices represent loop nests of depth 2. The vertices are |abeled with values representing
the sequential execution time, and the parallel execution time for each of the loops in the
nest (represented in the figure by the labels 7Z; through Z,4). For example, vertex 2.1
has weights (100N7', 100NT', 100N2T'), which represents an execution time of 100N 27’
cycles if al loops in loop nest 2.1 run sequentialy, and 100N7T" cycles if either loop ¢
or loop i, is parallelized. Vertex 2.2 has weights (75NT', 75N?T'); the coefficient of the
weightsis 75 since the loop nest is only executed 75% of the time, and there are only two
values since only the ¢, loop in loop nest 2.2 is parallelizable. For the edge weights, we
assume a unit communication cost per data element, i.e. w(k) = k. The edge weights are

5.1. FORMULATION OF THE DYNAMIC DECOMPOSITION PROBLEM 89

computed using Equation 5.1:
w(1,21) = (1,21, 2)- N> +(1,21y)- N2+ (1,21, z) - N?

= N24+ N?24 N? = 3N?
w(2.1,22) = (2.1,2.2,y)- N? = 0.75N?T
w(2.1,2.3) = (2.1,2.3,2)- N> +1(2.1,2.3,y)- N?

= 0.25N2T + 0.25N?T = 0.5N?T
w(2.1,2.4) = (2.1,2.4,x)- N2 4(2.1,2.4,z) - N2

= 0.75N?T + N2T = 1.75N?T
w(2.2,2.4) = (2.2,2.4,y)- N? = 0.75T N?
w(2.3,2.4) = (2.3,2.4,7)- N2 4(2.3,2.4,y) - N2

= 0.25N2T + 0.25N?T = 0.5N?T

5.1.2 Problem Statement

How do we express dynamic decompositions using the communication graph? Given a
communication graph, a dynamic decomposition is represented by a partitioning of the
vertices into digoint sets. Each set of vertices has that property that there is a single,
static decomposition in the region of the program represented by those vertices. Across
different sets, the data decompositions can change dynamically. Thus, there is no data-
reorganization communication within a set, but data-reorganization communication may
occur acrossdifferent sets. Werefer to these sets of vertices as static decomposition regions.

Partitioning the vertices into static decomposition regions uniquely determines the
computation and data decompositions at every loop nest in the procedure. For al loop
nests and all arraysin a given static decomposition region, we can directly calculate their
computation and data decompositions using the static-decomposition algorithm from the
previous chapter. The agorithm is guaranteed to return static decompositions with the
largest degree of parallelism. Given adynamic decomposition for acommunication graph,
each vertex islabeled with the computation decomposition for the loop nest represented by
that vertex, and the data decompositionsfor all arrays accessed within the loop nest.

The cost of adynamic decomposition for acommunication graph represents an estimate
of the total execution time for the procedure. The cost of the dynamic decomposition is

90 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

computed by summing the edge costs and the vertex costs from the communication graph.
The cost of an edge is the edge weight if the endpoints of the edge are in different static
decomposition regions, otherwise the edge cost is zero. The edge costs represent the
time spent to communicate data as the decompositions change across the different static
decomposition regions.

The cost of the vertices are calculated as follows. Let 4 be the number of distributed
loopsin the computation decomposition for aloop nest of depth 7, withO < £ < [. If £ > O,
then the £ distributed loops are used to index into the weight table at the vertex for that
loop nest; thisreturnsalist of £ weights, representing the execution time of the loop nest
when each of the & loopsisdistributed. We set the cost of the vertex to the maximum over
thelist of & weights, which gives aworst-case estimate of the time to execute the loop nest
with £ distributed loops. If £ = O, then the cost of the vertex is the sequential execution
time of the loop nest. Note that the nullspaces of the linear computation decomposition
matrices specify which loopsin each loop nest are executed locally on the same processor;
al other loops are distributed. Thus we only need the nullspaces to compute the cost
of a vertex — the complete decompositions are not necessary (we make use of this fact
in our dynamic decomposition algorithm in Section 5.3). Taken together, the vertex costs
represent an estimate of the computation timefor the procedure. Thetotal cost of adynamic
decomposition for a communication graph cost is thus the sum of the communication time
and the computation time, and is an estimate of the total execution time for the procedure.

For agiven communication graph, the obj ective functionfor the dynamic decomposition
problem is to partition the graph into static decomposition regions such that the cost is
minimized. We define the dynamic decomposition problem formally as follows. Given
a communication graph . = (V, F) with weighted vertices and weighted edges, find a
functiong : V — {1,2,...,] V |} suchthat thecost of theresulting dynamic decomposition
for GG. isminimized. The value of the function ¢ for avertex v € V isthe number of the
static decomposition region that contains». The maximum number of static decomposition
regionsis | V' |, thetotal number of vertices, asit is possible for each static decomposition
region to contain a single vertex.

5.2. COMPLEXITY OF THE DYNAMIC DECOMPOSITION PROBLEM 91

5.2 Complexity of the Dynamic Decomposition Problem

To analyze the complexity of the dynamic decomposition problem, we first turn it into a
decision problem by asking: for a given communication graph . = (V, F), does there
existafunctiong : V — {1,2,...,| V |} such that the total cost of . isless than some
positive integer B?

Theorem 5.2.1 The dynamic decomposition problem is NP-complete.

Proof: The dynamic decomposition problem isin NP since a nondeterministic algorithm
can guess the function ¢ and check in polynomial time that the cost of the dynamic
decomposition isless than B.

We transform the known NP-complete problem, Colored Multiway Cut[26], into a
subproblem of the dynamic decomposition problem. The Colored Multiway Cut (CMC)
problemis: givenagraph G = (V, F) with weighted edges, and a partial k-coloring of the
vertices, i.e., asubset V' C V and afunctiong : V! — 1,2,...,k, can ¢ be extended to
atotal function such that the total weight of edges that have different colored endpointsis
less than some positive integer B?

Consider the dynamic decomposition subproblem (DDS) in which the program accesses
only asingle array «. Let an arbitrary instance of CMC be given by agraph & = (V, E)
and positive integers £ and B. We can reduce an instance of CMC into an instance of
DDS in polynomial time by writing the input program outlined below. The strategy isto
construct a program such that there is a one-to-one mapping between the colorsin CMC
and the static decompositions regions in DDS. The program will have at most k possible
static decomposition regions, where each region leads to a decomposition that distributes
one dimension of array . The program is constructed so that the verticesin CMC become
vertices in the communication graph, and the edges in CMC become the edges in the
communication graph.

e Thesinglearray « is k-dimensional, where £ is the number of colorsin the Colored
Multiway Cut problem. All £ dimensions are of equal size N.

e Each vertex intheoriginal CMC problem becomes aloop nest of depth & inthe DDS
input program, and thus a vertex in the communication graph.

92 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

e Foreach edge (u,v) in G withweight w(u, v), we add aconditional branch statement
after the loop nest representing vertex « whose target is the loop nest representing
vertex v. We write the branch such that its frequency of execution is ¢ (u,v,x) =
w(u,v)/w(N*). From Equation 5.1, this results in an edge in the communication
graph for DDS with weight (w(u, v)/w(N*)) - w(N*) = w(u,v). Asaresult, the
weighted edges in the communication graph for DDS correspond directly to the
weighted edgesin CMC.

e For each vertex v € V' of color r in CMC, we generate the following array accesses
in the loop nest for v:

for vy = 1 to V2 do
for v, = 1 to N do /* doall */

for v, = 1 to N2 do

X[il,...,iT,...,ik] = f(X[Z*Zl,,ZT,,Z*Zk])

The rth loop is a doall loop, and the remaining £ — 1 loops in the loop nest are
sequential. Also, the parallel loop can legally be moved to the outermost positionin
the loop nest.

For each vertex v € V' — V' (the vertices that do not have a preassigned color) we
generate the following array accesses in the loop nest for v:

for iy = 1 to N do /* doall */

for ¢z = 1 to N do /* doall */
X[il, Ce Zk] = f(x[il, . Zk])

All % loopsin theloop nest are doall loops.

5.3. FINDING DYNAMIC DECOMPOSITIONS 93

In both cases above, theindex expression for the:th dimension of array x isalwaysan
affinefunction of only the ;th loop index variable. Thisensuresthat the resulting data
and computation decompositionswill have a one-to-one correspondence between the
distributed dimensions of the array and the distributed loops in the loop nest, i.e. if
the data decomposition for the array distributes dimension z, then the computation
decomposition for the loop nest distributes loop :. Also, al array accesses are
perfectly nested, and the entire loop nest isfully permutable.

e The weight table for each of the vertices in DDS is set as follows. The entry for
sequential execution isset to alarge value, larger than B. The entriesfor distributing
each of the loops is set to 0. These weights guarantee that a solution to DDS can
never run aloop nest sequentially, asthe cost isaways lower to distribute aloop.

The constructed dynamic decomposition problem has a solution with cost less than B,
if and only if the original Colored Multiway Cut problem has a solution such that the total
weight of edges that have different colored endpoints is less than B. The construction
of DDS is such that the solution will have at most 4 static decomposition regions, each
corresponding to distributing asingle dimension of array = and distributing oneloop in each
loop nest. There is a one-to-one correspondence between verticesin CMC and DDS. The
number of each vertex's static decomposition region in the solution to DDS is the number
of the color for the corresponding vertex in CMC. Clearly the transformation from Colored
Multiway Cut into the dynamic decomposition problemispolynomial. Thus, since Colored
Multiway Cut is NP-complete the dynamic decomposition problem is NP-complete. O

5.3 Finding Dynamic Decompositions

The number of possible dynamic decompositions for a given communication graph G. =
(V, E) is exponential in the number of vertices, i.e. 2/Vl. The number of loop nestsin a
procedure, and thus the number of vertices, is a large number in practice. In designing
an algorithm for solving the dynamic decomposition problem, we must decide whether
to solve exactly using an exponentia algorithm, or whether to use heuristics and find
an approximate solution. There are a number of compiler problems that successfully use

94 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

algorithmsthat areexponential intheworst case. For example, Fourier-Motzkinelimination
isused to compute data dependences[59], to cal culate new |oop bounds after applying loop
transformationg 8] and to map array accessesacross procedure boundarieq 25, 37, 38]. Even
though the worst-case behavior is exponential, for these problems the algorithm has good
behavior in the common case. In fact, as discussed in the next chapter, the interprocedural
version of our decomposition algorithm makes use of Fourier-Motzkin elimination to map
data decompositions and array accesses across procedure boundaries. Unfortunately, the
dynamic decomposition problemitself does not have any common-case behavior that can be
easily exploitedto create an optimal algorithmthat isefficient in practice. Thus, our strategy
isto use a smple and efficient heuristic algorithm. The emphasis of the algorithm is on
finding static decomposition regionsthat areaslargeaspossible. Thepriority isto eliminate
expensive data-reorganization communication completely, rather than concentrate on small
differencesin communication cost.

We use a greedy algorithm that eliminates the largest amounts of potential communi-
cation first from the most frequently executed paths in the program. To represent the most
frequent paths in the program, we impose a hierarchical structure on the communication
graph. We augment the graph by adding hierarchy vertices representing outer, sequential
loops and directed hierarchy edges that form the vertices into a forest of trees. Thereisa
hierarchy edge from vertex « to vertex v if theloop nest represented by v is directly nested
within u. The original vertices in the communication graph are now the leaf verticesin
the tree formed by the hierarchy edges. For example, Figure 5.3 shows the communication
graph from Figure 5.2 augmented with hierarchy edges and vertices. In the figure, the
vertex labeled top correspondsto the outermost nesting level of the procedure, and al other
vertices are labeled with the numbers of the loops they represent.

Thebasic design of thealgorithmisasfollows. Each vertex in the communication graph
startsout in its own static decomposition region. The agorithm then tries to merge the ver-
ticesthat have the greatest edge weightsinto the same static decomposition region, thereby
eliminating the possibility of data reorganization between the two loop nests represented
by the vertices. The analysis is performed in order from the innermost to the outermost
levels in communication graph hierarchy. This has the effect of pushing communication
into the outermost |oops as much as possible. An overview of the dynamic-decomposition

5.3. FINDING DYNAMIC DECOMPOSITIONS 95

KEY:
—— hierarchy edge (D hierarchy vertex

—— original edge (D original vertex

Figure 5.3: An example communication graph with hierarchical structure for the code
in Figure 5.1. The vertex labeled top corresponds to the outermost nesting level of the
procedure, and all vertices are labeled with the numbers of the loops they represent.

algorithm is shown in Figures 5.4 through 5.6.

The driver for the dynamic-decomposition algorithm, Dynam ¢ _Deconps Dri ver
in Figure 5.4, starts by building the hierarchical communication graph for the current pro-
cedure. Our current implementation uses static estimates for the path frequencies when
computing the communication graph edge weights. More accurate frequencies can be
obtained by instrumenting the program and collecting path profile information[12]. The
Dynam c_Deconps agorithmin Figure 5.5 then places each loop nest in the communi-
cation graph in its own static decomposition region. Each static decomposition region is
represented by its bipartite interference graph (see Section 4.1.2.3). There is a one-to-one
correspondence between the verticesin the static decomposition region of the communica-
tion graph and the computation vertices in the interference graph. The initial interference
graphs for each static decomposition region thus contain a single computation vertex, and

96 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

algorithm Dynamic_Decomps_Driver
(Curr_Proc : procedure)

(. : communication_graph;

(7. = build communication graph for Curr_Proc;
Dynamic_Decomps(G..);

calculate the offset decompositionsfor ¢;

calculate the virtual-to-physical mapping for G'.;
end algorithm;

Figure5.4: Driver agorithm for finding dynamic decompositions.

one data vertex for each array accessed in the corresponding loop nest. The agorithm
then callsthe Si ngl e_Level _Deconps algorithmin Figure 5.6 to examine each nesting
level of the communication graph in a bottom-up order, from innermost nesting level to
outermost.

Within each level of the communication graph hierarchy, the edges are sorted by de-
creasing edge weight. For example, in the communication graph in Figure 5.2, the order of
the edges nested withinloop 2is (2.1,2.4), (2.1,2.2), (2.2,2.4), (2.1,2.3), (2.3,2.4).

For each edge (u,v), the algorithm tries to merge « and v into the same static de-
composition region. The interference graphs for « and v are merged into a single inter-
ference graph, and then the nullspaces for the merged graph are calculated by calling the
Cal c_Nul | spaces algorithm from Figure 4.11. This has the effect of putting the two
loop nests in the same static decomposition region, and eliminates the data reorgani zation
cost of the edge. When merging two interference graphs, any data vertices common to
both interference graphs are combined into a single data vertex, and their constraints are
combined. The computation vertices are always distinct in each interference graph, so they
are copied directly into the merged graph. If any new cycles are formed in the merged
graph, then the data communication constraints must also be updated (Section 4.1.2.3).

The merge may cause some (or all) of the loop nests to execute sequentially, or it may

5.3. FINDING DYNAMIC DECOMPOSITIONS 97

algorithm Dynamic_Decomps
(G. : communication_graph) /* ¢G. = (V, E') with hierarchy information */

G, interference graph;

ConstrC_Table : array of (list of constraint);
ConstrD _Table: array of (list of constraint);
I, A: set of vector_space;

mark replicatable arrays,
(ConstrC_Table,ConstrD _Table) = Init_Constraint_Tables;

[* Initialize each vertex into its own static decomposition region */
foreach v € V do
(s = build interference graph for v;
set Decomp_Kind for GG, to Basic;
(T, A) = Init_Nullspaces(,, ConstrC_Table[Basic], ConstrD _Table[Basic]);
(I, A) = Calc_Nullspaces(Gs, I, A, ContrC_Table, ConstrD_Table);
end foreach;

[* Create static decompositions regions at each level in G, */
foreach level = in GG, in bottom-up order do

Single_Level_Decomps(G., =, ContrC_Table, ConstrD_Table);
end foreach;

foreach 7, € set of static decomposition regionsin . do
(I, A) = set of nullspaces for verticesin G ;
Calc_Matrices(G, I, D);
if replication then Calc_Replication(,);
end foreach;
end algorithm;

Figure 5.5: Core agorithm for finding dynamic decompositions.

98 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

algorithm Single Level Decomps
(G : communication_graph, /* GG. = (V, E') with hierarchy information */
7 level, /* current level in G */
ConstrC_Table: array of (list of constraint),
ConstrD _Table: array of (list of constraint))

G,, G, G, interference_graph;
M, A: set of vector_space;

I, A : set of vector_space;
curr_cost : integer;

(I, A) = set of nullspaces for computation and datain G..;
curr_cost = cost(Ge, I, A);

foreach (u,v) € E atlevel =, in order of decreasing weights do
s = get interference graph for v;
G," = get interference graph for v;
G, = mergeinterference graphs G, and G,”;
(M, &) = set of nullspaces for verticesin G ;
(r,8)=(r,n) — (I, 4o) +
Calc_Nullspaces(G,, T, A, ContrC_Table, ConstrD _Table);

if cost(G,, I', A) < curr_cost then
curr_cost = cost(Ge, I, A);
record (I, &) in G;
commit the merge;

else
discard the merge;

end if;

end foreach;
end algorithm;

Figure5.6: Algorithm for finding dynamic decompositions at asingle level of the commu-
nication graph.

5.3. FINDING DYNAMIC DECOMPOSITIONS 99

generate replication or synchronization within loops. The algorithm calculates the total
cost of the dynamic decompositions for the communication graph before and after the new
nullspaces have been calculated. If the cost of the dynamic decomposition is less after the
merge, then the new interference graph is saved and both « and v are set to use the new
interference graph. The algorithm then records the new nullspaces of al loops nests and
arrayswithin the new static decomposition region. Otherwise, v and v arein different static
decomposition regions and there is data-reorganization communication along the edge.

After the nullspaces for all the loop nests (and corresponding arrays) have been found,
then the agorithm calculates the linear decomposition matrices within each static de-
composition region. It then calculates the offset decompositions to give complete affine
decompositions onto the virtual processor space. Finally, the algorithm calculates the
virtual-to-physical processor mappingsto yield the final decompositions.

There a few key points to note about this algorithm. As the algorithm progresses,
it uses the nullspaces of the linear decomposition matrices to gather constraints on the
decompositions. Since we use the nullspaces directly to calculate the cost of the current
communication graph, this allows us to solve incrementally as we merge loop nests into
larger and larger static decomposition regions. The algorithm relies on the fact that the
nullspaces calculated by the static-decomposition algorithm are the minimum nullspaces
that meet the constraints. This means that there are no extraneous constraints, and allows
the static decomposition regions to grow as large as possible.

Our greedy approach is a smple heuristic, and clearly other heuristics are possible.
For the experiments we ran, however, we found that the algorithm works well in prac-
tice (see Chapter 7). Our experiments, in addition to other work with hand-parallelized
applicationg 70, 81], show that efficient parallel codes reorganize data infrequently. Our
approach of merging loop nests into static decomposition regions in order of the most
frequently executed paths in the program, is thus a reasonable strategy for these kinds of
programs.

100 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

5.4 A Dynamic Decomposition Example

Figure 5.7 shows how interference graphs representing static decomposition regions are
used to merge loop nests for the example code from Figure 5.1 and the corresponding
communication graph from Figure 5.2 and Figure 5.3. For the purposes of this example,
we assume that both the array dimension size N and the bound of theti nme loop 7" are
large values. The array access functions for this example are asfollows:

Fag-l:Fyll:lel: ; 2
F;Z.l:FylZ.l:leZ.l: ; 2
Fylz.zz ; (])__v Fyzz.z— ; _01_
F;2.3:Fy12.3: ; 2_7 Fa?z.s: __01 2
F;2.4:Fy12.4:F212.4: ; 2

The algorithm first initializes each of the loop nests into its own static decomposition
region. At this point the nullspaces of the linear computation decomposition matrices are:

N(C) = 0
N(Con) = 0
N(C22) = span{(0,1)}
N(C23) = span{(1,0)}
N(Cra) = 0

The nullspaces of the linear data decomposition matrices for each of the arrays accessed
within the loop nests have the same nullspaces as the corresponding linear computation
decomposition matrices, eg. N(D,) = N(D,) = N(C23) for arrays = and y in loop
nest 2.3. The Cal c_Nul | spaces agorithm findsthat V' (C5,) = span{(0, 1)} because

54. A DYNAMIC DECOMPOSITION EXAMPLE 101

Data Computation

Figure5.7: Merging loop nests using interference graphs. The computation vertex numbers
correspond to the loop nests from Figure 5.1. The basis vectors of the nullspaces for each
array and each loop nest are shown next to each vertex.

102 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

of a synchronization constraint from the inner sequential loop in loop nest 2.2 (see Sec-
tion 4.1.2.3). Caling Pr opagat e Nul | spaces makes NV'(D,) = N (C>2) inloop nest
2.2. Also, N (C23) = span{(1,0)} because of a data communication constraint arising
from the cycle in the interference graph from array accesses F'%, ; and 2, ; (see Sec-
tion4.1.2.3). Thisconstraintrequiresthat D, F'Y, ; = D, F?, 3 = C23,thus(1,0) € N'(D,).
After caling Propagat e_Nul | spaces, we have NV'(D,) = N(D,) = N(Cz3) in
loop nest 2.3. We can now calculate the total cost of the initial dynamic decomposition
for the communication graph . = (V, F). Let W be the sum of the edge weights,
W =¥ (wer w(u,v) = 425N%T' 4+ 3N? and let Z be the sum of the vertex weightsif the
loop nests are parallelized, 7 = 300NT + 100N. Thusthetotal cost of theinitial dynamic
decompositionisW + Z.

The algorithm first analyzes the vertices at the innermost nesting level, containing the
vertices nested within loop 2. The first edge we examine is (2.1,2.4), and we merge
vertices 2.1 and 2.4 into the same static decomposition region. This step is shown in
Figure5.7(a). The nullspaces at both 2.1 and 2.4 wereinitialized to (), and merging the two
vertices creates no additional constraints. We have eliminated the communication along
edge (2.1,2.4) and the total cost of the communication graph is Z + (W — w(2.1,2.4)).
The cost of the new communication graph is less than the cost of theinitial graph, and the
mergeiscommitted. Figure5.7(b) showsthe results of processing the next edge, (2.1, 2.2),
and merging vertex 2.2 into the same static decomposition region with 2.1 and 2.4. In
this case Cal ¢ _Nul | spaces returnswith N'(D,.) = N(D,) = N(D.) = N(Cz1) =
N(Ca2) = N(Ca4) = span{(0,1)}. The next communication graph edge is (2.2,2.4)
but since vertices 2.2 and 2.4 are already in the interference graph, the interference graph
is unchanged. At this point, the cost of the current dynamic decompositionis 7 + (W —
w(2.1,24) —w(2.1,2.2) —w(2.2,2.4)) = 7 4+ (w(2.1,2.3) + w(2.3,2.4) + w(1,2.1)) =
(300NT 4+ 100N) + (N?T + 3N?).

In Figure 5.7(c), we visit edge (2.1, 2.3) and add vertex 2.3 to the interference graph.
Here, when Cal c_Nul | spaces returns, al the nullspaces are set to span {(0, 1), (1,0)}
and thus span the entire space. This meansthat all the data and computation are allocated
onto a single processor. The vertex costs now use the sequential execution time for loop
nests2.1...2.4, and thetotal graph costis (300N?T + 100N) + (w(2.3,2.4) + w(1,2.1))

54. A DYNAMIC DECOMPOSITION EXAMPLE 103

= (300N?T + 100N) + (0.5N2T + 3N?). Clearly, the cost is now much larger than
before we merged vertex 2.3, i.e. we eliminated the cost of an edge weighted 0.5N?T,
but incurred a large increase of nearly 300N?27" in computation time. Thus the merge is
discarded and loop nest 2.3 is split off into its own static decomposition with a separate
interference graph as shown in Figure 5.7(d). The cost of the communication graph is now
back to Z 4 (w(2.1,2.3) + w(2.3,2.4) + w(1, 2.1)). The next communication graph edge
is (2.3, 2.4) which has no effect. The algorithm is now finished with the subgraph for the
loop nests that are nested within loop nest 2.

Next the algorithm proceeds to the outermost nesting level. It merges|oop nest 1 into
the static decomposition region containing loop nest 2.1. The final nullspaces are shownin
Figure5.7(e). At thispoint we have two static decomposition regionsin the communication
graph, one containing the set of vertices {1,2.1,2.2, 2.4} and the other containing the set
of vertices {2.3}. The final graph cost is Z + w(2.1, 2.3) 4+ w(2.3, 2.4), meaning that we
have data-reorganization communication along edges (2.1, 2.3) and (2.3, 2.4). Figure 5.8
showsthe hierarchical communication graph with the static decomposition regionsfor each
vertex. In the figure, the different static decomposition regions are shown with dark grey
backgrounds.

We then calculate the linear decomposition matrices and the offsets to find the final
affine decompositions. For the static decomposition region {1,2.1, 2.2, 2.4} we have:

Ci1 = Uy = (Chn = Cos = [1 O]
D, = D, = D, = [10]

For the static decomposition region {2.3} we have:

(25 = [0 1]
D, =D, = [0 1]

We use the default BLOCK virtual-to-physical mapping for both static decomposition

104 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

reorganization
communication

KEY:
——— hierarchy edge (D hierarchy vertex

—— original edge (D original vertex

Figure 5.8: Communication graph from Figure 5.3 with static decompositions regions.
The different static decomposition regions are shown with dark grey backgrounds. The
vertex labeled top correspondsto the outermost nesting level of the procedure, and al other
vertices are labeled with the numbers of the loops they represent.

regions. Thefinal decompositionsfor the static decompositionregion {1,2.1,2.2, 2.4} are:

10

7 bp+1
(1 0]a

bp+ 1

bp

<
bp <

IAIA

where b is the block size and p isthe processor number. Similarly, for the static decompo-
sition region {2.3} we have:

bp
bp

IAIA

5.5. RELATED WORK 105

55 Reated Work

This section explores previouswork on automatic decomposition algorithms. We focusthe
discussion on compiler agorithmsthat cal cul ate decompositions for dense matrix scientific
codes. In all cases, the statementsin aloop nest are the basic unit of computation and the
datastructures are arrays. Techniques for mapping the computation and/or data of asingle
loop nest have been presented in the literature[42, 52, 53]. Here we focus on approaches
that consider multiple loop nests. All previoudy proposed algorithms are intraprocedural,
so we discuss them in the context of the intraprocedural subset of our agorithm (our
interprocedural algorithm is described in the following chapter, Chapter 6).

The proposed algorithms vary widely in terms of the target machines, the domain
of input programs they handle, the range of decompositions they generate (for example,
whether the decompositions are static or dynamic) and the type of framework they use. We
begin in Section 5.5.1 by discussing algorithms that calculate strictly communication-free
decompositions. In Section 5.5.2 we describe algorithmsthat operate only on data parallel
computations. A computation is considered data parallel if the parallelism comes from
performing simultaneous operations across all elements of the arrays, rather than from
multiple threads of control. In these approaches communication can only occur between
two consecutive |oop nests or array operations. In Section 5.5.3 we discuss agorithmsthat
handle more general forms of loop-level parallelism. In these algorithmsthe paralelismis
not strictly element-wise and communication can occur within loop nests. Our algorithm
fallsinto this last category.

For each project we describe the input language and the range of decompositions they
generate. Many of the compilerswe present generate only data decompositionsand rely on
the owner-computesrul e to generate the computation decomposition, while others generate
the computation and data decompositions simultaneoudly.

We also describe how the target architecture impacts the decomposition algorithms.
Some algorithms target SIMD (single instruction, multiple data) machines exclusively,
while others target MIMD (multiple instruction, multiple data) machines, or both. SIMD
machines execute the same instruction on multiple processors, but each processor operates
on a different data stream. In MIMD machines each processor has its own instruction

106 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

stream and its own data, and they are thus more flexible than SIMD machines. MIMD
architectures include both shared and distributed address space machines.

A number of SIMD machineswereavailableinthe 1980 sand early 1990's, for example,
the Thinking Machines CM-1[40] and CM-2 and the MasPar MP-1[17] and MP-2. Many of
the early compiler techniques developed for finding decompositions targeted these SIMD
machines. Today, MIMD machinesarethe primary architecturefor general -purpose parall el
computing. Most of the earlier large-scale MIMD machines were distributed address
gpace machines such as the nCUBE series, the Intel iPSC series, Delta and Paragon,
and the IBM SP-1 and SP-2. Thinking Machines moved from a SIMD architecture to a
MIMD architecture with the introduction of the CM-5[61]. Large-scale shared address
space machines such as Stanford DASH multiprocessor[55], MIT Alewife[2], Kendall
Square Research KSR-1[32], SGI Origin and Convex Exemplar started being devel oped
in the early 1990's. Because the remote latencies are so high on distributed address space
machines, much of the more recent work on decomposition algorithmshasfocused on these
architectures.

55.1 Communication-Free Parallelism

Ramanujam, Huang and Sadayappan at Ohio State University have presented algorithmsto
calculate communication-free decompositiong 41, 63]. The input is a sequential program
and the algorithms generate hyperplane partitions. A hyperplane partition of aloop nest (or
array) isaset of iterations (or array elements) i1, :2, . . ., :* suchthat 2114+ h2i%4-. . .+ bRk =
a, where b1 k2. ... h* and « are rational numbers. The algorithms are aimed at finding
decompositions for MIMD distributed address space machines.

The entire program is modeled by a system of equations. The equations specify the
conditions that must be met in order to have a communication-free hyperplane partition.
Given the array access functions in the program, the algorithms then solve for the com-
putation and/or data hyperplanes. They present the necessary and sufficient conditions for
finding both communication-free single-hyperplane and multiple-hyperplane partitions.

Bau et al.[15] have presented a method for calculating communication-free affine de-
compositions using the mathematical framework we developed (see Section 3.2). They

5.5. RELATED WORK 107

generate a system of equations that specifies the conditions under which the affine de-
compositions are communication-free, and then solve for decompositions that have the
maximum degree of parallelism (i.e. maximum rank).

5.5.2 DataParallelism

In this section we describe compilersthat perform decomposition analysis on data parallel
computations. All the algorithms in this category divide the problem into two phases:
alignment followed by distribution. Thealignment phasepositionsthearraysintheprogram
with respect to each other so that the amount of communicationisminimized. In operations
with two or more operands, the operands must be aligned, i.e. the corresponding elements
of operands must be stored at the same processor. Whenever operands are not aligned,
communication is needed to move the data to the necessary processor. The distribution
phase then partitions the arrays onto the processors of the parallel machine. The rationale
for this two-step approach is that it separates the machine-independent part (alignment)
from the machine-dependent part (distribution). Most languages with data decomposition
extensions as HPF[48], FORTRAN-D[31] and Vienna FORTRAN][21] are also based on
thistwo-step model.

For data parallel computations, alignment is often the critical issue in determining
performance. The algorithmsin this category thus place aheavy emphasis on the alignment
problem. The alignment is typically split into three separate components. axis, stride and
offset. Theaxisalignment determinesthe correspondence between different array axes. The
stride gives the spacing between array dimensions and the offset gives the displacement of
the start of the array dimension.

Compass, Inc. Albert, Knobe, Lukas, Natargan, Steele and Weiss at Compass, Inc.
developed acompiler that cal culatesdecompositionsfor SIMD machineq 4, 45, 46, 47]. The
input to the compiler is FORTRAN-77 extended by FORTRAN-90 style array operations,
and it targets the Connection Machine CM-2 and MasPar MP-1. The Compass compiler
was one of the first compilersthat calculated complete alignments. The compiler first finds
an alignment of the data onto a virtual processor space. This was sufficient for the CM-2
sinceit had direct support for virtual processorsin firmware[4]. Onthe MP-1, an additional

108 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

distribution step was needed to map the virtual processors onto the physical processors of
the machine[46].

In the alignment phase, the program is modeled using a preference graph. The vertices
in the graph represent occurrences of arrays or array sections in the program text, and the
edges represent allocation requests (called preferences) that specify the optimal relative
alignment between the array occurrences. There are severa different types of preferences.
An identity preference connects the definition of an array with the use of that array. This
preference indicates that if the array does not have the same alignment at the two occur-
rences, communication isrequired. A conformance preference connects array occurrences
that are operated on together in an expression or by an assignment. Conformance prefer-
ences can connect different arrays, and indicate that communication is required to align the
arrays before the operation can execute. Finally an independence anti-preference indicates
that array dimensions should be allocated across the processors so as to maintain the de-
gree of paralelism in the original input program. Whereas preferences specify that array
dimensions should be allocated on the same processor, anti-preferences specify that array
dimensions should be distributed across the processors. Preference edges are weighted
with the communication cost if the preferenceisnot satisfied, and anti-preference edges are
weighted with the execution time penalty for not executing in parallel.

Conflicts between preferences can only occur when there is a cycle in the preference
graph. To locate the cycles, the Compass compiler builds a spanning tree using a greedy
algorithm that adds edges in order of cost. If adding an edge creates a cycle and the cycle
causes a conflict, then the preference associated with the edge is not honored. Axis, stride
and offset alignments are calculated from the array accesses in each conflict-free region of
the preference graph.

For the MP-1, the Compass compiler’sdistribution phase finds either a block, cyclic or
block-cyclic folding function for each aligned dimension of the virtual processor space[46].
A search-based technique based on the estimated cost of various distributions is used to
select the distribution.

Crystal. Li and Chen developed an automatic decomposition algorithm as part of the
Crystal project at Yale University[56, 57, 58]. The compiler they developed for Crystal

5.5. RELATED WORK 109

(afunctional language) was one of the first compilers to perform decomposition analysis.
It targets distributed address space machines, including both SIMD machines as well as
MIMD machines (i.e. the Intel iPSC/2 and nCUBE). The Crystal compiler first finds an
alignment of the data onto a virtual processor space (referred to as the index domain) and
then distributes the virtual processor space onto the physical processor space. It finds a
single static decomposition for the data across the program region being analyzed.

The Crystal compiler’s alignment phase focuses on the problem of axis alignment.
They model the problem using a component affinity graph(CAG). The verticesin the CAG
represent dimensions of arrays (e.g. the graph for a program with three two-dimensional
arrayswould have six vertices). The vertices are arranged in columns, where each column
contains avertex for each dimension of asingle array. For each distinct array accessin the
program, an edgeisgenerated between two verticesif thetwo corresponding dimensionsare
functionsof thesameindex variable. For example, for thestatement X[<1, i5] = Y[22, 71]
there would be one edge connecting the vertex for dimension 1 of = with dimension 2 of
y, and another edge connecting dimension 2 of with dimension 1 of y. Edges generated
by the same statement that are incident on the same vertex indicate more than one equally
good alignment and are weighted with ¢ (asmall number), and al other edges have weights
of 1.

Let n be the maximum number of vertices in any column, that is, the maximum
dimensionality over all thearrays. The axis alignment problem isto partition the verticesin
the CAG inton digoint subsets, such that no two verticesin the same column arein the same
subset. The objective function is to minimize the weight of the edges that have endpoints
in different subsets. All vertices in the same subset correspond to array dimensions that
are aligned, and edges between subsets represent communication. Li and Chen show their
formulation of the axis-alignment problem to be NP-complete][56], and present a practical
greedy heuristic.

The Crystal compiler’sdistribution phase finds either ablock or cyclic folding function
for each aligned dimension of the virtual processor space. Given avirtual processor space
with a fixed size, the compiler enumerates all possible distributions onto the physical
processor space. For each distribution, it generates an estimate of the communication cost.
Thecost estimatesarederived by pattern matching array access patternsinto communication

110 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

primitives (e.g. All-to-All Broadcast, Uniform-Shift).

Excalibur. Chatterjee, Gilbert, Schreiber, Sheffler and Teng have presented a set of de-
composition algorithms within the context of the Excalibur project[22, 23, 34, 67, 68].
Their agorithms operate on array-based languages such as FORTRAN-90 and target dis-
tributed address space machines. Excalibur first calculates the axis and stride alignment
of the data onto a virtual processor space (called atemplate, using HPF terminology), and
then calculates the offset alignment in alater pass. After the alignment has been cal culated,
a separate pass distributes the virtual processor space onto the physical processors.

Excalibur represents the program using an alignment-distribution graph (ADG). Ver-
tices in the graph represent computation and edges represent the flow of data. Edges are
directed, and an endpoint of an edge (called a port) represents an array object with a speci-
fied decomposition. Edges thus move an array object from one decomposition to another,
and data is re-aligned when the ports of an edge differ. Each edge is weighted with the
amount of data it moves, and represents an approximate model of the communication cost.

We first describe Excalibur’s axis and stride alignment algorithm presented in [67] (an
earlier agorithm was also presented in [23]). The ADG isfirst transformed into asimpler,
alignment-specific graph called the constraint graph (CG). A constraint is a mapping from
the alignment of one array object to another. The constraint graph is used to represent
the communication costs if the constraints imposed by the input program are not satisfied.
Each port in the ADG becomes a vertex in the CG, and represents the array objectsin the
program. An edgewithweight w(u, v) inthe ADG represents aconstraint on the alignment
that can be violated with communication cost w(u, v). It isdirectly trandated into an edge
with weight w(u, v) in the CG. Vertices in the ADG represent constraints that cannot be
violated and become edges with weight oo in the CG. For example, the matrix addition
statement x = y + z, isrepresented by a vertex in the ADG with two incoming ports
for y and ~ and one outgoing port for =. The corresponding CG has three vertices, one for
each port in the ADG. The edges (=, y) and (x, z) are weighted oo to represent that after
the addition statement executes, + must have the same alignment as y and =. Finally, each
edge islabeled with the constraint that specifies the alignment rel ationship between the two
vertices connected by that edge.

5.5. RELATED WORK 111

Given the CG, the axig/stride alignment problem is to label the vertices with align-
ments such that the cost of the unsatisfied constraints is minimized. This problem is
NP-complete[67] and the authors present heuristic techniques to generate an approximate
solution. The algorithm is based on finding a maximal satisfiable subgraph, that is, within
the subgraph al constraints are satisfied and there is no communication. Initially the sub-
graph contains all the verticesin the CG, but none of the edges. At each step, the algorithm
adds an edge to the subgraph and then checks if the new subgraph is satisfiable. A number
of techniques for contracting the constraint graph into a smaller, equivalent graph are also
presented. Since the contraction isinexpensive compared to the alignment itself, contrac-
tion can significantly reduce the running time of the compiler. After calculating the axis
and stride alignment, Excalibur cal culates the offset alignment by reducing the problem to
integer programming[23].

Excalibur’s distribution algorithm operates on the original ADG for the program. The
algorithm first calculates a set of candidate distributions. Each vertex isweighted with the
estimated execution time for the computation represented by that vertex, under each of the
candidate distributions. The goal is to label each vertex with a distribution. The cost of a
given candidate distribution isthe sum of the vertex weightsfor that candidate, plusthe sum
of edge weights whose endpoints have different distributions. The distribution problem is
thentolabel theverticeswith distributions, such that estimated execution timeisminimized.
Their algorithm uses a divide-and-conquer approach to find dynamic distributiong[22]. The
programisrecursively divided into regions, where each region hasa static distribution. The
conguer stage merges regions when the cost of the dynamic re-distribution is worse than
the static distribution. In alater paper, techniques for contracting the ADG to reduce the
size of the distribution problem are described[68].

The algorithms presented in this section model only data parallel computations. While
data parallel programs map naturally to SIMD architectures, MIMD machines alow mul-
tiple threads of control. MIMD machines have the opportunity to exploit coarser-grain
parallelism in addition to data parallelism. For a decomposition agorithm to go beyond
data parallelism and take advantage of different choices of parallelism, it must model the
trade-offs between the different choices of parallelism and the cost of communication.

112 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

5.5.3 Loop Nest Parallelism

In this section, we discuss decomposition algorithms that handle more general forms of
loop-level parallelism. The agorithms are ill geared towards a data-parallel style of
computation, however, the parallelism is not restricted to element-wise computations on
arrays. These algorithms weigh the benefit of parallelizing different loops within a loop
nest against the communication cost, and optimizeto find the best overall execution time.

The D System. Kremer, Kennedy and Bixby at Rice University have developed an
automatic decomposition tool[16, 44, 50] as part of the D system[1]. Their tool takes
a sequential FORTRAN program as input, and generates data layout annotations for a
language such as HPF. Thetool first dividesthe program up into phases, and for each phase
generates a list of candidate decompositions. It then estimates the costs of the candidates
for each phase and the cost of reorganizing the data between phases, and selects among
them.

The candidate selection process first calculates possible alignments, and then finds
possible distributions in a separate step. The alignment analysis step only performs axis
alignment and uses Li and Chen’s component affinity graph representation[56]. Rather than
use agreedy heuristic to find an approximate solution as was done in the Crystal compiler,
the D System formulates the problem as a 0-1 integer programming problem. Within each
phase, they solve for the optimal axis alignment. The axis alignments across different
phases are merged if no additional communication results. All the distinct axis alignments
found across the different phases become the candidate alignments within each phase. The
candidate distributions are generated using either exhaustive search or heuristics. The
set of candidate decompositions for each phase is then the cross product of the candidate
alignments and the candidate distributions.

The final step isto select a single decomposition for each program phase from among
the candidates. The decomposition selection problem is modeled using adata layout graph
(DLG). The graph has one vertex for each candidate decomposition and the edges represent
possible data reorganizations between decompositions. The vertices are weighted with
an estimate of the execution time for the code given the corresponding decomposition.
The edges are weighted with an estimate of the time to reorganize the data between the

5.5. RELATED WORK 113

two decompositions connected by that edge. Given the DLG, the problem is to select a
decomposition for each phase such that the sum of weights of the corresponding vertices
and edges is minimized. This problem is NP-complete[50]. Rather than use heuristics to
calculate an approximate solution, the D System formulates the problem as a 0-1 integer
programming problem and finds an exact solution. In the D System tool, both the axis
alignment problem and the decomposition selection problem are solved exactly using 0-1
integer programming. Even though O-1 integer programming is exponentia in the worse
case, therationa eisthat because the datalayout tool isoutside of the compiler, it can afford
longer running times.

PARADIGM. The PARADIGM compiler, developed at the University of Illinois, per-
forms automatic data distribution starting from sequential FORTRAN-77 programs and
generates code for distributed address space machineg[13]. Gupta and Banerjee devel-
oped the compiler’s static decomposition algorithm([35, 36]. Later, Palermo and Banerjee
extended the algorithm to also handle dynamic decompositions 60].

PARADIGM’s ¢tatic data decomposition algorithm uses a constraint-based approach.
Congtraints represent desirable properties of the decomposition, and are weighted with a
guality measure of the benefit to the overall execution time if the constraint is satisfied.
The algorithm performs axis alignment followed by distribution. The distribution analysis
isitself subdivided into three steps. choosing a block or cyclic folding function for each
dimension, determining the block size for each dimension and selecting the number of
processors in each processor dimension (the algorithm considers at most two processor
dimensions). Within each of the four steps, any relevant constraints are recorded, then an
estimate of the quality is calculated for each constraint and finally a solution is found for
that step. For example, to compute the quality measure of an alignment constraint, two
communication time estimates are calculated — one is the communication time if the array
dimensions are aligned, the other isthe communication timeif the array dimensions are not
aligned. The quality of the constraint is the difference between the two times.

Axis alignment is calculated using Li and Chen’'s component affinity graph[56]. The
edge weights are equal to the quality measure of the alignment constraint generated for
the two vertices connected by the edge. PARADIGM'’s algorithm for finding the axis

114 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

alignment is based on Li and Chen’s greedy algorithm. Next, PARADIGM chooses either
ablock or cyclic folding function for each aligned dimension. It gathersthe constraintsthat
each statement places on the folding function, and calculates the quality measure for each
constraint. The folding function that results in the highest total quality is selected. In the
next step, the block sizes are calculated using a similar formulation to the axis alignment
problem. Finally, the number of processorsin each dimension is computed by searching
through a fixed set of possible choices.

PARADIGM’sdynamic decomposition algorithm builds on top of the static decomposi-
tion algorithm. First, the program isdivided into a hierarchy of candidate phases. Initially,
the entire programis viewed as a single phase and a static distribution is calculated for that
phase. Each phase is recursively split into two subphases if the best static decomposition
for the single phase has a higher execution time estimate than the two subphases combined.
At this point, the cost of reorganizing the data between the phases is not considered. After
the program has been divided into phases, the phases are represented in a phase transition
graph. The vertices in the graph are the program phases, and an edge between two phases
isweighted with the data reorganization cost. The final phases, and thus the corresponding
decompositions, are cal culated by computing the shortest path through the phase transition

graph.

The algorithmsin this section take the same basi ¢ approach as the HPF language and the
data-parallel decomposition algorithms from Section 5.5.2. They all divide the decompo-
sition problem into two steps: alignment followed by distribution. A difficulty with this
formulation of the problem isthat once different choices of parallelism are considered, then
alignment al one does not capture the machine-independent aspects of the program. Thereis
now atrade-off between potential communication and the parallelism in the program, inde-
pendent of the target machine. The parallelismisrepresented by the distribution, i.e. which
array dimensions are allocated across the processors and which are sequential. However,
the parallelism in the program impacts the alignment. For example, communication due
to mismatches in aignment can be eliminated by modifying the distribution to make those
dimensions sequential. The optimal overall decomposition may be one that does not have
optimal alignment. Thus, in this case the two-step approach does not accurately model the

5.6. SUMMARY 115

problem. To avoid this difficulty, some researchers have started cal culating alignments and
distributions at the same time[33].

5.5.4 Discussion

Our agorithm is similar in scope to the algorithms in Section 5.5.3 that consider the
parallelism in general loop nests. However, our approach is most closely related to the
communication-free formulations. There are several advantages to this formulation of the
decomposition problem. First, we can calculate communication-free regions (or in our
case, static decomposition regionsthat are free of data-reorganization communication) sys-
tematically using our mathematical framework. We do not need to rely on selecting alist
of candidate decompositions, as do a number of the other approaches. Asaresult, weavoid
the inaccuracies and scalability problemsinvolved in generating a reasonable set of candi-
dates. Second, by representing decompositions directly as affine functions, we avoid the
circularity in finding alignments and distributions in two separate steps. Also, using affine
functions allows us to generate a wider range of possible decompositions than algorithms
that calculate separate axis, stride and offset alignments, e.g. skew decompositions where
each processor accesses data along a diagonal of the array.

Unlike the communication-free approaches, we also consider the trade-offs between
parallelism and communication. Wetry to minimizetheoverall execution timeby balancing
the communication costs across static decomposition regions with the parallelism within
each region.

5.6 Summary

In this chapter, we presented an algorithm for calculating dynamic decompositions. First,
we described how each procedurein the program is represented by a communication graph.
The loop nests in the procedure trandate into vertices in the graph, and the vertices are
weighted with estimates of the computation timefor theloop nest. Thereisaweighted edge
between two vertices which represents the communication cost if the data decompositions
between the vertices do not match.

116 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

We then expressed a dynamic decomposition as a partitioning of the vertices of a
communication graph into digoint sets, called static decomposition regions. Static decom-
position regions have the property that there is a single, static decomposition in the region
of program represented by the vertices in the set. For all loop nests and al arraysin a
given static decomposition region, their computation and data decompositions are uniquely
determined using the static-decomposition agorithm from the previous chapter. The cost
of a given dynamic decomposition on a communication graph is the sum of the edge costs
and vertex costs. The cost of an edge is the edge weight if the endpoints of the edge are
in different static decomposition regions; otherwise the edge cost is zero. The cost of a
vertex is the vertex weight for the decomposition given by the vertex’s static decomposi-
tion region. The objective of the dynamic decomposition problem is then to partition the
communication graph into static decomposition regions such that the cost of the resulting
dynamic decomposition for the graph is minimized.

We proved that the dynamic decomposition problemisNP-complete. Wethen presented
a heuristic algorithm for finding dynamic decompositions. We use a greedy approach that
triesto eliminate the largest amounts of potential communication from the most frequently
executed parts of the program first. The algorithm starts by placing each communication
graph vertex in its own static decomposition region. It then tries to merge the verticesinto
larger and larger static decomposition regions. The analysisis performed on each nesting
level in the procedure in bottom-up order, from the innermost level to the outermost. This
has the effect of pushing any necessary communication into the outermost loops as much as
possible. Within alevel, the algorithm tries to merge the vertices connected by edges with
the largest edge weightsfirst, in order to eliminate the most expensive communication.

Chapter 6

An I nterprocedural Decomposition
Algorithm

If the data decompositions of arrays do not match across procedure boundaries, then the
program could potentially incur large amounts of communication at every procedure call

entry and call return. Any decomposition algorithm that handles realistic programs must be
able operate across procedure boundaries. In this chapter we describe the interprocedural

version of our decomposition algorithm. Theinterprocedural algorithmisbuilt ontop of the
decomposition algorithmsfrom the previous chapters. The problemwe solvein thischapter
ishow to propagate and represent the necessary information acrossdifferent procedures. We
beginin Section 6.1 by describing the caseswhen decomposition analysismust be performed
across procedure boundaries. Section 6.2 then presents our interprocedural algorithm for
finding affine decompositionsonto thevirtual processor space and Section 6.3 describeshow
to map the virtual processor space onto the physical processor space. Section 6.4 presentsa
detailed example. In Section 6.5 we describe common programming paradigms that make
interprocedural decomposition analysisdifficult. Finally in Section 6.6 we discuss how our
algorithm interfaces with libraries and user-defined decompositions.

117

118 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

6.1 WhenislInterprocedural Analysis Needed?

There are two cases when decomposition analysis must be performed across procedure
boundaries. parallel loops that contain procedure calls and multiple procedures that access
the same array. For example, in the code in Figure 6.1(a), the doall loop in procedure
mai nl contains a call to subl. The array access in subl is a function of loop index
variable 7;, but the access is in a different procedure than the loop itself. To analyze the
code, we must trandlate the access to the formal parameter i in subl into an access of the
actual parameter » in mai n1. We find that every access y[] corresponds to the same
memory location as X[2* ¢1, 42] , and can then cal culate the computation decomposition
for the loop and the data decomposition for the array.

The code in Figure 6.1(b) shows an example where the same array is accessed in
distinct loop nests in two different procedures. If we were to calcul ate the decompositions
for each procedure separately, the linear datadecompositionfor formal parameter y insub?2
would be D, = [1 O] with V'(D,) = span{(0,1)}. Innai n2, for actual parameter

x, D, =

10
L] with V(D) = 0. For each call to sub2, the array would have to

be reorganized since the data decompositions of the actual and formal parameter do not
match. To find a consistent decomposition across both procedures, the constraint on array
y insub2, N(D,) = span{(0, 1)}, must be trandated into a constraint on = in Nai n2,
N(D;) = span{(0,1)}.

The cases that require decomposition analysis across procedures occur commonly in
practice. We thus need a mechanism to efficiently propagate information across procedure
boundaries. For decomposition analysis, this involves trandating both array accesses and
data decompositions between corresponding variables in the different procedures.

A simple solution would be to eliminate the procedure boundaries altogether by per-
forming inline substitution. Inline substitution replaces each procedure call by a copy of
the callee procedure. We could then run the intraprocedural decomposition algorithm from
the previous chapter on the single resulting procedure. Unfortunately, this approach is not
practical for large programs. Inline substitution can cause the code to grow to an unman-
ageable size. Also, since each procedureisre-analyzed every timeit iscalled, the analysis

6.1. WHEN ISINTERPROCEDURAL ANALY SIS NEEDED? 119

program mai nl
real X[N, N|
/* Loop Nest 1 */
for i; = 1 to N2 do [* doall */
call subl(x[1,42], 2*:) [* pass column 42 of x */
end

subroutine subl(y, i)
real y[N|
integer i,
Yyl = fi(22)

end
@

program mai n2
real X[N, N|
/* Loop Nest 2 */
for ;7 = 1 to N do [* doall */
for i, = 1 to N do [* doall */
X[i1, i) = fa(i1, i2)
call sub2(x)
end

subroutine sub2(y)
real y[N, N
/* Loop Nest 3*/
for 7 = 1 to N do [* doall */
for i, = 2 to N1 do
ylin, o] = ylin, il + y[ia, 02¥1] + y[ig, ip- 1]
end

(b)

Figure 6.1: Code examples used to illustrate interprocedural decomposition analysis: (a)
parallel loop that contains a procedure call, and (b) multiple procedures that accesses the
same data.

120 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

times can quickly become unacceptable. We thus use interprocedural analysisto calculate
decompositions across procedure boundaries. We summarize the necessary information
for every procedure, and then map that information across the procedure calls. During the
analysis, there is a single copy of each procedure, and the procedures do not need to be
re-analyzed for each call.

6.2 Finding Virtual Processor M appings

This section describes the interprocedural algorithm for finding affine decompositions onto
the virtual processor space. We start with the call graph for the program. The call graph
G = (V, E) hasavertex v € V for each procedure, and adirected edge (u, v) € E for each
call inprocedure v to procedurev. Giventhe call graph, the interprocedural decomposition
algorithm visits each procedure twice, once in a bottom-up traversal of the call graph and
once in atop-down traversal of the call graph.

First we run the intraprocedural decomposition algorithm from the previous chapter
on the leaf proceduresin the call graph. The bottom-up pass propagates a summary of
the array accesses, and any constraints found on the arrays, up from the callee procedure
into the caller procedure. Then we run the intraprocedural decomposition analysis on the
caller procedures, and continue up the call graph. By the time the algorithm reaches the
main procedure, all the constraints have been collected and we calculate the final linear
decompositions. The top-down pass then pushes the final linear decompositions down
from the caller proceduresinto the callee procedures, and calcul ates the offsetsto form the
compl ete affine decompositions.

In this algorithm, there are two types of information that flow between procedures:
linear decompositions and array access functions. The bottom-up pass must map both
linear decompositions and array access functions from callee procedures into the calling
context of thecaller procedure. Thetop-down pass must map thefinal linear decompositions
from the caller back down into the calee. In our framework, both affine decompositions
and array access functions are represented as affine functions (linear decompositions are
just affine decompositionswith zero offsets). Thus akey component of our interprocedural
decomposition algorithmistrand ating affinefunctionsin a callee procedureinto equivalent

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 121

affine functions in the caller procedure, and vice-versa. First, we describe our method for
mapping affine functions across calls in Section 6.2.1. Then, we present the details of the
bottom-up traversal in Section 6.2.2 and the top-down traversal in Section 6.2.3.

6.2.1 Mapping Affine Functions Across Calls

Let 7 be an affine function (either an array access or an affine decomposition) that involves
variables that are visible in procedure ¢q. Also, let there be an edge in the call graph
between ¢ and procedure r representing a call site s. To map ¢ from ¢ into », we must
trandate the variables in ¢ into equivalent expressions of variables visible in r at the
call site s. The trandation is not always straightforward because the array accesses and
affine decompositions aways involve an array variable. The relationship between memory
locations for arrays in different procedures can be complex if the array is reshaped across
the call. Array reshapes occur when the number or size of array dimensionsis altered at a
call site, e.g. passing adice of an array into a procedure.

We generate a system of linear inequalities that describes the correspondence between
variables visible in ¢ and variables visible in at the call Site s. Let y refer to the array
variable in ¢ and let « refer to the corresponding array variable in » (e.g. y isaforma
parameter and x istheactual parameter). Then, in additionto theoriginal affinefunction, the
system of linear inequalities includes the conditions that describe the relationship between
memory locations of = in » and memory locations of i in ¢. Also included in the system
of inequalities are the bounds of z, the bounds of i and any additional known facts about
variables from the call site s. We project away the variables visible in ¢ and replace them
with variables visible in ». The projection step is based on Fourier-Motzkin elimination
that has been enhanced for the integer domain[6, 37, 38].

For example, the affine array access function for the write to array y in subl of
Figure 6.1(a) is Iy (i2) = [1] ip. If welet d;, = (a,,) represent an index into array y, the
corresponding equation is

2 = ayl

Letting a; = (a.,,a,,) represent an index into array = in mai nl, the complete set of

122 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

inequalitiesis:
12 = Qy
12 = 211
< ay < N
< ap;, <N
< a, <N

ay, —1 = N*(a,, —42)+ (ay, — 1)

The last equation above is the one that describes the correspondence between memory
locations of = and y. After eliminating «,, and ¢, we have the following linear inequality
inmai nl:

42

= a,
211 = ay
1 < a,, < N
1 < @, < N

and the resulting affine array access function for = is F(i1) = [5 11+ :)2

For an example of mapping an affine data decomposition across a call, let the affine
data decomposition for array y insub2 of Figure6.1(b) be D, (a,) = [10] a,. Letting
ay = (ay,,ay,) represent an index into array y, the corresponding equation is

P1 = Gy,

where ' = (p1) represents an index into a one-dimensional virtual processor space. If we
leta, = (ay,,a,,) representanindex into array = inmai n2, thecomplete set of inequalities
is:

b1 = dy
1 < a,, < N
1 < a,, < N
1 < q, < N
1 < qa, < N

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 123

N*(al’l_l)—l_(al’z_l) = N*(ayl_l)—l_(ayz_l)

After eliminating the subscripts of y, (a,,, a,,), the linear inequality for « in mai n2 is:

pl = al’l
S al’l S N
S al’z S N

and the resulting affine data decomposition is D, (d;) = [10] .

In order for the mapping of an affine function from procedure ¢ into procedure r to
succeed, the resulting function in » must aso be affine. Some array reshapes can cause
the mapping to fail (see Section 6.5.2 for more detail). We aso cannot handle unknown
array bounds, or symbolic array bounds except in the outermost dimension; otherwise the
resulting function is not affine (see Section 6.5.3).

If the mapping of any dimension of an affine function across a call fails, then the
decomposition algorithm ignores that dimension. If the mapping of an array access fails,
the consequence of ignoring the access is that communication may be needed when that
access isexecuted. If the mapping of an affine decomposition fails, then the decomposition
analysis runs as if the array is not accessed within the procedure, and the program may
incur communication upon procedure entry and exit. In the remainder of this discussion,
we assume that all affine functions are successfully mapped across the calls, and that each
formal parameter or global variablein the callee ¢ mapsto asingle variable in the caller r.
When all procedures access the variablesin acommon block consistently, then we split up
the variables into distinct global variables. Common blocks that cannot be split, as well as
unionsand equivalences, arerepresented in terms of offsets from the base memory address.

Other compiler technigues have been developed that can more accurately map certain
types of information across procedures in the presence of array reshapes. Amarasinghe
has developed an algorithm for propagating summaries of array accesses across procedure
boundaries when the arrays are reshaped[6] .

124 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

6.2.2 Bottom-up Traversal

The bottom-up decomposition analysisis built on top of the intraprocedural decomposition
algorithm, Dynam c_Deconps, from the previous chapter. The interprocedural analysis
starts by running Dynam ¢ _Deconps to find linear decompositions at the leaf procedures
of the cal graph. The bottom-up traversal performs three main steps for each caller
procedure r. First, information about the data decompositions for each callee procedure ¢
is propagated into r. Next, array accesses from procedure ¢ are collected into ». Finally,
the Dynam ¢ _Deconps agorithm from the previous chapter is run on the procedure r.
These three steps are described in more detail in the following subsections.

6.2.2.1 Propagating Decompositionsinto Calling Procedures

In this section we describe how to propagate information about a callee procedure’s de-
compositions into the caller procedures. The intraprocedural decomposition algorithm,
Dynam c_Deconps, has aready been run on the callee procedures. The loop nestsin the
callee have been partitioned into static decomposition regionsand the linear decompositions
onto the virtual processor space have been calculated.

Within a caller procedure r, we represent information about a call to procedure ¢ by
treating thecall asif it werejust another loop nestinr. Weadd verticesto r’scommunication
graph for each call to ¢ outside of aparallel loop nest (callsinside parallel loops are already
represented by the communication graph vertex for that loop nest). Any constraints on
the decompositions from the body of ¢ become constraints on the call vertex in . This
representation lets us find dynamic decompositions involving the call vertex that minimize
data-reorganization communication between the call and the surrounding loop nestsin r.
We refer to a communication graph vertex representing acall to procedure g by v,.

To create a vertex v, in r’s communication graph, we must determine which arrays are
accessed within the code represented by that vertex, along with the corresponding array
access functions. We set the vertex v, to access all actual parameters at the call site and all
global arraysaccessed in ¢q. We then trandate the linear data decompositions for the arrays
in v, acrossthe call from ¢ into the context of ». Let D, be the linear data decomposition
of array x mapped into . Then the constraints for array = in v, areinitialized to V' (D,,).

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 125

In this way, all constraints found in the callee procedures are propagated up in the caller
procedure.

Next we calculate the array access functions for the arrays in the call vertex. Let P
be the virtual processor space for the callee’s static decomposition region. We treat P as
the iteration space in the call vertex, i.e. 7 = P. The array access function for the array
variable x in the call vertex is given by solving for £, inthe equation D, F,., = I, where
I istheidentity matrix. The linear data decomposition functions D : A — ‘P thus become
thearray accessfunctions /' : 7 — A inthe call vertex, where A isthe array space for each
array. Using the linear data decompositions as access functions preserves the relationship
between the linear data decompositions of different arrays. Thisinformation was provided
by the original array access functionsin theintraprocedural version of the algorithm. After
calculating the array access functions, the vertex and edge weightsinvolving the call vertex
are computed in the same way as all other vertices.

The complete algorithm for creating call vertices, Create_Cal | Verti ces, is
shown in Figure 6.2. The agorithm starts by looking at the static decomposition re-
gionsfor the callee ¢. For smplicity of presentation we assume that thereis asingle static
decomposition region for entire procedure ¢; below we describe what happensiif thisis not
the case. The algorithm creates a separate vertex in the caller’s communication graph for
each connected component of the callee's interference graph. The decompositions for the
data and computation within each connected component are rel ative to one another, and the
decompositionsfor dataand computation in separate connected components are compl etely
independent. Thus by creating distinct verticesin the communication graph, we ensure that
the decompositions we find for each connected component remain independent.

A difficulty arises, however, whenever aliased arrays arein separate connected compo-
nents. For example, consider the following code:

program mai nl
real X[N|
call subl(x, x)
end

126 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Create_Call Vertices
(G. : communication_graph, /* caller’scommunication graph */
g . procedure, /* callee*/
r . procedure, /* caller */
call : cal _site)
return (G, : communication_graph)

G, G, @ interference graph; /* G, = (V.,Vy, E) */
D,, D, : matrix;

mapped : array of boolean;

vy, v,/ © cOmmunication_graph_vertex;

if call within parallel loop nest then return G.;

(7, = gtatic decomposition regionfor ¢ in G;
foreach connected component Z,’ of G, do
v, = New communication_graph_vertex;

Add v, to G,;

foreach v, € V', wherey isan actual parameter or global variable do
D, = linear data decomposition for v,;
D, =map D, upfromcall fromyingtoxinr,
add z to list of arraysin v,;
initiaize constraints for « to V' (D,);
solvefor F,, in D, F,, = I and add to list of array access functionsfor = in v,;

if mapped[x] in call then
v,/ = communication graph vertex containing « in G..;
v, = mergev, and v,’;
end if;
mapped[z] =true;
end foreach;
end foreach;
return G,;
end algorithm;

Figure 6.2: Algorithm for creating call verticesin the caller’s communication graph.

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 127

subroutine subl(y, z)

real y[N, z[N

end

In FORTRAN, thiscodeislegal only if arraysy and z insubl are read-only. Itispossible
that the arrays y and = are in separate connected components of the interference graph
representing the static decomposition region for the callee sub1. However, both i and =
map to the same array « in the caller mai n1. The data decompositions in the connected
componentsfor y and = are not really independent as the variables are aliased. In this case,
we smply merge the communication graph vertices corresponding to the two connected
componentsfor y and z. The constraints on = from both y and ~ are summed and the array
access functions are combined.

After creating the call vertices, the algorithm initializes the constraints for the arrays
and generatesthe list of array accesses. To create the array access function for array =, we
solvefor F,, intheequation D, F,, = I, where D, isann x m matrixand / isthen x n
identity matrix. To guarantee that a solution exists, there are three cases to consider:

1. Thesystem D, F,,, = I hasasingle solution for F,.

2. The system D, F,,, = I is under-constrained and has infinitely many solutions for
F,,. This occurs when the rank of the n x m matrix D, is less than the number
of columns, rank (D,) < m. In this case there are free variables in the solution
which are completely arbitrary. For example, given the linear data decomposition
D, = [01],Wehave rank (D,) = 1and m = 2. Thisgivesthe equation

DoFyy = I
[0 1|Fy = [1]
o [

rqg 1

where f1; can be any arbitrary value. Informally, the first dimension of array = is
aready local to asingle processor in the linear data decomposition D,.. Thus, it does

128

CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

not matter what the array access function for the first dimension of « is, since all
accesses to that dimension go to the same processor (the fact that the first dimension
of z islocal is aready represented in the constraints, V'(D,.) = span{(1,0)}). The
array access function we derivein thisexample, F,,, isequivalent to thearray access
in the following loop nest:

for ¢4 = 1 to N do

X[fu*eg, 4] = ...

The system D, F,, = [is over-constrained and has no solution for /,,. This
could happen if the rank of the n x m matrix D, is less than the number of rows,
rank (D,) < n. Specifically, from linear algebra we know that the system only has
a solution when range(/) C range(D.)[72]. Since I isthen x n identity matrix,
range(/) = R", the full n-dimensional space. Since we know that rank (D,) < n,
then range(/) D range(D,). Inthis case, we add the n — rank (D,) basis vectors
to the columns of D, to give D,’ with range(D,’) = R". At this point, since
rank (D,') = n (i.e. D, isfull row-rank) the matrix D,’ hasaright-inverse[72], thus
we can solve for F,.

10
For example, consider the linear data decomposition D, = | 0 0 |. We have

01
rank (D,) = 2and n = 3. This givesthe equation

D.F,, = 1
10 100
00(Fy = |010
0 1 00 1

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 129

0 100
We then add the column vector | 1 |,to D,, givingD,’ = | 0 0 1 |,and
0 010
100 (1.0 0]
001|F, = |010
010 100 1]
(1.0 0]
qu - O O 1
0 10|

Informally, what happens in this case is that the array is not mapped into all di-
mensions of the virtual processor space. In the above example, the origina lin-
ear data decomposition D, maps the two-dimensiona array = into the first and
third dimensions of a three-dimensional virtual processor space. Adding the ad-
ditional column to create D,’ has the effect of expanding z into three dimensions
and then mapping that third dimension into the second dimension of the three-
dimensional virtual processor space. The resulting array access function F,, in
this example is equivalent to the array access function for the following code:

for ¢4 = 1 to N do
for o, = 1 to N do
for i3 = 1 to N do

X[21, 12, Z3] = ...

For an example of how call vertices are created, consider the code from Figure 6.1(b).
We add a vertex to mai n2’s communication graph for the call to sub2. Since the actual
parameter x inmai n2 correspondsto theformal parameter y insub2, the new vertex is set
to access array «. If the linear data decomposition for array y insub2 is D, = [10] :
then mapping the decomposition into mai n2 gives D, = [10] The array access

130 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

function for x at the call vertex isthen

1
] , and the constraintsfor array = areinitialized

toN'(D,) = span{(0,1)}.

The above discussion assumed that there was a single static decomposition region
for each callee procedure. When a callee procedure has multiple static decomposition
regions, the arrays have a different linear data decomposition for each region. Which of
these different linear data decompositions do we use to create the call vertices? Only the
decompositions at procedure entry and exit in ¢ are relevant to the caller r. We want
the decompositions in the code executed before the call to ¢ to match the decompositions
upon entry to ¢, and the decompositions for code executed after the call to ¢ to match the
decompositions at exit from ¢. To simplify finding the data decompositions for each array
at procedure entry and exit in the callee, we modify the procedures so that they have a
single entry and a single exit point. Then we add two extra vertices to the communication
graph, one at the procedure entry point and one at the exit point. These two vertices are set
to access dl arraysthat are accessed within the procedure. The data decompositions found
at the entry and exit vertices represent the data decompositions at procedure entry and exit,
respectively.

In the case where there are multipl e static decomposition regionsin acallee ¢, we create
two sets of communication graph verticesfor the call to ¢ inthecaller . One set of vertices
corresponds to the region at entry to procedure ¢ and one set corresponds to the region
at exit from procedure q. We use the static decomposition regions for ¢'s entry and exit
vertices, respectively. In r’s communication graph, we connect the entry vertices for the
call to ¢ to the exit vertices by edges with weight 0. This ensures that the algorithm will
not try to merge these verticesinto the same static decomposition region when analyzing r.

6.2.2.2 Propagating Array Accesses into Calling Procedures

For any calls within a parallel 1oop nest, the array access functions within the callee are
mapped across the call and are added to thelist of array access functionsfor that loop nest.
The agorithm for summarizing array accesses, Gat her Cal | _Accesses, isshownin
Figure 6.3. The agorithm takes all the array accesses in procedure ¢ and maps them into
thecaller r. If thearray accessisonly afunction of variableslocal to ¢, thenit is discarded.

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 131

Otherwise, the algorithm adds the access to the list of accesses in the caller. If the call is
within a parallel 1oop nest, then the algorithm adds the accesses to the list of accesses for
the parallel loop nest.

For the example code from Figure 6.1(a), the algorithm maps the array access y| 5]
insubl into an access of X[2* ¢4, 42] inmai nl. It then adds this access to list of array
accesses for loop nest 1.

algorithm Gather_Call _Accesses
(G. : communication_graph, /* caller’scommunication graph */
g . procedure, /* callee*/
r . procedure, /* caller */

call : call_site)
return

(G : communication_graph)
F,F' . matrix;

v, © communication_graph_vertex;

foreach array access F'in ¢ do
I =map I across call;
add F' to list of accessesinr;
if call within parallel loop nest then
v, = communication graph vertex for loop containing call in G
add /" tolist of array access functionsin v,;
end if;
end foreach;

return G;
end algorithm;

Figure 6.3: Algorithm for gathering the array accesses in a callee procedure.

132 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Bottom_Up_Traversal
(G : calgraph) /* G=(V,E)*/

(. : communication_graph;
u, v : procedure;

foreach v € V in bottom-up order do
(. = build communication graph for v;

foreach call-site call € succ(v) do
u = callee procedure at call-site call;
(. = Create_Call Vertices(G,., u, v, call);
G. = Gather_Call_Accesses(G,, u, v, call);
end foreach;

Dynamic_Decomps((.);
end foreach;
end algorithm;

Figure 6.4: Algorithm for propagating decomposition constraints up the call graph repre-
senting the program.

6.2.2.3 Movingup theCall Graph

The driver algorithm for the bottom-up traversal is shown in Figure 6.4. As the algorithm
moves up the call graph, constraints on decompositions from callee procedures are rep-
resented in the call vertices of the caller’s communication graph. Array accesses in the
callee procedures are aso passed up into the caller procedure, in case there are any parallel
loopsthat contain calls. The agorithm then runs Dynam ¢ _Deconps (Figure5.5) on the
caller’'s communication graph. The vertices, including the vertices representing procedure
calls, are partitioned into static decomposition regions and the linear decompositions are
calculated. The linear decompositions and array accesses in the caller procedure are then
passed up the call graph to its calers, and so on. By the time the algorithm reaches the
main program, al the constraints for the entire program have been collected and the final
linear decompositions are calculated. Since the information for each callee procedure is

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 133

summarized in its caler’s communication graphs, each procedure is only analyzed once
during the bottom-up pass through the call graph.

For the example from Figure 6.1(b), the communication graph for procedure mai n2
will contain one vertex for the call to sub2 and one vertex for loop nest 2. The constraints
for array « at the cal vertex are V(D,) = span{(0,1)} and at the loop nest vertex
N(D,) = . Running Dynami c_Deconps merges these two verticesinto the same static
decomposition region, resultingin A'(D,.) = span{(0, 1)} at both vertices. Thefinal linear
data decomposition for = isthen D, = [10] and the linear computation decomposition
for both the loop nest and the call isalso [10]

6.2.3 Top-down Traversal

After the linear data decompositions have been found at the main procedure, the algorithm
traverses the call graph once more in top-down order. The linear data decompositions for
the global variables and actual parametersfound in each caller procedure are mapped down
into all the callee procedures. Figure 6.5 showstheagorithmRecor d_Cal | Verti ces
which takes the data decompositionsin caller procedures and applies them to callee proce-
dures.

The Recor d_Cal | _Verti ces algorithm starts with a call vertex v, in the caler’'s
communication graph. It takes the linear data decompositions for each array at v, in the
caller » and trandates them across the call into data decompositions in the callee ¢. This
gives usthe linear data decompositions for the formal parameters and global arraysin .

The next step is to calculate the linear data decompositions for any local arraysin ¢,
and the linear computation decompositions for the loop nests in ¢. The algorithm runs
the Pr opagat e _Nul | spaces agorithm from Figure 4.4 to update the nullspaces of
the linear decompositions for the local arrays and loop nests, and uses Cal ¢ _Matri ces
from Figure 4.6 to calculate the linear decompositions matrices. Finally, the algorithm
calculates the offsets for all arrays and loop nests in the procedure to give the complete
affine decompositions.

For the on-going example from Figure 6.1(b), The linear data decomposition for x in
mai n2 D, = [10] is mapped back down into sub2 to give D, = [10] This

134 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Record_Call Vertices
(G., : communication_graph, /* caller’s communication graph */
G, - communication_graph, /* callee’scommunication graph */
r . procedure, /* caller */
g . procedure, /* callee*/
call : cal _site)

return

(G, : communication_graph)

G,, G« interference.graph; /* G, = (V., Vy, E) */
I, A: set of vector_space;
D, D, : matrix;
v, © communication_graph_vertex;
I* v, containsa list of arrays and corresponding array access functions */

if call within parallel loop nest then return G, ;
G/, = static decomposition region for ¢ in G,
foreach connected component G’ of G, do

v, = communication graph vertex for G,' inG..,;

foreach array = in v,, where x is an actual parameter or global variable do
D,. = linear data decomposition for z;
D, =map D, downthroughcall fromzinrtoying;
set linear data decomposition for v, € V;;
end foreach;
end foreach;

(', A) = current nullspaces for ;

Propagate_Nullspaces(G,, I, A); /* SeeFigure 4.4 */

Cac_Matrices(G",, ', A); I* See Figure 4.6 */

calculate the offset decompositionsfor 7. ;
return G.,;

end algorithm;

Figure 6.5: Algorithm for recording linear decompositions in the callee’s communication
graph from call verticesin the caller’s communication graph.

6.3. FINDING PHY SICAL PROCESSOR MAPPINGS 135

resultsin alinear computation decomposition for loop nest 3 of ('3 = [10] :

The complete algorithm for the top-down traversal is shown in Figure 6.6. If there are
multiplepathsinthecall graphto acallee procedurefromdifferent callers, thenitispossible
for there to be multiple conflicting decompositions required in the callee procedure. In this
case, the compiler can clone the callee procedure to create a new copy of the procedure for
each different decomposition.

6.3 Finding Physical Processor Mappings

We find the physical processor mappings in the interprocedural case using the same tech-
nique as for the intraprocedural case described in Section 4.2. The physical processor
mapping phase examines each loop nest (in al procedures) to gather any constraints that
loop nest may have on the folding function. The constraints are then combined to find the
final folding function. The complete algorithm for finding interprocedural decompositions
isshownin Figure 6.7.

6.4 An Interprocedural Decomposition Example

In this section we illustrate how the interprocedural decomposition algorithm worksfor the
codein Figure 6.8. Figure 6.9 shows the call graph and the corresponding communication
graphsfor each procedurein the sample code. For simplicity of presentation, only the ver-
ticesthat correspond to either loop nestsor procedurescallsare shown in the communication
graphs; the entry and exit vertices, and the hierarchy structure are not shown.

In the bottom-up traversal, the algorithm first finds the linear decompositions for the
leaf procedure sub3. The array access functions for the loop nests inside this procedure
are:

10
Fags:Fg}s:les: [O 1]

136 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Top_Down_Traversal
(G : calgraph) /* G=(V,E)*/

Gews Gey, G- cOmmunication_graph;
u, v, v’ . procedure;
recorded : boolean;

foreach v € V intop-down order do
recorded = false;
(., = communication graph for v;

foreach call-site call € pred(v) do
u = caller procedure at call-site call;
(., = communication graph for u;
G.,’ = Record_Call Vertices(G...,, G.,, u, v, call);

if recorded and not compatible(G..,, G.,")
v’ =clonewv;
set communication graph for v’ to G..,)”;
else
Gy =G
end if;
recorded = true;
end foreach;
end foreach;
end algorithm;

Figure 6.6: Algorithm for propagating linear data decompositions down the call graph
representing the program.

6.4. AN INTERPROCEDURAL DECOMPOSITION EXAMPLE 137

algorithm IPA_Decomps_Driver
(G : calgraph) /* G=(V,E)*/

Bottom_Up_Traversal(G);

Top_Down_Traversal();

calculate the virtual-to-physical mapping;
end algorithm;

Figure 6.7: Interprocedural algorithm for finding decompositions.

Dynam c_Deconps find the following linear decompositionsfor sub3:

Cs =

01

Next the algorithm examines procedure sub2, which hasasingle call tosub3. Vertex
6 iscreated in sub2’s communication graph to represent the call to sub3, and the linear
data decompositions for arrays x, y and = are then mapped into sub2. This resultsin the
following array access functionsfor procedure sub?2:

(1.0 -1 0
Fl=FYL = . Py =
rd y4 O 1 rd [O 1]
10
01

1 _ 1 ol
FxG_FyG_FZG_

which gives the following decompositionsfor sub2:
Ca=Ce=[0 1], D,=D,=D.=[0 1]

Similarly, the algorithm creates the vertex 7 in sub1’s communication graph to represent

138

CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

program mai n

real X[N,N, y[NN, z[N N
for 7 = 1 to N do [* doall */ [* Loop nest 1 */
for ,, = 1 to N do [* doall */
X[i1, 12) = Y[i1, 4] = z[ig, 2] = fi(ig, i2)
end for
for 7 = 1 to N do [* doall */ [* Loop nest 2 */
for ., = 1 to N do [* doall */
X[11, 22] = X[41,22] + z[11, 17]
yli1, 22l = y[i1, 2] + z[11, 22]
end for
call sub1l(x, vy, 2z)
call sub2(x, vy, 2z)
end
subroutine subl(x, y, 2z)
real X[N, N, y[NN, z[N N
for 7 = 1 to N do [* doall */ [* Loop nest 3*/
for , = 1 to N do [* doall */
X[11, 22] = y[i1,22] + y[1, N-aatl]
call sub3(x, vy, 2z)
end
subroutine sub2(x, vy, 2z)
real X[N,N, y[N N, z[N N
for 7 = 1 to N do [* doall */ [* Loop nest 4 */
for i, = 1 to N do [* doall */

yli1, 22l = X[i1, 72] + X[N-ag+1, 47]
call sub3(x, vy, 2z)
end
subroutine sub3(x, vy, z)
real x[N. N, y[N.N, z[N N
for 7 = 1 to N do [* doall */ [* Loop nest 5*/
for i, = 1 to N do [* doall */

z[11, 12]
end

= Z[il, Zz] + X[il, Zz] + y[ila 12]

Figure 6.8: Sample code with multiple procedures.

6.4. AN INTERPROCEDURAL DECOMPOSITION EXAMPLE 139

call to
sub?

call to
subl

call tosub3 call tosub3

KEY:

—» call graph edge communication graph edge

O call graph vertex O communication graph vertex

Figure 6.9: Call graph and the corresponding communication graphs for the code in Fig-
ure 6.8 during the bottom-up traversal.

thecall tosub3. The array accessfunctionsinsubl are:

[] 1 0
Fxls:Fylsz) FyzS: [O _1]

1 1 ol
Fx7_Fy7_Fz7_

140 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

and the resulting decompositions for procedure subl are asfollows:
(3=Cr=[10|, D.,=D,=D.=[1 0]

Next, the linear datadecompositionsfor arraysz, y and = fromsub1 and sub2 are mapped
into mai n. The call to sub1l isrepresented by vertex 8 in mai n’s communication graph
and the call to sub2 is represented by vertex 9. This leads to the following array access
functions for procedure mai n:

1 _ 1 1
Fxl_Fyl_le_

b O O - O L, O B

1 1 ol
FxZ_FyZ_FZZ_

O = O

1 1 ol
FxB_FyB_FZB_

1 1l ol
FxQ_FyQ_FZQ_

In the resulting linear decompositions, vertices 1, 2 and 8 form one static decomposition
region and vertex 9 formsits own static decomposition region:

Ci1=Cr= [1 0], Ca= [1].

10

D, D, =
D, D.= [0 1]

DZ/
DZ/

The bottom-up traversal is now complete, and the algorithm begins the top-down
traversal. Figure 6.10 shows the call graph and the corresponding communication graphs
for each procedure in the sample code during the top-down pass. First the algorithms maps
the linear data decompositionsfound at vertex 9 in mai n back down into proceduresub?2,

and the linear data decompositions for vertex 8 in mai n down into the subroutine sub1.
The algorithm then calcul ates the final linear decompositionsfor sub1:

C3=[10]. D.=D,=D.=[1 0]

6.4. AN INTERPROCEDURAL DECOMPOSITION EXAMPLE 141

call to
sub?

call to
subl

call tosub3’

KEY:

—» call graph edge

O call graph vertex O communication graph vertex

communication graph edge

Figure 6.10: Call graph and the corresponding communication graphs for the code in
Figure 6.8 during the top-down traversal.

Similarly, the final linear decompositions for sub2 are:
Ca=|0 1|, Do=D,=D.=|0 1]

Thelinear data decompositionsinsubl1 and sub?2 are then mapped into the subroutine
sub3. Thelinear datadecompositions D,,, D, and D, insub3 are[10] along the path
from subl and [01] along the path from sub2. Since these decompositions differ,
the compiler clones sub3 to create two copies. Theroutinesub3 isnow called from only
subl and the routine sub3’ isnow called from sub2. The final linear decompositions

142 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

for sub3 are:
Cs=[10|, Do=D,=D.=[1 0]

and the final linear decompositionsfor sub3’ are:
Cy=[0 1], Do=D,=D.=|0 1]

In all cases, the algorithm sets the offsetsto zero. We use the default BLOCK virtual-to-
physical mapping for both static decomposition regions. The final decompositions for the
loop nests and arrays in static decomposition region {1,2, 3,5, 7, 8} are:

(1 0] bp+ 1

bp T <
(1 0]d < bp+1

bp

IAIA

where b is the block size and p is the processor number. Similarly, for the loop nests and
arraysin static decomposition region {4,5', 6, 9}, we have:

6.5 Issuesin Interprocedural Decomposition Analysis

Many programs rely on programming language characteristics that make interprocedural
decomposition analysisdifficult. Itis possiblethat we are able to analyze individual proce-
dures, but lose precision when extending the analysis across procedure boundaries. In this
section, we discuss three problems common to scientific codes that impact interprocedural
decomposition analysis. unnecessary storage re-use, array reshapes and insufficient type
information. Unnecessary storage re-use occurs when unrelated arrays share the same me-
mory locations, and cause unnecessary constraints on the decompositions. Array reshapes
and insufficient typeinformation can cause the mapping of array access functionsand affine
decompositions across calls to fail.

These problems are not unique to decomposition analysis and can hinder other types of
interprocedural analyses as well. Here, we discuss specifically how they affect the quality

6.5. ISSUESIN INTERPROCEDURAL DECOMPOSITION ANALYSIS 143

of the decompositions that our algorithm is able to find. We describe these three issues in
more detail in the following subsections, and outline additional analyses that can be used
to address the problems. These additional analyses have not yet been implemented in the
SUIF compiler, unless noted otherwise.

6.5.1 Unnecessary Storage Reuse

Programmers commonly re-use storage for unrelated data objects to save space. Since
decomposition analysis finds decompositions for each array based on its memory loca-
tion, all accesses to arrays that share the same memory must be treated as accesses to
the same array. Thus, if there are conflicting constraints on these data objects, the qual-
ity of the resulting decompositions may suffer. For example, consider the following code:

real X[NN, y[N N|
program mai n
call sub
call init_array(x)
/* Loop Nest 1 */

for ;7 = 1 to N do [* doall */
for i, = 1 to N do
X[11, 22] = y[i1, 2] + X[21, N-2a+1]
call sub
end

subroutine sub
call init_array(x)
/* Loop Nest 2 */
for ;7 = 1 to N do
for ,, = 1 to N do [* doall */
X[71,12] = 2 * X[N-i1+1, 3]

end

144 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

subroutine i nit _array(z)

real z[N, N|

/* Loop Nest 3*/

for 7 = 1 to N do [* doall */
for ,, = 1 to N do [* doall */

z[11, 12] = fa(i1, 22)
end

In both sub and mai n, the global variable x is completely over-written by the call to
i ni t_array beforeit isused in the procedure. No values of = calculated in mai n are
ever used in sub, and similarly, no values of « calculated in sub are ever used in nai n.
However, the decomposition analysis must honor all constraintson x inall procedures. The
linear datadecompositionfor array « insub isD, = [01] with AV (D,) = span{(1,0)}.
The constraint on « is then propagated into procedure mai n for the calls to sub (there
are no constraints on = fromi ni t _array). Inmai n, theinitial constraint for = at loop
nest 1is A (D,) = span{(0,1)}. When the constraints on = are merged in nai n, we
have N'(D,) = span {(0,1), (1,0)} which spans the entire array space. Since the values
in z are not actually shared between mai n and sub, we would like to avoid merging the
constraints.

The compiler could mitigate the problem of unnecessary storage re-use by performing
interprocedural array renaming analysis. Thisanalysiswould determineif thereareany true
dependences between the data objects that share storage. If there are no true dependences,
then different memory could be allocated for thelogically different variables. Thisanalysis
requiresthe compiler to determinewhether the different variablesare entirely written before
being read and is analogous to array privatization analysig[37, 75].

6.5.2 Array Reshapes

Many languages (including FORTRAN-77, FORTRAN-90 and C) allow programsthat rely
on the model that memory is one dimensional and linearly addressed. A consequence of
thismodel isthat alega program can access the same memory in very different ways. In

6.5. ISSUESIN INTERPROCEDURAL DECOMPOSITION ANALYSIS 145

particular, arraysin scientific codes are often reshaped across procedure calls such that the
number or size of the dimensions differs across procedures. Aswe saw in Section 6.2.1,
array reshapes cause the mapping of an affine function across a call to fail if the resulting
function is not affine. In order for the mapping to succeed, the dimensions of the array in
the callee must correspond to complete dimensions of the array in the caller. This means
that we can handle array sections, where one or more complete dimensions of an array are
passed as a parameter (for example, the codein Figure 6.1(a)). However, we cannot handle
subsections of array dimensions passed as parameters, or linearized arrays, for example:

program mai n
real dat a[200]
call subl(data)
call sub2(data)

end

subroutine subl1(x)
real x[20, 10]
for ;; = 1 to 20 do
for i, = 1 to 10 do
X[i1, 22] = ...
end

subroutine sub2(x)
real x[5, 10, 4]
for i; = 1 to 5 do
for i, = 1 to 10 do
for i3 = 1 to 4 do
X[i, i2, 23] = ...

end

146 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

The data decomposition for = in sub1 treatsit as a two-dimensional array. When the data
decomposition is mapped into mai n, the array is now one-dimensional and the resulting
data decomposition function is non-affine. The compiler can solve this problem if it can
find a consistent size and shape for the array everywhere in the program. If the memory
alocated for dat a were always accessed as a 20 x 10 array, then the compiler could
simply replace the declaration of dat a[200] by dat a[20, 10] . However, if the array
is accessed with different shapes in different parts of the program, asin sub2 above, then
we cannot map affine functions successfully for this array.

6.5.3 Insufficient Type I nformation

Many languages allow formal parameters to have incomplete or parameterized types. In
these cases, the semantics of the program again rely on the assumption of alinear memory
model. Since we often need array bounds information to map affine functions across calls,
missing type information can cause the mapping to fail. In many cases, the compiler could
addressthis problem by propagating type information from the actual parametersdown into
the formal parameters. For example, in the following code, the array = in proceduresubl
has a parameterized type (legal in FORTRAN):

program mai n
real x[20,10], y[100, 50]
call sub1l(x, 20, 10)
call subl(y, 100, 50)
end

subroutine sub1(z, m n)
real z[m n]
integer m n

end

If the variables m and n are known constants, the compiler can perform interprocedural
constant propagation to complete the type information (this analysis is implemented in

6.6. LIBRARIES AND USER-DEFINED DECOMPOSITIONS 147

SUIF and was used for our experimental study). If m and n have different values along
different paths to the subroutine sub1 then the compiler can clone the subroutine to make
different copies for each of the different values.

Another case where additional analysis can be used to extract type information is when
the dimension sizeis unspecified, e.g. in FORTRAN, the dimension size is marked with * .
For example, in the code below the array z in procedure subl has avariable size:

program mai n
real x[10, 20, 3], y[80, 20]
call subl(x, 10*20*3)
call sub1l(y, 80*20)

end

subroutine sub1(z, size)
real z[*]
integer si ze

end

Inthiscase, the compiler could use asimpleinterprocedural type propagation analysisto fill
in the missing types. Again, cloning may be necessary if there isdifferent type information
along different paths to the same procedure in the program.

6.6 Librariesand User-Defined Decompositions

In order to perform full interprocedura analysis, the compiler must have all the sources of
the input program. If the sources are not available then communication of global arrays
and parameters may be incurred upon entry and exit to the unanalyzed procedures. For
library routines where the sources are not available, different versions of the routines can
be provided with different data decompositions and the compiler can call the routine with
matching decompositions after they are found.

148 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

Another option is to keep a summary of the expected decompositions for the variables
in the library routines. The requested decompositions at the call are then used as input
in the decomposition algorithm. The decompositions at the call are marked as fixed, and
the algorithm will then try to match the decompositions in the other loop nests. The
same technique is used to deal with any user-specified data decompositions already in the
program.

6.7 Summary

In this chapter, we presented an algorithm for cal cul ating decompositionsinterprocedurally.
The algorithm is built on top of the decomposition algorithms from the previous chapters.
The focus of this chapter was on how to propagate and represent the necessary information
across the different procedures.

The interprocedural algorithm for finding affine decompositions onto the virtual pro-
cessor space visits each procedure twice, once in a bottom-up traversal of the call graph
and once in a top-down traversal of the call graph. The bottom-up traversal begins by
running the intraprocedural decomposition algorithm from the previous chapter on the | eaf
proceduresin the call graph. It then propagates the array accesses and linear data decom-
positions up from the callee procedure into the caller procedure. Next, the algorithm runs
the intraprocedural decomposition analysis on the caller procedures, and continues up the
call graph. When the algorithm reaches the main procedure, it calculates the final linear
decompositions. The top-down pass then pushes the final linear decompositions down
from the caller proceduresinto the callee procedures, and calcul ates the offsetsto form the
complete affine decompositions.

We al so discussed three problemscommon to scientific codes that can hinder interproce-
dural decomposition analysis. unnecessary storage re-use, array reshapes and insufficient
type information. Unnecessary storage re-use generates unnecessary constraints on the
decompositions, and can cause the quality of the final decompositions to suffer. Array
reshapes and insufficient type information can cause the mapping of array access functions
and affine decompositions across calls to fail. It is possible, however, for the compiler to
perform additional analysis to mitigate the effects of some of these problems.

Chapter 7
Experimental Results

All the algorithms described in this paper have been implemented in the SUIF compiler
system[76]. To evaluate the effectiveness of our proposed algorithm, we applied the
compiler to a suite of benchmark programs. We ran the compiler-generated code on the
Stanford DASH multiprocessor[55] and a Digital AlphaServer 8400, and compared our
results to those obtained without using our techniques.

7.1 Experimental Setup

7.1.1 Target Architectures

We ran our experiments on two different architectures, a 32-processor Stanford DASH
multiprocessor and an 8-processor Digital AlphaServer 8400.

Stanford DASH Multiprocessor. DASH isadistributed shared address space multipro-
cessor. The machine we used for our experiments consists of 32 processors, organized
into 8 clusters of 4 processors each. Each cluster is based on a Silicon Graphics POWER
Station 4D/340, a bus-based centralized memory machine. The processors are 33 MHz
MIPS R3000s, each with a64 KB first-level cache and a 256 KB second-level cache. Both
the first- and second-level caches are direct-mapped and have 16-byte lines. Each cluster

149

150 CHAPTER 7. EXPERIMENTAL RESULTS

has 28 MB of main memory. A directory-based protocol is used to maintain cache coher-
ence across clusters. It takes a processor 1 cycle to retrieve data from its first-level cache,
about 10 cycles from its second-level cache, 30 cyclesfromitslocal memory and 100-130
cycles from aremote memory. The DASH operating system allocates memory to clusters
at the page level. The page size is 4 KB and pages are allocated to the first cluster that
touchesthe page. Within acluster, the operating system uses astandard page-coloring page
placement policy where consecutive virtual pages are mapped round-robin to consecutive
colors(physical pages with the same color map to the same location in aphysically-indexed
cache).

On DA SH, communication between processorsin different clustersresultsin a100-130
cycle latency. Thislong latency (compared to 1 cycle for afirst-level cache hit or even 30
cycles for access to local memory) means that minimizing communication is essential to
performance. False-sharing is not likely to be a problem due to the small cache-lines (each
line holds only two double-words) on DASH. However, it isimportant for applications to
have good spatial locality since the directed-mapped caches can lead to conflict misses.

Digital AlphaServer 8400. The Digital AlphaServer 8400 is a bus-based centralized
shared address space multiprocessor. The machine we used consisted of 8 300 MHz 21164
processors. Each 21164 has on-chip 8 KB split instruction and data first-level caches, and
a 96 KB combined second-level cache. The first-level caches are direct-mapped and the
second-level cache is three-way set associative. The cache line size for the second-level
cache is 64 bytes. Each processor also has a4 MB direct-mapped external cache and the
machinewas configured with 4 GB of main memory. It takesaprocessor 2 cyclestoretrieve
data from the first-level cache, 6 cycles from the second-level cache, 12 cycles from the
external cache and a minimum of 90 cycles from main memory[27, 30]. The page sizeis
8 KB, and the operating system uses a bin-hopping page placement policy where virtual
pages are assigned colorsin the order that the page faults occur.

The AlphaServer has a single centralized memory and no remote memory. It uses a
write-invalidate cache-coherence protocol —when aprocessor does awrite, all other cached
copies are invalidated. The next time another processor accesses the data, it misses in the
cache. Thus, if aprocessor has data cached, then communication between processorsincurs

7.1. EXPERIMENTAL SETUP 151

at least a 90 cycle latency. Minimizing communication is important to performance, only
if the datawould have been in the cache. If the data are not likely to be in the cache, then
the processor would have had to go to main memory to access it anyway. The long cache
lines (8 double-words) mean that false-sharing is a potential performance problem. The
direct-mapped first- and third-level caches can lead to conflict misses, making good spatial
locality also important for performance.

7.1.2 The SUIF Compiler

The inputs to the SUIF compiler are sequential FORTRAN or C programs. The output
is parallelized source code that is a combination of C and/or FORTRAN with calls to a
portable run-time library. The SUIF output is then compiled on the parallel machine using
the native C and FORTRAN compilers.

The applications paralelized by SUIF for shared address space machines follow a
master/dave model of parallelism. The master process executes the sequential portions
of the program while the slaves wait at a barrier. When the master reaches the start of a
parallel region, it notifiesthe slaves. The daves and the master then operatein parallel until
they reach abarrier at the end of the parallel region.

7.1.3 Methodology

We compiled each program under SUIF both with and without the decomposition analysis.
We then compiled the SUIF output using the native C and FORTRAN compilers on the
target machine. When compiling with the native compilers, we always used the highest
optimization level available.

All of our results are expressed in terms of speedup in execution time over the best
sequential version of the programs. In all cases, we timed the execution of the complete
application, including any time spent doing initialization or post-processing. All timings
use wall-clock time, and the runs were done on an unloaded system. To obtain the best
sequential version of a program, we compared the execution time of the program compiled
with SUIF against the execution time of the program compiled with only the native compiler.

We compiled several different versions of each program, described below. An overview

152 CHAPTER 7. EXPERIMENTAL RESULTS

of the passes of the SUIF compiler for shared address space machinesisshowninFigure7.1.
A description of the context of the decomposition analysis within the complete compiler
system was described in Chapter 2. Here we describe the specific passes of the SUIF
compiler that were used in each of our experiments:

Base Parallelization (base): The programs are compiled using only basic parallelization
techniques. No decomposition analysis is performed. The parallelization pass has
a loop nest optimizer that analyzes one loop at a time to expose outermost loop
parallelism. Iterations of the outermost doall loop in each loop nest are distributed
across the processors, and each processor executes equal-sized blocks of consecutive
iterations. In Figure 7.1 this option corresponds to executing the compiler passes
along the path marked 1.

The following two variations perform decomposition analysis in addition to basic par-
alelization. The decomposition pass finds a mapping of both the computation and the data
across the processors. Since we are performing our experiments on shared address space
machines, using the data decompositionsto perform data transformationsis an optimization
—itisnot needed for correctness. This allows usto investigate the impact of using just the
computation decompositions to generate code, as well as the impact of using both compu-
tation and data decompositions (it does not make sense to use just the data decompositions
without the computation decompositions because that would map the data to processors
that are not necessarily going to use that data).

Computation Scheduling Only (comp sched): The programs are compiled with decom-
position analysis to find computation decompositions (and the corresponding data
decompositions). The computation decompositions are passed to a scheduler that
generates code to partition the paralel loops across the processors and inserts calls
to the run-time library. Partitioning iterations of the loops using the computation
decompositions means that the processors execute computation that re-uses the same
data, thereby improving temporal locality. The scheduler also takes advantage of the
data decomposition information to optimize the synchronization in the program[73].
The datalayoutsareleft unchanged and are stored according to the default convention

7.1. EXPERIMENTAL SETUP 153

SUIF Pre-Parallelization
Analyses

Y

Parallelization

:

Comp and Data\
Decomposition @
Data @

Transformation
@ Computation
Scheduling

C/Fortran

Y
Shared Addr
Executable

Figure 7.1: An overview of the SUIF parallelizing compiler for shared address space
machines. The numbered arrows show different possible paths through the compiler.

154 CHAPTER 7. EXPERIMENTAL RESULTS

of theinput language. In Figure 7.1 this option correspondsto executing the compiler
passes along the path marked 2.

Computation Scheduling and Data Transfor mations (comp sched + data transform):
The programs are compiled with decomposition analysis to find the computation and
data decompositions. The computation is scheduled in the same manner as with the
comp sched option above. In addition, the compiler uses the data decompositions
to transform the data layout in the parallelized code to improve spatial locality. In
Figure 7.1 this option corresponds to executing the compiler passes along the path
marked 3.

The decomposition analysis also provides opportunities for additional optimizations
(see Section 2.5). We investigated the impact of one such optimization, compiler-directed
page coloring (CDPC)[18] on the AlphaServer. CDPC is a technique for improving cache
utilization and eliminating cache conflicts of paralelized code on shared address space
machines. With CDPC, thecompiler usesitsknowledge of the datadecompositionsto direct
the operating system’s page all ocation policy into making each processor’s data contiguous
in the physical address space. The operating system uses these hints to determine the
virtual-to-physical page mapping when the pages are allocated.

Thefollowing two variations use compiler-directed page col oring with the base compiler
andwiththedecompositionanalysis. Inthelatter case, weonly run coloringwiththeversion
that uses both the computation and data decompositions to generate code. Thisis because
coloring relies on each processor’s data for each individual array aready being contiguous
inthe shared address space, whileit triesto make the dataacross different arrays contiguous.
However, only using the computation decomposition tends to scatter each processor’s data
across the shared address space and thus it does not make sense to combine it with CDPC.

Base Parallelization with Coloring (base + coloring): The programs are compiled with
the base parallelizer and compiler-directed page coloring is applied. CDPC relieson
the compiler to supply information about the data access patterns of each processor
to a run-time library. The run-time library then uses the information to customize
the application’s page mapping policy. The base parallelizer does not know exactly
which processor accesses which data. Thus in this case the compiler assumes a

7.1. EXPERIMENTAL SETUP 155

default partitioning of the data across the processors, where each processor accesses
equal-sized blocks of the outermost dimension of each array.

Computation Scheduling and Data Transfor mationswith Coloring (comp sched +
data transform + coloring): The programs are compiled in the same manner as
the comp sched + data transform version above. The data decompositions specify
exactly which processor is going to access which data, and thisinformation is passed
to the coloring run-time library.

7.1.4 Application Suite

Thelist of benchmarksused in this study are shownin Table 7.1. Thefirst four benchmarks
in the table are program kernels, and the remaining benchmarks are complete programs.
The kernels are used to help explain the behavior observed in the programs. In addition to
benchmarksfrom the SPEC92 and SPEC95 benchmark suites, we also have programsfrom
Lawrence Livermore National Lab (LLNL) and the Institute for Computer Applicationsin
Science and Engineering (ICASE). Table 7.2 shows the data set sizes of the benchmarks
for the problem sizes that we used in this study.

| Benchmark || Description | Source |
ADI integration alternating direction implicit integration | hand-written
LU decomposition | LU decomposition without pivoting hand-written
stencil five-point stencil hand-written
vpenta invert pentadiagonal matrices SPEC92 (nasa’)
applu partial differential equation solves SPEC95
erlebacher 3D tridiagonal solves ICASE
simple 2D Lagrangian hydrodynamics LLNL
swim shallow water simulation SPEC92,SPEC95
tomcatv mesh generation SPEC92,SPEC95

Table 7.1: Descriptions of the benchmarks.

These benchmarks were chosen because the SUIF compiler is able to find a significant
amount of parallelism in them, yet these programs still show poor speedups when using
only basic parallelization techniques (i.e. without any decomposition analysis). Figure 7.3

156 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size || Data Set Size
(MB)

ADI integration 256 x 256 15
512 x 512 6.0

1024 x 1024 24.0

2048 x 2048 96.0

LU decomposition | 256 x 256 0.5
512 x 512 20

1024 x 1024 8.0

2048 x 2048 32.0

stencil 512 x 512 4.0
1024 x 1024 16.0

2048 x 2048 64.0

vpenta 128 x 128 1.6
applu 33 x33x 33 31.6
erlebacher 64 x 64 x 64 4.6
simple 202 x 182 3.1
swim 256 x 256 3.6
512 x 512 14.2

tomcatv 256 x 256 3.6
512 x 512 14.2

Table 7.2: Data set sizes of the benchmarks.

showsthe parallel coverage and the 32-processor speedups obtained on the Stanford DASH
multiprocessor with the base parallelizer. Parallel coverage is defined as the percentage of
the original sequential program that can be executed in parallel. For al the benchmarks
studied on DASH, the parallel coverageis 99% or greater. A program with a coverage of
99% with perfect utilization on 32 processors results in a speedup of 24.4. However, the
speedups we observed often fell far below the ideal, ranging anywhere from aslow as 4.2
for vpenta to ahigh of 19.5 for the 1024 x 1024 size of LU decomposition.

Figure 7.4 shows the paralel coverage and the best speedups obtained on the Al-
phaServer with the basic parallelizer. The parallel coverage for the benchmarks on the
AlphaServer is 96% or more. The coverages are lower than on DASH as the Alpha 21164
processors are significantly faster than DASH’s MIPS R3000 processors. Thiseffect isdue

7.1. EXPERIMENTAL SETUP 157

Benchmark Problem Size || Parallel Coverage Speedup
% (32 processors)
ADI integration 256 x 256 100 6.0
1024 x 1024 100 8.0
LU decomposition | 256 x 256 100 8.1
1024 x 1024 100 195
stencil 512 x 512 100 15.6
vpenta 128 x 128 100 4.2
erlebacher 64 x 64 x 64 100 11.6
swim 256 x 256 99 15.6
tomcatv 256 x 256 99 49

Table 7.3: Parallel coverage and 32-processor speedups for the benchmarks on the DASH
multiprocessor. Parallel coverage is defined as the percentage of the sequential execution
time that can be executed in parallel.

to the fact that the parallelizableloop nests also tend to be more amenabl e to other compiler
optimizations, such as software pipelining, loop unrolling, prefetching, etc. The impact
of these optimizationsis significant on the Alpha 21164, a statically scheduled quad-issue
processor with prefetch instructions. In contrast, the R3000 is a simple single-issue pro-
cessor with no prefetch instruction, and its native compiler does not need to perform these
aggressive optimizations. The result is that the small amounts of non-parallelizable code
are not as well optimized and take up a larger percentage of the total execution time on the
Alpha

Several of the programs showed high speedups, notably the 1024 < 1024 problem size
of stencil at 9.4 and the 512 x 512 problem size of swim at 11.3. These programs have
super-linear speedups because once the data is partitioned across the 8 processors, it fits
into the individual processor’s caches. However, a number of the programs showed very
poor speedups, for example, 256 x 256 tomcatv at 1.5, 256 x 256 ADI at 1.7, and both
simple and vpenta at 1.8. For comparison, perfect utilization of 8 processors with 96%
coverage should give a speedup of 6.25.

158 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size || Parallel Coverage Speedup
% (8 processors)
ADI integration 256 x 256 100 17
512 x 512 100 2.8
1024 x 1024 100 3.6
2048 x 2048 100 43
LU decomposition | 512 x 512 100 5.9
1024 x 1024 100 8.9
2048 x 2048 100 9.0
stencil 512 x 512 100 55
1024 x 1024 100 94
2048 x 2048 100 4.4
vpenta 128 x 128 96 18
applu 33 x 33 x 33 100 49
erlebacher 64 x 64 x 64 99 45
simple 202 x 182 99 1.8
swim 256 x 256 99 6.4
512 x 512 100 11.3
tomcatv 256 x 256 97 15
512 x 512 97 2.9

Table 7.4: Parallel coverage and 8-processor speedups for the benchmarks on the Digital
AlphaServer. Parallel coverage is defined as the percentage of the sequential execution
time that can be executed in parallel.

7.2 Experimental Results

In this section we present experimental results for each of the benchmark programs, com-
piled under the different schemes described above.

7.2.1 Distributed Shared Address Space Machine

The speedup graphsfor the Stanford DA SH Multiprocessor are shown in Figure 7.2 through
Figure 7.8. The problem size is shown in the upper left corner of the graphs. Each figure
plots the speedups for the base version of the application, in addition to the comp sched and
comp sched + data transform versions.

7.2. EXPERIMENTAL RESULTS 159

g g 321 i
B B 281 1024x1024 .
& &
B I N N olfy | oy
0O 4 8 12 16 20 24 28 32 0O 4 8 12 16 20 24 28 32
Number of Processors Number of Processors
- - - linear speedup
—=— base

—e— comp sched
—— comp sched + data transform

Figure 7.2: Speedupsfor ADI integration on the DASH Multiprocessor.

ADI Integration. Figure 7.2 shows the results for ADI integration. ADI is an iterative
computation and each iteration has two phases — the first phase sweeps along the columns
of the arrays and the second phase sweeps along the rows (two representative loops of the
code were shown in Section 4.1.4.1).

The base compiler analyzes each loop nest separately and parallelizes the column
sweeps in the first phase, and the row sweeps in the second phase. This means each
processor accesses very different data in different parts of the program, and causes poor
temporal locality. Furthermore, while data accessed by a processor in the row sweeps are
contiguous (the code is written in C and the arrays are thus allocated in row-major order),
the data each processor accesses in the column sweeps are distributed across the shared
address space. This leads to poor spatial locality. As a result, the base version performs
poorly on this program, with maximum speedups of only 6 and 8 on the 256 x 256 and
1024 x 1024 problem sizes, respectively.

In the comp sched version, the compiler finds decompositions that use doall parallelism

160 CHAPTER 7. EXPERIMENTAL RESULTS

in the row-sweep phase and switch to doacross parallelism in the column-sweep phase.
Now each processor accesses the same block of rows during both the row sweeps and
the column sweeps. This computation decomposition improves the spatial locality in
addition to improving the temporal locality and eliminating most of the inter-processor
communication. This version of ADI gets a speedup of 23 on 32 processors. Since each
processor access blocks of rows of the array, each processor’s datais already contiguousin
the shared address space and the data transf ormations have no effect.

lu

Speedup
Speedup
N
|

Number of Processors

- - - linear speedup

—=— base

—s— comp sched

—~— comp sched + datatransform

Figure 7.3: Speedups for LU decomposition on the DASH Multiprocessor.

LU Decomposition. Figure 7.3 shows the results for LU decomposition. In the base
version, the number of iterations in the parallel loop varies with the index of an outer
sequential loop. As aresult, each processor accesses different data each time through the
outer loop.

The decomposition analysis assigns al operations on the same column of data to the

7.2. EXPERIMENTAL RESULTS 161

same processor. For load balance, the columns and operations on the columns are dis-
tributed across the processorsin a cyclic manner. By fixing the assignment of computation
to processors, the compiler replaces the barriers that followed each execution of the par-
alel loop by locks. The comp sched version has good load balance, good data re-use and
inexpensive synchronization; however, the local data accessed by each processor are scat-
tered in the shared address space, increasing chances of interference in the cache between
columns of the array. The interferenceis highly sensitive to the array size and the number
of processors. This interference effect is especially pronounced when the array size and
the number of processors are both powers of 2. For example, with a 1024 x 1024 matrix,
every 8th column maps to the same location in DASH’s direct-mapped 64 KB cache. The
speedup for 31 processorsis 5 times better than for 32 processors.

The data transformation pass restructures the columns of the array so that each proces-
sor’scyclic columnsare madeinto acontiguousregion. After restructuring, the performance
of the comp sched + data transform version stabilizes and is consistently high. Inthiscase
the compiler isable to take advantage of inexpensive synchronization and data re-use with-
out incurring the cost of poor cache behavior. Speedups become super-linear in some cases
dueto the fact that once the data are partitioned among enough processors, each processor’s
working set startsto fit into the cache.

Five-point Stencil and Swim. Figure7.4 showsthe speedupsfor five-point stencil. The
application swim also performs a stencil computation and has the same behavior as the
five-point stencil kernel. Figure 7.7 shows the results on DASH for swim.

In the base version, the compiler distributes the outermost parallel loop across the
processors, and each processor updates a block of array columns (the code is written in
FORTRAN and thus the arrays are alocated in column-major order).

The decomposition analysis assigns two-dimensional blocks to each processor, since
this mapping has a better computation to communication ratio than a one-dimensional
mapping used by the base version (in Figure 7.4, the number of processors in each of the
two dimensions is aso shown under the total number of processors). However, without
also changing the data layout, the performance of the comp sched version is worse than
the base version because now each processor’s portion of the datais not contiguous in the

162 CHAPTER 7. EXPERIMENTAL RESULTS

Speedup

- - - linear speedup

—=— base

—s— comp sched

—— comp sched + data transform

Figure 7.4: Speedupsfor five-point stencil on the DASH Multiprocessor.

shared address space. Asaresult the program’spoor spatial locality outweighs the benefits
of the better computation to communication ratio.

After the data transformation is applied, the comp sched + data transform version of
the program has good spatial locality aswell asless communication, and thus we achieve a
speedup of 29 on 32 processors. Note that the performanceis very sensitive to the number
of processors. This is due to the fact that each DASH cluster has 4 processors and the
amount of communication across clusters differsfor different two-dimensional mappings.

Vpenta. Theperformanceresultsfor vpentaareshowninFigure7.5. Inthebaseversion,
the compiler interchangestheloopsintheoriginal code sothat theouter loopisparalelizable
and the inner loop carries spatial locality. Without such optimizations, the program would
not even get the dight speedup obtained with the base compiler.

For this particular program, the base compiler parallelizes the same |oops as the decom-
position analysis. However, since the compiler can determine that each processor accesses
exactly the same partition of the arrays across the loops, the code generator can eliminate
barriers between some of the loops. This accounts for the dight increase in performance of
the comp sched version over the base compiler.

7.2. EXPERIMENTAL RESULTS 163

g 32 vpenta /
3 28} 128x128 e
Ve
@ ol / - — - linear speedup

—=— base
—s— comp sched
—— comp sched + data transform

A |
O 4 8 12 16 20 24 28 32
Number of Processors

Figure 7.5: Speedupsfor vpenta on the DASH Multiprocessor.

This program operates on a set of two-dimensiona and three-dimensional arrays. Each
processor accesses ablock of columnsfor the two-dimensional arrays, thus no datareorga-
nization is necessary for these arrays. However, each plane of the three-dimensional arrays
is partitioned into blocks of rows, each of which is accessed by a different processor. Thus
after applying the data transformations the data accessed by each processor is contiguous.
With the improved data layout, the comp sched + data transform version of the program
finally runs with a decent speedup. We observe that the performance dips dightly when
there are about 16 processors, and drops when there are 32 processors. This performance
degradation is likely due to increased cache conflicts between different arrays on the same
processor. Further dataand computation optimizationsthat focus on operations on the same
processor would be useful.

Erlebacher. The erlebacher application performsthree-dimensional tridiagonal solves.
It has a number of fully parallel computations that are interleaved with multi-dimensional
reductions and computational wavefronts in all three dimensions caused by forward and
backward substitutions. Partial derivatives are computed in al three dimensions with
three-dimensional arrays. Figure 7.6 shows the resulting speedups.

164 CHAPTER 7. EXPERIMENTAL RESULTS

Speedup
N
(00}
-
=
R
Q

24 1+ ’ - - - linear speedup

—=— base

—s— comp sched

—— comp sched + data transform

=
O 4 8 12 16 20 24 28 32
Number of Processors

Figure 7.6: Speedupsfor erlebacher on the DASH Multiprocessor.

The base version always parallelizes the outermost parallel loop. This strategy yields
local accesses in the first two phases of erlebacher when computing partial derivativesin
the X and Y dimensions, but ends up causing non-local accesses in the Z dimension.

The decomposition analysis finds a computation decomposition so that no non-local
accesses are needed in the Z dimension. Each processor accesses a block of columns for
the two arrays that hold the partial derivativesin the X and Y directions, and a block of
rows for the array in the Z direction. Thusin this version of the program, the third array
has poor spatial locality. As a result, the comp sched version only improves the perfor-
mance of erlebacher dightly over the base-line version. The data transformation phase
of the compiler restructuresthe Z direction array so that local references are contiguousin
memory. Because two-thirds of the programis perfectly parallel with al local accesses, the
optimizations only realize amodest performance improvement.

Tomcatv. Figure 7.8 shows the speedups for tomcatv. This program contains several
loop neststhat have dependences acrosstherows of the arrays and other loop neststhat have
no dependences. Since the base version aways parallelizes the outermost parallel loop,
each processor accesses a block of array columns in the loop nests with no dependences.

7.2. EXPERIMENTAL RESULTS

165

s swim ,
B 28} 256x256 .7
& 24 1+ ’ linear speedup
base
comp sched
comp sched + data transform
I R R
0 4 8 12 16 20 24 28 32
Number of Processors
Figure 7.7: Speedupsfor swim on the DASH Multiprocessor.
S 321 tomeatv ,
3 281} 256x256 .7
& linear speedup
base
comp sched

0 4 8 12 16 20 24 28 32
Number of Processors

comp sched + data transform

Figure 7.8: Speedups for tomcatv on the DASH Multiprocessor.

166 CHAPTER 7. EXPERIMENTAL RESULTS

However, in theloop nests with row dependences, each processor accesses ablock of array
rows. Asaresult, thereis little opportunity for data re-use across loop nests. Also, there
is poor cache performance in the row-dependent loop nests because the data accessed by
each processor is nhot contiguous in the shared address space.

The decomposition analysis selects a decomposition so that each processor aways
accesses ablock of rows. The row-dependent loop nestsstill execute completely in parallel.
Thus the comp decomp version of tomcatv exhibits good temporal locality; however, the
speedups are still poor due to poor spatia locality. After transforming the data to make
each processor’ srows contiguous, the cache performanceimproves. Whereasthe maximum
speedup achieved by the base version is 5, the comp sched + data transform version of
tomcatv achieves a speedup of 18.

A summary of the experimental results for DASH are shown in Table 7.5. For each
program we compare the speedups on 32 processors obtained with the base compiler
against the speedups obtained with decomposition analysis together with computation
scheduling and data transformations. The table shows that decomposition analysis can
have a significant impact on the performance of applicationson DASH. Among the kernels,
the optimized versions ran from 1.7 times faster than the base version (1024 x 1024 LU
decomposition) to 4.0 timesfaster (256 x 256 LU decomposition) on 32 processors. For
thefull programs, theimprovementsfor the optimized version over the base version ranged
from 1.1 timesfaster for swim to asmuch as 3.7 timesfaster for tomcatv on 32 processors.

7.2.2 Centralized Shared Address Space Machine

The speedup graphs for the Digital AlphaServer 8400 are shown in Figure 7.9 through
Figure 7.17. The problem size is shown in the upper left corner of the graphs. Each figure
plots the speedups for the base, comp sched and comp sched + data transformversions. In
addition, we also show results for base + color and comp sched + data transform + color
versions.

ADI Integration. Figure 7.9 shows the results for ADI integration on the AlphaServer.
As was the case on DASH, the versions with decomposition analysis outperform the base

7.2. EXPERIMENTAL RESULTS 167

S s} , S s} ,
8 L ai it 8 L ai it
& 6 256x256 e & 6 512x512 e
51 L7 51
41 d 41
31+ L7 3}
2+ 7 2+
7
1+ ~ 14
0 ISy [0
0 1 3 456 7 8 0
Number of Processors
S sl , S sl
B L a)’ g L
& 1024x1024 e &
6 61+
5 5+
41 41+
31 3+
21 2+
1 1+
0 0]
01 2 3 456 7 8
Number of Processors Number of Processors
- — - linear speedup
—=— base

—s— comp sched

—— comp sched + datatransform

—=— base + color

—— comp sched + datatransform + color

Figure 7.9: Speedupsfor ADI integration on the AlphaServer 8400.

168 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size Base | Optimized Ratio
Speedups (32 processors) | Optimized/Base
ADI integration 256 x 256 6.0 22.2 3.7
1024 x 1024 8.0 22.9 29
LU decomposition | 256 x 256 8.1 32.3 4.0
1024 x 1024 195 335 1.7
stencil 512 x 512 15.6 28.5 1.8
vpenta 128 x 128 4.2 14.3 34
erlebacher 64 x 64 x 64 11.6 20.2 1.7
swim 256 x 256 15.6 17.9 11
tomcatv 256 x 256 4.9 18.0 3.7

Table 7.5: Summary of results on the Stanford DASH Multiprocessor. The table compares
the 32-processor speedups obtained with the base compiler against the speedups obtained
with decomposition analysis.

version due to better temporal locality for the 256 x 256, 512 x 512 and 1024 x 1024
problem sizes. The comp sched version uses doacross parallelism for some of the loopsin
ADI integration. The improvements due to the decomposition analysis are greater in the
larger problem sizes because the overhead of the doacross parallelism is better amortized.
For the 2048 x 2048 problem size the decomposition analysis haslittleeffect. Thisisdueto
thefact that each array has 2048 - 2048 - 8 = 32 MB of data(the array elementsare doubles).
Even when partitioned across 8 processors, each processor’s portion of asingle array uses
the entire 4 MB external cache and there is no opportunity for re-use. Compiler-directed
page coloring had little impact on the performance.

LU Decomposition. Figure7.10 showstheresultsfor LU decomposition. The512x 512
and 1024 x 1024 problem sizes of the program showed similar performance. The entire
working set of the 512 x 512 size (2 MB) completely fits in the 4 MB externa cache of
one processor, so on the AlphaServer we do not see same erratic behavior that we saw on
DASH. The 1024 x 1024 size d <o fits entirely in the external caches at two processors,
and again the performance for all versions is very similar. Even at 2048 x 2048 enough
of the working set fits into the cache that all the versions without coloring have the same
behavior. Since thereis a single array, coloring defaults to a standard policy of mapping

7.2. EXPERIMENTAL RESULTS 169

s 12}
-g lu
& 1024x1024
S s} ,
-g 7+ lu //
& 6 512x512
5_
4+
3_
2 -
1 |
0]
01 2 3 456 7 8
Number of Processors Number of Processors
o
g
121 lu
& 2048x2048
10 +
81 - - - linear speedup
—=— base
61 —s— comp sched
—A— comp sched + datatransform
—=— base+ color
T —a— comp sched + datatransform + color
21
0 I T A

[
01 2 3 456 7 8
Number of Processors

Figure 7.10: Speedupsfor LU decomposition on the AlphaServer 8400.

170 CHAPTER 7. EXPERIMENTAL RESULTS

pages in a round-robin fashion based on their virtual addresses.

Five-point Stencil. Figure7.11 showstheresultsfor five-point stencil. The speedupsfor
the versions with decomposition analysis are step-functions due to the way the 8 processors
are partitioned for two dimensions of parallelism (in Figure 7.11, the number of processors
in each of the two dimensions is also shown under the total number of processors). For
example, even when there are 7 processors we still have a3 x 2 partitioning and thus only
use 6 processors. For the 512 x 512 problem size, base outperforms the versions with
decomposition analysis. Aswe saw with DASH, the poor spatial locality of the comp sched
version causes its performance to degrade. In the base version, an access to a non-local
element often prefetches the next element needed since each processor is updating a block
of array columns (with the array alocated column-major). This effect does not occur as
often in the versions with decomposition analysis because each processor is updating a
two-dimensional N/v/P x N/+/P block, where NV isthe size of each array dimension and
P isthenumber of processors. Inthebase version, each processor must communicate2/N/8
cache lines, since 8 array elements (doubles) fit in one 64-byte cache line. In the versions
with decomposition analysis, each processor must communicate (2N/v/P + 2N/(8V/P))
cachelines. For machineslikethe AlphaServer with small valuesof P andlong cachelines,
the computation to communication ratio isactually worse with two-dimensional blocksthan
with one-dimensional strips.

For the 1024 x 1024 problem size, the versions of the program without CDPC show
similar behavior to the 512 x 512 problem size. The speedups are super-linear in the base
version because the data set size is 16 MB (two arrays of doubles) which starts to fit in
the 4 MB external cache at 4 processors (in the 512 x 512 problem size the data size is
4 MB and it fitsinto the external cache even on 1 processor). The speedups with CDPC are
extreme because the coloring optimization lays out the data so that it fits exactly into each
processor’s cache at 4 processors. For the 2048 x 2048 problem size, however, the 32 MB
working set just startsto fit into the caches at 8 processors, and coloring has little effect.

Vpenta. Figure 7.12 shows the results for vpenta. The performance of comp sched
and base versions are the essentially the same on the AlphaServer, whereas on DASH

7.2. EXPERIMENTAL RESULTS 171

s sl ,
g -] stencil .’
& 512x512 7 =3
°T -§ 18} stencil
5+ # 1024x1024
4._
3_
NE 15+
1_
0
0 12 +
9._
7_
2 61+ 61
5_
4._
31+ 3L
2+
1+ W
ob—— ||| odb—— 1 1 | | | |
0 1 23 456 7 8 0123 456 7 8
Number of Processors Number of Processors
- — - linear speedup
—5— base

—s— comp sched

—— comp sched + datatransform

—a— base + color

—— comp sched + datatransform + color

Figure 7.11: Speedupsfor five-point stencil on the AlphaServer 8400.

172 CHAPTER 7. EXPERIMENTAL RESULTS

Speedup

- - - linear speedup

—=— base

—s— comp sched

—A— comp sched + datatransform

—=— base+ color

—— comp sched + datatransform + color

]
01 2 3 456 7 8
Number of Processors

O R, N W M~ 01 OO N

Figure 7.12: Speedups for vpenta on the AlphaServer 8400.

the comp sched version showed a dight performance increase due to the synchronization
optimizations.

Applu. Figure7.13 showstheresultsfor applu. There are two key routinesin applu that
account for 54% of the sequential execution time on the AlphaServer. Oneroutine iterates
across planes of the arraysin a forward direction, and the other iterates across the planes
in areverse direction. Since the base version always partitions consecutive loop iterations
across the processors, different processors access different data across these two routines.
For example, if the block sizeis b = || where IV isthe size of the array dimension and
P isthe number of physical processors, then in the forward routine processor O accesses
planes 1...b whereas in the reverse routine it accesses planes N ... (N — b+ 1). Inthe
comp sched version, however, the computation is scheduled so that each processor accesses
the same data across the two routines. The resulting increase in temporal locality accounts
for the performance gain of comp sched over base. The data transformationshave no effect
as the data accessed by each processor are already contiguous in the shared address space.
CDPC combined with decomposition analysis, givesthe best overall performance.

7.2. EXPERIMENTAL RESULTS

173

Q.
_% 81+ , ’
71 @aplu linear speedup
5| 33333 bee
54 comp sched
2L comp sched + data transform
base + color
3T comp sched + data transform + color
21
1 -
o— 1 | |
0 1 23 456 7 8
Number of Processors
Figure 7.13: Speedups for applu on the AlphaServer 8400.
Q.
_% — ’
| 64x64x64 , bee
= comp sched
comp sched + data transform
base + color

O R, N W M 01 OO N

[
01 2 3 456 7 8
Number of Processors

comp sched + data transform + color

Figure 7.14: Speedupsfor erlebacher on the AlphaServer 8400.

174 CHAPTER 7. EXPERIMENTAL RESULTS

Erlebacher. Figure 7.14 shows the results for erlebacher. The speedup curves are
similar to those on DASH and coloring has littleimpact on the performance.

- — - linear speedup

—=— base

—s— comp sched

—A— comp sched + datatransform

—=— base+ color

—— comp sched + datatransform + color

Speedup

O R, N W M 01 OO N

]
01 2 3 456 7 8
Number of Processors

Figure 7.15: Speedups for simple on the AlphaServer 8400.

Simple. Figure 7.15 shows the results for simple. For this program, we modified the
origina version of the application (distributed as part of the RiCEPs benchmark suite)
dightly. We performed array renaming on two arrays to eliminate unnecessary storage re-
use across procedures (see Section 6.5.1). We also fused two loops that were nested inside
an outer loop to create aperfectly nested loop. These modificationsare automatable, though
they are currently not implemented in the SUIF compiler (simple isthe only applicationin
the suite that we modified manually). The benchmark contains an ADI integration which
does row sweeps and column sweeps across two-dimensional arrays. As was the case with
the ADI integration kernel, the decomposition analysis uses doall parallelism in the row-
sweep phase and switches to doacross parallelism in the column-sweep phase. Since the
decomposition analysis partitions rows of the arrays across the processors (the programis
written in FORTRAN and the arrays are alocated column-major), the data transformations
are needed to realize any performance gains.

7.2. EXPERIMENTAL RESULTS 175

16 +

Speedup

swim
512x512

141

10 +

1L swim ,
256x256 e

Speedup

O R, N W M 01 OO N 0
i A

_ o— 1 | |
012 3 456 7 8 012 3 456 7 8
Number of Processors Number of Processors

- - - linear speedup

—=— base

—s— comp sched

—— comp sched + datatransform

—a— base+ color

—— comp sched + datatransform + color

Figure 7.16: Speedups for swim on the AlphaServer 8400. The graph on the left is the
SPEC92 version of the benchmark and the graph on the right is the SPEC95 version.

176 CHAPTER 7. EXPERIMENTAL RESULTS

Swim. Figure7.16 showsthe speedupsfor the application swim on the AlphaServer. The
behavior is similar to the behavior of the five-point stencil shown in Figure 7.11. Again,
the base versions outperform the versions with decomposition analysis. The one-processor
times for all versions are very close in performance, which indicates that the computation
scheduling and data transformations are not introducing additional overhead. In this case,
the computation to communication ratio problemisworse than for five-point stencil since
the array elements are single-precision (4 bytes) rather than doubles. Thismeansthat inthe
base version, each processor must communicate only 2/V/16 cachelinesfor adimension of
size N, since 16 elementsfit in one 64-byte cache line. In the versionswith decomposition
analysis, each processor must communicate (2N/v/P + 2N/(16v/P)) cache lines, where
P isthe number of processors.

Tomcatv. Figure 7.17 shows the results for tomcatv. The SPEC92 version (256 x 256
problem size) has the same behavior on the AlphaServer ason DASH. The SPEC95 version
(512 x 512 problem size) shows super-linear speedup with coloring because the 14 MB
working set starts fitting in the caches at 4 processors.

A summary of the experimental results for the AlphaServer are shown in Table 7.6.
For each program we compare the speedups on 8 processors obtained with the base com-
piler against the speedups obtained with decomposition analysis together with computation
scheduling and data transformations. For both the base and optimized numbers, we use
the maximum speedup obtained either with or without compiler-directed page coloring.
The table shows that decomposition analysis can lead to large improvementsin application
performance, even on acentralized shared address space machine such as the AlphaServer.
Among the kernels, the optimized versions ran as much as 3.4 times faster than the base
version for vpenta on 8 processors, however the 512 x 512 five-point stencil and the
2048 x 2048 LU decomposition slow down dlightly. Among the applications, the opti-
mized versions of 256 x 256 tomcatv and simple performed well, with 3.9 and 3.2 times
improvement over the base version, respectively. The optimizations caused swim to de-
gradein performancefor both problem sizes; the speedup for the optimized versionis only
59% of the speedup obtained for the base version on the 256 x 256 problem size.

7.2. EXPERIMENTAL RESULTS 177

S 10}
-§ tomcatv
2 gL p & g 512612
-g 7L tomcatv ,
& 256x256 e
61+ 61
5 |
41 4t
3 -
21+ 2L
1 |
0] 0
01 2 3 456 7 8 0
Number of Processors
- - - linear speedup

—=— base

—s— comp sched

—— comp sched + datatransform

—a— base + color

—— comp sched + datatransform + color

Figure 7.17: Speedups for tomcatv on the AlphaServer 8400. The graph on the left isthe
SPEC92 version of the benchmark and the graph on the right is the SPEC95 version.

7.2.3 Summary of Results

Our experimental results on DASH and the AlphaServer demonstrate that decomposition
analysis can significantly improve application performance. The programsin our applica-
tionsuiteareall highly parallelizable, but their speedupson both DASH and the AlphaServer
were disappointing using only basic parallelization techniques.

On DASH, a distributed shared address space machines with non-uniform memory
access times, good placement of the dataand computationisoften apre-requisiteto scalable
performance. We aso found that decomposition analysis can improve performance on
centralized address space machines such as the AlphaServer. Even though the memory
access times are uniform, the improved spatial locality and reduction in coherence traffic

178 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size Base | Optimized Ratio
Speedups (8 processors) | Optimized/Base

ADI integration 256 x 256 1.7 21 1.2
512 x 512 2.8 4.0 1.4
1024 x 1024 3.6 51 14
2048 x 2048 4.3 4.7 1.1
LU decomposition | 512 x 512 5.9 6.0 10
1024 x 1024 9.8 10.2 1.0
2048 x 2048 12.9 94 73
stencil 512 x 512 55 52 95
1024 x 1024 17.9 18.9 11
2048 x 2048 44 44 1.0
vpenta 128 x 128 1.8 6.2 34
applu 33 x 33x 33 4.9 7.0 14
erlebacher 64 x 64 x 64 45 6.0 13
simple 202 x 182 1.8 5.7 3.2
swim 256 x 256 6.4 3.8 59
512 x 512 16.3 10.8 .66
tomcatv 256 x 256 15 5.9 3.9
512 x 512 31 9.1 29

Table 7.6: Summary of results on the AlphaServer 8400. The table compares the 8-
processor speedups obtained with the base compiler against the speedups obtained with
decomposition analysis.

can lead to considerable improvements in performance.

Wefoundthat torealizeall of thegainsof thedecomposition analysis, we need to perform
both computation scheduling according to the specified computation decompositions and
data transformations according to the data decompositions. In some cases, just using the
computation decompositions without the data decompositions resulted in performance that
was worse than the base case. We aso found that decomposition analysis is useful for an
additional optimization, compiler-directed page coloring.

Chapter 8
Conclusions

To achieve good performance on parallel systems, programs must make effective use of the
computer’s memory hierarchy as well as its ability to perform computation in parallel. A
key performanceissue is finding a good decomposition of the data and computation across
the processors of the machine.

A popular approach to decomposition problem has been to use languages with data
decomposition extensions, such as HPF. However, it is often difficult for a programmer
writing sequential code to determine agood data decomposition for aprogram. Because the
mapping of dataand computation are so tightly coupled, the programmer must fully analyze
the parallelism of the program to find the datadecompositions. Thisisachallengingtask for
programmers that have little experience with parallel applications. Since the programmer
does not relay the computation decomposition to the HPF compiler, the HPF compiler must
re-derivethe programmer’sintended computation decomposition. This meansthat the user
must have also have a good understanding of how the compiler cal cul ates the computation
decompositions to understand the resulting performance of the program.

The best solution is for the compiler to calculate both the computation and data de-
compositionsautomatically. Performing the decomposition analysis automatically not only
frees programmers from doing the complex analysis themselves, but can also can lead to
more efficient code. By calculating the data and computation decompositions at the same
time, the compiler is able to model both the parallelization and communication inherent in
the program. The compiler no longer hasto infer the computation decomposition indirectly

179

180 CHAPTER 8. CONCLUSIONS

from the data decomposition. In the cases where the compiler isunableto fully analyze the
code, it would be more useful for the programmer to supply the compiler with facts about
the program (e.g. no arraysin this procedure are aliased), rather than specifying the data
decompositions directly.

8.1 Contributions

In this thesis we have presented a new compiler algorithm that cal culates decompositions
for dense-matrix scientific codes. The contributions of thisthesis are as follows:

Decomposition Framework. We have developed a linear agebra framework for ex-
pressing and cal culating decompositions. Thisframework has several important properties.
First, we can generate a system of equations that specifies the conditions the computation
and data decompositions must satisfy, and then solve for the decompositions systematically.
Second, we are not limited to an arbitrary set of possible decompositions. Finally, using
the mathematical model allows usto succinctly represent the data and computation that are
assigned to the same processor by the nullspaces of the decomposition matrices.

Decomposition Algorithm. Based on our mathematical decomposition framework, we
developed anovel compiler algorithm that cal cul ates data and computation decompositions.
The algorithm is based on partitioning the program into static decomposition regions,
regions of the program that have no datareorganization communication. Withintheregions,
the decompositionswe find are optimal in that they are guaranteed to have the largest degree
of parallelism with no data reorganization.

Within each region, we use the mathematical model to generate a system of equations
that describes the decompositions. As the algorithm progresses, it gathers constraints on
the nullspaces that must be satisfied in order for a solution to exist to the set of equations.
Since we use the nullspaces directly to calculate the cost of a particular decomposition, we
can solve incrementally as we merge loop nests into larger and larger static decomposition
regions.

Oursisthefirst agorithm that cal culates decompositions directly while smultaneously

8.1. CONTRIBUTIONS 181

modeling the benefits of parallelization and the cost of communication. Decomposition
algorithms that are modeled after languages such as HPF and have separate alignment and
distribution phases, face the problem that alignment and distribution are inter-related. We
avoid this problem by solving directly for the affine decompositions. Our algorithm also
handles dynamic data reorganization, and incorporates replication and synchronization.

Inter procedural Decompositions. We developed the first decomposition algorithm that
performs interprocedural analysis. Any decomposition algorithm that handles realistic
programs must be ableto analyze across procedures. Otherwise, if the data decompositions
of arrays do not match across procedure boundaries, then the program could potentially
incur large amounts of communication at every procedure call entry and call return. Also,
interprocedural analysis is needed to find decompositions for parallel loops that contain
procedure calls.

Our interprocedural decomposition algorithm succinctly summarizes all the necessary
information on decompositions within a procedure. It does not need to re-solve for the
decompositionsin aprocedure each timethat procedureiscalled. We also identified several
program characteristics that cause a loss of precison when performing interprocedural
decomposition analysis.

Implementation and Evaluation. We implemented our decomposition algorithm as part
of the SUIF compiler system, and showed how decomposition analysis fits into the design
of a complete parallelizing compiler. We evaluated the effectiveness of our algorithm by
applying it to a suite of benchmark programs. We ran the compiler-generated code on two
different architectures, adistributed shared address space machine and a centralized shared
address space machine.

Our experimental results show that our decomposition algorithm improves program
performance by as much as a factor of four on both of these machines. In many cases,
decomposition analysisis a pre-requisite for achieving scalable performance. Decomposi-
tion analysis can also enable additional optimizations on shared address space machines,
including synchronization optimizations and compiler-directed page coloring.

182 CHAPTER 8. CONCLUSIONS

8.2 FutureWork

Our compiler currently splits the parallelization analysis, decomposition anayss, data
transformations and uniprocessor locality analysis into separate phases (see Chapter 2).
One drawback to this organization is that the decomposition analysis is restricted by the
loop nest structure of the program. We operate on code within loop nests and treat the
statements within a single iteration as an indivisible unit. This limits the range of decom-
positions that our analysis can find; for example, we cannot assign different computation
decompositions to two statements in the same loop nest. Another drawback to the current
compiler organization is that uniprocessor optimizations happen only after all the multi-
processor transformations are completed. However, there may be cases where between
two decompositions that are equivalent in terms of parallelism and communication, oneis
preferable in terms of uniprocessor locality. To address these issues, tighter integration is
needed between the different passes. The compiler also needs to model the effects of data
and computation transformations on both uniprocessor and multiprocessor performance.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,
J. Mdlor-Crummey, C.-W. Tseng, and S. Warren. Requirements for data-parallel
programming environments. |EEE Parallel and Distributed Technology, 2(3):48-58,
Fall 1994.

A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B.-H.
Lim, K. Mackenzie, and D. Yeung. The MIT Alewife machine: Architecture and
performance. In Proceedings of the 22nd International Symposium on Computer
Architecture, pages 2—13, Santa Margherita Ligure, Italy, June 1995.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, second edition, 1986.

E. Albert, K. Knobe, J. Lukas, and G. Steele, . Compiling Fortran 8x array features
for the Connection Machine computer system. In Proceedings of the ACM SIGPLAN
Symposium on Parallel Programming: Experience with Applications, Languages,
and Systems (PPEALS), New Haven, CT, July 1988.

J. R. Allen and K. Kennedy. A parallel programming environment. |1EEE Software,
2(4):22—29, July 1985.

S. P Amarasinghe. Parallelizing Compiler Techniques Based on Linear Inequalities.
PhD thesis, Dept. of Electrical Engineering, Stanford University, January 1997.

S. P. Amarasingheand M. S. Lam. Communication optimization and code generation
for distributed memory machines. In Proceedings of the SSGPLAN ' 93 Conference on

183

184

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Programming Language Design and I mplementation, pages 126-138, Albuquerque,
NM, June 1993.

C. Ancourt and F. Irigoin. Scanning polyhedrawith DO loops. In Proceedings of the
Third ACM S GPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 39-50, Williamsburg, VA, April 1991.

J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation transfor-
mations for multiprocessors. In Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 166178, Santa Barbara,
CA, July 1995.

J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality
on scalable parallel machines. In Proceedings of the SGPLAN "93 Conference on
Programming Language Design and I mplementation, pages 112—-125, Albuquerque,
NM, June 1993.

D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. Computing Surveys, 26(4), December 1994.

T. Ball and J. R. Larus. Efficient path profiling. In Proceedings of the 29th Annual
International Symposiumon Microarchitecture (MICRO-29), Paris, France, December
1996.

P. Banerjee, J. Chandy, M. Gupta, E. Hodges, J. Holm, A. Lain, D. Palermo, S. Ra-
maswamy, and E. Su. The PARADIGM compiler for distributed-memory multicom-
puters. |IEEE Computer, 28(10), October 1995.

U. Banerjee. Dependence Analysisfor Supercomputing. Kluwer Academic Publishers,
Boston, MA, 1988.

D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill. Solving alignment using
elementary linear agebra. In Languages and Compilers for Parallel Computing,
Seventh International Workshop, volume 892. Springer-Verlag, 1995.

BIBLIOGRAPHY 185

[16] B. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using O-1 integer
programming. In Proceedings of the International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 111-122, Montreal, Canada, August
1994.

[17] T. Blank. The MasPar MP-1 architecture. In Proceedings of the 1990 Soring COMP-
CON, San Francisco, CA, February 1990.

[18] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam. Compiler-
directed page coloring for multiprocessors. I n Proceedings of the Seventh I nter national
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS VII), pages 244257, Cambridge, MA, October 1996.

[19] D. Callahan. A Global Approach to Detection of Parallelism. PhD thess, Dept. of
Computer Science, Rice University, March 1987.

[20] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multipro-
cessors. Journal of Supercomputing, 2:151-169, October 1988.

[21] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific
Programming, 1(1):31-50, Fall 1992.

[22] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Array distributionin data-
paralel programs. In Languages and Compilers for Parallel Computing, Seventh
I nternational Workshop, volume 892, pages 76-91. Springer-Verlag, 1995.

[23] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Automatic array alignment
in data-parallel programs. In Proceedings of the Twentieth Annual ACM Symposium
on the Principles of Programming Languages, pages 16-27, Charleston, SC, January
1993.

[24] R. P. Colwell, R. P. Nix, J. J. O’'Donnell, D. B. Pappworth, and P. K. Rodman. A
VLIW architecture for a trace scheduling compiler. In Proceedings of the Second
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOSH 1), pages 180-192, October 1987.

186 BIBLIOGRAPHY

[25] B. Creusillet and F. Irigoin. Interprocedural array region analyses. In Languages and
Compilers for Parallel Computing, Eighth International Workshop, volume 1033.
Springer-Verlag, 1996.

[26] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiway cuts. In Proceedings of the 24th Annual ACM Symposium
on the Theory of Computing, May 1992.

[27] J. H. Edmondson et al. Internal organization of the Alpha 21164, a 300-MHz 64-
bit quad-issue CMOS RISC microprocessor. Digital Technical Journal, 7(1), 1995.
Special Edition.

[28] S. J. Eggersand T. E. Jeremiassen. Eliminating false sharing. In Proceedings of the
1991 International Conference on Parallel Processing, pages 377-381, St. Charles,
IL, August 1991.

[29] S. J. Eggersand R. H. Katz. The effect of sharing on the cache and bus performance
of parallel programs. In Proceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS 1),
pages 257-270, Boston, MA, April 1989.

[30] D. M. Fenwick, D. J. Foley, W. B. Gig¢, S. R. VanDoren, and D. Wissell. The
Alphaserver 8000 series: High-end server platform development. Digital Technical
Journal, 7(1), 1995. Special Edition.

[31] G.Fox, S.Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M. Wu.
Fortran D language specification. Technical Report TR90-141, Dept. of Computer
Science, Rice University, December 1990.

[32] S. Frank, H. Burkhard Ill, and J. Rothnie. The KSR-1: Bridging the gap between
shared memory and MPPs. In Proceedings of the 1993 Soring COMPCON, pages
285-294, San Francisco, CA, February 1993.

[33] J. Garcia, E. Ayguadé, and J. Labarta. A novel approach towards automatic data
distribution. In Proceedings of Supercomputing ’ 95, San Diego, CA, December 1995.

BIBLIOGRAPHY 187

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. R. Gilbert, S. Chatterjee, and R. Schreiber. Mobile and replicated alignment of
arrays in data-parallel programs. In Proceedings of Supercomputing '93, Portland,
OR, November 1993.

M. Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers.
PhD thesis, College of Engineering, University of Illinois at Urbana-Champaign,
September 1992. UILU-ENG-92-2237, CRHC 92-19.

M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques
for parallelizing compilers on multicomputers. |EEE Transactions on Parallel and
Distributed Systems, 3(2):179-193, March 1992.

M. W. Hall, S. P Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. De-
tecting coarse-grain parallelism using an interprocedura parallelizing compiler. In
Proceedings of Supercomputing ’ 95, San Diego, CA, December 1995.

M. W. Hal, B. R. Murphy, S. P Amarasinghe, S.-W. Liao, and M. S. Lam. In-
terprocedural analysis for parallelization. In Languages and Compilers for Parallel
Computing, Eighth International Workshop, volume 1033. Springer-Verlag, August
1996.

J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

W. Hillis. The Connection Machine. The MIT Press, Cambridge, MA, 1985.

C.-H. Huang and P. Sadayappan. Communication-free hyperplane partitioning of
nested loops. Journal of Parallel and Distributed Computing, 19(2):90-102, October
1993.

D. Hudak and S. Abraham. Compiler techniques for data partitioning of sequentially
iterated parallel loops. In Proceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, The Netherlands, June 1990.

188 BIBLIOGRAPHY

[43] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the Fifteenth
Annual ACM Symposium on the Principles of Programming Languages, San Diego,
CA, January 1988.

[44] K. Kennedy and U. Kremer. Automatic datalayout for High Performance Fortran. In
Proceedings of Supercomputing ’ 95, San Diego, CA, December 1995.

[45] K.Knobe, J.Lukas, and G. Steele, Jr. Dataoptimization: Allocation of arraysto reduce
communication on SIMD machines. Journal of Parallel and Distributed Computing,
8(2):102-118, February 1990.

[46] K. Knobe, J. Lukas, and M. Weiss. Optimization techniques for SIMD Fortran
compilers. Concurrency: Practice and Experience, 5(7):527-552, October 1993.

[47] K. Knobe and V. Natargian. Automatic data allocation to minimize data motion on
SIMD machines. The Journal of Supercomputing, 7:387-415, 1993.

[48] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, J., and M. Zosel. The High
Performance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

[49] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures
on distributed memory machines. In Proceedings of the Second ACM S GPLAN
Symposiumon Principles and Practice of Parallel Programming, Seattle, WA, March
1990.

[50] U. Kremer. Automatic Data Layout for Distributed Memory Machines. PhD thesis,
Dept. of Computer Science, Rice University, October 1995. CRPC-TR95-559-S.

[51] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and
compiler optimizations. In Conference Record of the Eighth Annual ACM Symposium
on the Principles of Programming Languages, Williamsburg, VA, January 1981.

[52] D. Kulkarni, K. Kumar, A. Basu, and A. Paulrgj. Loop partitioning for distributed
memory multiprocessors as unimodular transformations. 1n Proceedings of the 1991
ACM International Conference on Supercomputing, Cologne, Germany, June 1991.

BIBLIOGRAPHY 189

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

K. G. Kumar, D. Kulkarni, and A. Basu. Deriving good transformations for mapping
nested loops on hierarchical parallel machines in polynomial time. In Proceedings of
the 1992 ACM International Conference on Supercomputing, pages 82-91, Washing-
ton, DC, July 1992.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
Stanford FLASH Multiprocessor. In Proceedings of the 21th I nter national Symposium
on Computer Architecture, pages 302—-313, Chicago, IL, April 1994.

D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy.
The DASH prototype: Implementation and performance. In Proceedings of the
19th International Symposium on Computer Architecture, pages 92—105, Gold Coast,
Australia, May 1992.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. In Frontiers’90: The 3rd Symposium on the Frontiers of
Massively Parallel Computation, College Park, MD, October 1990.

J. Li and M. Chen. Compiling communication-efficient programs for massively
parallel machines. |EEE Transactionson Parallel and Distributed Systems, 2(3):361—
376, July 1991.

J. Li and M. Chen. The data alignment phase in compiling programs for distributed-
memory machines. Journal of Parallel and Distributed Computing, 13(2):213-221,
October 1991.

D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence
anaysis. In Proceedings of the S GPLAN ' 91 Conference on Programming Language
Design and I mplementation, Toronto, Canada, June 1991.

D. J Palermo and P. Banerjee. Automatic selection of dynamic data partitioning
schemes for distributed-memory multicomputers. In Languages and Compilers for
Parallel Computing, Eighth International Workshop, volume 1033. Springer-Verlag,
1995.

190

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

BIBLIOGRAPHY

J. Pamer and G. Steele, Jr. Connection Machine model CM-5 system overview. In
Frontiers’92: The 4th Symposium on the Frontiers of Massively Parallel Computa-
tion, McLean, VA, October 1992.

W. Pugh. A practical algorithmfor exact array dependence analysis. Communications
of the ACM, 35(8):102—114, August 1992.

J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution
in distributed memory machines. |IEEE Transactions on Parallel and Distributed
Systems, 2(4):472—-482, October 1991.

A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Proceedings of the S GPLAN ' 89 Conference on Programming Language Design and
Implementation, Portland, OR, June 1989.

M. Schlansker and M. McNamara. The Cydra 5 computer system architecture. In
Proceedings of the 1988 |EEE International Conference on Computer Design: VLS
in Computers and Processors (ICCD ’ 88), October 1988.

Steven L. Scott. Synchronization and communication in the T3E Multiprocessor.
In Proceedings of the Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOSVII), pages 26-36,
Cambridge, MA, October 1996.

T. J. Sheffler, R. Schreiber, J. R. Gilbert, and S. Chatterjee. Aligning parallel arrays
to reduce communication. In Frontiers ’'95: The 5th Symposium on the Frontiers of
Massively Parallel Computation, pages 324331, McLean, VA, February 1995.

T. J. Sheffler, R. Schreiber, W. Pugh, J. R. Gilbert, and S. Chatterjee. Efficient
distribution analysis via graph contraction. In Languages and Compilersfor Parallel
Computing, Eighth International Workshop, volume 1033. Springer-Verlag, 1996.

http://ww. sgi.cont hardwar e/ servers/technol ogy. ht m . Silicon
Graphics web site.

BIBLIOGRAPHY 191

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for
shared-memory. Computer Architecture News, 20(1):5-44, March 1992.

JP. Singh, T. Joe, A. Gupta, and J. L. Hennessy. An empirical comparison of the
Kendall Square Research KSR-1 and Stanford DA SH Multiprocessors. In Proceedings
of Supercomputing ’ 93, pages 214225, Portland, OR, November 1993.

G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, Orlando,
FL, Third edition, 1988.

C-W. Tseng. Compiler optimizations for eliminating barrier synchronization. In
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 144-155, Santa Barbara, CA, July 1995.

P-S. Tseng. A Parallelizng Compiler for Distributed Memory Parallel Computers.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
May 1989.

P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sxth
Wobrkshop on Languagesand Compilersfor Parallel Computing, Portland, OR, August
1993.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K.
Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S.Lam, and J. L. Hennessy. SUIF: An
infrastructurefor research on parallelizing and optimizing compilers. ACM S GPLAN
Notices, 29(12):31-37, December 1994.

M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Dept.
of Computer Science, Stanford University, August 1992. CSL-TR-92-538.

M. E. Wolf and M. S. Lam. A datalocality optimizing algorithm. In Proceedings of the
SIGPLAN '91 Conference on Programming Language Design and Implementation,
pages 3044, Toronto, Canada, June 1991.

192

[79]

[80]

[81]

[82]

[83]

BIBLIOGRAPHY

M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithmto maximize
parallelism. 1EEE Transactions on Parallel and Distributed Systems, 2(4):452-471,
October 1991.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1989.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages 24-36, Santa Margherita
Ligure, Italy, June 1995.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD paralelization. Parallel Computing, 6:1-18, 1988.

H. Zima and B. Chapman. Supercompilers for Parallel and \ector Computers.
Addison-Wesley, New York, NY, 1991.

