
AUTOMATIC COMPUTATION AND DATA

DECOMPOSITION FOR MULTIPROCESSORS

Jennifer-Ann Monique Anderson

Technical Report: CSL-TR-97-719

March 1997

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305-9040

Abstract

Memory subsystem efficiency is critical to achieving high performance on parallel ma-

chines. The memory subsystem organization of modern multiprocessor architectures makes

their performance highly sensitive to both the distribution of the computation and the layout

of the data. A key issue in programming these machines is selecting the computation decom-

position and data decomposition, the mapping of the computation and data, respectively,

across the processors of the machine.

A popular approach to the decomposition problem is to require programmers to perform

the decomposition analysis themselves, and to communicate that information to the compiler

using language extensions. This thesis presents a new compiler algorithm that automatically

calculates computation and data decompositions for dense-matrix scientific codes. The core

of the algorithm is based on a linear algebra framework for expressing and calculating the

computation and data decompositions. Using the linear algebra model, the algorithm

generates a system of equations that specifies the conditions the desired decompositions

must satisfy. The decompositions are then calculated systematically by solving the system

of equations. Since the best decompositions may change as different phases of the program

are executed, the algorithm also considers re-organizing the data dynamically. The analysis

is performed both within and across procedure boundaries so that entire programs can be

analyzed.

i

We have incorporated our techniques into the SUIF parallelizing compiler system. We

evaluated the effectiveness of the algorithm by applying the compiler to a suite of benchmark

programs, and compared the performance of the resulting code to the performance obtained

without using our techniques. We found that our decomposition analysis and optimization

can lead to significant increases in program performance.

Key Words and Phrases: parallelization, compiler optimization, data decomposition,

computation decomposition

ii

c
 Copyright 1997 by Jennifer-Ann Monique Anderson

All Rights Reserved

Acknowledgements

I would like to thank my advisor Monica Lam for her enthusiasm and support. She dedicated

a great deal of time and energy to this work, and she always encouraged me to do my very

best. I also feel fortunate to have had John Hennessy and Anoop Gupta on my thesis

committee. I thank them for their insightful comments and guidance.

I had the privilege of working with many smart and talented people during my time at

Stanford. Saman Amarasinghe wrote a lot of code that was integral to getting the SUIF

parallelizer used in this thesis up and running. Also, the interprocedural decomposition

algorithm described in Chapter 6 is built on top of Saman’s linear inequality framework for

parallelizing compilers. Saman is insightful, motivated and creative, and I always enjoyed

working with him. The compiler-directedpage coloring optimization described in Chapter 2

is joint work with Ed Bugnion, who is both very talented and great fun to work with. I also

wish to thank all the members of the SUIF compiler group, including Saman Amarasinghe,

Robert French, Mary Hall, David Heine, Shih-Wei Liao, Amy Lim, Dror Maydan, Todd

Mowry, Brian Murphy, Jason Nieh, Jeff Oplinger, Karen Pieper, Martin Rinard, Patrick

Sathyanathan, Dan Scales, Brian Schmidt, Mike Smith, Steve Tjiang, Chau-Wen Tseng

Bob Wilson, Chris Wilson and Michael Wolf. In particular, Bob Wilson and Chris Wilson

wrote much of the code that forms the base of the SUIF system, and Chris has done an

amazing job of keeping the entire SUIF system running smoothly.

I would also like to thank Digital’s Western Research Lab for awarding me a graduate

fellowship. Anita Borg was my mentor at WRL, and she is a great source of advice and

moral support.

I am fortunate to have a wonderful set of family and friends that encouraged me during

my time in graduate school. I thank my parents for instilling in me a love a learning that

v

led me to pursue this degree. Above all, I would like to thank my husband Grant for his

constant love, understanding and support. I consider myself extremely fortunate to have

such a wonderful husband.

This work was supported in part by ARPA contracts DABT63-91-K-0003 and DABT63-

94-C-0054, and a fellowship from Digital’s Western Research Lab.

vi

Contents

Acknowledgements v

1 Introduction 1

1.1 Multiprocessor Memory Hierarchies : 2

1.1.1 Communication Latencies : 3

1.1.2 Multiprocessor Cache Effects : : : : : : : : : : : : : : : : : : : 6

1.2 Problem Statement : 9

1.3 Thesis Overview and Contributions : 11

1.4 Thesis Organization : 13

2 Compiler Overview 14

2.1 Domain of Applications : 16

2.2 Pre-Parallelization Analyses : 17

2.3 Parallelization Analysis : 17

2.3.1 Choices of Parallelism : 18

2.3.2 Global Considerations : 22

2.4 Decomposition Analysis Overview : 23

2.5 Parallel Code Generation and Optimization : : : : : : : : : : : : : : : : 24

2.5.1 Distributed Address Space Machines : : : : : : : : : : : : : : : 24

2.5.2 Shared Address Space Machines : : : : : : : : : : : : : : : : : 25

2.6 Uniprocessor Locality Optimizations : : : : : : : : : : : : : : : : : : : 26

2.7 Summary : 27

3 Computation and Data Decomposition Basics 28

vii

3.1 Machine and Communication Models : : : : : : : : : : : : : : : : : : : 28

3.2 Mathematical Decomposition Model : 31

3.2.1 Virtual Processor Mapping : 31

3.2.1.1 Properties of Affine Decompositions : : : : : : : : : : 32

3.2.1.2 Relationship between Computation and Data : : : : : : 34

3.2.2 Physical Processor Mapping : 36

3.3 Summary : 38

4 A Static-Decomposition Algorithm 39

4.1 Finding Virtual Processor Mappings : 39

4.1.1 General Approach for Finding Affine Decompositions : : : : : : 40

4.1.2 Basic Linear Decompositions : : : : : : : : : : : : : : : : : : : 41

4.1.2.1 Formulating the Equations : : : : : : : : : : : : : : : 42

4.1.2.2 Examples of Basic Linear Decompositions : : : : : : : 43

4.1.2.3 Solving the Equations : : : : : : : : : : : : : : : : : : 46

4.1.3 Linear Decompositions with Replication : : : : : : : : : : : : : 64

4.1.3.1 Formulating Equations with Replication : : : : : : : : 65

4.1.3.2 Examples of Linear Decompositions with Replication : 69

4.1.3.3 Solving Equations with Replication : : : : : : : : : : : 70

4.1.3.4 Broadcast and Multicast Communication : : : : : : : : 71

4.1.4 Linear Decompositions with Synchronization : : : : : : : : : : : 73

4.1.4.1 Formulating Equations with Synchronization : : : : : : 74

4.1.4.2 Examples of Linear Decompositions with Synchronization 74

4.1.4.3 Solving Equations with Synchronization : : : : : : : : 76

4.1.5 Algorithm Summary: Linear Decompositions : : : : : : : : : : : 76

4.1.6 Finding Offset Decompositions : : : : : : : : : : : : : : : : : : 77

4.2 Finding Physical Processor Mappings : : : : : : : : : : : : : : : : : : : 80

4.3 Summary : 82

5 A Dynamic-Decomposition Algorithm 84

5.1 Formulation of the Dynamic Decomposition Problem : : : : : : : : : : : 84

5.1.1 Program Representation : 85

viii

5.1.2 Problem Statement : 89

5.2 Complexity of the Dynamic Decomposition Problem : : : : : : : : : : : 91

5.3 Finding Dynamic Decompositions : 93

5.4 A Dynamic Decomposition Example : : : : : : : : : : : : : : : : : : : 100

5.5 Related Work : 105

5.5.1 Communication-Free Parallelism : : : : : : : : : : : : : : : : : 106

5.5.2 Data Parallelism : 107

5.5.3 Loop Nest Parallelism : 112

5.5.4 Discussion : 115

5.6 Summary : 115

6 An Interprocedural Decomposition Algorithm 117

6.1 When is Interprocedural Analysis Needed? : : : : : : : : : : : : : : : : 118

6.2 Finding Virtual Processor Mappings : 120

6.2.1 Mapping Affine Functions Across Calls : : : : : : : : : : : : : : 121

6.2.2 Bottom-up Traversal : 124

6.2.2.1 Propagating Decompositions into Calling Procedures : : 124

6.2.2.2 Propagating Array Accesses into Calling Procedures : : 130

6.2.2.3 Moving up the Call Graph : : : : : : : : : : : : : : : 132

6.2.3 Top-down Traversal : 133

6.3 Finding Physical Processor Mappings : : : : : : : : : : : : : : : : : : : 135

6.4 An Interprocedural Decomposition Example : : : : : : : : : : : : : : : : 135

6.5 Issues in Interprocedural Decomposition Analysis : : : : : : : : : : : : : 142

6.5.1 Unnecessary Storage Reuse : 143

6.5.2 Array Reshapes : 144

6.5.3 Insufficient Type Information : : : : : : : : : : : : : : : : : : : 146

6.6 Libraries and User-Defined Decompositions : : : : : : : : : : : : : : : : 147

6.7 Summary : 148

7 Experimental Results 149

7.1 Experimental Setup : 149

7.1.1 Target Architectures : 149

ix

7.1.2 The SUIF Compiler : 151

7.1.3 Methodology : 151

7.1.4 Application Suite : 155

7.2 Experimental Results : 158

7.2.1 Distributed Shared Address Space Machine : : : : : : : : : : : : 158

7.2.2 Centralized Shared Address Space Machine : : : : : : : : : : : : 166

7.2.3 Summary of Results : 177

8 Conclusions 179

8.1 Contributions : 180

8.2 Future Work : 182

Bibliography 183

x

List of Tables

1.1 Typical remote memory access times. : : : : : : : : : : : : : : : : : : : 4

7.1 Descriptions of the benchmarks. : 155

7.2 Data set sizes of the benchmarks. : 156

7.3 Parallel coverage and 32-processor speedups for the benchmarks on the

DASH multiprocessor. : 157

7.4 Parallel coverage and 8-processor speedups for the benchmarks on the

Digital AlphaServer. : 158

7.5 Summary of results on the Stanford DASH Multiprocessor. : : : : : : : : 168

7.6 Summary of results on the AlphaServer 8400. : : : : : : : : : : : : : : : 178

xi

List of Figures

1.1 An example to illustrate multiprocessor memory hierarchy issues. : : : : 5

1.2 Speedups for the SPEC95 benchmark tomcatv on the AlphaServer 8400. : 8

2.1 The design of a parallelizing compiler system for both shared and distributed

address space machines. : 15

2.2 Illustration of parallel execution. : 20

3.1 Basic machine model used by the decomposition analysis. : : : : : : : : 29

3.2 Sample affine decompositions onto a virtual processor space. : : : : : : : 34

3.3 Two-step model of computation and data decompositions. : : : : : : : : : 36

3.4 Example of HPF decompositions and the corresponding virtual and physical

processor mappings under our decomposition model. : : : : : : : : : : : 37

4.1 Code examples used to illustrate linear decompositions. : : : : : : : : : : 44

4.2 A sample interference graph. : 48

4.3 Algorithms for mapping between linear data decompositions and linear

computation decompositions. : 51

4.4 Algorithm for propagating the nullspaces of linear decomposition matrices

between loop nests and arrays. : 57

4.5 Algorithm for calculating the nullspaces of the basic linear decomposition

matrices. : 58

4.6 Algorithm for calculating the linear decomposition matrices. : : : : : : : 62

4.7 Code used to illustrate linear decompositions with replication. : : : : : : 65

4.8 Example showing linear data decompositions onto a one-dimensional vir-

tual processor space with different types of replication. : : : : : : : : : : 66

xii

4.9 An example of dimension replication. : : : : : : : : : : : : : : : : : : : 67

4.10 Algorithms for calculating linear data decompositions with replication. : : 72

4.11 Algorithm for calculating the nullspaces of the linear decomposition matri-

ces with multicast and synchronization. : : : : : : : : : : : : : : : : : : 78

4.12 Algorithm for calculating linear decompositions with replication, multicast

and synchronization. : 79

4.13 Algorithm for finding static decompositions. : : : : : : : : : : : : : : : 82

5.1 Code example used to illustrate dynamic decompositions. : : : : : : : : 86

5.2 Example communication graphs. : 87

5.3 Example communication graph with hierarchical structure. : : : : : : : : 95

5.4 Driver algorithm for finding dynamic decompositions. : : : : : : : : : : 96

5.5 Core algorithm for finding dynamic decompositions. : : : : : : : : : : : 97

5.6 Algorithm for finding dynamic decompositions at a single level of the

communication graph. : 98

5.7 Merging loop nests using interference graphs. : : : : : : : : : : : : : : : 101

5.8 Communication graph with static decomposition regions. : : : : : : : : : 104

6.1 Code examples used to illustrate interprocedural decomposition analysis. : 119

6.2 Algorithm for creating call vertices in the caller’s communication graph. : 126

6.3 Algorithm for gathering the array accesses in a callee procedure. : : : : : 131

6.4 Algorithm for propagating decomposition constraints up the call graph

representing the program. : 132

6.5 Algorithm for recording linear decompositions in the callee’s communica-

tion graph from call vertices in the caller’s communication graph. : : : : : 134

6.6 Algorithm for propagating linear data decompositions down the call graph

representing the program. : 136

6.7 Interprocedural algorithm for finding decompositions. : : : : : : : : : : : 137

6.8 Sample code with multiple procedures. : : : : : : : : : : : : : : : : : : 138

6.9 Call graph and the corresponding communication graphs during the bottom-

up traversal. : 139

xiii

6.10 Call graph and the corresponding communication graphs during the top-

down traversal. : 141

7.1 An overview of the SUIF parallelizing compiler for shared address space

machines. : 153

7.2 Speedups for ADI integration on the DASH Multiprocessor. : : : : : : : 159

7.3 Speedups for LU decomposition on the DASH Multiprocessor. : : : : : 160

7.4 Speedups for five-point stencil on the DASH Multiprocessor. : : : : : : 162

7.5 Speedups for vpenta on the DASH Multiprocessor. : : : : : : : : : : : : 163

7.6 Speedups for erlebacher on the DASH Multiprocessor. : : : : : : : : : : 164

7.7 Speedups for swim on the DASH Multiprocessor. : : : : : : : : : : : : : 165

7.8 Speedups for tomcatv on the DASH Multiprocessor. : : : : : : : : : : : 165

7.9 Speedups for ADI integration on the AlphaServer 8400. : : : : : : : : : 167

7.10 Speedups for LU decomposition on the AlphaServer 8400. : : : : : : : 169

7.11 Speedups for five-point stencil on the AlphaServer 8400. : : : : : : : : : 171

7.12 Speedups for vpenta on the AlphaServer 8400. : : : : : : : : : : : : : : 172

7.13 Speedups for applu on the AlphaServer 8400. : : : : : : : : : : : : : : : 173

7.14 Speedups for erlebacher on the AlphaServer 8400. : : : : : : : : : : : : 173

7.15 Speedups for simple on the AlphaServer 8400. : : : : : : : : : : : : : : 174

7.16 Speedups for swim on the AlphaServer 8400. : : : : : : : : : : : : : : : 175

7.17 Speedups for tomcatv on the AlphaServer 8400. : : : : : : : : : : : : : 177

xiv

Chapter 1

Introduction

Processor speeds in modern computer systems are outpacing the memory speeds. The

result is that the latency of memory accesses is a bottleneck to achieving high processor

utilization. To bridge the gap between processor and memory speeds, computer designers

typically use a hierarchy based on different speeds and sizes of memories. Smaller, faster

memories or caches are placed close to the processors while successively larger, slower

memories are placed farther away from the processors.

The gap between processor speeds and memory speeds is expected to widen. In the last

decade, microprocessor performance has been steadily improving at a rate of 50% to 100%

every year[39]. Meanwhile, the access times for DRAMs, the components that comprise

computer main memories, have been improving at the rate of only 7% per year[39]. As

a result, memory subsystem performance will continue to have a great impact on overall

computer system performance.

Making effective use of a memory hierarchy relies on a program’s locality of reference:

if a data item is accessed then that data item, or data near it, is likely to be accessed again

in the near future. Performance benefits if we are able to keep recently accessed data items

in the fastest memories. However, it has been notoriously difficult for scientific codes to

make effective use of a memory hierarchy. In fact, various past machines built for scientific

computations such as the Cray C90, Cydrome Cydra-5[65] and the Multiflow Trace[24]

were all built without caches.

1

2 CHAPTER 1. INTRODUCTION

Realizing good memory hierarchy performance on multiprocessors is even more im-

portant to application performance than on uniprocessors, but also more difficult. Not only

are multiprocessor memory hierarchies supersets of the uniprocessor hierarchy, but the ap-

plication must also ensure that uniprocessor locality is not compromised by multiprocessor

considerations. Any benefits to program performance due to increased parallelism can be

quickly outweighed if the program ends up stalled waiting for data. Thus to achieve good

performance on parallel systems, programs must take into account both parallelism and

locality.

1.1 Multiprocessor Memory Hierarchies

There are two principal classes of memory architectures for parallel machines: distributed

address space machines and shared address space machines. Distributed address space

machines are built from a set of processors connected by a communication network. Each

processor has its own local memory that it can access directly; messages have to be sent

across the network for a processor to access data stored in another processor’s memory.

Examples of distributed address space machines include the Intel Paragon, IBM SP-2 and

clusters of workstations. In contrast, shared address space machines present the programmer

with a single memory space that all processors can access. Many of these machines support

hardware cache coherence to keep data consistent across the processors. Shared address

space machines may either have a single shared memory that can be uniformly accessed

by all the processors, or the memories may be physically distributed across the processors.

The former class of machines are often called centralized shared address space machines,

while the latter class of machines are called distributed shared address space machines.

Distributing the memories across the processors removes the need for a single shared bus

going from all the processors’ caches to the memory and thus makes it easier to scale to

more processors. Today many computer vendors (e.g. Sun, Digital Equipment, Sequent and

Compaq) offer centralized shared address space machines. Examples of distributed shared

address space systems include the Stanford DASH[55] and FLASH[54] multiprocessors

and MIT ALEWIFE[2] research machines, and the Convex Exemplar, Cray T3D/E and

Silicon Graphics Origin commercial machines.

1.1. MULTIPROCESSOR MEMORY HIERARCHIES 3

There are two key reasons for why it is more difficult to get good memory subsystem per-

formance on multiprocessors over uniprocessors: long latencies due to inter-processor com-

munication, and multiprocessor-specific cache misses on machines with coherent caches.

We discuss each of these reasons in more detail in the following two sections.

1.1.1 Communication Latencies

On current parallel machines, it can cost anywhere from 50 to over 10,000 processor

clock cycles to communicate data between processors[39]. The exact communication cost

depends on the memory architecture of the machine, the type of interconnection network

and the size of the system.

On machines with a centralized memory, cache coherence is typically maintained using

an invalidation-based protocol. Data written by one processor is invalidated in the other

processors’ caches; subsequent reads by the other processors miss in the cache and have to

be read from memory. Communication can thus result in cache misses, and the data must

be fetched from main memory.

On machines with physically distributed memories, the memory access times are non-

uniform. The memory latency to access another processor’s memory can be significantly

higher than the latency to local memory. In effect, the remote memories on these machines

form yet another level in the memory hierarchy. Distributed shared address space machines

that support cache coherence in hardware also typically use invalidation-based cache-

coherence protocols (e.g. SGI Origin). On these machines, communication results in cache

misses where the data must be fetched from the other processor’s remote memory. On

non-coherent distributed shared address space machines (e.g. Cray T3D/E) remote data

is typically not cached, and all remote references result in accesses to another processor’s

memory.

On distributed address space machines, processors must send explicit messages to

communicate data. The cost of communication is the time to send a message to the remote

processor and for the receiving processor to process the message. Explicit communication

through message-passing involves software and is much more expensive than implicit

communication through cache-coherence hardware. For example, Table 1.1 shows the

4 CHAPTER 1. INTRODUCTION

typical remote memory latencies for a variety of machines with physically distributed

memories. The first column lists the machines and the second column shows whether the

machines have a shared or distributed address space. The third and fourth columns list the

processors used at each node of the machine and the processor cycle times, respectively.

The final column gives typical remote access times. For the shared address space machines,

the value is the remote load latency; for the distributed address space machines, the value is

the round-trip message time (for one word messages). For comparison, accesses that hit in

the cache typically take one processor cycle. All the remote access time data is from [39],

unless otherwise noted.

Machine Address Processor Remote
Space Processor Cycle Time Access Time

Organization (ns) (ns)

SGI Origin[69] shared R10000 5.0 500 - 1100
Cray T3E[66] shared 21164 3.3 1000 - 2000
Convex Exemplar shared PA8000 5.5 2000
TMC CM-5 distributed Sparc 30.0 10000
Intel Paragon distributed i860 20.0 10000 - 30000
IBM SP-2 distributed RS6000 13.0 30000 - 100000

Table 1.1: Typical remote memory access times. For the shared address space machines,
the value is the remote load latency; for the distributed address space machines, the value
is the round-trip message time.

The long memory latencies mean that the amount of inter-processor communication in

the program is a critical factor for performance. Thus it is important for computations to

have good temporal locality. A computation has temporal locality if it re-uses much of

the data it has been accessing; programs with high temporal locality tend to require less

communication.

It is important to take communication and temporal locality into consideration when

deciding how to parallelize a loop nest and how to assign the iterations to processors.

Consider the code shown in Figure 1.1(a). This code is representative of the tomcatv

benchmark from the SPEC92 and SPEC95 benchmark suites. While all the iterations in

the first two-deep loop nest can run in parallel, only the inner loop of the second loop nest

1.1. MULTIPROCESSOR MEMORY HIERARCHIES 5

real x[N,N], y[N,N], z[N,N]
for time = 1 to nsteps do
...
for i2 = 1 to N do /* doall */

for i1 = 1 to N do /* doall */
x[i1,i2] = y[i1,i2] + z[i1,i2]

for i2 = 2 to N-1 do
for i1 = 1 to N do /* doall */
x[i1,i2] = 0.333 * (x[i1,i2] + x[i1,i2-1] + x[i1,i2+1])

...
end for

(a)

Processor
Number

0

1

P-1

Cache Lines

(b) (c)

Figure 1.1: An example to illustrate multiprocessor memory hierarchy issues: (a) sample
code, (b) original data mapping and (c) optimized data mapping. The light grey arrows
show the memory layout order.

6 CHAPTER 1. INTRODUCTION

is parallelizable (parallel loops are also known as doall loops and are annotated with the

comment /* doall */ in the figure). Consider what happens to the data access patterns when

we distribute the parallel loops in this example. Assume that when a loop is distributed,

each processor executes equal-sized blocks of consecutive iterations. If we distribute both

parallel loops in the first loop nest, each processor accesses a two-dimensional block of

array elements for each of the arrays. If we distribute the one parallel loop in the second

loop nest, each processor accesses a block of rows for each array. There is communication

between the two loop nests since the data accessed by each processor differs. However, we

can eliminate the communication by distributing only the inner loop in the first loop nest.

Now, each processor accesses the same data in both of the loop nests – a block of contiguous

rows for each array. In this way, no inter-processor communication is necessary throughout

the entire computation. Figure 1.1(b) shows the data accessed by each processor when only

the inner parallel loops in both of the loop nests are distributed across the processors. The

light grey arrows in the figure show the memory layout order.

1.1.2 Multiprocessor Cache Effects

On multiprocessors that support a shared address space via cache coherence, it is not

sufficient to just minimize the essential cache misses caused by communication. Due to

characteristics found in typical data caches, multiprocessors also experience non-essential

cache misses that can significantly hurt performance[28, 29].

In cache-coherent machines, the cache line size is the default coherence unit. When

a processor performs a write, the entire cache line is invalidated in all other processor’s

caches. In today’s machines, cache lines are typically 16 to 128 bytes long. A computation

has spatial locality if it uses multiple words in a cache line before the line is displaced from

the cache. While spatial locality is a consideration for both uni- and multiprocessors, false

sharing is unique to multiprocessors. False sharing results when different processors use

different data that happen to be co-located on the same cache line. Even if a processor

re-uses a data item, the item may no longer be in the cache due to an intervening access by

another processor to another word in the same cache line.

Assuming the FORTRAN convention that arrays are allocated in column-major order,

1.1. MULTIPROCESSOR MEMORY HIERARCHIES 7

there is a significant amount of false sharing in the example from Figure 1.1(b). If the

number of rows accessed by each processor is smaller than the number of array elements

in a cache line, then every cache line is shared by at least two processors. Each time one of

these lines is accessed, unwanted data are brought into the cache. Also, when one processor

writes part of the cache line, that line is invalidated in the other processor’s cache. This

particular combination of computation mapping and data layout will result in poor cache

performance.

Another problematic characteristic of data caches is that they typically have a small

set-associativity; that is, each memory location can only be cached in a small number of

cache locations. Conflict misses occur whenever different memory locations contend for

the same cache location. Since each processor only operates on a subset of the data, the

addresses accessed by each processor may be distributed throughout the shared address

space.

Consider what happens to the example in Figure 1.1(b) if the arrays are of size 256�256

and the target machine has a direct-mapped data cache of size 8 KB. Assuming that each

element is 4 bytes, the elements in every 8th column will map to the same cache location

and cause conflict misses. This problem exists even if the caches are set-associative, given

that existing caches usually only have a small degree of associativity.

In general, the memory subsystem performance of multiprocessor code depends on how

the computation is distributed as well as how the data are laid out. Instead of simply obeying

the data layout convention used by the input language (e.g. column-major in FORTRAN

and row-major in C), we can improve the cache performance by customizing the data layout

for the specific program. Once we determine the data that each processor is going to access,

we can further optimize multiprocessor cache performance by making the data accessed

by each processor contiguous in the shared address space. Such a layout enhances spatial

locality, minimizes false sharing and also minimizes conflict misses. Customizing the

data layout benefits all cache-coherent machines, including both centralized and distributed

shared address space systems. An optimized data layout that makes each processor’s data

contiguous for the example from Figure 1.1(b) is shown in Figure 1.1(c).

Figure 1.2 illustrates the impact of multiprocessor cache effects on program performance

for the full tomcatv benchmark from the SPEC95 benchmark suite. The figure shows the

8 CHAPTER 1. INTRODUCTION

speedup over the best sequential version for three versions of the benchmark running on

a centralized shared address space machine, an 8-processor 300 MHz Digital AlphaServer

8400. The curve labeled base shows the speedup obtained without any analysis to eliminate

communication across loop nests. In this version of the program, we simply distribute

iterations of the outermost parallel loop in each loop nest across the processors. The

curve labeled comp sched corresponds to Figure 1.1(b), and shows the speedup when the

computation is scheduled so as to eliminate communication across loop nests. Finally,

the curved labeled comp sched + data transform shows the speedup obtained when the

computation is scheduled to eliminate communication and the data layout is customized

to make each processor’s data contiguous. This last curve corresponds to Figure 1.1(c).

Even though the comp sched program has essentially no communication, the performance

is still quite poor due to poor spatial locality and false sharing. Only after the data has

been transformed does the program achieve scalable performance. Whereas the speedup

for the base program is only 2:9 on eight processors, the speedup for the comp sched + data

transform version is 7:5.

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5
|6

|7

|8

 Number of Processors

 S
pe

ed
up

tomcatv

�

�

�
�

� � � �

�

�

�

�

�

�

�

�

Figure 1.2: Speedups for the SPEC95 benchmark tomcatv on the AlphaServer 8400.

1.2. PROBLEM STATEMENT 9

1.2 Problem Statement

To achieve good performance on parallel systems, programs must make effective use of the

computer’s memory hierarchy as well as its ability to perform computation in parallel. If

we can co-locate the data with the processor that accesses the data, then we can minimize

the problems specific to multiprocessor memory hierarchies. This means that we have

to find a mapping of the data to the processors of the parallel machine, as well as a

mapping of the computation to the processors of the machine. In this thesis we use the term

data decomposition to refer to the data-to-processor mapping and the term computation

decomposition to refer to the computation-to-processor mapping.

Selecting a good computation and data decomposition for a program is a difficult

problem. First, there are many possible ways to assign the data and computation across the

processors of the machine. The data decomposition may need to change dynamically as

the program executes, for example, if different phases of the program operate on the data

in different ways.

Second, the choices of data and computation decomposition are inter-related; it is impor-

tant to examine both the opportunities for parallelism and the locality of data to determine

the decompositions. For example, if the only available parallelism in a computation lies in

operating on different elements of an array simultaneously, then allocating those elements

to the same processor renders the parallelism unusable. The data decomposition dictated

by the available parallelism in one loop nest affects the decision of how to parallelize the

next loop nest, and how to distribute the computation to minimize communication.

Third, decomposition analysis must be performed across the entire program. It is not

sufficient to just analyze one procedure at a time. If the data decompositions of the variables

do not match across procedures, then the program could potentially incur large amounts of

communication at every procedure call entry and call return.

A popular approach to the decomposition problem is to solicit the programmer’s help

in determining the data decompositions. A number of parallelizing compiler systems have

been developed that rely on the user to specify the data-to-processor mapping using language

extensions[21, 31, 49, 64, 74, 82]. The compiler then infers the computation mapping

using the owner-computes rule[20, 64, 82]: the processor that is assigned a data element

10 CHAPTER 1. INTRODUCTION

performs all computation that writes that element. The High Performance FORTRAN

(HPF) standard developed by a consortium of academic and commercial organizations also

relies upon user-specified data decompositions[48]. These compiler systems are geared

towards scientific codes and primarily target distributed address space machines. While

the languages provide significant benefit to the programmer by eliminating the tedious job

of managing the different address spaces explicitly, the programmer is still faced with a

very difficult programming problem. The tight coupling between the mapping of data and

computation means that the programmer must, in effect, also analyze the parallelization

of the program when specifying the data decompositions. As the best decomposition may

change based on the architecture of the machine, the programmer must fully master the

machine details. Furthermore, the data decompositions may need to be modified to make

the program run efficiently on a different architecture.

Parallelizing compilers for shared address space machines currently do not perform any

decomposition analysis; they make no attempt to schedule computation that accesses the

same data onto the same processor. These compilers start with a sequential program, but

they only analyze one loop nest at a time and will typically always distribute the outermost

parallel loop in a loop nest. Of course, the resulting programs still run correctly; however,

they may not run as efficiently as possible due to communication, false sharing and poor

spatial locality.

In short, current parallelizing compiler systems for distributed address space machines

require programmers to perform the decomposition analysis themselves and to communicate

that information to the compiler using language extensions. For shared address space

machines, current parallelizing compilers do not implement decomposition analysis at

all. A compiler that automatically finds the computation and data decompositions for a

program relieves programmers from doing the complex analysis themselves and leads to

more efficient code. The compiler can then take as input a sequential program – without

language extensions for decompositions – and generate high-performance code for both

distributed and shared address space machines.

1.3. THESIS OVERVIEW AND CONTRIBUTIONS 11

1.3 Thesis Overview and Contributions

The computation and data decomposition of a program is critical to performance on a

wide variety of parallel machines. Yet, selecting a good decomposition for a program on

a particular machine is a complex optimization problem. This thesis presents a compiler

algorithm that automatically calculates computation and data decompositions for dense

matrix computations that result in efficient, high-performance code. The contributions of

this thesis are as follows:

Decomposition Framework. We have developed a linear algebra framework for ex-

pressing and calculating decompositions. We model decompositions in two steps: first an

affine function1 maps the computation and data onto a virtual processor space, and second

a folding function maps the virtual processor space onto the physical processors of the

target machine. Using this framework, our algorithm generates a system of equations that

specifies the conditions that the desired decompositions must satisfy. We then calculate

the decompositions systematically by solving the systems of equations. Our mathematical

model allows a rich set of target decompositions and is not limited to an arbitrary set of

possible decompositions.

Decomposition Algorithm. Our compiler algorithm for finding decompositions is the first

complete algorithm based on a linear algebra framework. Our decomposition algorithm

operates by partitioning the program into regions that have the same data assignment for

all the computation in the region. Within each region, we use the mathematical model to

generate a system of equations that describes the decompositions. Communication occurs

across regions as the data must be reorganized. The regions are found incrementally

by gathering constraints on the data and computation that must be assigned to the same

processor in order for a solution to exist to the set of equations. The constraints are

gathered starting with the most frequently executed loops in the program. This approach

builds regions of the program that have no data reorganization that are as large as possible,

and places any necessary communication in the least executed sections of the code. Within

1An affine function is a linear function plus a constant offset.

12 CHAPTER 1. INTRODUCTION

the regions, the decompositions we find are optimal in that they are guaranteed to have

the largest degree of parallelism with no data reorganization. The algorithm also handles

replication of data and explicit synchronization within loop nests.

Our decomposition algorithm has several key features. It is the first algorithm that

calculates decompositions directly while simultaneously modeling the benefits of paral-

lelization and the cost of communication. It allows data to be reorganized, if necessary,

to benefit the overall execution time of the program. Our algorithm finds decompositions

incrementally, and as a result it scales to handle complete programs. Finally, our algorithm

also incorporates replication and synchronization which are often needed to generate good

code for realistic programs.

Interprocedural Decompositions. Our decomposition algorithm is the first to analyze

both within and across procedure boundaries so that consistent decompositions can be found

throughout the entire program. The interprocedural decomposition algorithm visits each

procedure twice, once in a bottom-up traversal of the call graph and once in a top-down

traversal of the call graph. The bottom-up pass uses the base decomposition algorithm to

incrementally gather constraints on the decompositions and the top-down pass records the

final decompositions at each procedure. Our mathematical representation of decomposi-

tions, coupled with the incremental solving method, allows us to succinctly summarize all

the necessary information on decompositions within a procedure. Thus when the algorithm

analyzes a procedure, it does not have to re-solve for the decompositions for any procedures

that are called by the current procedure.

Implementation and Evaluation. The algorithms described in this thesis have all been

implemented as part of the SUIF parallelizing compiler system[76]. To evaluate the ef-

fectiveness of our proposed algorithm, we applied the compiler to a suite of benchmark

programs. We ran the compiler-generated code on the Stanford DASH multiprocessor[55]

and a Digital AlphaServer 8400, and present a comprehensive study of the resulting perfor-

mance. Our experiments show that on both of these machines, our decomposition analysis

and optimization improves program performance by as much as a factor of four.

1.4. THESIS ORGANIZATION 13

1.4 Thesis Organization

In this thesis we describe our model and algorithm for finding computation and data decom-

positions. We evaluate the effectiveness of the algorithm by looking at the performance

achieved by the compiler-optimized code. We begin in Chapter 2 by describing how the de-

composition analysis fits into the context of a complete parallelizing compiler system. We

also show that once the decompositions are calculated, the compilation techniques needed

for both shared and distributed address space machines are similar. Chapter 3 describes our

assumptions about the target architectures and presents the mathematical framework we

use to represent decompositions. Chapters 4 and 5 present the details of the intraprocedural

decomposition algorithm. In Chapter 6 we then describe the interprocedural version of

the decomposition algorithm. In Chapter 7 we compare the performance of the optimized

code against un-optimized code and analyze the results. We conclude in Chapter 8 by

summarizing the contributions of this thesis.

Chapter 2

Compiler Overview

A parallelizing compiler takes a sequential program as input and automatically translates it

into parallel code for the target machine. In this chapter we describe how the decomposition

analysis described in this thesis fits into the context of a complete parallelizing compiler

system. We found that there are many similarities in the compiler techniques needed for

both shared and distributed address space machines. This led us to design a unified compiler

framework for both kinds of architectures.

Our implementation platform is the SUIF compiler system[76]. The SUIF compiler

takes as input sequential FORTRAN-77 or C programs. The source programs are first

translated into the SUIF compiler’s intermediate representation. All program analysis and

optimization passes operate on the SUIF representation. The optimized and parallelized

SUIF program is then converted into a combination of C and/or FORTRAN and is compiled

by the native compiler on the target machine. The SUIF output contains calls to a portable

run-time library, which is linked in by the native compiler.

The design of a complete compiler framework that incorporates decomposition analysis

is shown in Figure 2.1. The compiler first runs pre-parallelization analyses to gather

information needed by the subsequent passes. The parallelization phase transforms the

code to find the maximum degree of loop-level parallelism, and these loops are then passed

on to the decomposition phase. The computation and data decompositions are used to

generate parallel code for both distributed and shared address space machines. Finally, the

compiler further optimizes the uniprocessor code that runs on each individual processor. In

14

15

Parallelized

Fortran

C/Fortran

 C

Executable

Parallelization

Pre-Parallelization
Analyses

Comp and Data
Decomposition

Distributed Address
Parallel Code Gen

Shared Address
Parallel Code Gen

Uniprocessor
Optimizations

Figure 2.1: The design of a parallelizing compiler system for both shared and distributed
address space machines.

16 CHAPTER 2. COMPILER OVERVIEW

the remainder of this chapter, we first define the scope of input programs that are amenable

to automatic parallelization and decomposition analysis. We then discuss the key compiler

phases in more detail, with an emphasis on how the decomposition analysis interfaces with

each of the phases.

2.1 Domain of Applications

Scientific codes are currently the most common domain for parallelizing compilers. These

programs tend to make heavy use of loops to operate over array data structures. Loops can

be parallelized by executing different iterations concurrently. In order to parallelize a loop,

the parallel version must have the same semantics as the original sequential version. This

condition imposes ordering constraints among the iterations in a loop nest. If two iterations

may access the same memory location, and at least one of the accesses is a write, then it

can change the semantics to reorder the iterations. Thus there is an ordering constraint,

or data dependence, between the iterations and they must execute in the original serial

order. This analysis is called data dependence analysis and is based on integer program-

ming theory[14, 59, 62]. A loop can execute in parallel if and only if there are no data

dependences carried by that loop. Data dependence analysis, and thus automatic paral-

lelization, is typically restricted to the domain of affine functions. Specifically, we analyze

loop nests of the following general form (the compiler normalizes the step sizes to 1[5]):

for i1 = L1 to U1 do

x[f1(i1),f2(i1),: : :,fm(i1)] = : : :

for i2 = L2(i1) to U2(i1) do

x[f1
0(i1; i2),f2

0(i1; i2),: : :,fm
0(i1; i2)] = : : :

: : :

for il = Ll(i1; : : : ; il�1) to Ul(i1; : : : ; il�1) do

x[f1
00(~{),f2

00(~{),: : :,fm
00(~{)] = : : :

end for

: : :

end for

end for

2.2. PRE-PARALLELIZATION ANALYSES 17

In this loop nest format, L1 : : :Ll are affine functions that compute the lower bound of

each loop, and U1 : : :Ul are affine functions that compute the upper bounds. The access

functions for each dimension of the arrays, f1 : : : fm, f1
0 : : : fm

0 and f1
00 : : : fm

00 are also

affine functions. In all cases, the loop bounds and array accesses are affine functions of

outer nested loop indices and symbolic constants.

2.2 Pre-Parallelization Analyses

The compiler runs pre-parallelization symbolic analyses to extract information necessary

for subsequent parallelization and optimization passes. These analyses include scalar

variable analyses such as constant propagation, induction variable identification and forward

propagation, as well as reduction recognition on scalar and array variables.

At this point, it is also desirable for the compiler to transform the code so that each

loop nest has as few array accesses as possible. Having fewer array accesses per loop

nest reduces the likelihood that the accesses will cause conflicting requirements on the

computation decomposition for the loop nest. The loop fission transformation can be

used to split a single loop into multiple loops that have the smallest number of statements

possible. Each of the new loops has the same loop bounds as the original, but contains

a subset of the statements[11, 51]. After the decomposition analysis, loop fusion can be

used to regroup compatible loop nests[19]. Loop fission and loop fusion are not currently

implemented in the SUIF compiler.

2.3 Parallelization Analysis

The parallelization analysis transforms the code using unimodular transformations to ex-

pose the maximum degree of loop-level parallelism, while minimizing the frequency of

synchronization. It tries to generate the coarsest granularity of parallelism by placing the

largest degree of parallelism in the outermost positions of the loop nest. Since no synchron-

ization is needed between iterations of a parallel loop, pushing the parallel loops outermost

reduces the frequency of synchronization. Algorithms for analyzing and maximizing par-

allelism within a loop nest have been well-studied, for example see [5, 77, 79, 80, 83]. The

18 CHAPTER 2. COMPILER OVERVIEW

following two subsections describe the interface between the parallelization analysis and

the decomposition analysis in more detail.

2.3.1 Choices of Parallelism

The SUIF compiler uses the algorithm developed by Wolf and Lam[77, 79] to put the loop

nests in a canonical form consisting of a nest of the largest possible fully permutable loop

nests. A loop nest is fully permutable if any arbitrary permutation of the loops within the

nest is legal. A fully permutable loop nest of depth l has the property that it can always be

transformed to make l � 1 degrees of parallelism, that is, l � 1 parallel loops[43, 79]. In

the special case where the loop nest has no loop-carried dependences, it has l degrees of

parallelism.

The compiler transforms the code to create the largest possible fully permutable nests,

starting from the outermost loops. This form exposes the maximum degree of parallelism

within the loop nest[77]. The compiler also marks those loops in the nest that are doall loops

and moves them to the outermost possible position within each fully permutable nest. A

doall loop is simply a parallel loop and can thus execute in parallel with no synchronization.

The maximum degree of parallelism for the entire loop nest is the sum of the degree of

parallelism contained in each of the fully permutable subnests.

In a fully permutable loop nest of depth l, the l � 1 degrees of parallelism can be

exploited in many ways. One possibility is to transform the code to have l � 1 doall

loops[77], and then distribute iterations of the doall loops across the processors. However,

it is also possible to distribute iterations of a loop with loop-carried dependences. In this

case, explicit synchronization and communication are required to enforce the dependences

within the computation of the loop. Loops that are distributed across processors, but require

explicit synchronization between iterations, are called doacross loops. Opportunities for

exploiting parallelism with doacross loops occur when a fully permutable loop nest contains

at least two loops (if there is only a single loop then the synchronization between iterations

makes the loop run sequentially and there is no parallelism). To illustrate the different kinds

of parallelism that are available within fully permutable loop nests, consider the following

example representative of an ADI (Alternating Direction Implicit) integration:

2.3. PARALLELIZATION ANALYSIS 19

real x[N,N]

/* Loop nest 1 */

for i1 = 1 to N do /* doall */

for i2 = 2 to N do

x[i1,i2] = f1(x[i1,i2], x[i1,i2-1])

/* Loop nest 2 */

for i1 = 1 to N do /* doall */

for i2 = 2 to N do

x[i2,i1] = f2(x[i2,i1], x[i2-1,i1])

The outer loops are doall loops and both loop nests are fully permutable. When iterations of

the doall loops are run in parallel, neither communication nor synchronization is required

within each of the loop nests.

Figure 2.2(a) shows the original iteration space for the loop nests. In the figure, the

vertical axis corresponds to the outer i1 loop, the horizontal axis corresponds to the inner i2

loop and each node represents one iteration in the loop nest. The arrows represent the data

dependences between the iterations; the data dependences show the ordering constraints

among the nodes that are required to guarantee the same semantics as the original sequential

version. The figure applies to both loop nests 1 and 2 since they have the same iteration

space. Figure 2.2(b) shows the parallel execution of loop i1 for both loop nests. The

shaded regions in the figure show iterations that are assigned to the same processor. Since

the iterations that are ordered by data dependences all execute sequentially on the same

processor, no synchronization is needed within the loop nest.

In addition to the doall parallelism in the ADI example, doacross parallelism is also

available in both loop nests. Figure 2.2(c) shows the parallel execution of the i2 loop using

doacross parallelism. Let i10 be an iteration of the i1 loop, and let i20 be an iteration of the

i2 loop. If processor p executes i2 = i2
0 and processor p + 1 executes i2 = i2

0 + 1, then

p must communicate all the array elements it writes to p + 1. Synchronization is needed

because processor p+ 1 cannot execute iteration (i1; i2) = (i1
0; i2

0+ 1) until p has executed

iteration (i1; i2) = (i1
0; i2

0). Parallelism is available along a diagonal or wavefront in the

20 CHAPTER 2. COMPILER OVERVIEW

(d)(c)

(b)(a)

i1

i1
i1

i1

i2 i2

i2 i2

Figure 2.2: (a) Original iteration space for the loop nests in the ADI example. (b)–(d)
Iteration spaces showing different ways to execute the loop nests in parallel. The arrows
represent data dependences, and the iterations in each shaded region are assigned to the
same processor.

2.3. PARALLELIZATION ANALYSIS 21

iteration space, i.e. p can execute iteration (i1; i2) = (i1
0 + 1; i20), while p + 1 executes

(i1; i2) = (i1
0; i2

0 + 1).

Another way to look at the parallelism in this example is to say that in Figure 2.2(b)

we allocated iterations along the direction (0; 1) to each processor, that is, all pairs of

iterations that differ by (0; 1) are assigned to the same processor. In Figure 2.2(c) we

allocated iterations along the direction (1; 0) to each processor. In fact, it is possible to

exploit parallelism by allocating to each processor iterations along any direction within the

two axes.

When using doacross parallelism, it is not very efficient to synchronize and communicate

for every iteration of the loop. A general technique that is used to reduce the synchronization

frequency and communication volume of parallel loops is loop blocking[78, 80] (also known

as tiling, unroll-and-jam and stripmine-and-interchange). Blocking transforms a loop nest

of depth l into a loop nest of depth 2l. The inner l loops iterate over a fixed number of

iterations (given by the block size), while the outer loops iterate across the inner blocks of

iterations.

By blocking and then only parallelizing the outer loops, the synchronization frequency

is reduced by the size of the block. The reduction in communication volume from blocking

is a function of the loop’s data dependences. Two array accesses are dependent within a

loop i if there is a data dependent pair of iterations i0 and i00. The references are said to

be dependent with distance di = i0 � i00. If the array accesses in a loop have small, finite

dependence distances such that 0 � di < b, where b is the block size, then only di elements

at each block boundary need to move.

Fully permutable loop nests have several properties that are important for efficiently

exploiting doacross parallelism. First, the fact that the loop nests are fully permutable means

that doacross parallelism is legal, and the loop nest can be completely blocked[43, 77]. Also,

for a fully permutable loop nest of depth l, when the dependences are distances then we know

that di � 0 for all loops i = 1 : : : l[77]. The result of this is that doacross parallelism and

blocking can be applied along any dimension in the iteration space of such fully permutable

loop nests.

Since the compiler first transforms the loop nests into the canonical form of nests of

fully permutable subnests, the blocking transformation is easily applied. Figure 2.2(d)

22 CHAPTER 2. COMPILER OVERVIEW

shows the parallel execution of the i2 loop from the on-going ADI example using doacross

parallelism and blocking.

2.3.2 Global Considerations

If we look at each loop nest individually, then distributing the iterations in the direction of

the doall loops is preferable, as neither communication nor synchronization is necessary

within the loop. However, this is not always the case when we analyze multiple loop nests

together. Going back to the ADI example, consider what happens if we only try to exploit

the parallelism in the doall loops. The doall loop in the first loop nest accesses rows of array

x, whereas iterations of the doall loop in the second loop nest accesses columns of array

x. Communication will occur between the loop nests because the data must be completely

reorganized as the data decomposition switches between rows and columns.

We can avoid reorganizing the arrays between the two loop nests in the ADI example by

using doacross parallelism in one of the loop nests. For example, in the second loop nest the

loop with the loop-carried dependence (the i2 loop), accesses rows of the array. If iterations

of this loop are distributed across the processors, then in both loop nests processors access

rows of the arrays. Communication and synchronization are now required within the second

loop nest. However, since we use loop blocking to reduce the communication volume and

synchronization frequency, the overhead incurred within the one loop nest is typically much

less than the overhead to reorganize the data between the loop nests.

As this example illustrates, only exploiting the parallelism in the doall loops may not

result in the best overall performance. In general, there may be tradeoffs between the best

local loop-level decompositions, and the best overall global decompositions. Thus the

loop-level analysis in our compiler transforms the code to expose the maximum degree

of loop-level parallelism, but does not make decisions as to how that parallelism is to be

implemented. The loop-level analysis leaves the code in a canonical format of nests of fully

permutable loop nests, from which the coarsest degree of parallelism can be easily derived.

2.4. DECOMPOSITION ANALYSIS OVERVIEW 23

2.4 Decomposition Analysis Overview

The decomposition analysis takes as input the loop nests in the canonical form of nests of

fully permutable loop nests. It analyzes the array accesses within the loop nest to calculate

the mappings of data and computation onto the processors of the target machine. For each

loop nest and for each array accessed in each loop nest, the decomposition analysis outputs

a system of linear inequalities that describes the processor mappings.

The decomposition analysis only examines affine array accesses, and any non-affine

accesses are ignored. All affine array access within a loop nest are examined, regardless

of control-flow within the loop nest. Any non-perfectly nested accesses are treated as

if they were perfectly nested, but with conditional guards (this is the model used by the

SUIF compiler’s parallelization analysis[77]). For example, for the following generalized

two-deep loop nest with non-perfectly nested accesses:

for i1 = L1 to U1 do

x[f1(i1)] = : : :

for i2 = L2(i1) to U2(i1) do

y[f1
0(i1; i2),f2

0(i1; i2)] = : : :

end for

z[f1
00(i1)] = : : :

end for

The compiler models the code as:

for i1 = L1 to U1 do

for i2 = L2(i1) to U2(i1) do

if i2 = L2(i1) then x[f1(i1)] = : : :

y[f1
0(i1; i2),f2

0(i1; i2)] = : : :

if i2 = U2(i1) then z[f1
00(i1)] = : : :

end for

end for

Of course, this model is only legal if and only if the innermost i2 loop in the original code

executes at least one iteration whenever the outermost i1 loop does. If we cannot prove this

24 CHAPTER 2. COMPILER OVERVIEW

condition statically, then we must insert explicit checks. Since the decomposition analysis

does not take control-flow within the body each loop nest into account, it ignores the guards

and treats the non-perfectly nested accesses as if they were perfectly nested.

2.5 Parallel Code Generation and Optimization

The parallel code generator takes as input the linear inequalities representing the computa-

tion and data decompositions, and emits SPMD (single-program, multiple-data) parallelized

code. The generated code is parameterized by the number of processors; each processor

gets the total number of processors and its own processor identifier from calls to the run-

time library. In this section, we describe parallel code generation for both distributed

address space machines and shared address space machines. In the current SUIF compiler,

only shared address space code generation is supported. Here we discuss the necessary

steps to generate parallel code for both types of machines to show how the decomposition

information is used, and to underscore the similarities between the techniques.

2.5.1 Distributed Address Space Machines

A parallel code generator for distributed address space machines is responsible for the

following three main tasks:

1. Distribute the computation according to the computation decomposition. The bounds

of the distributed loops are generated by applying a series of projection transforma-

tions to the polyhedron represented by the computation decomposition’s system of

linear inequalities[7, 8]. The resulting loop bounds are parameterized by the pro-

cessor identifier so that each processor executes only the iterations that it has been

assigned.

2. Allocate memory locally in each processor’s address space for its portion of the

distributed arrays. The global array addresses in the original program are then

translated into local addresses. Each processor’s portion of the arrays is given by the

data decomposition.

2.5. PARALLEL CODE GENERATION AND OPTIMIZATION 25

3. Generate communication code (i.e. send and receive messages) whenever a processor

accesses remote data. The decompositions are used to identify accesses to non-

local elements. The data and computation decompositions, along with the array

accesses, are composed into a single system of linear inequalities. The projection

transformation is applied to the resulting system of inequalities to calculate the non-

local accesses and the identity of the sending and receiving processors[7].

2.5.2 Shared Address Space Machines

When using decomposition information, the parallel code generator for shared address space

machines is similar to the parallel code generator for distributed address space machines.

It also performs three main tasks, described below. The items listed as optional are strictly

optimizations and are not required for generating a correct parallel program.

1. Schedule the computation according to the computation decomposition. This step

is performed in exactly the same way as for distributed address space machines,

described in Step 1 of Section 2.5.1.

2. (optional) Make each processor’s data contiguous in the shared address space. This

improves the spatial locality of the application and eliminates cache conflicts and

false sharing. The compiler manages the data placement both within a single array

and across multiple arrays.

To make the data of a single array accessed by each processor contiguous, the

compiler transforms the data layout of the array in the virtual address space, and

translates the array addresses in the original program into new addresses[9]. The data

each processor accesses for each array is given by the array’s data decomposition.

These data transformations are analogous to global to local address translation for

distributed address space machines, described in Step 2 of Section 2.5.1.

To make the data across multiple arrays contiguous, we developed a technique called

compiler-directed page coloring[18]. The operating system’s page mapping policy

determines the location of memory pages in physically indexed caches (external

caches for most current processors are physically indexed). The compiler supplies

26 CHAPTER 2. COMPILER OVERVIEW

the data decompositions of all the arrays to a run-time library. The run-time library

then uses that information to direct the operating system’s page allocation policy into

making each processor’s data contiguous in the physical address space. The operating

system uses these hints to determine the virtual-to-physical page mapping when the

pages are allocated.

3. (optional) Eliminate unnecessary synchronization. On shared address space ma-

chines, communication is performed by the hardware and explicit communication

code (as described in Step 3 of Section 2.5.1) is unnecessary. Although commu-

nication analysis to identify accesses to non-local data is not required to ensure

correctness, the same analysis can be used to optimize synchronization. Without

any optimization, synchronization is implemented by inserting barriers at the end of

each parallel loop to prevent potential data races. These barriers, however, cause

overhead and can inhibit parallelism. By using the computation and data decom-

positions to identify exactly when and where accesses to non-local data occur, the

compiler can eliminate unnecessary barrier synchronization or replace them with

efficient point-to-point synchronization[73].

2.6 Uniprocessor Locality Optimizations

After generating the SPMD parallelized code, the compiler further optimizes the code

that runs on each of the individual processors. In particular, the compiler optimizes for the

memory hierarchy in a single processor. The parallelization and decomposition analysis are

run before the uniprocessor locality optimizations because interprocessor communication

is the most expensive form of data movement in the memory hierarchy and minimizing

such communication is the most critical locality optimization.

The compiler’s uniprocessor data locality optimizing algorithm uses the same loop

transformation frameworkas the parallelization analysis[77, 78]. We apply the uniprocessor

locality algorithm to the subnest consisting of the distributed parallel loops and their inner

loops. The original loop structure differs from this subnest by having additional sequential

loops outside the parallel loops. Since these sequential loops must be placed outermost due

2.7. SUMMARY 27

to legality reasons, the uniprocessor data locality is not compromised by parallelization.

Finally, to avoid a common source of cache conflicts in the on-chip cache, the compiler

inserts padding between arrays in the virtual processor space[11]. This causes the starting

addresses of the arrays to map to different locations in the cache.

2.7 Summary

This chapter described the context of the decomposition analysis within a complete paral-

lelizing compiler system. The current domain of parallelizing compilers is scientific codes;

in particular, when calculating computation and data decompositions, we only analyze loop

bounds and array accesses that are affine functions of outer nested loop indices and symbolic

constants.

The decomposition analysis relies on a pre-pass to optimize the parallelism within each

individual loop nest. The parallelization analysis pre-pass puts the loop nests in a canonical

form consisting of a nest of the largest possible fully permutable loop nests. This format

exposes the maximum degree of loop-level parallelism, but does not constrain how the

parallelism is to be implemented.

Once the computation and data decompositions are calculated, the parallel code genera-

tor uses the decompositions to create SPMD parallelized code. The transformations needed

to generate optimized code for both shared and distributed address space machines are very

similar. A unified compiler framework can thus be used for both kinds of architectures.

Chapter 3

Computation and Data Decomposition

Basics

Decomposition analysis maps a program’s computation and data onto the processors of

a target machine. This chapter lays the foundation for the decomposition algorithm by

describing our parallel architecture model, and by defining our representation of compu-

tation and data decompositions. In Section 3.1 we present the basic machine model that

our decomposition algorithm targets. There are many different parallel architectures, and

it is important to understand how the choice of machine model impacts the quality of the

resulting decompositions. We also categorize the types of communication based on the data

movement patterns, and discuss the communication costs on the target machine. Then in

Section 3.2 we describe the mathematical framework we have developed for representing

and calculating decompositions. We also discuss the key properties of the mathematical

decomposition model that are fundamental to the decomposition algorithm.

3.1 Machine and Communication Models

The decomposition analysis models a machine with physically distributed memories, and

each memory is associated with one processor. This architecture is shown in Figure 3.1. The

decompositions calculated by the compiler map the computation onto the processors, and

map the data onto the local memories associated with the processors. The decomposition

28

3.1. MACHINE AND COMMUNICATION MODELS 29

analysis always models a separate memory for each processor, despite the fact that multiple

processors may actually share memory on the true target machine. For example, this is the

case for centralized shared address space machines, or for machines where each node is

itself a centralized shared address space machine (e.g. Stanford DASH, SGI Origin). Re-

gardless of the memory configuration of the true target machine, the fundamental problems

we are solving are how to allocate the computation so as to minimize communication while

maintaining sufficient parallelism, and how to allocate the data for good memory hierarchy

performance. By targeting a machine with separate memories for each processor, we calcu-

late decompositions such that each individual processor accesses the same data as much as

possible. The resulting computation decompositions thus minimize inter-processor com-

munication, independent of the memory architecture. The resulting data decompositions

specify exactly which data are accessed by each individual processor. This information is

then used to tailor the data allocation for the specific target architectures. For example, as

described in Section 2.5.2, on shared address space machines the parallel code generator

uses the data decompositions to transform the data layout so that each processor’s data are

contiguous in the shared address space.

Memory

Processor

Cache
Memory

Processor

Cache
Memory

Processor

Cache
Memory

Processor

Cache

Interconnection Network

Figure 3.1: Basic machine model used by the decomposition analysis.

30 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

The interconnection network of the target machine is a key factor in determining the

cost of communication. There are many different network topologies that can be used to

build the interconnection network for parallel architectures. We model a fully-connected

interconnection network, where all processors are directly connected to one another. Exam-

ples of fully-connected networks include crossbars and buses. The decomposition analysis

assumes that the communication time between any two processors is the same, regardless

of the specific processors involved. Thus, the main factor in determining the cost to access

a data element is whether that access is to the local processor or to a remote processor.

Hot-spotting effects can cause the communication time to a particular processor to become

disproportionately large, making the communication costs between different pairs of pro-

cessors non-uniform. In this case, the remote access times continue to dominate the local

access times, and the decomposition analysis will still optimize to eliminate the remote

accesses. In general, our communication model is reasonable for most parallel machines

today, since the ratio of local access time to remote access time is typically much greater

than the ratio of the maximum remote access time to the minimum remote access time. The

decomposition analysis models local accesses as having zero cost and models all remote

accesses as having equal cost. As a result, the communication costs calculated by the de-

composition algorithm are directly proportional to the amount of data accessed by remote

processors.

The communication patterns in applications determine the amount of data that is being

moved. We make the distinction between two communication patterns, nearest-neighbor

communication and data-reorganization communication. When the communication pattern

is nearest-neighbor shifts of data, then the amount of data transferred can be significantly

reduced by assigning blocks of contiguous iterations of a distributed loop to the same

processor. In this way, any nearest-neighbor communication between the iterations in the

same block is eliminated. We describe our use of blocking for reducing the cost of nearest-

neighbor communication in more detail in Section 4.2. Data-reorganization communication

is unstructured and requires general movement of the entire data structure, for example,

transposing a distributed array. We thus consider nearest-neighbor communication to be

inexpensive compared to data-reorganization communication.

3.2. MATHEMATICAL DECOMPOSITION MODEL 31

3.2 Mathematical Decomposition Model

This section describes our mathematical framework for expressing and calculating decom-

positions. We represent decompositions as two separate components. First, the computation

and data are mapped onto a virtual processor space. The virtual processor space has as

many processors as is needed to fit the number of loop iterations and the sizes of the ar-

rays. Second, the processors of the virtual processor space are mapped onto the physical

processors of the target machine. This representation is general enough to express a broad

class of decompositions, including all the decompositions available to HPF programmers.

Section 3.2.1 defines the data and computation mappings onto the virtual processor space,

and Section 3.2.2 describes the virtual processor mapping onto the physical processor space.

3.2.1 Virtual Processor Mapping

A loop nest of depth l defines an iteration space I . Each iteration of the loop nest is

identified by its index vector~{ = (i1; i2; : : : ; il). An array of dimension m defines an array

space A, and each element in the array is accessed by an index vector ~a = (a1; a2; : : : ; am).

Similarly, an n-dimensional processor array defines a processor space P . We consider

affine array access functions ~f : I ! A, ~f (~{) = F~{+ ~� , where F is a linear transformation

and ~� is a constant vector. The mappings of computation and data onto the virtual processor

space are represented by affine functions and are called affine decompositions.

Definition 3.2.1 Let ~a = (a1; a2; : : : ; am) be an index vector for an m-dimensional array.

The affine data decomposition of the array onto an n-dimensional processor space is an

affine function ~d : A! P , where

~d(~a) = D~a+ ~�

D is an n�m linear transformation matrix and ~� is a constant vector.

Definition 3.2.2 Let ~{ = (i1; i2; : : : ; il) be an index vector for a loop nest of depth l. The

affine computation decomposition of the loop nest onto an n-dimensional processor space

32 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

is an affine function ~c : I ! P , where

~c(~{) = C~{+ ~

C is an n� l linear transformation matrix and ~
 is a constant vector.

We also define the linear decomposition as the linear transformation part of the affine

decomposition and the offset decomposition as the constant part of the affine decomposition.

Mathematically, the linear data and computation decompositions are represented by the

matricesD andC from the above definitions, and the offset decompositions are represented

by the constant vectors ~� and ~
, respectively.

In our model, all the statements within a loop nest are treated as a single unit. For each

iteration~{ of a loop nest, the affine computation decomposition function ~c(~{) specifies the

virtual processor which executes all statements of iteration ~{. We do not consider finding

separate affine functions for each statement within the loop nest.

3.2.1.1 Properties of Affine Decompositions

In this section we describe several key mathematical properties of affine decompositions.

The range of an array access function ~f (~{) = F~{ + ~� is the subspace of the array space

accessed by that reference, and is denoted by S:

S = range
�
~f
�

(3:1)

For an array of dimension m, whenever rank (F) < m, then S is a proper subset of the

array space, S � A.

Let ~d be the affine data decomposition from Definition 3.2.1. Two array elements

~a1;~a2 2 S are allocated to the same virtual processor if and only if

~d(~a1) = ~d(~a2)

D~a1 + ~� = D~a2 + ~�;

3.2. MATHEMATICAL DECOMPOSITION MODEL 33

that is,

D(~a1 � ~a2) = 0 or ~a1 � ~a2 2 N (D):

Here N (D) is nullspace of the matrix D, where the nullspace of a matrix D is the vector

space consisting of all vectors ~a such that D~a = ~0. Conversely, any two array elements

such that (~a1;~a2 2 S) ^ ((~a1 � ~a2) 62 N (D)) are assigned to different virtual processors

and are considered distributed.

Let ~c be the affine computation decomposition from Definition 3.2.2. Two iterations

~{1;~{2 2 I are executed on the same virtual processor if and only if

~c(~{1) = ~c(~{2)

C~{1 + ~
 = C~{2 + ~
;

that is,

C(~{1 �~{2) = 0; or~{1 �~{2 2 N (C):

whereN (C) is nullspace of the matrixC . Any two iterations~{1;~{2 2 I such that (~{1�~{2) 62

N (C) are said to be distributed and are run on different virtual processors.

Definition 3.2.3 Given an affine computation decomposition function ~c(~{) = C~{+ ~
 for a

loop nest, the degree of parallelism is the rank of the linear computation decomposition

matrix C . This is equivalent to l� dim(N (C)), where l is the depth of the loop nest.

Figure 3.2 shows sample affine decompositions onto a virtual processor space and the

corresponding affine functions. Figure 3.2(a) shows affine data decompositions for a two-

dimensional array onto a one-dimensional virtual processor space. Figure 3.2(b) shows

affine computation decompositions for a two-deep loop nest onto a one-dimensional virtual

processor space. In the figure, the elements are shaded to identify their positions.

Given a loop iteration or array element, the affine decomposition assigns that iteration or

array element to a specific virtual processor. The data and computation that are assigned to

the same processor are represented mathematically by the nullspaces of the matricesD and

C , respectively. For example, for both affine data decompositions shown in Figure 3.2(a),

elements along the direction (0; 1) (i.e. each row) are assigned to the same processor

and thus N (D) = span f(0; 1)g. In the first affine computation decomposition shown in

34 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

Arrays

1 0
a1

a2
0+ 1− 0

a1

a2
N+

P
ro

ce
ss

or
s

a2

a1

Loops

0 1
i1
i2

0+ 1 0
i1
i2

2+

P
ro

ce
ss

or
s

i1

i2

(a)

(b)

d a() Da δ+=

c i() Ci γ+=

Figure 3.2: Sample affine decompositions onto a virtual processor space: (a) affine data
decompositions and (b) affine computation decompositions. The elements are shaded to
identify their positions.

Figure 3.2(b), iterations along the direction (1; 0) (i.e. iterations of i1) are on the same

processor and N (C) = span f(1; 0)g. In the second affine computation decomposition

iterations along (0; 1) (i.e. iterations of i2) are assigned to the same processor and N (C) =

span f(0; 1)g.

3.2.1.2 Relationship between Computation and Data

The computation and data in a program are related by the array access functions. Let the

affine computation decomposition for a loop nest j be represented by ~cj(~{) = Cj(~{) + ~
j ,

3.2. MATHEMATICAL DECOMPOSITION MODEL 35

and let the affine data decomposition for an array x be represented by ~dx(~a) = Dx(~a) + ~�x.

Furthermore, let ~fkxj be the kth array access function for array x in loop nest j. No

communication is required if it is possible to define an affine computation decomposition

for each loop nest j and an affine data decomposition for each arrayx such that the following

equation holds for all array access functions k:

Dx(~fkxj(~{)) + ~�x = Cj(~{) + ~
j (3:2)

A trivial solution that guarantees zero communication is to place all the data on a

single processor by setting the affine data decompositions such that 8x; ~dx = 0. By

Equation 3.2, this means that the affine computation decompositions are such that 8j;~cj = 0,

and all the computation executes sequentially. Therefore for all loop nests j,N (Cj) would

span the entire iteration space I , and for all arrays x, N (Dx) would span the entire

array space A. The objective, however, is to maximize parallelism while incurring as

little communication as possible. Maximizing parallelism means finding affine data and

computation decompositions such that for all loop nests j, rank
�
Cj

�
is as large as possible,

or equivalently,N (Cj) is as small as possible.

If it is possible to find a single non-trivial, affine decomposition with no communication,

then there exist many equivalent affine decompositions with the same degree of parallelism

and no communication. For example, given a communication-free affine decomposition

we could always transpose all the data and computation and still have no communication.

Communication due to mismatches in the linear transformation part of an affine decom-

position are expensive since they require data reorganization for entire arrays. In contrast,

communication at the offset level is typically inexpensive nearest-neighbor communica-

tion. We thus also consider the version of Equation 3.2 that omits the offsets. Only

nearest-neighbor communication is required if it is possible to define a linear computation

decomposition for each loop nest j and a linear data decomposition for each arrayx such that

the following equation holds for all array access functions k. Letting ~fkxj(~{) = F k
xj(~{)+

~�kxj ,

DxF
k
xj(~{) = Cj(~{) (3:3)

36 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

3.2.2 Physical Processor Mapping

The virtual processors in each dimension are mapped onto the physical processors of the

target machine via one of the following folding functions: BLOCK, CYCLIC or BLOCK-

CYCLIC(b), where b is the block size. A BLOCK folding function means that
l
Pv
Pp

m
contiguous

virtual processors are assigned to each physical processor, where Pv is the number of virtual

processors and Pp is the number of physical processors. With a CYCLIC folding function

each virtual processor is mapped to a physical processor using a round-robin assignment.

Similarly, with BLOCK-CYCLIC(b), b contiguous virtual processors are assigned round-robin

to the physical processors.

LoopsArrays

Virtual Processors

array access

affine computation
decomposition

affine data
decomposition

Physical Processors

block / cyclic / block-cyclic

f i() Fi ζ+=

d a() Da δ+= c i() Ci γ+=
a1

a2 i2

i1

P

M $

P

M $

P

M $

P

M $

Interconnection Network

Figure 3.3: Two-step model of computation and data decompositions.

3.2. MATHEMATICAL DECOMPOSITION MODEL 37

real x(N,N), y(N,N), z(N,N)
template T(2*N+3,3*N), distribute(block, *)
align x(I,J) with T(I,J)
align y(I,J) with T(I,3*J)
align z(I,J) with T(2*I+3,J)

1 0
a1

a2
0+ 1 0

a1

a2
0+

P
ro

ce
ss

or
s

2 0
a1

a2
3+

blockblock block

affine function:

folding function:

x y z

a2

a1

a2

a1

a2

a1

Figure 3.4: Example of HPF decompositions and the corresponding virtual and physical
processor mappings under our decomposition model.

A complete decomposition thus consists of an affine function for the virtual processor

mapping plus a folding function for the physical processor mapping. This is shown in

Figure 3.3.

The two-step model used by our compiler can represent a superset of the decompositions

available to HPF programmers. The affine decompositions in our model determine the array

alignments in HPF. The rank of the linear transformation part of the affine function specifies

the number of distributed dimensions – this corresponds to the dimensions in the HPF

38 CHAPTER 3. COMPUTATION AND DATA DECOMPOSITION BASICS

distribute statement that are not marked as “*”. The folding functions (BLOCK, CYCLIC

and BLOCK-CYCLIC) correspond directly to those used in the distribute statement in

HPF. For example, Figure 3.4 shows sample HPF distributions with the corresponding

virtual and physical processor mappings under our model. The template directive

declares a two-dimensional template of size (2N+3)�3N and thedistribute directive

distributes the first dimension across a one-dimensional processor space. The array x is

aligned directly onto the template. The first dimension of arrayy is aligned directly onto the

template, and the second dimension is aligned with a stride of 3. Note that even thoughx

and y have different alignments in the second dimension, their decompositions in our model

are identical since the second dimension is local to each processor. The first dimension of

array z is aligned with a stride of 2 and an offset of 3. The stride translates directly to the

linear transformation matrix of the affine decomposition, and the offset becomes the offset

decomposition.

3.3 Summary

In this chapter we first described the machine model used by the decomposition analysis. We

model a machine with physically distributed memories, and each memory is associated with

a single processor. We assume that the communication time between any two processors is

the same, regardless of the specific processors involved. Thus the main factor in determining

the cost to access a data element is whether that access is to the local processor or to a

remote processor.

Next we described our mathematical model of decompositions. We model decompo-

sitions in two steps: first an affine function maps the computation and data onto a virtual

processor space, and second a folding functions maps the virtual processor space onto the

physical processors of the target machine. We also presented a system of equations that

describes the relationship between the computation and data decompositions such that there

is no communication.

Chapter 4

A Static-Decomposition Algorithm

We begin the presentation of our decomposition algorithm in this chapter by considering

the restricted problem of calculating static decompositions. A decomposition is static

when there is a single data decomposition for each array throughout the entire program

region being analyzed. We present an algorithm that finds static computation and data

decompositions with the maximum degree of parallelism. In the following chapter, we will

use the static-decomposition algorithm as a component of the algorithm for finding dynamic

decompositions, in which the data decompositions are allowed to change across different

loop nests.

The static-decomposition algorithm is based on the two-step mathematical model of

decompositions presented in the previous chapter. In Section 4.1 we present the algorithm

for finding static decompositions onto the virtual processor space. Then in Section 4.2 we

describe how the virtual processor space is mapped onto the physical processor space.

4.1 Finding Virtual Processor Mappings

Our algorithm for mapping computation and data onto the virtual processor space generates

affine decompositions. The algorithm sets up a system of equations that the desired affine

decompositions must satisfy, and then solves for the decompositions. The key issues we

address are how to formulate the system of equations, and then how to solve the equations

efficiently. We begin in Section 4.1.1 by giving an overview of the strategy behind the

39

40 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm, and the subsequent sections present the details of the algorithm.

4.1.1 General Approach for Finding Affine Decompositions

From Section 3.2.1.2, we know that the data are always local to the processor accessing the

data when Equation 3.2 holds for all arrays x, loop nests j and array accesses k:

Dx(
~fkxj(~{)) + ~�x = Cj(~{) + ~
j

We can always find a strictly communication-free decomposition by creating a system

of these equations, and then solving directly for the affine computation decompositions,

Cj(~{) + ~
j , and the affine data decompositions, Dx(~a) + ~�x.

Often, however, the only solution with strictly no communication is the trivial solution

that maps all the data and computation onto a single processor. Since each equation in the

system represents a requirement on the data and computation decompositions, it is possible

that the only solution that satisfies all these requirements is the trivial solution. Thus rather

than requiring that Equation 3.2 strictly holds for all accesses to every array in every loop

nest, we relax the equations to allow limited types of communication. As described in

Section 3.2.1.2, communication due to mismatches in the linear transformation part of an

affine decomposition are more expensive than mismatches in the offset part. Our strategy

is to split the affine decomposition problem into two main steps: we first solve for the linear

decompositions – this determines the linear transformation part of the affine function that

represents an affine decomposition, and then we solve for the offset decompositions.

To calculate the linear decompositions, we use the version of Equation 3.2 that omits

the offsets, Equation 3.3. This will lead to a solution where the linear decompositions have

no data-reorganization communication, but may still have nearest neighbor communication

due to offsets. Then after finding the linear computation and data decompositions Cj

and Dx, respectively, the algorithm finds the offset decompositions ~
j and ~�x to form the

complete affine decompositions.

When the decompositions are truly communication-free, no synchronization is nec-

essary. However, linear decompositions that allow nearest-neighbor communication can

require synchronization within and/or across loop nests. Since the parallelism is not as

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 41

effective in loop nests that require synchronization as in loop nests with no synchroniza-

tion, we would prefer to find a linear decomposition where synchronization is only needed

outside the loop nest, rather than a linear decomposition where synchronization is needed

within the loop nest. Based on this observation, we first restrict our attention to problem

of calculating linear decompositions that have no synchronization within the loop nests. In

other words, at this point we only consider distributing iterations of outermost doall loops.

We refer to these decompositions as basic linear decompositions. The loop nests in the

program have been transformed into nests of fully permutable loop nests by the previous

parallelization phase, and the parallel loops have been moved to the outermost possible

position within each fully permutable nest (Section 2.3.1). The algorithm for calculating

basic linear decompositions is presented in Section 4.1.2. We describe how to generate a

system of equations that represents basic linear decompositions, and discuss how to solve

for the decompositions.

Next, we consider additional forms of communication and synchronization. Sec-

tion 4.1.3 shows how we modify the system of equations for basic linear decompositions

to allow replication communication. Then, in Section 4.1.4 we again modify the system of

equations to add regular synchronization within fully permutable loop nests. Section 4.1.5

gives a summary of the full linear decomposition algorithm. Finally, in Section 4.1.6, we

describe how to find the offset decompositions that complete the affine decompositions.

4.1.2 Basic Linear Decompositions

Our algorithm for finding basic linear decompositions has the important property that it

finds basic linear decompositions that have the maximum degree of parallelism possible

(we prove this property in Theorem 4.1.8). We require that the bounds of the loops are

sufficiently large to keep all the processors of the target machine busy. In other words, we

only care about how many loops are parallelized, not which individual loops. If it can be

determined statically that the bounds of a loop are small, then that loop is not considered

parallelizable.

In Section 4.1.2.1 we describe how to formulate the system of equations that describes

basic linear decompositions, and show some examples in Section 4.1.2.2. We then present

42 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

our method for solving the system of equations in Section 4.1.2.3.

4.1.2.1 Formulating the Equations

Basic linear decompositions have no data-reorganization communication and no synchron-

ization within the loop nests. No synchronization within a loop nest means that iterations of

loops that are not outermost parallel loops must be assigned to the same processor. These

equations are called the synchronization equations. No data-reorganization communication

within and across loop nests means that using Equation 3.3, we must ensure that for all

loop nests j, for all access functions k to arrays x in the loop nests, DxF
k
xj(~{) = Cj(~{). The

equations that result from this requirement are called the communication equations.

Synchronization Equations. The synchronization equations describe the loops that are

assigned to the same processor. As we are only considering the case where there is no

synchronization within a loop nest, any loops that are not outermost parallel loops must be

assigned to the same processor. Formally, for a loop nest j of depth l, let loops 1 : : : s be

the outermost parallel loops in the loop nest. Then for all loops q = (s+ 1) : : : l, iterations

~{ and~{+ ~eq must be assigned to the same processor, where ~eq is the qth elementary vector

of dimension l 1:
Cj(~{+ ~eq) = Cj(~{)

Cj((~{+ ~eq)�~{) = ~0

Cj(~eq) = ~0

Thus for each loop nest j, and for each loop q = (s+ 1) : : : l we generate the following:

Cj(~eq) = ~0 (4:1)

We also generate synchronization equations for loops with small bounds to guarantee that

they will execute on the same processor.

Communication Equations. The communication equations must be satisfied for there to

be no data-reorganization communication. We simplify Equation 3.3, DxF
k
xj(~{) = Cj(~{),

1The qth elementary vector, written ~eq , has a 1 in the qth position and zero in all other positions.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 43

by eliminating the iteration space vector~{ on both sides of the communication equation to

giveDxF
k
xj = Cj . The equation must now hold for all integer vectors of length l, where l is

the depth of the loop nest, whether or not they are actually within the bounds of the loops.

For each loop nest j, for each array x and for each array access function k, we generate:

DxF
k
xj = Cj (4:2)

Together, the synchronization and communication equations represent the necessary

conditions for a linear decomposition that allows only nearest-neighbor communication

and no synchronization within a loop nest. There can be many possible solutions to this

system of equations, including the trivial solution that assigns all the computation and data to

a single processor. The objective, however, is to find a solution with the maximum degree

of parallelism. Mathematically, this corresponds to finding linear data and computation

decompositions such that for all loop nests j, rank
�
Cj

�
is as large as possible.

4.1.2.2 Examples of Basic Linear Decompositions

For the single loop nest shown in Figure 4.1(a), the array access functions for the four

references x[i1,i2,i3], x[i1,i2,i3-1], y[i1,N-i2+1,i3] and y[i1,i2,i3] are

~f 1
x1(~{) =

2
6664

1 0 0

0 1 0

0 0 1

3
7775

2
6664

i1

i2

i3

3
7775 +

2
6664

0

0

0

3
7775 ;

~f 2
x1(~{) =

2
6664

1 0 0

0 1 0

0 0 1

3
7775

2
6664

i1

i2

i3

3
7775 +

2
6664

0

0

�1

3
7775 ;

~f 1
y1(~{) =

2
6664

1 0 0

0 �1 0

0 0 1

3
7775

2
6664

i1

i2

i3

3
7775 +

2
6664

0

N + 1

0

3
7775 and

~f 2
y1(~{) =

2
6664

1 0 0

0 1 0

0 0 1

3
7775

2
6664

i1

i2

i3

3
7775 +

2
6664

0

0

0

3
7775

44 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

respectively. These array accesses are affine functions of the form ~f(~{) = F~{ + ~� . Since

here we are only concerned with the linear transformation part of the affine functions, we

consider only the array access matrices:

F 1
x1 = F 2

x1 =

2
6664

1 0 0

0 1 0

0 0 1

3
7775 ; F

1
y1 =

2
6664

1 0 0

0 �1 0

0 0 1

3
7775 ; F

2
y1 =

2
6664

1 0 0

0 1 0

0 0 1

3
7775

real x[N,N,N], y[N,N,N]
/* Loop nest 1 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
for i3 = 1 to N do
x[i1,i2,i3] = x[i1,i2,i3-1] + y[i1,N-i2+1,i3] + y[i1,i2,i3]

(a)

real x[N,N], y[N,N], z[N,N]
/* Loop nest 1 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
x[i1,i2] = y[i1,i2] + z[i1,i2]

/* Loop nest 2 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
y[i1,i2] = y[i1,i2] + x[i2,i1]

(b)

Figure 4.1: Code examples used to illustrate linear decompositions: (a) single loop nest
and (b) multiple loop nests.

The innermost i3 loop is not parallel, which results in the following synchronization

equation:

C1(~e3) = ~0

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 45

This equation ensures that all iterations of the i3 loop are assigned to the same processor.

The communication equations are as follows:

DxF
1
x1 = C1

DxF
2
x1 = C1

DyF
1
y1 = C1

DyF
2
y1 = C1

These equations ensure that for each iteration of the loop nest, the processor that executes

that iteration must also be assigned elements F 1;2
x1 of array x and elements F 1

y1 and F 2
y1 of

array y. The complete set of equations for the example are as follows, after eliminating all

redundant equations:

C1

2
6664

0

0

1

3
7775 = ~0

Dx

2
6664

1 0 0

0 1 0

0 0 1

3
7775 = C1

Dy

2
6664

1 0 0

0 �1 0

0 0 1

3
7775 = C1

Dy

2
6664

1 0 0

0 1 0

0 0 1

3
7775 = C1

A solution with the maximum degree of parallelism for these equations is:

C1 =
h

1 0 0
i
; Dx = Dy =

h
1 0 0

i

The degree of parallelism is rank (C1) = 1. This solution corresponds to distributing

iterations of the i1 loop across the processors.

To find basic linear decompositions across multiple loop nests, the equations for each

individual loop nest are simply merged into a single system of equations. For example, the

46 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

complete set of communication equations for the two loop nests in Figure 4.1(b) is:

Dx

2
4 1 0

0 1

3
5 = C1 Dx

2
4 0 1

1 0

3
5 = C2

Dy

2
4 1 0

0 1

3
5 = C1 Dy

2
4 1 0

0 1

3
5 = C2

Dz

2
4 1 0

0 1

3
5 = C1

There are no synchronization equations since there are no loops with dependences. This

example also illustrates why the system of equations describes a static decomposition, and

not a dynamic decomposition. For each array x there is only one decomposition variable

Dx across all loop nests, and thus the solution will have a single linear data decomposition

for each array. A solution with the largest possible degree of parallelism for these equations

is

C1 = C2 =
h

1 1
i
; Dx = Dy = Dz =

h
1 1

i

The degree of parallelism for this example is rank (C1) = rank (C2) = 1.

4.1.2.3 Solving the Equations

This section describes how we solve the system of equations that describes a linear decom-

position. The objective is to find a solution with the maximum degree of parallelism. It is

also important that the solution is computed incrementally: we need to be able to efficiently

build up the solution and avoid re-solving the equations unnecessarily as we examine larger

and larger regions of the program. Even though in this chapter we are considering the sub-

problem of finding static decompositions for a single region in the program, later we rely on

the incremental nature of the algorithm in Chapter 5 for finding dynamic decompositions

and in Chapter 6 for finding interprocedural decompositions.

Given a linear computation decomposition matrix Cj for a loop nest j, the degree of

parallelism is represented mathematically by rank
�
Cj

�
(Definition 3.2.3). Let l be the

depth of loop nest j, then rank
�
Cj

�
= l � dim(N (Cj)). Thus maximizing the degree of

parallelism means finding linear decompositions such that rank
�
Cj

�
is as large as possible,

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 47

or equivalently, the dimensionality ofN (Cj) is as small as possible.

In general, for arrays x and loop nests j, the nullspaces of the linear decomposition

matrices Dx and Cj represent the data and computation that are assigned to the same

processor, respectively. We observe that the data and computation that go on the same

processor is the major factor that determines the amount of parallelism and communication,

not the individual processor to which the data and computation are assigned. There are many

different, yet equivalent, linear decompositions with the same nullspaces. An important

characteristic of our algorithm is that we first find the nullspaces that are guaranteed to

lead to the desired linear decompositions. We find the smallest possible nullspaces for

which a solution to the system of equations exists. Then a simple calculation is used to

find the corresponding linear transformation matrices. The nullspaces serve as a succinct

representation of the constraints on what data and computation must be assigned to the

same processor. When a new equation is added to the system, we need only update the

nullspaces, not re-solve the entire system of equations.

Based on our mathematical framework, presented in [10], Bau et al. have developed

an alternative method for solving a system of equations to calculate maximum rank affine

decompositions[15]. Their solution, however, requires re-solving the entire system of

equations whenever a new equation is added.

Solver Representation

To solve for the linear decompositions, we represent the computation and data in the program

region by a bipartite interference graph, Gs = (Vc; Vd; E). The loop nests form one set of

vertices Vc, and the arrays form the other set of vertices Vd. There is an undirected edge

between an array and a loop nest for each array access function for the array in the loop nest.

For example, the interference graph for the code in Figure 4.1(b) is shown in Figure 4.2.

An edge ekxj 2 E corresponds to the kth array access function, F k
xj , for array x in

loop nest j. The linear decompositions for array x and loop nest j are related by the

communication equation, DxF
k
xj = Cj . An important property of the interference graph

representation is that if there is an edge between array x and loop nest j, we can calculate

a linear computation decomposition Cj given the linear data decomposition Dx, and vice-

versa. We use this property later in subsequent sections to calculate the nullspaces of the

48 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

y

z

x 1

2

LoopsArrays
Fx1

1

Fx2
1 Fy1

1

Fy2
1

Fz1
1

Fy2
1 1 0

0 1
=

Fx2
1 0 1

1 0
=

Fy1
1 1 0

0 1
=

Fx1
1 1 0

0 1
=

Fz1
1 1 0

0 1
=

Figure 4.2: The interference graph corresponding to the code in Figure 4.1(b). The bold
edges show a cycle in the graph.

linear decomposition matrices and also to calculate the final linear decompositions.

Mapping from the linear data decomposition to the linear computation decomposition

is straightforward. Given the m � l array access matrix F k
xj and n � m linear data

decomposition matrix Dx, we find the n � l linear computation decomposition matrix Cj

by setting Cj = DxF
k
xj . Mapping from the linear computation decomposition to the linear

data decomposition requires solving for the n � m linear data decomposition matrix Dx,

given the m � l array access matrix F k
xj and the n � l linear computation decomposition

matrix Cj . To show that a solution always exists for Dx, we must consider the following

three cases:

1. The system DxF
k
xj = Cj has a single solution for Dx.

2. The system DxF
k
xj = Cj is under-constrained and has infinitely many solutions for

Dx. This occurs when the rank of the m � l matrix F k
xj is less than the number of

rows, rank
�
F k
xj

�
< m. In this case a solution does exist, but there are free variables

in the solution which are completely arbitrary. We solve for Dx, and then fill in

the free variables afterwards. For example, the following loop nest results in an

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 49

under-constrained system:

real x[N,N]

/* Loop nest 1 */

for i1 = 1 to N do

x[i1,1] = : : :

The array access matrix for array x in loop nest 1 above is F 1
x1 =

2
4 1

0

3
5. Here

rank
�
F 1
x1

�
= 1 and m = 2. If we let C1 =

h
1
i
, then

DxF
1
x1 = C1

Dx

2
4 1

0

3
5 =

h
1
i

Dx =
h

1 d12

i

where d12 can be any arbitrary value. Informally, what happens in this case is that

the second dimension of array x is not completely accessed by the given array access

function, F 1
x1. The linear data decomposition of the second dimension of x can thus

be anything – it still will not cause data-reorganization communication when the array

access is executed.

3. The system DxF
k
xj = Cj is over-constrained and has no solution for Dx. This could

potentially happen if the rank of the m � l matrix F k
xj is less than the number of

columns, rank
�
F k
xj

�
< l. Specifically, the system DxF

k
xj = Cj is equivalent to

(F k
xj)

TDx
T = Cj

T and only has a solution when range
�
Cj

T
�
� range

�
(F k

xj)
T
�

[72].

Our algorithm ensures that a solution exists by generating Cj such that this condition

is always met (see Equation 4.4 and Lemma 4.1.2 below). For example, consider the

following code:

50 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

real x[N]

/* Loop nest 2 */

for i1 = 1 to N do

for i2 = 1 to N do

... = x[i1]

The array access matrix for array x in loop nest 2 above is F 1
x2 =

h
1 0

i
. Here

rank
�
F 1
x2

�
= 1 and l = 2. If we let C2 =

h
1 0

i
, then we have

DxF
1
x2 = C2

Dx

h
1 0

i
=

h
1 0

i

Dx =
h

1
i

In this case, range
�
C2

T
�
= range

�
(F 1

x2)
T
�
= span f(1; 0)g and a solution exists.

Informally, what happens is that all iterations of the i2 loop access the same element

of array x. Thus the i2 loop must be assigned to the same processor, that is, N (C2)

must contain span f(0; 1)g, or equivalently, range
�
C2

T
�

must be in span f(1; 0)g.

Otherwise, the elements of array x would have to be allocated to multiple processors

at the same time, and this is not possible without communication (in Section 4.1.3

we relax the model to allow replication communication in some such cases).

The mapping between linear computation and data decompositions are shown in algo-

rithm form in Figure 4.3.

Calculating the Nullspaces

The first step in solving the system of equations is to calculate the nullspaces of the linear

decomposition matrices. This corresponds to calculating the data and computation that

must be assigned to the same processor so as to guarantee a solution to the synchronization

and communication equations.

What data and computation must be assigned to the same processor? There are four

constraints that we place on the nullspaces of the linear decomposition matrices. The

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 51

algorithm Linear Comp Decomp
(F k

xj : matrix,
Dx : matrix)

return
(Cj : matrix)

Cj = DxF
k
xj;

return Cj;
end algorithm;

algorithm Linear Data Decomp
(F k

xj : matrix,
Cj : matrix)

return
(Dx : matrix)

Dx = solve for Dx in DxF
k
xj = Cj;

/* a solution is guaranteed to exist, see page 48 */
return Dx;

end algorithm;

Figure 4.3: Algorithms for mapping between linear data decompositions and linear com-
putation decompositions.

constraints on the nullspaces are represented as a set of basis vectors. In the rest of this

section we describe each of the four constraints and present an algorithm to calculate

them. The first constraint is derived from the synchronization equations and the remaining

constraints are derived from the communication equations. We show that if a solution to the

system of synchronization and communication equations exists, then the nullspaces of the

resulting linear decomposition matrices must contain the space spanned by the constraints

(Theorem 4.1.6).

(1) Synchronization Constraints. The synchronization equations (Equation 4.1) gener-

ate synchronization constraints on the nullspaces of the linear computation decomposition

matrices. For each loop nest j, we have a synchronization equation Cj(~eq) = ~0, for all

52 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

loops q that are not outermost parallel loops. Each synchronization equation leads directly

to a constraint on the nullspace of Cj:

~eq 2 N (Cj) (4:3)

The following lemma shows that Equation 4.3 is a necessary condition for solving the

synchronization equations.

Lemma 4.1.1 For all loop nests j with loops q that are not outermost parallel loops,

if a solution to the synchronization equation Cj(~eq) = ~0 (Equation 4.1) exists, then the

synchronization constraint ~eq 2 N (Cj) (Equation 4.3) is satisfied.

Proof: This follows directly from Equation 4.1. 2

(2) Computation Communication Constraints. The communication equations (Equa-

tion 4.2) generate computation communication constraints on the nullspaces of the linear

computation decomposition matrices. If two iterations~{1 and ~{2 of loop nest j access the

same element of array x, then ~{1 and ~{2 must be mapped onto the same processor. Con-

sider an array access function F k
xj in loop nest j. Iterations ~{1 and ~{2 access the same

element of array x when F k
xj(~{1) = F k

xj(~{2), that is, F k
xj(~{1 �~{2) = ~0. Letting ~t = ~{1 �~{2,

F k
xj(~t) = ~0 and ~t 2 N (F k

xj). Using Equation 4.2, if ~t 2 N (DxF
k
xj) then ~t 2 N (Cj).

Since N (DxF
k
xj) � N (F k

xj), then ~t 2 N (F k
xj) implies that ~t 2 N (Cj). This leads to the

following constraint on the nullspace of Cj:

8~t 2 N (F k
xj);~t 2 N (Cj) (4:4)

The following lemma shows that Equation 4.4 is a necessary condition for solving the

communication equations.

Lemma 4.1.2 For all arrays x, loop nests j and array accesses k, if a solution to the

communication equation DxF
k
xj = Cj (Equation 4.2) exists, then the computation commu-

nication constraint 8~t 2 N (F k
xj);~t 2 N (Cj) (Equation 4.4) is satisfied.

Proof: To prove this lemma, we show that if a solution to DxF
k
xj = Cj exists, then

N (F k
xj) � N (Cj). We know from linear algebra that a solution only exists when

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 53

range
�
Cj

T
�
� range

�
(F k

xj)
T
�

[72]. Also for any matrix A, N (A) ? range
�
AT

�
, that

is, N (A) is the orthogonal subspace to range
�
AT

�
. Thus N (F k

xj) � N (Cj). 2

(3) Data Communication Constraints. The communication equations (Equation 4.2)

also generate data communication constraints on the nullspaces of the data decomposition

matrices. If two array elements~a1 and~a2 of arrayx are accessed by the same iteration of loop

nest j, then ~a1 and ~a2 must be mapped onto the same processor. Furthermore, if elements

of different arrays are accessed by the same iteration, then they must be assigned to the

same processor. This can also cause constraints on the nullspaces of the data decomposition

matrices if different loop nests place conflicting requirements on the arrays.

To calculate the data communication constraints, we first look at the interference graph

Gs = (Vc; Vd; E). For two vertices vx; vy 2 (Vd [Vc), if there is a cycle in the graph

(vx; : : : ; vy; : : : ; vx), then there are multiple distinct paths from vx to vy . If there are

multiple paths between two vertices, then it is possible for the loop nests to cause conflicting

requirements on the decompositions of the arrays.

We now show how a cycle in the interference graph can lead to a constraint on the

nullspaces of the linear data decomposition matrices. For each simple cycle in the interfer-

ence graph, let vx and vy be two vertices in the cycle. Then there are two distinct paths from

vertex vx to vertex vy, Vxy1 = (vx; : : : ; vs; : : : vy) and Vxy2 = (vx; : : : ; vt; : : : vy), where

vs 6= vt. Assume without loss of generality that vx and vy are data vertices, i.e. vx; vy 2 Vd.

All cycles in a bipartite graph contain an even number of vertices, since the graph only

contains edges between vertices in the set Vc and the set Vd. Thus any cycle will contain at

least two data vertices and the assumption is valid. We define a path access function, Hxy ,

such that for a path Vxy we have Dy = DxHxy . Informally, the path access function gives

the mapping between Dx and Dy when we consider only the array access functions along

the path Vxy . We calculateHxy by first settingDx to the identity matrix and then finding all

the linear decompositions along the path using algorithms Linear Comp Decomp and

Linear Data Decomp until reachingDy . Thus for paths Vxy1 and Vxy2 we have two path

access functions Hxy1 and Hxy2 such that Dy = DxHxy1 and Dy = DxHxy2, respectively.

54 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

This gives the following equations:

Dy = DxHxy1 = DxHxy2

Dx(Hxy1 �Hxy2) = ~0

and leads to the following constraint on the nullspace of Dx:

range
�
(Hxy1 �Hxy2)

�
� N (Dx) (4.5)

The data communication constraint is calculated for all arrays in each simple cycle in the

interference graph. This includes the degenerate cycle formed by multiple array access

functions for a single array in the same loop nest. If an array is involved in multiple cycles

and multiple constraints are found, then the constraints are combined. Constraints are

combined by summing the vector spaces that represent the different constraints.

For example, consider the simple cycle in the interference graph in Figure 4.2. Let vx

and vy represent the data vertices for arrays x and y, respectively. Similarly, let v1 and v2

represent the computation vertices for loop nests 1 and 2, respectively. There are two paths

from vertex vx to vertex vy, Vxy1 = (vx; v1; vy) and Vxy2 = (vx; v2; vy). This results in the

following equations for path Vxy1:

DxHxy1 = Dy

Dx

2
4 1 0

0 1

3
5 = Dy

and the following equations for path Vxy2:

DxHxy2 = Dy

Dx

2
4 0 1

1 0

3
5 = Dy

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 55

Thus,
Dx(Hxy1 �Hxy2) = ~0

Dx

0
@
2
4 1 0

0 1

3
5�

2
4 0 1

1 0

3
5
1
A = ~0

range

0
@
2
4 1 0

0 1

3
5�

2
4 0 1

1 0

3
5
1
A � N (Dx)

range

0
@
2
4 1 �1

�1 1

3
5
1
A � N (Dx)

Simplifying the equation results in a constraint on the nullspace ofDx, span f(1;�1)g �

N (Dx). Similar analysis leads to the same constraint on the nullspace of Dy ,

span f(1;�1)g � N (Dy). The following lemma shows that Equation 4.5 is a necessary

condition for solving the communication equations.

Lemma 4.1.3 For all arrays x, loop nests j and array accesses k, if a solution to the

communication equation DxF
k
xj = Cj (Equation 4.2) exists, then the data communication

constraints range
�
(Hxy1 �Hxy2)

�
� N (Dx), where Hxy1 and Hxy2 are two distinct path

access functions (Equation 4.5), is satisfied.

Proof: We prove this lemma by contradiction. We assume that a solution to the commu-

nication equations exists and that the data communication constraint is not satisfied. This

means that there exists linear decompositionsDx, Dy and path access functionsHxy1,Hxy2

such that DxHxy1 = Dy and DxHxy2 = Dy , but range
�
(Hxy1 �Hxy2)

�
6� N (Dx). Thus,

DxHxy1 6= DxHxy2 and Dy 6= Dy which is a contradiction. Thus the original assumption

that the data communication constraint is not satisfied must be false, thereby proving the

lemma. 2

(4) Propagation Constraints. The previous three constraints determine which data ele-

ments within the same array are assigned to the same processor, and which iterations within

the same loop nest are assigned to the same processor. The loops in each loop nest that are

executed on the same processor force elements of the arrays referenced in that loop nest to

be allocated local to the same processor. Similarly, the local array elements force iterations

of the loop nests that access those elements to be executed on the same processor. This

constraint specifies how the nullspaces are propagated between loop nests and arrays.

56 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

If two iterations~{1 and~{2 in loop nest j are mapped to the same processor, then the data

of array x they access must also be mapped to the same processor. We haveCj(~{1) = Cj(~{2)

andCj(~{1�~{2) = ~0, thus for~t =~{1�~{2,~t 2 N (Cj). Using Equation 4.2,DxF
k
xj
~t = Cj

~t = ~0

and thus F k
xj
~t 2 N (Dx). Formally,

N (Dx) � span
n
~s j ~s = F k

xj
~t;~t 2 N (Cj)

o
(4:6)

Similarly, two iterations~{1 and~{2 in loop nest j must be mapped to the same processor if

the data of array x they access are mapped to the same processor. Again, let ~t =~{1�~{2 and

using Equation 4.2, DxF
k
xj
~t = Cj

~t = ~0. Thus ~t 2 N (Cj) when F k
xj
~t 2 N (Dx). Letting

Sk
xj = range

�
F k
xj

�
,

N (Cj) � span
n
~t j F k

xj
~t 2 (N (Dx) \ S

k
xj)
o

(4:7)

In the following lemma we show that it is necessary to propagate the nullspaces between

the data and computation to solve for the communication equations 4.2.

Lemma 4.1.4 For all arrays x, loop nests j and array accesses k, if a solution to the

communication equationDxF
k
xj = Cj (Equation 4.2) exists, then the data and computation

propagation constraints (Equation 4.6, Equation 4.7) are satisfied.

Proof: This follows directly from Equations 4.6 and 4.7. 2

The complete algorithm for finding the nullspaces of basic linear decomposition matrices

is shown in Figures 4.4 and 4.5. Figure 4.4 contains Propagate Nullspaces, the

algorithm used for propagating the nullspaces. The algorithm is iterative – it calculates the

effects of the loop nests on the arrays using Equation 4.6, and the effects of the arrays on

the loop nests using Equation 4.7. This continues until a fixed-point for the nullspaces is

found. Figure 4.5 shows Basic Nullspaces, the main algorithm for calculating the

nullspaces on a given interference graph.

Since algorithm Propagate Nullspaces shown in Figure 4.4 is an iterative algo-

rithm that completes only when a fixed-point is reached, we show in the following theorem

that the algorithm does terminate.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 57

algorithm Update Arrays
(Gs : interference graph, /* Gs = (Vc; Vd; E) */
vj : computation vertex, /* vj 2 Vc */
∆ : set of vector space)

foreach array x and array access F k
xj such that ekxj 2 E do

N (Dx) = N (Dx) + span
n
~s j ~s = F k

xj
~t;~t 2 N (Cj)

o
; /* Equation 4.6 */

∆ = ∆ +N (Dx);
end foreach;

end algorithm;

algorithm Update Loops
(Gs : interference graph, /* Gs = (Vc; Vd; E) */
vx : data vertex, /* vj 2 Vc */
Γ : set of vector space)

foreach loop nest j and array access F k
xj such that ekxj 2 E do

N (Cj) = N (Cj) + span
n
~t j (F k

xj
~t 2 (N (Dx) \ Sk

xj))
o

; /* Equation 4.7 */
Γ = Γ +N (Cj);

end foreach;
end algorithm;

algorithm Propagate Nullspaces
(Gs : interference graph, /* Gs = (Vc; Vd; E) */
Γ : set of vector space,
∆ : set of vector space)

while changes do
if changed(vx 2 Vd) then Update Loops(Gs, vx, Γ);
if changed(vj 2 Vc) then Update Arrays(Gs, vj , ∆);

end while;
end algorithm;

Figure 4.4: Algorithm for propagating the nullspaces of linear decomposition matrices
between loop nests and arrays.

58 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Init Nullspaces
(Gs : interference graph, /* Gs = (Vc; Vd; E) */
ConstrC List : list of constraint,
ConstrD List : list of constraint)

return
(Γ : set of vector space,
∆ : set of vector space)

foreach vj 2 Vc do N (Cj) = ConstrC List;
foreach vx 2 Vd do N (Dx) = ConstrD List;
Γ =

[

8vj2Vc

(N (Cj));

∆ =
[

8vx2Vd

(N (Dx));

return (Γ,∆);
end algorithm;

algorithm Basic Nullspaces
(Gs : interference graph) /* Gs = (Vc; Vd; E) */

return
(Γ : set of vector space,
∆ : set of vector space)

ConstrC List : list of constraint;
ConstrD List : list of constraint;

ConstrC List = /* Equations 4.3, 4.4 */;
ConstrD List = /* Equation 4.5 */;
(Γ, ∆) = Init Nullspaces(Gs , ConstrC List, ConstrD List);

Propagate Nullspaces(Gs, Γ, ∆);
return (Γ,∆);

end algorithm;

Figure 4.5: Algorithm for calculating the nullspaces of the basic linear decomposition
matrices.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 59

Theorem 4.1.5 Algorithm Propagate Nullspaces is guaranteed to terminate.

Proof: For all vx 2 Vd and for all vj 2 Vc, the vector spaces N (Dx) and N (Cj) increase

in size monotonically as the algorithm progresses. In the worst case, the nullspaces will

span the entire space and the algorithm will terminate. 2

The following theorem shows that the nullspaces found by Basic Nullspaces are

necessary for finding the nullspaces of the matrices that satisfy the system of equations

formed by the synchronization and communication equations (sufficiency is proved later, in

Section 4.1.2.3 when we calculate the actual linear decomposition matrices). In other words,

if a solution to the system of equations exists, then the nullspaces of the linear decomposition

matrices from that solution must be at least as large as the nullspaces calculated from our

constraints. As a result, the algorithm finds the smallest nullspaces that guarantee a solution

to the equations. Since the nullspace represents the data and computation that are allocated

to the same processor, finding the smallest nullspaces means that the algorithm is finding

the maximum parallelism such that there is no synchronization within each loop nest and

only nearest-neighbor communication.

Theorem 4.1.6 For all arrays x, loop nests j and array accesses k, if a solution exists to

the system of equations formed by the synchronization equationsCj(~eq) = ~0 (Equation 4.1)

and the communication equations DxF
k
xj = Cj (Equation 4.2), then the nullspaces of

the linear decomposition matrices contain the space spanned by the nullspaces found by

algorithm Basic Nullspaces, and the nullspaces are the smallest possible subspaces.

Proof: The nullspaces found by algorithmBasic Nullspaces are the nullspaces given

by constraints (1)–(4) using Equations 4.3, 4.4, 4.5, 4.6 and 4.7. The necessity of these four

constraints was shown in lemmata 4.1.1, 4.1.2, 4.1.3 and 4.1.4. The nullspaces found by

the algorithm are the smallest possible subspaces because algorithm only ever adds vectors

to the nullspaces in order to ensure that one of the constraints is satisfied. 2

For an example of how Basic Nullspaces works, consider the interference graph

from Figure 4.2 and the corresponding code from Figure 4.1(b). The nullspaces of the

linear computation decomposition matrices are initialized to N (C1) = N (C2) = ;, that

is, there are no synchronization constraints nor computation communication constraints.

60 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

The nullspaces of the linear data decomposition matrices are initialized to N (Dx) =

N (Dy) = span f(1;�1)g due to a data communication constraint, and N (Dz) = ;. First,

the routine Update Loops is called with data vertex vx. Equation 4.7 is applied to

computation vertices v1 and v2 resulting in N (C1) = N (C2) = span f(1;�1)g. Next

routine Update Arrays is called with computation vertex v1. Equation 4.6 is applied to

data vertices vx, vy and vz to give N (Dx) = N (Dy) = N (Dz) = span f(1;�1)g. Routine

Update Arrays is also called with computation vertex v2, but all the arrays have already

been updated so the call has no effect. Finally, Update Loops is called for each of the

data vertices; the calls have no effect and the algorithm terminates.

Calculating the Decomposition Matrices

After calculating the nullspaces of the linear decomposition matrices for each array and for

each loop nest, next we calculate the actual linear decomposition matrices. The first step is

to determine the number of virtual processor dimensions. The number of virtual processor

dimensions n is

n = max
vx2Vd

(dim(Sx)� dim(N (Dx))) (4.8)

where

Sx =
X

8ek
xj
2E

range
�
F k
xj

�

Sx represents the total space of array x that is accessed, typically the entire array. This equa-

tion will yield a value of n such that all the parallelism found in the Basic Nullspaces

algorithm from Figure 4.5 is exploited. For the example from Figure 4.2, n = 1.

When calculating the linear decomposition matrices, we take advantage of the fact that

there is a one-to-one correspondence between edges in the interference graph and the com-

munication equations. This means that each connected component of the interference graph

corresponds to a set of arrays and loop nests that have inter-related linear decompositions.

The linear decompositions of the vertices in different connected components correspond

to independent systems of equations. We thus solve for the linear decompositions in each

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 61

connected component of the interference graph separately. Also, since the decompositions

in each connected component are all relative to one another, we can choose one arbitrary

linear decomposition matrix and derive the rest of the linear decomposition matrices in the

connected component. The algorithm chooses an n �m linear data decomposition matrix

Dy for an array y of dimension m such that N (Dy) is the nullspace that was calculated by

the Basic Nullspaces algorithm.

Starting from the vertex representing array y in the interference graph, we traverse the

remaining vertices in the connected component in breadth-first order. Given the linear

data decomposition Dy , we find the linear computation decomposition Cj for a loop nest

j that references array y using algorithm Linear Comp Decomp. Similarly, given the

computation decomposition Cj , we find the data decomposition matrix Dx for another

array x accessed in loop nest j using algorithm Linear Data Decomp. When there

are multiple array access functions for an array in a loop nest we use the one with the

maximum rank. The remaining linear decomposition matrices in the connected component

are calculated in a similar fashion. After all the linear decompositions are calculated,

any unspecified entries in the matrices are filled in (see Section 4.1.2.3). Note that when

calculating the linear decomposition matrices, non-integer values in the matrices can result.

Since the virtual processor numbers must be integers, the linear decompositions must map

the data and computation into integer values. We eliminate any non-integer values in the

matrices by multiplying through by the least common multiple of the denominators of the

fractions. The algorithm for finding linear decomposition matrices, Calc Matrices, is

shown in Figure 4.6.

The following theorem shows that the Basic Nullspaces algorithm is sufficient for

finding the nullspaces of the matrices that satisfy the system of equations. The theorem also

shows that algorithm Calc Matrices constructs the matrices that have the nullspaces

found by Basic Nullspaces.

Theorem 4.1.7 Algorithm Calc Matrices finds a solution to the system of equations

formed by the synchronization equations (Equation 4.1) and the communication equations

(Equation 4.2) such that the linear decomposition matrices have the nullspaces found by

algorithm Basic Nullspaces.

Proof: We prove this theorem by induction. The base case is the array y for which we

62 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Calc Matrices
(Gs : interference graph, /* Gs = (Vc; Vd; E) */
Γ : set of vector space,
∆ : set of vector space)

/* Nullspaces calculated by Basic Nullspaces */

vy : data vertex;
n : integer;
factor : integer;

foreach connected component Gs
0 2 Gs do

(n; vy) = max
y2Vd

0

(dim(Sy)� dim(N (Dy))); /* Equation 4.8 */

Dy = n�m matrix with nullspace N (Dy); /* m = dim(y) */

/* Find linear decomposition matrices for all vertices */
foreach vx 2 Vd0, vj 2 Vc0 in breadth-first order starting from vy do

for vj 2 Vc
0, k such that F k

xj is max rank, Cj = Linear Comp Decomp(F k
xj, Dx);

for vx 2 Vd
0, k such that F k

xj is max rank, Dx = Linear Data Decomp(F k
xj, Cj);

end foreach;

/* Ensure all entries are integral */
factor = least common multiple of denominators;
foreach vx 2 Vd0, vj 2 Vc0 do
Dx = factor � Dx;
Cj = factor � Cj ;

end foreach;
end foreach;

end algorithm;

Figure 4.6: Algorithm for calculating the linear decomposition matrices.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 63

chose an arbitrary decomposition matrix that has the specified nullspace. For the inductive

step, we show that as each linear decomposition matrix is calculated, it has the correct

nullspace and the synchronization and communication equations hold. There are two cases,

calculating linear data decompositions and calculating linear computation decompositions.

First we show that given a linear data decomposition Dx for array x, we calculate a

linear computation decomposition Cj for loop nest j that has the correct nullspace and that

the synchronization and communication equations are satisfied. The communication equa-

tions are satisfied by construction because these equations are used to calculate Cj given

Dx in algorithm Linear Comp Decomp called from Calc Matrices. The synch-

ronization equations involving loop nest j are satisfied by the synchronization constraint

(Equation 4.3), and the propagation constraint (Equation 4.7) ensures thatN (Cj) is correct.

Next we show that given a linear computation decomposition Cj for a loop nest j, we

calculate a linear data decomposition Dx for array x that has the correct nullspace and that

the synchronization and communication equations are satisfied. Again in this case, the

communication equations are satisfied by construction because these equations are used

to calculate Dx given Cj in algorithm Linear Data Decomp. Note that we know a

solution to the communication equations exists because of the computation communication

constraint (Equation 4.4) and the data communication constraint (Equation 4.5). We do

not need to consider the synchronization equations as they are functions of only the linear

computation decompositions, and have no effect on the linear data decompositions. Finally,

the propagation constraint (Equation 4.6) ensures that N (Dx) is correct. 2

The following theorem shows that algorithm Calc Matrices is correct, and that the

solution has the property that it finds basic linear decompositions with the maximum degree

of parallelism.

Theorem 4.1.8 Algorithm Calc Matrices finds basic linear decompositions that have

the maximum degree of parallelism.

Proof: Theorem 4.1.7 showed that the linear decompositions found by the algorithm satisfy

the synchronization and communication equations. The linear decompositions it finds are

basic linear decompositions as the solution has no data-reorganization communication and

there is no synchronization within each loop nest. Theorem 4.1.6 shows that the nullspaces

64 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

of the linear decomposition matrices are as small as possible. Thus the algorithm is finding

the basic linear decompositions with the maximum degree of parallelism. 2

For an example of the Calc Matrices algorithm, consider the on-going example

from Figure 4.2. The Basic Nullspaces algorithm found that the nullspaces were

N (Dx) = N (Dy) = N (Dz) = span f(1;�1)g, and N (C1) = N (C2) = span f(1;�1)g.

The algorithm first sets Dx =
h

1 1
i
. It then traverses the vertices in the order (1,

2, y, z) to calculate the remaining linear decomposition matrices. The resulting linear

decompositions are:

C1 = C2 =
h

1 1
i
; Dx = Dy = Dz =

h
1 1

i

This is the same result we showed when we first introduced the example in Section 4.1.2.2.

4.1.3 Linear Decompositions with Replication

In this section we describe how to extend the algorithm for finding basic linear decomposi-

tions to allow a restricted form of communication, replication. Replication of read-only data

is a commonly-used technique for improving the performance of parallel machines. The

algorithm we present in this section finds the amount of read-only data replication needed

to maintain the degree of parallelism inherent in the read-write data without introducing

additional communication.

We consider two types of replication: constant replication and dimension replication.

Constant replication creates a fixed number of copies of an entire array. Different processors

may access the same elements of the array at the same time. For example, consider the

code for loop nest 1 in Figure 4.7. Assume that we are given the linear computation

decompositionC1 =
h

2
i
, i.e. iterations of the i1 loop are distributed across the processors

with a stride of 2. Then each processor needs to access both elements y[i1] and y[2*i1]

of array y. We can use constant replication to create two copies of y, each with a different

data decomposition. Figure 4.8(a) shows the two linear data decompositions for array y in

this example onto a one-dimensional virtual processor space.

Dimension replication duplicates data across all the processors along a dimension of

the virtual processor space. In loop nest 2 from Figure 4.7, if we assume that the linear

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 65

real x[2*N], y[2*N], z[N,N]
/* Loop Nest 1 */
for i1 = 1 to N do /* doall */

x[2*i1] = y[i1] + y[2*i1]

/* Loop Nest 2 */
for i1 = 1 to N do /* doall */

for i2 = 2 to N do
z[i1,i2] = z[i1,i2-1] + y[i2]

Figure 4.7: Code used to illustrate linear decompositions with replication.

computation decomposition is C2 =
h

1 0
i

then all processors must access the entire

array y. We can apply dimension replication to y and replicate along all processors in

the first (and only) dimension of the processor space. Figure 4.8(b) shows the linear

data decompositions for the array in this case. Note that with dimension replication, it

is not necessary to replicate the entire array – we can also apply dimension replication to

subsections of an array.

The increase in space requirements to accommodate constant replication is a linear

function of the array size, whereas the extra space needed for dimension replication is a

function of both the number of processors and the array size. With constant replication,

each copy of the array has a different data decomposition. With dimension replication,

there is a single data decomposition for each array that is repeated for all processors along

the replicated processor dimension.

4.1.3.1 Formulating Equations with Replication

All read-only arrays are candidates for replication. We will also replicate any arrays

with read accesses that are of lower dimension than the maximum array dimension found

in the program. A pre-pass examines the array accesses and marks all such arrays as

replicatable. To find the linear decompositions with replication, we first calculate the linear

decompositions ignoring all read accesses to the replicatable data. The communication

66 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

a1

y

2 a1Da =

y

P
ro

ce
ss

or
s

Da =

y

(a)

(b)

P
ro

ce
ss

or
s

a1

a1

1 a1

0 a1

a1

a1

a1

Figure 4.8: Example showing linear data decompositions onto a one-dimensional virtual
processor space with different types of replication: (a) constant replication and (b) dimen-
sion replication. The elements are shaded to identify their positions.

equations and corresponding constraints that would have resulted from these read accesses

are eliminated. Removing these constraints potentially allows linear decompositions that

have a greater degree of parallelism. We then use the linear computation decompositions

for each loop nest to derive the linear data decompositions for the replicatable arrays.

The key issue in calculating linear data decompositions for replicatable arrays from

a given linear computation decomposition is how to model the relationship between the

computation and data with replication. In the remainder of this section, we describe how

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 67

to formulate the equations that allow constant and dimension replication, but still do not

allow arbitrary data-reorganization communication.

Without replication, the system of equations we generated only allowed a single linear

data decomposition Dx for each array x. To model constant replication, we allow multiple

data decompositions for each replicatable array x, one for each read access F k
xj of x in loop

nest j. We denote the linear data decomposition for array x corresponding to the array

access F k
xj by Dk

xj .

To model dimension replication, we use a subspace of the full virtual processor space.

The linear data decompositions for the replicatable arrays are calculated to map onto the

subspace. Then all processors that are in the full processor space, but not in the subspace,

are allocated copies of the data that are allocated to the corresponding processor in the

subspace. We call this subspace of the virtual processor space the replication subspace.

For the example from Figure 4.8(b), Figure 4.9 shows the mapping of array y in both the full

processor space and the replication subspace. The full processor space is one-dimensional,

and the replication subspace has zero dimensions, i.e. the entire array is mapped onto

the first processor. All processors are allocated copies of array y since the entire array is

allocated to a single processor in the replication subspace.

P
ro

ce
ss

or
s

a1

a1

a1

a1

a1

y y

Full virtual
processor space

Replication
subspace

Figure 4.9: An example of dimension replication that shows the correspondence between
the full virtual processor space and the replication subspace. The elements are shaded to
identify their positions.

Let Cj be the computation decomposition matrix for a loop nest j that accesses a

68 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

replicatable array x. Cj maps iterations onto the full processor space. To relate the full

processor space to the replication subspace, for each array access k we use an n � n

projection matrix Rk
xj . A projection matrix is a symmetric matrix that also equals its

square, e.g. Rk
xj = (Rk

xj)
T and Rk

xj = (Rk
xj)

2. We call Rk
xj the replication matrix for the

given array access.

To generate the linear data decompositions with both dimension and constant replication,

we use a modified version of the communication equation DxF
k
xj = Cj . Given the

linear computation decomposition Cj for all loop nests j and the read accesses F k
xj to

all replicatable arrays x, we generate the following replication equations:

Dk
xjF

k
xj = Rk

xjCj (4:9)

We solve these equations to find a linear data decomposition Dk
xj and a replication matrix

Rk
xj .

The replication matrix Rk
xj maps the processor space, range

�
Cj

�
, onto the subspace

range (Dx). When the replication equations are satisfied, the data is local to the processor

accessing that data in the replication subspace. Aside from any constant replication, there

is no data-reorganization communication in the replication subspace. Communication

due to dimension replication occurs along the dimensions that are projected away when

mapping from the full space onto the replication subspace. The nullspace of Rk
xj , N (Rk

xj),

corresponds to those dimensions along which there is dimension replication. Thus when

Rk
xj is the identity matrix,N (Rk

xj) = ; and there is no dimension replication.

Definition 4.1.1 Given an n � n replication matrix Rk
xj for an array access F k

xj , the

degree of replication is the number of processor dimensions along which the data is

copied. Mathematically, the degree of replication is given by dim(N (Rk
xj)), or equivalently,

n� rank
�
Rk

xj

�
.

The replication equations represent the necessary conditions for linear data decom-

positions that allow constant and dimension replication, but still do not allow arbitrary

data-reorganization communication. There can be many possible solutions to these equa-

tions. For example, a trivial solution is to always map all the data onto a single processor in

the replication subspace, and then replicate the entire array across all the processors. The

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 69

objective, however, is to find a solution with the minimum degree of dimension replication.

This corresponds to finding replication matrices Rk
xj such that rank

�
Rk

xj

�
is as large as

possible, or equivalently, N (Rk
xj) is as small as possible.

4.1.3.2 Examples of Linear Decompositions with Replication

Consider the two loop nests from Figure 4.8. Array y is marked replicatable since it is a

read-only array. We first generate the synchronization and communication equations for

the two loop nests ignoring all accesses to array y:

C2

2
4 0

1

3
5 = ~0

Dx

h
2
i

= C1

Dz

2
4 1 0

0 1

3
5 = C2

A solution with the largest degree of parallelism for these equations is

C1 =
h

2
i
; C2 =

h
1 0

i
; Dx =

h
1
i
; Dz =

h
1 0

i

Now we generate a system of replication equations (Equation 4.9) to find the linear data

decompositions for array y:

D1
y1

h
1
i

= R1
y1 C1

D2
y1

h
2
i

= R2
y1 C1

D1
y2

h
0 1

i
= R1

y2 C2

plugging in C1 and C2 from above,

D1
y1

h
1
i

= R1
y1

h
2
i

D2
y1

h
2
i

= R2
y1

h
2
i

D1
y2

h
0 1

i
= R1

y2

h
1 0

i

70 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

A solution with the smallest degree of replication is:

D1
y1 =

h
2
i
; R1

y1 =
h

1
i

D2
y1 =

h
1
i
; R2

y1 =
h

1
i

D1
y2 =

h
0
i
; R1

y2 =
h

0
i

4.1.3.3 Solving Equations with Replication

This section describes how we solve the replication equations. For each replication equation

Dk
xjF

k
xj = Rk

xjCj , Cj and F k
xj are given and we solve for bothDk

xj andRk
xj . The objective is

to find a solution that has the minimum degree of replication. We find replication matrices

Rk
xj such that rank

�
Rk

xj

�
is as large as possible, or equivalently, N (Rk

xj) is as small as

possible. Note that each replication equation is an independent equation; there are distinct

free variables Dk
xj and Rk

xj for each equation. This is in contrast to the interdependent

system of equations we generated for finding basic linear decompositions (Section 4.1.2.3);

in that case we were solving for a single linear computation decomposition for each loop

nest and a single linear data decomposition for each array.

We solve the replication equation Dk
xjF

k
xj = Rk

xjCj by first finding the nullspace of the

replication matrix,N (Rk
xj), that is as small as possible. We then calculate the actual matrix

Rk
xj , and finally solve for the linear data decomposition Dk

xj . Under what conditions is

dimension replication necessary? If two iterations~{1 and~{2 of loop nest j access the same

element of a replicatable array x, then that element must be replicated across the processors

executing~{1 and~{2. For an array access F k
xj , iterations~{1 and~{2 access the same element of

array x when F k
xj(~{1) = F k

xj(~{2), that is, F k
xj(~{1 �~{2) = ~0. Letting ~t = ~{1 �~{2, F k

xj(~t) = ~0

and ~t 2 N (F k
xj). Using Equation 4.9, DxF

k
xj
~t = Rk

xjCj
~t = ~0. Then ~t 2 N (Rk

xjCj), and

N (RxjCj) � N (Cj). Formally,

N (Rk
xj) = span

n
Cj
~t j ~t 2 N (F k

xj);~t 62 N (Cj)
o

(4:10)

This replicates only along dimensions that use the same data and thus require dimension

replication, i.e. the processors executing iterations along dimensions ~t 2 N (F k
xj).

After finding N (Rk
xj), we set Rk

xj to an arbitrary projection matrix that has the given

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 71

nullspace N (Rk
xj). We then solve for Dk

xj in the replication equation Rk
xjCj = Dk

xjF
k
xj ,

using algorithm Linear Data Decomp from Figure 4.3. Figure 4.10 shows the details

of the Calc Replication algorithm for calculating the replication matrices and linear

data decompositions.

The issue remains of whether a solution always exists for Dk
xj once we have found

Rk
xj . Without replication, we could always apply algorithm Linear Data Decomp to

find the linear data decomposition given an array access function and a linear computa-

tion decomposition. The computation communication constraint (Equation 4.4) ensured

that a solution to the communication equation Dk
xjF

k
xj = Cj always existed by making

N (F k
xj) � N (Cj). With replication, a solution for Dk

xj in Rk
xjCj = Dk

xjF
k
xj exists when

range
�
(Rk

xjCj)T
�
� range

�
(F k

xj)
T
�

[72]. This is equivalent to N (Rk
xjCj) � N (F k

xj),

which is true by construction of N (Rk
xj) in Equation 4.10. With dimension replication we

are relaxing the previous computation communication constraint and are no longer requir-

ing that N (F k
xj) � N (Cj); however, since N (Rk

xjCj) � N (F k
xj) we are guaranteed that a

solution for Dk
xj exists in the replication subspace.

The algorithm Calc Replication allows for as much replication as is necessary to

maintain the same degree of parallelism in the non-replicatable data. It does not consider

trading off parallelism to limit the amount of replication needed. As a result, the amount

of replication called for could be much greater than is practical on the target machine. We

can limit the degree of replication by projecting the virtual processor space onto a smaller

physical processor space (see Section 4.2).

4.1.3.4 Broadcast and Multicast Communication

Broadcast communication occurs whenever one processor sends data to all other processors.

A related concept is multicast communication, where one processor communicates data to

a subset of the processors. Many parallel machines offer primitives that support efficient

broadcast and multicast communication. Dimension replication can be viewed as a kind of

multicast communication. With dimension replication, the data assigned to one processor

in the replication subspace is copied to all processors along the replicated dimensions in the

full processor space. In other words, each processor in the replication subspace multicasts

its data to the subset of processors along the replicated dimensions.

72 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Replicated Data Decomp
(F k

xj : matrix,
Cj : matrix)

return
(Dk

xj : matrix)

Rk
xj : matrix;

N (Rk
xj) = span

n
Cj
~t j ~t 2 N (F k

xj);~t 62 N (Cj)
o

; /* Equation 4.10 */
Rk

xj = n� n projection matrix with nullspace N (Rk
xj);

/* n is the dimensionality the virtual processor space, and equals rows(Cj) */

Dk
xj = Linear Data Decomp(F k

xj, R
k
xjCj);

return Dk
xj ;

end algorithm;

algorithm Calc Replication
(Gs : interference graph) /* Gs = (Vc; Vd; E) */

Vd
0 : set of data vertex;

Cj : matrix;

Vd
0 = replicatable arrays in Vd;

foreach vx 2 Vd0 and read array access F k
xj such that ekxj 2 E do

Cj = linear decomposition for computation vertex vj;
Dk

xj = Replicated Data Decomp(F k
xj, Cj);

end foreach;
end algorithm;

Figure 4.10: Algorithms for calculating linear data decompositions with replication.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 73

We can model multicast communication along full dimensions in the processor space as

dimension replication. This is a restricted form of multicast, since we are not copying the

data to arbitrary subsets of the processors. The basic idea is that we allow multicast commu-

nication by applying dimension replication to only the read accesses of a non-replicatable

array. The key issue is then how to modify the system of equations to only allow multicast

communication. For replicatable data, we simply eliminated all the constraints that derived

from the read accesses to that data. However, we can not simply ignore all read accesses

to non-replicatable data; this would result in a large amount of general communication.

We note that in our model of dimension replication, for an array access F k
xj of a repli-

catable array x in loop nest j, there is some degree of dimension replication whenever

dim(N (Rk
xj)) > 0 (Definition 4.1.1). By Equation 4.10, we know that only iterations in

N (F k
xj) can ever cause dimension replication – these are exactly the iterations that access

the same elements of array x. The computation communication constraint (Equation 4.4)

is the constraint that causes iterations inN (F k
xj) to execute on the same processor. Thus to

generate multicast communication, we eliminate the constraints caused by accesses where

N (F k
xj) 6= ;. Since we keep the other constraints, we are not allowing general replication of

x, just multicast communication. We then use the Basic Nullspaces algorithm to find

the nullspaces of the linear decomposition matrices with the modified constraints. Finally,

we calculate Rk
xj and the linear data decomposition Dx in the same way as replicatable

arrays using algorithm Replicated Data Decomp.

4.1.4 Linear Decompositions with Synchronization

Up to this point we have only considered linear decompositions with no synchronization

within each loop nest. We only allowed iterations of outermost doall loops to be distributed

across the processors. However, as we saw in Section 2.3.2, only exploiting the parallelism

in doall loops may not result in the best overall decomposition. In some cases, we can

get better performance by using doacross parallelism in the loop nests. In this section we

describe how to find linear decompositions that also allow synchronization within fully per-

mutable loop nests by distributing iterations of doacross loops. The linear decompositions

we find still maintain the property that there is no data-reorganization communication.

74 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

The outermost parallel loops in the entire loop nest are within the outermost fully

permutable subnest. When finding linear decompositions with synchronization, we first

consider exploiting doacross parallelism in the outermost fully permutable subnest. The

linear decomposition algorithm can be re-applied to exploit parallelism within inner fully

permutable subnests, starting with the outer parallel loops in that subnest. To find linear

decompositions with synchronization within a fully permutable loop nest, we use essentially

the same algorithm that was used for finding basic linear decompositions in Section 4.1.2.

We need only update the synchronization equations and corresponding constraints on the

nullspaces of the linear decomposition matrices; the rest of the algorithm is unchanged.

The updated synchronization equations are presented in Section 4.1.4.1 and Section 4.1.4.2

shows an example. Finally, Section 4.1.4.3 describes how the equations are solved.

4.1.4.1 Formulating Equations with Synchronization

The purpose of the original synchronization equations was to avoid all synchronization

within the loop nest, and all loops that were not outermost doall loops were assigned to

the same processor. However, in Section 2.3.1 we saw that we can efficiently distribute

iterations of doacross loops with finite distances across processors. Thus we now relax the

synchronization equations, and do not assign iterations of such loops to the same processor.

Formally, for a loop nest j of depth l, if a loop at nesting level r has a dependence that

is not a finite distance, or the loop is not in the current fully permutable subnest, then all

iterations~{ and~{+ ~er in the loop nest must be allocated to the same processor, where ~er is

the rth elementary vector of dimension l. This gives the equation:

Cj(~er) = ~0 (4:11)

4.1.4.2 Examples of Linear Decompositions with Synchronization

Consider the following example of an ADI (Alternating Direction Implicit) integration,

originally shown in Section 2.3.1:

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 75

/* Loop nest 1 */

for i1 = 1 to N do /* doall */

for i2 = 2 to N do

x[i1,i2] = f1(x[i1,i2], x[i1,i2-1])

/* Loop nest 2 */

for i1 = 1 to N do /* doall */

for i2 = 2 to N do

x[i2,i1] = f2(x[i2,i1], x[i2-1,i1])

For this example, the original set of synchronization and communication equations for a

basic linear decomposition from Section 4.1.2.1 are as follows:

C1

2
4 0

1

3
5 = ~0

C2

2
4 0

1

3
5 = ~0

Dx

2
4 1 0

0 1

3
5 = C1

Dx

2
4 0 1

1 0

3
5 = C2

The maximum rank solution for these equations is

C1 = C2 = Dx = ;

However, the loops in both loop nest 1 and loop nest 2 are fully permutable and have depen-

dences that can by represented by distances, i.e. (0; 1). We eliminate the synchronization

equations and the complete set of equations becomes:

Dx

2
4 1 0

0 1

3
5 = C1

Dx

2
4 0 1

1 0

3
5 = C2

76 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

A maximum rank solution for these equations is

C1 = Dx =

2
4 1 0

0 1

3
5 ; C2 =

2
4 0 1

1 0

3
5

Note that the algorithm yields a solution that distributes the full iteration and array spaces,

and does not over-constrain the decompositions unnecessarily. In both loop nests, we

distribute both the outer doall loop and the inner doacross loop. This solution can have

idle processors, because of the ordering constraints between the processors in the doacross

loops. The idle processors are dealt with in the virtual-to-physical mapping, described in

Section 4.2.

4.1.4.3 Solving Equations with Synchronization

The previous section presented the equations to describe linear decompositions that allow

synchronization within a loop nest. To solve these equations we need only modify the

synchronization constraint on the nullspace of the linear computation decomposition matri-

ces. For a loop nest j, we only include er 2 N (Cj) for those loops at nesting level r with

dependences that are not finite distances, or that are not within the current fully permutable

subnest. We then use Calc Matrices to calculate the linear decomposition matrices.

4.1.5 Algorithm Summary: Linear Decompositions

So far in this chapter, we presented an algorithm for finding basic linear decompositions.

We then extended the basic algorithm to support replication, multicast and synchronization.

How do these all fit together? Our approach is to first try to find a basic linear decomposition.

At this point we will also replicate any replicatable arrays. Clearly, if a non-trivial basic

linear decomposition can be found then it is preferable. However, it is possible that a

non-trivial basic linear decomposition does not exist, and the only solution is to put all

the data and computation on a single processor. In this case, we then use multicast and

synchronization to eliminate some of the constraints. Multicast and synchronization both

allow more potential parallelism, but at the cost of additional overhead.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 77

The complete algorithm for finding linear decompositions requires only a small up-

date to the Basic Nullspaces algorithm from Figure 4.5. The new version of the

algorithm is shown in Figures 4.11 and 4.12. Figure 4.11 shows the new version of

Basic Nullspaces, called Calc Nullspaces. Figure 4.12 contains the complete

algorithm for calculating linear decompositions, Calc Linear Decomps.

The first step of Calc Nullspaces is to calculate the nullspaces of the linear decom-

position matrices starting with the complete set of constraints in Equations 4.3, 4.4 and 4.5

from Section 4.1.2.3. The nullspaces are examined to determine the degree of parallelism.

If there is sufficient parallelism, then the algorithm terminates (at this point this is exactly

the same as the original Basic Nullspaces algorithm). Otherwise, at the next step the

constraints are re-initialized to allow for multicast, and next synchronization. At each step

the nullspaces are recalculated, and the algorithm terminates if at any step it determines that

there is sufficient parallelism.

4.1.6 Finding Offset Decompositions

A complete affine decomposition consists of a linear decomposition and an offset decompo-

sition. The previous sections of this chapter have described our algorithm finding the linear

decompositions. In this section we describe how to calculate the offset decompositions.

We can use Equation 3.2 to find the offset computation decomposition given the offset

data decomposition, and vice-versa. Given a complete affine data decomposition,Dx(~a) +

~�x, for array x referenced in a loop nest j (with the array access function F k
xj(~{) +

~�kxj) the

computation offset ~
j is:

~
j = Dx
~�kxj + ~�x (4:12)

The offset data decomposition, ~�y, for another array y accessed in the same loop is:

~�y = ~
j �Dy
~�kyj (4:13)

As we expect communication at the offset level to be relatively inexpensive nearest-

neighbor communication, we will not force a loop to execute on a single processor to

avoid communication due just to offsets. However, we try to minimize any communication

78 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

algorithm Calc Nullspaces
(Gs : interference graph, /* Gs = (Vc; Vd; E) */
Γ : set of vector space,
∆ : set of vector space,
ConstrC Table : array of (list of constraint),
ConstrD Table : array of (list of constraint))

return
(Γ : set of vector space,
∆ : set of vector space)

enum Decomp Kind f Basic, Multicast, Synchronization g;
curr kind : integer = current Decomp Kind for Gs;

Propagate Nullspaces(Gs, Γ, ∆);
if sufficient parallelism return (Γ, ∆);

for k = curr kind +1 to max(Decomp Kind) do
set Decomp Kind for Gs to k;
(Γ, ∆) = Init Nullspaces(Gs , ConstrC Table[k], ConstrD Table[k]);
Propagate Nullspaces(Gs, Γ, ∆);
if sufficient parallelism return (Γ, ∆);

end for;

return (Γ, ∆);
end algorithm;

Figure 4.11: Algorithm for calculating the nullspaces of the linear decomposition matrices
with multicast and synchronization.

4.1. FINDING VIRTUAL PROCESSOR MAPPINGS 79

algorithm Init Constraint Tables
return

(ConstrC Table : array of (list of constraint),
ConstrD Table : array of (list of constraint))

enum Decomp Kind f Basic, Multicast, Synchronization g;

ConstrC Table[Basic] = /* Equations 4.3, 4.4 */;
ConstrD Table[Basic] = /* Equation 4.5 */;

ConstrC Table[Multicast] = /* Equation 4.3 */;
ConstrD Table[Multicast] = /* Equation 4.5 */;

ConstrC Table[Synchronization] = /* Equation 4.11 */;
ConstrD Table[Synchronization] = /* Equation 4.5 */;

return (ConstrC Table, ConstrD Table);
end algorithm;

algorithm Calc Linear Decomps
(Gs : interference graph) /* Gs = (Vc; Vd; E) */

ConstrC Table : array of (list of constraint);
ConstrD Table : array of (list of constraint);
Γ : set of vector space;
∆ : set of vector space;

mark replicatable arrays;
(ConstrC Table,ConstrD Table) = Init Constraint Tables;

set Decomp Kind for Gs to Basic;
(Γ, ∆) = Init Nullspaces(Gs , ConstrC Table[Basic], ConstrD Table[Basic]);
(Γ, ∆) = Calc Nullspaces(Gs, Γ, ∆, ContrC Table, ConstrD Table);
Calc Matrices(Gs, Γ, ∆);
if replication then Calc Replication(Gs);

end algorithm;

Figure 4.12: Algorithm for calculating linear decompositions with replication, multicast
and synchronization.

80 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

caused by conflicting offsets whenever possible. The offsets are calculated after the linear

decomposition matrices have already been determined. We use a simple greedy strategy to

find the offset decompositions. We start with an array vertex in the interference graph and

set its offset decomposition to ~0. We then traverse the vertices in the interference graph in

breadth-first order and set the computation and data offsets using Equations 4.12 and 4.13,

respectively. Whenever there is a choice of edges, we select the edge with the largest offset.

Note that when calculating the offset decompositions in this manner, negative values can

result. Since we use the convention that the virtual processor numbers are all non-negative,

offset decompositions must map the data and computation into non-negative integer values.

We eliminate any negative numbers in the offsets by shifting the offsets decompositions by

the largest negative number in each processor dimension.

4.2 Finding Physical Processor Mappings

In this section we describe how we map the virtual processor space onto the physical

processor space. The goal of this step is to effectively utilize the limited physical resources

and to further optimize communication for the target architecture.

At this point, the virtual processor space has n dimensions where n is the maximum

degree of parallelism (given by Equation 4.8). Since distributing as many dimensions

as possible tends to increase the computation to communication ratio[71, 81], by default

we partition the virtual processor space into n-dimensional units. We thus treat physical

processors of the target machine as also having n dimensions.

We consider three possible folding functions for each dimension that is distributed:

BLOCK, CYCLIC and BLOCK-CYCLIC(b). Let Pv be the number of virtual processors in a

given dimension and Pp be the number of physical processors. A BLOCK folding function

means that
l
Pv
Pp

m
contiguous virtual processors are assigned to each physical processor. With

a CYCLIC folding function, each virtual processor is mapped to a physical processors using a

round-robin assignment. Similarly, with BLOCK-CYCLIC(b), b contiguous virtual processors

are assigned round-robin across the physical processors. The number of contiguous virtual

processors mapped to each physical processor, or block size, for the folding functions is

thus
l
Pv
Pp

m
, 1 and b for BLOCK, CYCLIC and BLOCK-CYCLIC(b), respectively.

4.2. FINDING PHYSICAL PROCESSOR MAPPINGS 81

To calculate the folding function, each loop nest is examined to gather any constraints

that loop nest may have on the folding function. If the execution time of each iteration in a

distributed loop is highly variable, a CYCLIC folding function is needed to improve the load

balance. An example of such code is if a distributed loop with loop index variable i contains

an inner loop whose bounds are a function of i. If a loop nest has a large amount of nearest

neighbor communication, then a BLOCK folding function is needed to reduce the amount

of communication. Assigning contiguous blocks of virtual processors to each physical

processor eliminates any nearest-neighbor communication between processors in the same

block. This is particularly important if we are using synchronization within a distributed

doacross loop, as the BLOCK folding function not only reduces the communication volume

but also helps reduce the frequency of synchronization. If we find both CYCLIC and BLOCK

constraints for a virtual processor dimension, then we use a BLOCK-CYCLIC folding function.

If there are no constraints on the folding function imposed by any of the loop nests, then by

default we use a BLOCK folding function.

The affine functions that map the data and computation onto the virtual processor space

are composed with the folding function that maps the virtual processor space onto the phys-

ical processor space. The full decompositions are represented by linear inequalities. Given

affine computation decompositions c(~{) and data decompositions d(~a) in each dimension,

and the folding function with block size b, the corresponding inequalities are:

bp � c(~{) < bp + 1

bp � d(~a) < bp + 1

where p represents the processor number.

We perform one additional optimization in the virtual-to-physical processor mapping.

It is possible that the number of virtual processor dimensions is larger than the nesting

depth of a loop nest. As a result, there will be idle processors as only a fraction of the

processors will ever be busy. For example, this can happen when loop nests access only

subsections of an array. We use the affine computation decompositions to find any idle

processor dimensions, that is, virtual processor dimensions where the computation is local

to a single processor. Let n0 be the number of non-idle virtual processor dimensions. Then

we only map the n0 non-idle virtual processor dimensions onto an n0-dimensional physical

82 CHAPTER 4. A STATIC-DECOMPOSITION ALGORITHM

processor space. An overview of the complete static decomposition algorithm is shown in

Figure 4.13.

algorithm Static Decomps

Gs : interference graph;

Gs = build interference graph;

Calc Linear Decomps(Gs);
calculate the offset decompositions for Gs;
calculate the virtual-to-physical mapping for Gs;

end algorithm;

Figure 4.13: Algorithm for finding static decompositions.

4.3 Summary

In this chapter, we presented an algorithm for calculating static decompositions. Starting

from the array access functions for a set of arrays accessed within a set of loop nests, the

algorithm calculates a data decomposition for each array and a computation decomposition

for each loop nest.

The algorithm is based on the two-step mathematical model of decompositions presented

in the previous chapter. First, it finds an affine decomposition onto the virtual processor

space and then it maps the virtual processor space onto the physical processor space. The

algorithm for calculating affine decompositions onto the virtual processors is again split

into two phases, based on the observation that the communication due to mismatches in the

linear transformation part of the affine decomposition are more expensive than mismatches

in the offset part. Thus the algorithm first solves for the linear decomposition, and then

solves for the offset decomposition to form the complete affine decomposition.

To calculate linear decompositions, we first considered the restricted case of basic linear

decompositions. The algorithm works by setting up a system of equations that represents

4.3. SUMMARY 83

the necessary conditions that a valid basic linear decomposition must satisfy. The algorithm

solves the equations by first calculating the nullspaces of the matrices that represent the

linear decompositions, and then calculating the specific matrices in a separate step. The

nullspaces represent the data and computation that are assigned to the same processor, and

thus determine the degree of parallelism in the computation. The algorithm is optimal in

that it is guaranteed to find basic linear decompositions with smallest possible nullspaces,

and thus the maximum degree of parallelism.

Next we extended the basic linear decomposition algorithm to allow restricted forms

of communication, replication and multicast. Finally, we added the ability to have regular

synchronization within fully permutable loop nests.

Note that the algorithm for finding static decompositions finds the maximum degree

of parallelism given that there is only one decomposition for each (non-replicatable) ar-

ray. It does not consider any tradeoffs between data-reorganization communication and

parallelism. In the worse case, the algorithm can still return with all the data and compu-

tation on a single processor. This indicates that data reorganization is needed, and that the

decompositions must be allowed to change dynamically.

Chapter 5

A Dynamic-Decomposition Algorithm

In this chapter we describe our algorithm for finding dynamic decompositions. A decom-

position is dynamic if the data decompositions are allowed to change across different loop

nests. The static-decomposition algorithm from the previous chapter is used as a build-

ing block in the dynamic-decomposition algorithm. We begin in Section 5.1 by formally

specifying the dynamic decomposition problem. Section 5.2 discusses the complexity of

the problem and shows that finding optimal dynamic decompositions is NP-complete. Our

algorithm for finding dynamic decompositions is described in Section 5.3 and a detailed

example is presented in Section 5.4. Finally, in Section 5.5 we discuss related work on

decomposition algorithms.

5.1 Formulation of the Dynamic Decomposition Problem

This section describes our formulation of the dynamic decomposition problem. First,

Section 5.1.1 explains the program representation and cost model that serve as inputs to the

dynamic-decomposition algorithm. Then, in Section 5.1.2 we present a formal statement

of the problem.

84

5.1. FORMULATION OF THE DYNAMIC DECOMPOSITION PROBLEM 85

5.1.1 Program Representation

We represent each procedure in the program using a communication graph. The vertices

in the graph correspond to the loop nests in the procedure with one or more degrees of

parallelism. Each of the loop nests is in the form of nests of fully permutable loop nests (see

Section 2.3.1). Each vertex has a table with l+1 associated weights, where l is the depth of

the loop nest represented by that vertex. For each loop i 2 f1 : : : lg in the loop nest, table

entry i is an estimate of the execution time if that loop is distributed across the processors.

We also add a final entry to the table with an estimate of the sequential execution time if

the entire loop nest is run locally on a single processor. We only need a single weight per

loop because of the assumption that all distributed loops are sufficiently large to keep all the

processors busy (Section 4.1.2). Our current implementation uses static estimates for the

loop execution times. The compiler examines the code and estimates the time to execute the

computation in the loop nest. The execution time for the parallel loops is the computation

time divided by the number of processors, plus the cost of any necessary synchronization.

The edges in the communication graph represent potential communication in the proce-

dure. The edges are undirected, and an edge (u; v) with weight w(u; v) indicates that if the

data decompositions for the arrays accessed in u are not equal to the data decompositions

for those same arrays in v, then the communication cost is at mostw(u; v). There is an edge

between two vertices u and v if the data decomposition for any array in vertex u can ever

reach vertex v. The edges are analogous to standard def-use chains and are found in a man-

ner similar to the standard reaching definitions data flow problem[3]. The key differences

are that we calculate the edges only for array data, and we treat all array accesses within

a loop nest as both a use and a definition of that array. There is at most one edge between

any two vertices u and v; a single edge is used even if there are multiple arrays in u with

decompositions that reach v. Figure 5.2(a) shows the communication graph for the code

from Figure 5.1. In the figure, all vertices are labeled with the numbers of the loop nests

they represent. The edges are annotated with the list of arrays that produced the edge. For

example, there is an edge between vertices 2:1 and 2:4 because the data decompositions of

arrays x and z reach from loop nest 2:1 to loop nest 2:4. Array x reaches along the path

(2:1, 2:2, 2:4) since it is not accessed at vertex 2:2, and array z reaches along both paths

(2:1, 2:2, 2:4) and (2:1, 2:3, 2:4).

86 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

real x[N,N], y[N,N], z[N,N]
/* Loop nest 1 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
x[i1,i2] = f1(i1,i2)
y[i1,i2] = f2(i1,i2)
z[i1,i2] = f3(i1,i2)

end for
end for

/* Loop 2 */
for time = 1 to T do

/* Loop nest 2.1 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
x[i1,i2] = x[i1,i2] + z[i1,i2]
y[i1,i2] = y[i1,i2] + z[i1,i2]

end for
end for
if (expr) then

/* Loop nest 2.2 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do
y[i1,i2] = y[i1,i2] + y[i1,N-i2+1]

else
/* Loop nest 2.3 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
y[i1,i2] = x[i1,i2] + x[N-i1+1,i2]

end if

/* Loop nest 2.4 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
z[i1,i2] = x[i1,i2] + y[i1,i2] + z[i1,i2]

end for

Figure 5.1: Code example used to illustrate dynamic decompositions.

5.1. FORMULATION OF THE DYNAMIC DECOMPOSITION PROBLEM 87

2.42.32.1

1

2.2

2.42.32.1

1

2.2

100NT 100NT 100N2T, ,()

100N 100N 100N2, ,()

Z 2.1

Z 1

=

=

Z 1

Z 2.1 Z 2.2 Z 2.3 Z 2.4
3N2

0.75N2T

0.75N2T0.5N2T

0.5N2T

1.75N2T

75NT 75N2T,()Z 2.2 =

25NT 25NT 25N2T, ,()Z 2.3 =Z 2.4 =

(a)

(b)

KEY:

x,y,z

y

x,z

x,y y

x,y

Figure 5.2: Example communication graphs for the code in Figure 5.1: (a) the commu-
nication graph annotated with the lists of arrays that produced each edge, and (b) the
communication graph annotated with vertex and edge weights. All vertices are labeled
with the numbers of the loops they represent.

88 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

The weight of edge (u; v), w(u; v), is computed from the frequency with which data

decompositions in vertex u will reach the other vertex v, and the amount of data in the

arrays. If we let A(u;v) represent the set of all arrays that reach from vertex u to v, then the

weight of edge (u; v) is:

w(u; v) =
X

x2A(u;v)

 (u; v; x) � !(j x j) (5:1)

where (u; v; x) is the frequency of execution along the path from u to v for array x, !(k) is

the time it takes to move k data elements on the target machine, and j x j is the size of array

x. The frequency of execution (u; v; x) can differ for different arrays on the same edge

(u; v), depending on the path along which the decomposition for each array reaches from u

to v. This model of edges and associated weights treats each array as a unit – it represents

communicating entire arrays between the two vertices. Once an array is communicated

along (u; v), then it is reorganized and can have a different data decomposition in u than in

v.

The complete communication graph with vertex weights and edge weights for the

sample code in Figure 5.1 is shown in Figure 5.2(b). The figure assumes that the then

branch of the if statement is taken 75% of the time. For the vertex weights, we assume

that the time to execute each loop body takes 100 cycles to execute sequentially, and that

running any loop in parallel speeds up the execution by a factor of N . In this example, all

vertices represent loop nests of depth 2. The vertices are labeled with values representing

the sequential execution time, and the parallel execution time for each of the loops in the

nest (represented in the figure by the labels Z1 through Z2:4). For example, vertex 2:1

has weights (100NT , 100NT , 100N 2T), which represents an execution time of 100N 2T

cycles if all loops in loop nest 2:1 run sequentially, and 100NT cycles if either loop i1

or loop i2 is parallelized. Vertex 2:2 has weights (75NT , 75N 2T); the coefficient of the

weights is 75 since the loop nest is only executed 75% of the time, and there are only two

values since only the i1 loop in loop nest 2:2 is parallelizable. For the edge weights, we

assume a unit communication cost per data element, i.e. !(k) = k. The edge weights are

5.1. FORMULATION OF THE DYNAMIC DECOMPOSITION PROBLEM 89

computed using Equation 5.1:

w(1; 2:1) = (1; 2:1; x) �N 2 + (1; 2:1; y) �N 2 + (1; 2:1; z) �N 2

= N 2 +N 2 +N 2 = 3N 2

w(2:1; 2:2) = (2:1; 2:2; y) �N 2 = 0:75N 2T

w(2:1; 2:3) = (2:1; 2:3; x) �N 2 + (2:1; 2:3; y) �N 2

= 0:25N 2T + 0:25N 2T = 0:5N 2T

w(2:1; 2:4) = (2:1; 2:4; x) �N 2 + (2:1; 2:4; z) �N 2

= 0:75N 2T +N 2T = 1:75N 2T

w(2:2; 2:4) = (2:2; 2:4; y) �N 2 = 0:75TN 2

w(2:3; 2:4) = (2:3; 2:4; x) �N 2 + (2:3; 2:4; y) �N 2

= 0:25N 2T + 0:25N 2T = 0:5N 2T

5.1.2 Problem Statement

How do we express dynamic decompositions using the communication graph? Given a

communication graph, a dynamic decomposition is represented by a partitioning of the

vertices into disjoint sets. Each set of vertices has that property that there is a single,

static decomposition in the region of the program represented by those vertices. Across

different sets, the data decompositions can change dynamically. Thus, there is no data-

reorganization communication within a set, but data-reorganization communication may

occur across different sets. We refer to these sets of vertices as static decomposition regions.

Partitioning the vertices into static decomposition regions uniquely determines the

computation and data decompositions at every loop nest in the procedure. For all loop

nests and all arrays in a given static decomposition region, we can directly calculate their

computation and data decompositions using the static-decomposition algorithm from the

previous chapter. The algorithm is guaranteed to return static decompositions with the

largest degree of parallelism. Given a dynamic decomposition for a communication graph,

each vertex is labeled with the computation decomposition for the loop nest represented by

that vertex, and the data decompositions for all arrays accessed within the loop nest.

The cost of a dynamic decomposition for a communication graph represents an estimate

of the total execution time for the procedure. The cost of the dynamic decomposition is

90 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

computed by summing the edge costs and the vertex costs from the communication graph.

The cost of an edge is the edge weight if the endpoints of the edge are in different static

decomposition regions; otherwise the edge cost is zero. The edge costs represent the

time spent to communicate data as the decompositions change across the different static

decomposition regions.

The cost of the vertices are calculated as follows. Let k be the number of distributed

loops in the computation decomposition for a loop nest of depth l, with 0 � k � l. If k > 0,

then the k distributed loops are used to index into the weight table at the vertex for that

loop nest; this returns a list of k weights, representing the execution time of the loop nest

when each of the k loops is distributed. We set the cost of the vertex to the maximum over

the list of k weights, which gives a worst-case estimate of the time to execute the loop nest

with k distributed loops. If k = 0, then the cost of the vertex is the sequential execution

time of the loop nest. Note that the nullspaces of the linear computation decomposition

matrices specify which loops in each loop nest are executed locally on the same processor;

all other loops are distributed. Thus we only need the nullspaces to compute the cost

of a vertex – the complete decompositions are not necessary (we make use of this fact

in our dynamic decomposition algorithm in Section 5.3). Taken together, the vertex costs

represent an estimate of the computation time for the procedure. The total cost of a dynamic

decomposition for a communication graph cost is thus the sum of the communication time

and the computation time, and is an estimate of the total execution time for the procedure.

For a given communication graph, the objective function for the dynamic decomposition

problem is to partition the graph into static decomposition regions such that the cost is

minimized. We define the dynamic decomposition problem formally as follows. Given

a communication graph Gc = (V;E) with weighted vertices and weighted edges, find a

function g : V ! f1; 2; : : : ; j V jg such that the cost of the resulting dynamic decomposition

for Gc is minimized. The value of the function g for a vertex v 2 V is the number of the

static decomposition region that contains v. The maximum number of static decomposition

regions is j V j, the total number of vertices, as it is possible for each static decomposition

region to contain a single vertex.

5.2. COMPLEXITY OF THE DYNAMIC DECOMPOSITION PROBLEM 91

5.2 Complexity of the Dynamic Decomposition Problem

To analyze the complexity of the dynamic decomposition problem, we first turn it into a

decision problem by asking: for a given communication graph Gc = (V;E), does there

exist a function g : V ! f1; 2; : : : ; j V jg such that the total cost of Gc is less than some

positive integer B?

Theorem 5.2.1 The dynamic decomposition problem is NP-complete.

Proof: The dynamic decomposition problem is in NP since a nondeterministic algorithm

can guess the function g and check in polynomial time that the cost of the dynamic

decomposition is less than B.

We transform the known NP-complete problem, Colored Multiway Cut[26], into a

subproblem of the dynamic decomposition problem. The Colored Multiway Cut (CMC)

problem is: given a graph G = (V;E) with weighted edges, and a partial k-coloring of the

vertices, i.e., a subset V 0 � V and a function g : V 0 ! 1; 2; : : : ; k, can g be extended to

a total function such that the total weight of edges that have different colored endpoints is

less than some positive integer B?

Consider the dynamic decomposition subproblem (DDS) in which the program accesses

only a single array x. Let an arbitrary instance of CMC be given by a graph G = (V;E)

and positive integers k and B. We can reduce an instance of CMC into an instance of

DDS in polynomial time by writing the input program outlined below. The strategy is to

construct a program such that there is a one-to-one mapping between the colors in CMC

and the static decompositions regions in DDS. The program will have at most k possible

static decomposition regions, where each region leads to a decomposition that distributes

one dimension of array x. The program is constructed so that the vertices in CMC become

vertices in the communication graph, and the edges in CMC become the edges in the

communication graph.

� The single array x is k-dimensional, where k is the number of colors in the Colored

Multiway Cut problem. All k dimensions are of equal size N .

� Each vertex in the original CMC problem becomes a loop nest of depth k in the DDS

input program, and thus a vertex in the communication graph.

92 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

� For each edge (u; v) inG with weightw(u; v), we add a conditional branch statement

after the loop nest representing vertex u whose target is the loop nest representing

vertex v. We write the branch such that its frequency of execution is (u; v; x) =

w(u; v)=!(Nk). From Equation 5.1, this results in an edge in the communication

graph for DDS with weight (w(u; v)=!(Nk)) � !(Nk) = w(u; v). As a result, the

weighted edges in the communication graph for DDS correspond directly to the

weighted edges in CMC.

� For each vertex v 2 V 0 of color r in CMC, we generate the following array accesses

in the loop nest for v:

for i1 = 1 to N/2 do

: : :

for ir = 1 to N do /* doall */

: : :

for ik = 1 to N/2 do

x[i1,: : :,ir,: : :,ik] = f(x[2 � i1,: : :,ir,: : :,2 � ik])

The rth loop is a doall loop, and the remaining k � 1 loops in the loop nest are

sequential. Also, the parallel loop can legally be moved to the outermost position in

the loop nest.

For each vertex v 2 V � V 0 (the vertices that do not have a preassigned color) we

generate the following array accesses in the loop nest for v:

for i1 = 1 to N do /* doall */

: : :

for ik = 1 to N do /* doall */

x[i1,: : :,ik] = f(x[i1,: : :,ik])

All k loops in the loop nest are doall loops.

5.3. FINDING DYNAMIC DECOMPOSITIONS 93

In both cases above, the index expression for the ith dimension of array x is always an

affine function of only the ith loop index variable. This ensures that the resulting data

and computation decompositions will have a one-to-one correspondence between the

distributed dimensions of the array and the distributed loops in the loop nest, i.e. if

the data decomposition for the array distributes dimension i, then the computation

decomposition for the loop nest distributes loop i. Also, all array accesses are

perfectly nested, and the entire loop nest is fully permutable.

� The weight table for each of the vertices in DDS is set as follows. The entry for

sequential execution is set to a large value, larger than B. The entries for distributing

each of the loops is set to 0. These weights guarantee that a solution to DDS can

never run a loop nest sequentially, as the cost is always lower to distribute a loop.

The constructed dynamic decomposition problem has a solution with cost less than B,

if and only if the original Colored Multiway Cut problem has a solution such that the total

weight of edges that have different colored endpoints is less than B. The construction

of DDS is such that the solution will have at most k static decomposition regions, each

corresponding to distributing a single dimension of array x and distributing one loop in each

loop nest. There is a one-to-one correspondence between vertices in CMC and DDS. The

number of each vertex’s static decomposition region in the solution to DDS is the number

of the color for the corresponding vertex in CMC. Clearly the transformation from Colored

Multiway Cut into the dynamic decomposition problem is polynomial. Thus, since Colored

Multiway Cut is NP-complete the dynamic decomposition problem is NP-complete. 2

5.3 Finding Dynamic Decompositions

The number of possible dynamic decompositions for a given communication graph Gc =

(V;E) is exponential in the number of vertices, i.e. 2jV j. The number of loop nests in a

procedure, and thus the number of vertices, is a large number in practice. In designing

an algorithm for solving the dynamic decomposition problem, we must decide whether

to solve exactly using an exponential algorithm, or whether to use heuristics and find

an approximate solution. There are a number of compiler problems that successfully use

94 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

algorithms that are exponential in the worst case. For example, Fourier-Motzkinelimination

is used to compute data dependences[59], to calculate new loop bounds after applying loop

transformations[8] and to map array accesses across procedure boundaries[25, 37, 38]. Even

though the worst-case behavior is exponential, for these problems the algorithm has good

behavior in the common case. In fact, as discussed in the next chapter, the interprocedural

version of our decomposition algorithm makes use of Fourier-Motzkin elimination to map

data decompositions and array accesses across procedure boundaries. Unfortunately, the

dynamic decomposition problem itself does not have any common-case behavior that can be

easily exploited to create an optimal algorithm that is efficient in practice. Thus, our strategy

is to use a simple and efficient heuristic algorithm. The emphasis of the algorithm is on

finding static decomposition regions that are as large as possible. The priority is to eliminate

expensive data-reorganization communication completely, rather than concentrate on small

differences in communication cost.

We use a greedy algorithm that eliminates the largest amounts of potential communi-

cation first from the most frequently executed paths in the program. To represent the most

frequent paths in the program, we impose a hierarchical structure on the communication

graph. We augment the graph by adding hierarchy vertices representing outer, sequential

loops and directed hierarchy edges that form the vertices into a forest of trees. There is a

hierarchy edge from vertex u to vertex v if the loop nest represented by v is directly nested

within u. The original vertices in the communication graph are now the leaf vertices in

the tree formed by the hierarchy edges. For example, Figure 5.3 shows the communication

graph from Figure 5.2 augmented with hierarchy edges and vertices. In the figure, the

vertex labeled top corresponds to the outermost nesting level of the procedure, and all other

vertices are labeled with the numbers of the loops they represent.

The basic design of the algorithm is as follows. Each vertex in the communication graph

starts out in its own static decomposition region. The algorithm then tries to merge the ver-

tices that have the greatest edge weights into the same static decomposition region, thereby

eliminating the possibility of data reorganization between the two loop nests represented

by the vertices. The analysis is performed in order from the innermost to the outermost

levels in communication graph hierarchy. This has the effect of pushing communication

into the outermost loops as much as possible. An overview of the dynamic-decomposition

5.3. FINDING DYNAMIC DECOMPOSITIONS 95

21

hierarchy edge

original edge

KEY:

Top

2.42.32.1 2.2

hierarchy vertex

original vertex

Figure 5.3: An example communication graph with hierarchical structure for the code
in Figure 5.1. The vertex labeled top corresponds to the outermost nesting level of the
procedure, and all vertices are labeled with the numbers of the loops they represent.

algorithm is shown in Figures 5.4 through 5.6.

The driver for the dynamic-decomposition algorithm, Dynamic Decomps Driver

in Figure 5.4, starts by building the hierarchical communication graph for the current pro-

cedure. Our current implementation uses static estimates for the path frequencies when

computing the communication graph edge weights. More accurate frequencies can be

obtained by instrumenting the program and collecting path profile information[12]. The

Dynamic Decomps algorithm in Figure 5.5 then places each loop nest in the communi-

cation graph in its own static decomposition region. Each static decomposition region is

represented by its bipartite interference graph (see Section 4.1.2.3). There is a one-to-one

correspondence between the vertices in the static decomposition region of the communica-

tion graph and the computation vertices in the interference graph. The initial interference

graphs for each static decomposition region thus contain a single computation vertex, and

96 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

algorithm Dynamic Decomps Driver
(Curr Proc : procedure)

Gc : communication graph;

Gc = build communication graph for Curr Proc;
Dynamic Decomps(Gc);

calculate the offset decompositions for Gc;
calculate the virtual-to-physical mapping for Gc;

end algorithm;

Figure 5.4: Driver algorithm for finding dynamic decompositions.

one data vertex for each array accessed in the corresponding loop nest. The algorithm

then calls the Single Level Decomps algorithm in Figure 5.6 to examine each nesting

level of the communication graph in a bottom-up order, from innermost nesting level to

outermost.

Within each level of the communication graph hierarchy, the edges are sorted by de-

creasing edge weight. For example, in the communication graph in Figure 5.2, the order of

the edges nested within loop 2 is (2:1; 2:4), (2:1; 2:2), (2:2; 2:4), (2:1; 2:3), (2:3; 2:4).

For each edge (u; v), the algorithm tries to merge u and v into the same static de-

composition region. The interference graphs for u and v are merged into a single inter-

ference graph, and then the nullspaces for the merged graph are calculated by calling the

Calc Nullspaces algorithm from Figure 4.11. This has the effect of putting the two

loop nests in the same static decomposition region, and eliminates the data reorganization

cost of the edge. When merging two interference graphs, any data vertices common to

both interference graphs are combined into a single data vertex, and their constraints are

combined. The computation vertices are always distinct in each interference graph, so they

are copied directly into the merged graph. If any new cycles are formed in the merged

graph, then the data communication constraints must also be updated (Section 4.1.2.3).

The merge may cause some (or all) of the loop nests to execute sequentially, or it may

5.3. FINDING DYNAMIC DECOMPOSITIONS 97

algorithm Dynamic Decomps
(Gc : communication graph) /* Gc = (V;E) with hierarchy information */

Gs : interference graph;
ConstrC Table : array of (list of constraint);
ConstrD Table : array of (list of constraint);
Γ, ∆ : set of vector space;

mark replicatable arrays;
(ConstrC Table,ConstrD Table) = Init Constraint Tables;

/* Initialize each vertex into its own static decomposition region */
foreach v 2 V do
Gs = build interference graph for v;
set Decomp Kind for Gs to Basic;
(Γ, ∆) = Init Nullspaces(Gs , ConstrC Table[Basic], ConstrD Table[Basic]);
(Γ, ∆) = Calc Nullspaces(Gs, Γ, ∆, ContrC Table, ConstrD Table);

end foreach;

/* Create static decompositions regions at each level in Gc */
foreach level � in Gc in bottom-up order do

Single Level Decomps(Gc, �, ContrC Table, ConstrD Table);
end foreach;

foreach Gs 2 set of static decomposition regions in Gc do
(Γ, ∆) = set of nullspaces for vertices in Gs;
Calc Matrices(Gs, Γ, ∆);
if replication then Calc Replication(Gs);

end foreach;
end algorithm;

Figure 5.5: Core algorithm for finding dynamic decompositions.

98 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

algorithm Single Level Decomps
(Gc : communication graph, /* Gc = (V;E) with hierarchy information */
� : level, /* current level in Gc */
ConstrC Table : array of (list of constraint),
ConstrD Table : array of (list of constraint))

Gs, Gs
0, Gs

00 : interference graph;
Γ, ∆ : set of vector space;
Γ0, ∆0 : set of vector space;
curr cost : integer;

(Γ, ∆) = set of nullspaces for computation and data in Gc;
curr cost = cost(Gc, Γ, ∆);

foreach (u; v) 2 E at level �, in order of decreasing weights do
Gs

0 = get interference graph for u;
Gs

00 = get interference graph for v;
Gs = merge interference graphs Gs

0 and Gs
00;

(Γ0, ∆0) = set of nullspaces for vertices in Gs;
(Γ, ∆) = (Γ, ∆) � (Γ0, ∆0) +

Calc Nullspaces(Gs, Γ0, ∆0, ContrC Table, ConstrD Table);

if cost(Gc, Γ, ∆) < curr cost then
curr cost = cost(Gc, Γ, ∆);
record (Γ, ∆) in Gc;
commit the merge;

else
discard the merge;

end if;

end foreach;
end algorithm;

Figure 5.6: Algorithm for finding dynamic decompositions at a single level of the commu-
nication graph.

5.3. FINDING DYNAMIC DECOMPOSITIONS 99

generate replication or synchronization within loops. The algorithm calculates the total

cost of the dynamic decompositions for the communication graph before and after the new

nullspaces have been calculated. If the cost of the dynamic decomposition is less after the

merge, then the new interference graph is saved and both u and v are set to use the new

interference graph. The algorithm then records the new nullspaces of all loops nests and

arrays within the new static decomposition region. Otherwise, u and v are in different static

decomposition regions and there is data-reorganization communication along the edge.

After the nullspaces for all the loop nests (and corresponding arrays) have been found,

then the algorithm calculates the linear decomposition matrices within each static de-

composition region. It then calculates the offset decompositions to give complete affine

decompositions onto the virtual processor space. Finally, the algorithm calculates the

virtual-to-physical processor mappings to yield the final decompositions.

There a few key points to note about this algorithm. As the algorithm progresses,

it uses the nullspaces of the linear decomposition matrices to gather constraints on the

decompositions. Since we use the nullspaces directly to calculate the cost of the current

communication graph, this allows us to solve incrementally as we merge loop nests into

larger and larger static decomposition regions. The algorithm relies on the fact that the

nullspaces calculated by the static-decomposition algorithm are the minimum nullspaces

that meet the constraints. This means that there are no extraneous constraints, and allows

the static decomposition regions to grow as large as possible.

Our greedy approach is a simple heuristic, and clearly other heuristics are possible.

For the experiments we ran, however, we found that the algorithm works well in prac-

tice (see Chapter 7). Our experiments, in addition to other work with hand-parallelized

applications[70, 81], show that efficient parallel codes reorganize data infrequently. Our

approach of merging loop nests into static decomposition regions in order of the most

frequently executed paths in the program, is thus a reasonable strategy for these kinds of

programs.

100 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

5.4 A Dynamic Decomposition Example

Figure 5.7 shows how interference graphs representing static decomposition regions are

used to merge loop nests for the example code from Figure 5.1 and the corresponding

communication graph from Figure 5.2 and Figure 5.3. For the purposes of this example,

we assume that both the array dimension size N and the bound of the time loop T are

large values. The array access functions for this example are as follows:

F 1
x1 = F 1

y1 = F 1
z1 =

2
4 1 0

0 1

3
5

F 1
x2:1 = F 1

y2:1 = F 1
z2:1 =

2
4 1 0

0 1

3
5

F 1
y2:2 =

2
4 1 0

0 1

3
5 ; F 2

y2:2 =

2
4 1 0

0 �1

3
5

F 1
x2:3 = F 1

y2:3 =

2
4 1 0

0 1

3
5 ; F 2

x2:3 =

2
4 �1 0

0 1

3
5

F 1
x2:4 = F 1

y2:4 = F 1
z2:4 =

2
4 1 0

0 1

3
5

The algorithm first initializes each of the loop nests into its own static decomposition

region. At this point the nullspaces of the linear computation decomposition matrices are:

N (C1) = ;

N (C2:1) = ;

N (C2:2) = span f(0; 1)g

N (C2:3) = span f(1; 0)g

N (C2:4) = ;

The nullspaces of the linear data decomposition matrices for each of the arrays accessed

within the loop nests have the same nullspaces as the corresponding linear computation

decomposition matrices, e.g. N (Dx) = N (Dy) = N (C2:3) for arrays x and y in loop

nest 2:3. The Calc Nullspaces algorithm finds that N (C2:2) = span f(0; 1)g because

5.4. A DYNAMIC DECOMPOSITION EXAMPLE 101

y

z

x 2.1

2.4

ComputationData

y

z

2.1

2.4

x

2.2

y

z

2.1

2.4

x

2.2

2.3

y

z

2.1

2.4

x

2.2

y 2.3

x

ComputationData

y 2.3

x

y

z

2.1

2.4

x

2.2

1

∅

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

0 1,()

1 0,()

1 0,() 1 0,()

∅

(a)

(b)

(c)

(d)

(e)

∅

∅

∅

1 0,()
,

0 1,()
1 0,()

,

0 1,()
1 0,()

,

0 1,()
1 0,()

,

0 1,()
1 0,()

,

0 1,()
1 0,()

,

0 1,()
1 0,()

,

0 1,()

0 1,()

0 1,()

1 0,()

0 1,()

0 1,()

0 1,()

0 1,()

1 0,()

1 0,()

Figure 5.7: Merging loop nests using interference graphs. The computation vertex numbers
correspond to the loop nests from Figure 5.1. The basis vectors of the nullspaces for each
array and each loop nest are shown next to each vertex.

102 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

of a synchronization constraint from the inner sequential loop in loop nest 2:2 (see Sec-

tion 4.1.2.3). Calling Propagate Nullspaces makes N (Dy) = N (C2:2) in loop nest

2:2. Also, N (C2:3) = span f(1; 0)g because of a data communication constraint arising

from the cycle in the interference graph from array accesses F 1
x2:3 and F 2

x2:3 (see Sec-

tion 4.1.2.3). This constraint requires thatDxF
1
x2:3 = DxF

2
x2:3 = C2:3, thus (1; 0) 2 N (Dx).

After calling Propagate Nullspaces, we have N (Dx) = N (Dy) = N (C2:3) in

loop nest 2:3. We can now calculate the total cost of the initial dynamic decomposition

for the communication graph Gc = (V;E). Let W be the sum of the edge weights,

W =
P

(u;v)2E w(u; v) = 4:25N 2T + 3N 2 and let Z be the sum of the vertex weights if the

loop nests are parallelized, Z = 300NT + 100N . Thus the total cost of the initial dynamic

decomposition is W + Z .

The algorithm first analyzes the vertices at the innermost nesting level, containing the

vertices nested within loop 2. The first edge we examine is (2:1; 2:4), and we merge

vertices 2:1 and 2:4 into the same static decomposition region. This step is shown in

Figure 5.7(a). The nullspaces at both 2:1 and 2:4 were initialized to ;, and merging the two

vertices creates no additional constraints. We have eliminated the communication along

edge (2:1,2:4) and the total cost of the communication graph is Z + (W � w(2:1; 2:4)).

The cost of the new communication graph is less than the cost of the initial graph, and the

merge is committed. Figure 5.7(b) shows the results of processing the next edge, (2:1; 2:2),

and merging vertex 2:2 into the same static decomposition region with 2:1 and 2:4. In

this case Calc Nullspaces returns with N (Dx) = N (Dy) = N (Dz) = N (C2:1) =

N (C2:2) = N (C2:4) = span f(0; 1)g. The next communication graph edge is (2:2; 2:4)

but since vertices 2:2 and 2:4 are already in the interference graph, the interference graph

is unchanged. At this point, the cost of the current dynamic decomposition is Z + (W �

w(2:1; 2:4)�w(2:1; 2:2)�w(2:2; 2:4)) = Z + (w(2:1; 2:3) +w(2:3; 2:4) + w(1; 2:1)) =

(300NT + 100N) + (N 2T + 3N 2).

In Figure 5.7(c), we visit edge (2:1; 2:3) and add vertex 2:3 to the interference graph.

Here, when Calc Nullspaces returns, all the nullspaces are set to span f(0; 1); (1; 0)g

and thus span the entire space. This means that all the data and computation are allocated

onto a single processor. The vertex costs now use the sequential execution time for loop

nests 2:1 : : : 2:4, and the total graph cost is (300N 2T + 100N) + (w(2:3; 2:4)+w(1; 2:1))

5.4. A DYNAMIC DECOMPOSITION EXAMPLE 103

= (300N 2T + 100N) + (0:5N 2T + 3N 2). Clearly, the cost is now much larger than

before we merged vertex 2:3, i.e. we eliminated the cost of an edge weighted 0:5N 2T ,

but incurred a large increase of nearly 300N 2T in computation time. Thus the merge is

discarded and loop nest 2:3 is split off into its own static decomposition with a separate

interference graph as shown in Figure 5.7(d). The cost of the communication graph is now

back to Z + (w(2:1; 2:3) + w(2:3; 2:4) + w(1; 2:1)). The next communication graph edge

is (2:3; 2:4) which has no effect. The algorithm is now finished with the subgraph for the

loop nests that are nested within loop nest 2.

Next the algorithm proceeds to the outermost nesting level. It merges loop nest 1 into

the static decomposition region containing loop nest 2:1. The final nullspaces are shown in

Figure 5.7(e). At this point we have two static decomposition regions in the communication

graph, one containing the set of vertices f1; 2:1; 2:2; 2:4g and the other containing the set

of vertices f2:3g. The final graph cost is Z + w(2:1; 2:3) + w(2:3; 2:4), meaning that we

have data-reorganization communication along edges (2:1; 2:3) and (2:3; 2:4). Figure 5.8

shows the hierarchical communication graph with the static decomposition regions for each

vertex. In the figure, the different static decomposition regions are shown with dark grey

backgrounds.

We then calculate the linear decomposition matrices and the offsets to find the final

affine decompositions. For the static decomposition region f1; 2:1; 2:2; 2:4gwe have:

C1 = C2:1 = C2:2 = C2:4 =
h

1 0
i

Dx = Dy = Dz =
h

1 0
i

For the static decomposition region f2:3g we have:

C2:3 =
h

0 1
i

Dx = Dy =
h

0 1
i

We use the default BLOCK virtual-to-physical mapping for both static decomposition

104 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

1

reorganization
communication

2.42.32.22.1

hierarchy edge

original edge

KEY:
hierarchy vertex

original vertex

2

Top

Figure 5.8: Communication graph from Figure 5.3 with static decompositions regions.
The different static decomposition regions are shown with dark grey backgrounds. The
vertex labeled top corresponds to the outermost nesting level of the procedure, and all other
vertices are labeled with the numbers of the loops they represent.

regions. The final decompositions for the static decomposition region f1; 2:1; 2:2; 2:4g are:

bp �
h

1 0
i
~{ < bp+ 1

bp �
h

1 0
i
~a < bp+ 1

where b is the block size and p is the processor number. Similarly, for the static decompo-

sition region f2:3g we have:

bp �
h

0 1
i
~{ < bp+ 1

bp �
h

0 1
i
~a < bp+ 1

5.5. RELATED WORK 105

5.5 Related Work

This section explores previous work on automatic decomposition algorithms. We focus the

discussion on compiler algorithms that calculate decompositions for dense matrix scientific

codes. In all cases, the statements in a loop nest are the basic unit of computation and the

data structures are arrays. Techniques for mapping the computation and/or data of a single

loop nest have been presented in the literature[42, 52, 53]. Here we focus on approaches

that consider multiple loop nests. All previously proposed algorithms are intraprocedural,

so we discuss them in the context of the intraprocedural subset of our algorithm (our

interprocedural algorithm is described in the following chapter, Chapter 6).

The proposed algorithms vary widely in terms of the target machines, the domain

of input programs they handle, the range of decompositions they generate (for example,

whether the decompositions are static or dynamic) and the type of framework they use. We

begin in Section 5.5.1 by discussing algorithms that calculate strictly communication-free

decompositions. In Section 5.5.2 we describe algorithms that operate only on data parallel

computations. A computation is considered data parallel if the parallelism comes from

performing simultaneous operations across all elements of the arrays, rather than from

multiple threads of control. In these approaches communication can only occur between

two consecutive loop nests or array operations. In Section 5.5.3 we discuss algorithms that

handle more general forms of loop-level parallelism. In these algorithms the parallelism is

not strictly element-wise and communication can occur within loop nests. Our algorithm

falls into this last category.

For each project we describe the input language and the range of decompositions they

generate. Many of the compilers we present generate only data decompositions and rely on

the owner-computes rule to generate the computation decomposition, while others generate

the computation and data decompositions simultaneously.

We also describe how the target architecture impacts the decomposition algorithms.

Some algorithms target SIMD (single instruction, multiple data) machines exclusively,

while others target MIMD (multiple instruction, multiple data) machines, or both. SIMD

machines execute the same instruction on multiple processors, but each processor operates

on a different data stream. In MIMD machines each processor has its own instruction

106 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

stream and its own data, and they are thus more flexible than SIMD machines. MIMD

architectures include both shared and distributed address space machines.

A number of SIMD machines were available in the 1980’s and early 1990’s, for example,

the Thinking Machines CM-1[40] and CM-2 and the MasPar MP-1[17] and MP-2. Many of

the early compiler techniques developed for finding decompositions targeted these SIMD

machines. Today, MIMD machines are the primary architecture for general-purpose parallel

computing. Most of the earlier large-scale MIMD machines were distributed address

space machines such as the nCUBE series, the Intel iPSC series, Delta and Paragon,

and the IBM SP-1 and SP-2. Thinking Machines moved from a SIMD architecture to a

MIMD architecture with the introduction of the CM-5[61]. Large-scale shared address

space machines such as Stanford DASH multiprocessor[55], MIT Alewife[2], Kendall

Square Research KSR-1[32], SGI Origin and Convex Exemplar started being developed

in the early 1990’s. Because the remote latencies are so high on distributed address space

machines, much of the more recent work on decomposition algorithms has focused on these

architectures.

5.5.1 Communication-Free Parallelism

Ramanujam, Huang and Sadayappan at Ohio State University have presented algorithms to

calculate communication-free decompositions[41, 63]. The input is a sequential program

and the algorithms generate hyperplane partitions. A hyperplane partition of a loop nest (or

array) is a set of iterations (or array elements) i1; i2; : : : ; ik such thath1i1+h2i2+: : :+hkik =

�, where h1; h2; : : : ; hk and � are rational numbers. The algorithms are aimed at finding

decompositions for MIMD distributed address space machines.

The entire program is modeled by a system of equations. The equations specify the

conditions that must be met in order to have a communication-free hyperplane partition.

Given the array access functions in the program, the algorithms then solve for the com-

putation and/or data hyperplanes. They present the necessary and sufficient conditions for

finding both communication-free single-hyperplane and multiple-hyperplane partitions.

Bau et al.[15] have presented a method for calculating communication-free affine de-

compositions using the mathematical framework we developed (see Section 3.2). They

5.5. RELATED WORK 107

generate a system of equations that specifies the conditions under which the affine de-

compositions are communication-free, and then solve for decompositions that have the

maximum degree of parallelism (i.e. maximum rank).

5.5.2 Data Parallelism

In this section we describe compilers that perform decomposition analysis on data parallel

computations. All the algorithms in this category divide the problem into two phases:

alignment followed by distribution. The alignment phase positions the arrays in the program

with respect to each other so that the amount of communication is minimized. In operations

with two or more operands, the operands must be aligned, i.e. the corresponding elements

of operands must be stored at the same processor. Whenever operands are not aligned,

communication is needed to move the data to the necessary processor. The distribution

phase then partitions the arrays onto the processors of the parallel machine. The rationale

for this two-step approach is that it separates the machine-independent part (alignment)

from the machine-dependent part (distribution). Most languages with data decomposition

extensions as HPF[48], FORTRAN-D[31] and Vienna FORTRAN[21] are also based on

this two-step model.

For data parallel computations, alignment is often the critical issue in determining

performance. The algorithms in this category thus place a heavy emphasis on the alignment

problem. The alignment is typically split into three separate components: axis, stride and

offset. The axis alignment determines the correspondence between different array axes. The

stride gives the spacing between array dimensions and the offset gives the displacement of

the start of the array dimension.

Compass, Inc. Albert, Knobe, Lukas, Natarajan, Steele and Weiss at Compass, Inc.

developed a compiler that calculates decompositions for SIMD machines[4, 45, 46, 47]. The

input to the compiler is FORTRAN-77 extended by FORTRAN-90 style array operations,

and it targets the Connection Machine CM-2 and MasPar MP-1. The Compass compiler

was one of the first compilers that calculated complete alignments. The compiler first finds

an alignment of the data onto a virtual processor space. This was sufficient for the CM-2

since it had direct support for virtual processors in firmware[4]. On the MP-1, an additional

108 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

distribution step was needed to map the virtual processors onto the physical processors of

the machine[46].

In the alignment phase, the program is modeled using a preference graph. The vertices

in the graph represent occurrences of arrays or array sections in the program text, and the

edges represent allocation requests (called preferences) that specify the optimal relative

alignment between the array occurrences. There are several different types of preferences.

An identity preference connects the definition of an array with the use of that array. This

preference indicates that if the array does not have the same alignment at the two occur-

rences, communication is required. A conformance preference connects array occurrences

that are operated on together in an expression or by an assignment. Conformance prefer-

ences can connect different arrays, and indicate that communication is required to align the

arrays before the operation can execute. Finally an independence anti-preference indicates

that array dimensions should be allocated across the processors so as to maintain the de-

gree of parallelism in the original input program. Whereas preferences specify that array

dimensions should be allocated on the same processor, anti-preferences specify that array

dimensions should be distributed across the processors. Preference edges are weighted

with the communication cost if the preference is not satisfied, and anti-preference edges are

weighted with the execution time penalty for not executing in parallel.

Conflicts between preferences can only occur when there is a cycle in the preference

graph. To locate the cycles, the Compass compiler builds a spanning tree using a greedy

algorithm that adds edges in order of cost. If adding an edge creates a cycle and the cycle

causes a conflict, then the preference associated with the edge is not honored. Axis, stride

and offset alignments are calculated from the array accesses in each conflict-free region of

the preference graph.

For the MP-1, the Compass compiler’s distribution phase finds either a block, cyclic or

block-cyclic folding function for each aligned dimension of the virtual processor space[46].

A search-based technique based on the estimated cost of various distributions is used to

select the distribution.

Crystal. Li and Chen developed an automatic decomposition algorithm as part of the

Crystal project at Yale University[56, 57, 58]. The compiler they developed for Crystal

5.5. RELATED WORK 109

(a functional language) was one of the first compilers to perform decomposition analysis.

It targets distributed address space machines, including both SIMD machines as well as

MIMD machines (i.e. the Intel iPSC/2 and nCUBE). The Crystal compiler first finds an

alignment of the data onto a virtual processor space (referred to as the index domain) and

then distributes the virtual processor space onto the physical processor space. It finds a

single static decomposition for the data across the program region being analyzed.

The Crystal compiler’s alignment phase focuses on the problem of axis alignment.

They model the problem using a component affinity graph(CAG). The vertices in the CAG

represent dimensions of arrays (e.g. the graph for a program with three two-dimensional

arrays would have six vertices). The vertices are arranged in columns, where each column

contains a vertex for each dimension of a single array. For each distinct array access in the

program, an edge is generated between two vertices if the two corresponding dimensions are

functions of the same index variable. For example, for the statementx[i1,i2] = y[i2,i1]

there would be one edge connecting the vertex for dimension 1 of x with dimension 2 of

y, and another edge connecting dimension 2 of x with dimension 1 of y. Edges generated

by the same statement that are incident on the same vertex indicate more than one equally

good alignment and are weighted with � (a small number), and all other edges have weights

of 1.

Let n be the maximum number of vertices in any column, that is, the maximum

dimensionality over all the arrays. The axis alignment problem is to partition the vertices in

the CAG inton disjoint subsets, such that no two vertices in the same column are in the same

subset. The objective function is to minimize the weight of the edges that have endpoints

in different subsets. All vertices in the same subset correspond to array dimensions that

are aligned, and edges between subsets represent communication. Li and Chen show their

formulation of the axis-alignment problem to be NP-complete[56], and present a practical

greedy heuristic.

The Crystal compiler’s distribution phase finds either a block or cyclic folding function

for each aligned dimension of the virtual processor space. Given a virtual processor space

with a fixed size, the compiler enumerates all possible distributions onto the physical

processor space. For each distribution, it generates an estimate of the communication cost.

The cost estimates are derived by pattern matching array access patterns into communication

110 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

primitives (e.g. All-to-All Broadcast, Uniform-Shift).

Excalibur. Chatterjee, Gilbert, Schreiber, Sheffler and Teng have presented a set of de-

composition algorithms within the context of the Excalibur project[22, 23, 34, 67, 68].

Their algorithms operate on array-based languages such as FORTRAN-90 and target dis-

tributed address space machines. Excalibur first calculates the axis and stride alignment

of the data onto a virtual processor space (called a template, using HPF terminology), and

then calculates the offset alignment in a later pass. After the alignment has been calculated,

a separate pass distributes the virtual processor space onto the physical processors.

Excalibur represents the program using an alignment-distribution graph (ADG). Ver-

tices in the graph represent computation and edges represent the flow of data. Edges are

directed, and an endpoint of an edge (called a port) represents an array object with a speci-

fied decomposition. Edges thus move an array object from one decomposition to another,

and data is re-aligned when the ports of an edge differ. Each edge is weighted with the

amount of data it moves, and represents an approximate model of the communication cost.

We first describe Excalibur’s axis and stride alignment algorithm presented in [67] (an

earlier algorithm was also presented in [23]). The ADG is first transformed into a simpler,

alignment-specific graph called the constraint graph (CG). A constraint is a mapping from

the alignment of one array object to another. The constraint graph is used to represent

the communication costs if the constraints imposed by the input program are not satisfied.

Each port in the ADG becomes a vertex in the CG, and represents the array objects in the

program. An edge with weightw(u; v) in the ADG represents a constraint on the alignment

that can be violated with communication cost w(u; v). It is directly translated into an edge

with weight w(u; v) in the CG. Vertices in the ADG represent constraints that cannot be

violated and become edges with weight 1 in the CG. For example, the matrix addition

statement x = y + z, is represented by a vertex in the ADG with two incoming ports

for y and z and one outgoing port for x. The corresponding CG has three vertices, one for

each port in the ADG. The edges (x; y) and (x; z) are weighted 1 to represent that after

the addition statement executes, x must have the same alignment as y and z. Finally, each

edge is labeled with the constraint that specifies the alignment relationship between the two

vertices connected by that edge.

5.5. RELATED WORK 111

Given the CG, the axis/stride alignment problem is to label the vertices with align-

ments such that the cost of the unsatisfied constraints is minimized. This problem is

NP-complete[67] and the authors present heuristic techniques to generate an approximate

solution. The algorithm is based on finding a maximal satisfiable subgraph, that is, within

the subgraph all constraints are satisfied and there is no communication. Initially the sub-

graph contains all the vertices in the CG, but none of the edges. At each step, the algorithm

adds an edge to the subgraph and then checks if the new subgraph is satisfiable. A number

of techniques for contracting the constraint graph into a smaller, equivalent graph are also

presented. Since the contraction is inexpensive compared to the alignment itself, contrac-

tion can significantly reduce the running time of the compiler. After calculating the axis

and stride alignment, Excalibur calculates the offset alignment by reducing the problem to

integer programming[23].

Excalibur’s distribution algorithm operates on the original ADG for the program. The

algorithm first calculates a set of candidate distributions. Each vertex is weighted with the

estimated execution time for the computation represented by that vertex, under each of the

candidate distributions. The goal is to label each vertex with a distribution. The cost of a

given candidate distribution is the sum of the vertex weights for that candidate, plus the sum

of edge weights whose endpoints have different distributions. The distribution problem is

then to label the vertices with distributions, such that estimated execution time is minimized.

Their algorithm uses a divide-and-conquer approach to find dynamic distributions[22]. The

program is recursively divided into regions, where each region has a static distribution. The

conquer stage merges regions when the cost of the dynamic re-distribution is worse than

the static distribution. In a later paper, techniques for contracting the ADG to reduce the

size of the distribution problem are described[68].

The algorithms presented in this section model only data parallel computations. While

data parallel programs map naturally to SIMD architectures, MIMD machines allow mul-

tiple threads of control. MIMD machines have the opportunity to exploit coarser-grain

parallelism in addition to data parallelism. For a decomposition algorithm to go beyond

data parallelism and take advantage of different choices of parallelism, it must model the

trade-offs between the different choices of parallelism and the cost of communication.

112 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

5.5.3 Loop Nest Parallelism

In this section, we discuss decomposition algorithms that handle more general forms of

loop-level parallelism. The algorithms are still geared towards a data-parallel style of

computation, however, the parallelism is not restricted to element-wise computations on

arrays. These algorithms weigh the benefit of parallelizing different loops within a loop

nest against the communication cost, and optimize to find the best overall execution time.

The D System. Kremer, Kennedy and Bixby at Rice University have developed an

automatic decomposition tool[16, 44, 50] as part of the D system[1]. Their tool takes

a sequential FORTRAN program as input, and generates data layout annotations for a

language such as HPF. The tool first divides the program up into phases, and for each phase

generates a list of candidate decompositions. It then estimates the costs of the candidates

for each phase and the cost of reorganizing the data between phases, and selects among

them.

The candidate selection process first calculates possible alignments, and then finds

possible distributions in a separate step. The alignment analysis step only performs axis

alignment and uses Li and Chen’s component affinity graph representation[56]. Rather than

use a greedy heuristic to find an approximate solution as was done in the Crystal compiler,

the D System formulates the problem as a 0-1 integer programming problem. Within each

phase, they solve for the optimal axis alignment. The axis alignments across different

phases are merged if no additional communication results. All the distinct axis alignments

found across the different phases become the candidate alignments within each phase. The

candidate distributions are generated using either exhaustive search or heuristics. The

set of candidate decompositions for each phase is then the cross product of the candidate

alignments and the candidate distributions.

The final step is to select a single decomposition for each program phase from among

the candidates. The decomposition selection problem is modeled using a data layout graph

(DLG). The graph has one vertex for each candidate decomposition and the edges represent

possible data reorganizations between decompositions. The vertices are weighted with

an estimate of the execution time for the code given the corresponding decomposition.

The edges are weighted with an estimate of the time to reorganize the data between the

5.5. RELATED WORK 113

two decompositions connected by that edge. Given the DLG, the problem is to select a

decomposition for each phase such that the sum of weights of the corresponding vertices

and edges is minimized. This problem is NP-complete[50]. Rather than use heuristics to

calculate an approximate solution, the D System formulates the problem as a 0-1 integer

programming problem and finds an exact solution. In the D System tool, both the axis

alignment problem and the decomposition selection problem are solved exactly using 0-1

integer programming. Even though 0-1 integer programming is exponential in the worse

case, the rationale is that because the data layout tool is outside of the compiler, it can afford

longer running times.

PARADIGM. The PARADIGM compiler, developed at the University of Illinois, per-

forms automatic data distribution starting from sequential FORTRAN-77 programs and

generates code for distributed address space machines[13]. Gupta and Banerjee devel-

oped the compiler’s static decomposition algorithm[35, 36]. Later, Palermo and Banerjee

extended the algorithm to also handle dynamic decompositions[60].

PARADIGM’s static data decomposition algorithm uses a constraint-based approach.

Constraints represent desirable properties of the decomposition, and are weighted with a

quality measure of the benefit to the overall execution time if the constraint is satisfied.

The algorithm performs axis alignment followed by distribution. The distribution analysis

is itself subdivided into three steps: choosing a block or cyclic folding function for each

dimension, determining the block size for each dimension and selecting the number of

processors in each processor dimension (the algorithm considers at most two processor

dimensions). Within each of the four steps, any relevant constraints are recorded, then an

estimate of the quality is calculated for each constraint and finally a solution is found for

that step. For example, to compute the quality measure of an alignment constraint, two

communication time estimates are calculated – one is the communication time if the array

dimensions are aligned, the other is the communication time if the array dimensions are not

aligned. The quality of the constraint is the difference between the two times.

Axis alignment is calculated using Li and Chen’s component affinity graph[56]. The

edge weights are equal to the quality measure of the alignment constraint generated for

the two vertices connected by the edge. PARADIGM’s algorithm for finding the axis

114 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

alignment is based on Li and Chen’s greedy algorithm. Next, PARADIGM chooses either

a block or cyclic folding function for each aligned dimension. It gathers the constraints that

each statement places on the folding function, and calculates the quality measure for each

constraint. The folding function that results in the highest total quality is selected. In the

next step, the block sizes are calculated using a similar formulation to the axis alignment

problem. Finally, the number of processors in each dimension is computed by searching

through a fixed set of possible choices.

PARADIGM’s dynamic decomposition algorithm builds on top of the static decomposi-

tion algorithm. First, the program is divided into a hierarchy of candidate phases. Initially,

the entire program is viewed as a single phase and a static distribution is calculated for that

phase. Each phase is recursively split into two subphases if the best static decomposition

for the single phase has a higher execution time estimate than the two subphases combined.

At this point, the cost of reorganizing the data between the phases is not considered. After

the program has been divided into phases, the phases are represented in a phase transition

graph. The vertices in the graph are the program phases, and an edge between two phases

is weighted with the data reorganization cost. The final phases, and thus the corresponding

decompositions, are calculated by computing the shortest path through the phase transition

graph.

The algorithms in this section take the same basic approach as the HPF language and the

data-parallel decomposition algorithms from Section 5.5.2. They all divide the decompo-

sition problem into two steps: alignment followed by distribution. A difficulty with this

formulation of the problem is that once different choices of parallelism are considered, then

alignment alone does not capture the machine-independent aspects of the program. There is

now a trade-off between potential communication and the parallelism in the program, inde-

pendent of the target machine. The parallelism is represented by the distribution, i.e. which

array dimensions are allocated across the processors and which are sequential. However,

the parallelism in the program impacts the alignment. For example, communication due

to mismatches in alignment can be eliminated by modifying the distribution to make those

dimensions sequential. The optimal overall decomposition may be one that does not have

optimal alignment. Thus, in this case the two-step approach does not accurately model the

5.6. SUMMARY 115

problem. To avoid this difficulty, some researchers have started calculating alignments and

distributions at the same time[33].

5.5.4 Discussion

Our algorithm is similar in scope to the algorithms in Section 5.5.3 that consider the

parallelism in general loop nests. However, our approach is most closely related to the

communication-free formulations. There are several advantages to this formulation of the

decomposition problem. First, we can calculate communication-free regions (or in our

case, static decomposition regions that are free of data-reorganization communication) sys-

tematically using our mathematical framework. We do not need to rely on selecting a list

of candidate decompositions, as do a number of the other approaches. As a result, we avoid

the inaccuracies and scalability problems involved in generating a reasonable set of candi-

dates. Second, by representing decompositions directly as affine functions, we avoid the

circularity in finding alignments and distributions in two separate steps. Also, using affine

functions allows us to generate a wider range of possible decompositions than algorithms

that calculate separate axis, stride and offset alignments, e.g. skew decompositions where

each processor accesses data along a diagonal of the array.

Unlike the communication-free approaches, we also consider the trade-offs between

parallelism and communication. We try to minimize the overall execution time by balancing

the communication costs across static decomposition regions with the parallelism within

each region.

5.6 Summary

In this chapter, we presented an algorithm for calculating dynamic decompositions. First,

we described how each procedure in the program is represented by a communication graph.

The loop nests in the procedure translate into vertices in the graph, and the vertices are

weighted with estimates of the computation time for the loop nest. There is a weighted edge

between two vertices which represents the communication cost if the data decompositions

between the vertices do not match.

116 CHAPTER 5. A DYNAMIC-DECOMPOSITION ALGORITHM

We then expressed a dynamic decomposition as a partitioning of the vertices of a

communication graph into disjoint sets, called static decomposition regions. Static decom-

position regions have the property that there is a single, static decomposition in the region

of program represented by the vertices in the set. For all loop nests and all arrays in a

given static decomposition region, their computation and data decompositions are uniquely

determined using the static-decomposition algorithm from the previous chapter. The cost

of a given dynamic decomposition on a communication graph is the sum of the edge costs

and vertex costs. The cost of an edge is the edge weight if the endpoints of the edge are

in different static decomposition regions; otherwise the edge cost is zero. The cost of a

vertex is the vertex weight for the decomposition given by the vertex’s static decomposi-

tion region. The objective of the dynamic decomposition problem is then to partition the

communication graph into static decomposition regions such that the cost of the resulting

dynamic decomposition for the graph is minimized.

We proved that the dynamic decomposition problem is NP-complete. We then presented

a heuristic algorithm for finding dynamic decompositions. We use a greedy approach that

tries to eliminate the largest amounts of potential communication from the most frequently

executed parts of the program first. The algorithm starts by placing each communication

graph vertex in its own static decomposition region. It then tries to merge the vertices into

larger and larger static decomposition regions. The analysis is performed on each nesting

level in the procedure in bottom-up order, from the innermost level to the outermost. This

has the effect of pushing any necessary communication into the outermost loops as much as

possible. Within a level, the algorithm tries to merge the vertices connected by edges with

the largest edge weights first, in order to eliminate the most expensive communication.

Chapter 6

An Interprocedural Decomposition

Algorithm

If the data decompositions of arrays do not match across procedure boundaries, then the

program could potentially incur large amounts of communication at every procedure call

entry and call return. Any decomposition algorithm that handles realistic programs must be

able operate across procedure boundaries. In this chapter we describe the interprocedural

version of our decomposition algorithm. The interprocedural algorithm is built on top of the

decomposition algorithms from the previous chapters. The problem we solve in this chapter

is how to propagate and represent the necessary information across different procedures. We

begin in Section 6.1 by describing the cases when decomposition analysis must be performed

across procedure boundaries. Section 6.2 then presents our interprocedural algorithm for

finding affine decompositions onto the virtual processor space and Section 6.3 describes how

to map the virtual processor space onto the physical processor space. Section 6.4 presents a

detailed example. In Section 6.5 we describe common programming paradigms that make

interprocedural decomposition analysis difficult. Finally in Section 6.6 we discuss how our

algorithm interfaces with libraries and user-defined decompositions.

117

118 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

6.1 When is Interprocedural Analysis Needed?

There are two cases when decomposition analysis must be performed across procedure

boundaries: parallel loops that contain procedure calls and multiple procedures that access

the same array. For example, in the code in Figure 6.1(a), the doall loop in procedure

main1 contains a call to sub1. The array access in sub1 is a function of loop index

variable i1, but the access is in a different procedure than the loop itself. To analyze the

code, we must translate the access to the formal parameter y in sub1 into an access of the

actual parameter x in main1. We find that every access y[i2] corresponds to the same

memory location as x[2*i1,42], and can then calculate the computation decomposition

for the loop and the data decomposition for the array.

The code in Figure 6.1(b) shows an example where the same array is accessed in

distinct loop nests in two different procedures. If we were to calculate the decompositions

for each procedure separately, the linear data decomposition for formal parameter y insub2

would be Dy =
h

1 0
i

with N (Dy) = span f(0; 1)g. In main2, for actual parameter

x, Dx =

2
4 1 0

0 1

3
5 with N (Dx) = ;. For each call to sub2, the array would have to

be reorganized since the data decompositions of the actual and formal parameter do not

match. To find a consistent decomposition across both procedures, the constraint on array

y in sub2, N (Dy) = span f(0; 1)g, must be translated into a constraint on x in main2,

N (Dx) = span f(0; 1)g.

The cases that require decomposition analysis across procedures occur commonly in

practice. We thus need a mechanism to efficiently propagate information across procedure

boundaries. For decomposition analysis, this involves translating both array accesses and

data decompositions between corresponding variables in the different procedures.

A simple solution would be to eliminate the procedure boundaries altogether by per-

forming inline substitution. Inline substitution replaces each procedure call by a copy of

the callee procedure. We could then run the intraprocedural decomposition algorithm from

the previous chapter on the single resulting procedure. Unfortunately, this approach is not

practical for large programs. Inline substitution can cause the code to grow to an unman-

ageable size. Also, since each procedure is re-analyzed every time it is called, the analysis

6.1. WHEN IS INTERPROCEDURAL ANALYSIS NEEDED? 119

program main1
real x[N,N]
/* Loop Nest 1 */
for i1 = 1 to N/2 do /* doall */

call sub1(x[1,42], 2*i1) /* pass column 42 of x */
end

subroutine sub1(y, i2)
real y[N]
integer i2
y[i2] = f1(i2)

end

(a)

program main2
real x[N,N]
/* Loop Nest 2 */
for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */
x[i1,i2] = f2(i1,i2)

call sub2(x)
end

subroutine sub2(y)
real y[N,N]
/* Loop Nest 3 */
for i1 = 1 to N do /* doall */

for i2 = 2 to N-1 do
y[i1,i2] = y[i1,i2] + y[i1,i2+1] + y[i1,i2-1]

end

(b)

Figure 6.1: Code examples used to illustrate interprocedural decomposition analysis: (a)
parallel loop that contains a procedure call, and (b) multiple procedures that accesses the
same data.

120 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

times can quickly become unacceptable. We thus use interprocedural analysis to calculate

decompositions across procedure boundaries. We summarize the necessary information

for every procedure, and then map that information across the procedure calls. During the

analysis, there is a single copy of each procedure, and the procedures do not need to be

re-analyzed for each call.

6.2 Finding Virtual Processor Mappings

This section describes the interprocedural algorithm for finding affine decompositions onto

the virtual processor space. We start with the call graph for the program. The call graph

G = (V;E) has a vertex v 2 V for each procedure, and a directed edge (u; v) 2 E for each

call in procedure u to procedure v. Given the call graph, the interprocedural decomposition

algorithm visits each procedure twice, once in a bottom-up traversal of the call graph and

once in a top-down traversal of the call graph.

First we run the intraprocedural decomposition algorithm from the previous chapter

on the leaf procedures in the call graph. The bottom-up pass propagates a summary of

the array accesses, and any constraints found on the arrays, up from the callee procedure

into the caller procedure. Then we run the intraprocedural decomposition analysis on the

caller procedures, and continue up the call graph. By the time the algorithm reaches the

main procedure, all the constraints have been collected and we calculate the final linear

decompositions. The top-down pass then pushes the final linear decompositions down

from the caller procedures into the callee procedures, and calculates the offsets to form the

complete affine decompositions.

In this algorithm, there are two types of information that flow between procedures:

linear decompositions and array access functions. The bottom-up pass must map both

linear decompositions and array access functions from callee procedures into the calling

context of the caller procedure. The top-down pass must map the final linear decompositions

from the caller back down into the callee. In our framework, both affine decompositions

and array access functions are represented as affine functions (linear decompositions are

just affine decompositions with zero offsets). Thus a key component of our interprocedural

decomposition algorithm is translating affine functions in a callee procedure into equivalent

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 121

affine functions in the caller procedure, and vice-versa. First, we describe our method for

mapping affine functions across calls in Section 6.2.1. Then, we present the details of the

bottom-up traversal in Section 6.2.2 and the top-down traversal in Section 6.2.3.

6.2.1 Mapping Affine Functions Across Calls

Let ~g be an affine function (either an array access or an affine decomposition) that involves

variables that are visible in procedure q. Also, let there be an edge in the call graph

between q and procedure r representing a call site s. To map ~g from q into r, we must

translate the variables in q into equivalent expressions of variables visible in r at the

call site s. The translation is not always straightforward because the array accesses and

affine decompositions always involve an array variable. The relationship between memory

locations for arrays in different procedures can be complex if the array is reshaped across

the call. Array reshapes occur when the number or size of array dimensions is altered at a

call site, e.g. passing a slice of an array into a procedure.

We generate a system of linear inequalities that describes the correspondence between

variables visible in q and variables visible in r at the call site s. Let y refer to the array

variable in q and let x refer to the corresponding array variable in r (e.g. y is a formal

parameter andx is the actual parameter). Then, in addition to the original affine function, the

system of linear inequalities includes the conditions that describe the relationship between

memory locations of x in r and memory locations of y in q. Also included in the system

of inequalities are the bounds of x, the bounds of y and any additional known facts about

variables from the call site s. We project away the variables visible in q and replace them

with variables visible in r. The projection step is based on Fourier-Motzkin elimination

that has been enhanced for the integer domain[6, 37, 38].

For example, the affine array access function for the write to array y in sub1 of

Figure 6.1(a) is F 1
y1(i2) =

h
1
i
i2. If we let ~ay = (ay1) represent an index into array y, the

corresponding equation is

i2 = ay1

Letting ~ax = (ax1; ax2) represent an index into array x in main1, the complete set of

122 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

inequalities is:

i2 = ay1

i2 = 2i1

1 � ay1 � N

1 � ax1 � N

1 � ax2 � N

ay1 � 1 = N � (ax2 � 42) + (ax1 � 1)

The last equation above is the one that describes the correspondence between memory

locations of x and y. After eliminating ay1 and i2, we have the following linear inequality

in main1:
42 = ax2

2i1 = ax1

1 � ax1 � N

1 � ax2 � N

and the resulting affine array access function for x is F 1
x1(i1) =

2
4 2

0

3
5 i1 +

2
4 0

42

3
5.

For an example of mapping an affine data decomposition across a call, let the affine

data decomposition for array y in sub2 of Figure 6.1(b) be Dy(~ay) =
h

1 0
i
~ay. Letting

~ay = (ay1 ; ay2) represent an index into array y, the corresponding equation is

p1 = ay1

where ~p = (p1) represents an index into a one-dimensional virtual processor space. If we

let ~ax = (ax1; ax2) represent an index into array x in main2, the complete set of inequalities

is:
p1 = ay1

1 � ax1 � N

1 � ax2 � N

1 � ay1 � N

1 � ay2 � N

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 123

N � (ax1 � 1) + (ax2 � 1) = N � (ay1 � 1) + (ay2 � 1)

After eliminating the subscripts of y, (ay1 ; ay2), the linear inequality for x in main2 is:

p1 = ax1

1 � ax1 � N

1 � ax2 � N

and the resulting affine data decomposition is Dx(~ax) =
h

1 0
i
~ax.

In order for the mapping of an affine function from procedure q into procedure r to

succeed, the resulting function in r must also be affine. Some array reshapes can cause

the mapping to fail (see Section 6.5.2 for more detail). We also cannot handle unknown

array bounds, or symbolic array bounds except in the outermost dimension; otherwise the

resulting function is not affine (see Section 6.5.3).

If the mapping of any dimension of an affine function across a call fails, then the

decomposition algorithm ignores that dimension. If the mapping of an array access fails,

the consequence of ignoring the access is that communication may be needed when that

access is executed. If the mapping of an affine decomposition fails, then the decomposition

analysis runs as if the array is not accessed within the procedure, and the program may

incur communication upon procedure entry and exit. In the remainder of this discussion,

we assume that all affine functions are successfully mapped across the calls, and that each

formal parameter or global variable in the callee q maps to a single variable in the caller r.

When all procedures access the variables in a common block consistently, then we split up

the variables into distinct global variables. Common blocks that cannot be split, as well as

unions and equivalences, are represented in terms of offsets from the base memory address.

Other compiler techniques have been developed that can more accurately map certain

types of information across procedures in the presence of array reshapes. Amarasinghe

has developed an algorithm for propagating summaries of array accesses across procedure

boundaries when the arrays are reshaped[6].

124 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

6.2.2 Bottom-up Traversal

The bottom-up decomposition analysis is built on top of the intraprocedural decomposition

algorithm, Dynamic Decomps, from the previous chapter. The interprocedural analysis

starts by running Dynamic Decomps to find linear decompositions at the leaf procedures

of the call graph. The bottom-up traversal performs three main steps for each caller

procedure r. First, information about the data decompositions for each callee procedure q

is propagated into r. Next, array accesses from procedure q are collected into r. Finally,

the Dynamic Decomps algorithm from the previous chapter is run on the procedure r.

These three steps are described in more detail in the following subsections.

6.2.2.1 Propagating Decompositions into Calling Procedures

In this section we describe how to propagate information about a callee procedure’s de-

compositions into the caller procedures. The intraprocedural decomposition algorithm,

Dynamic Decomps, has already been run on the callee procedures. The loop nests in the

callee have been partitioned into static decomposition regions and the linear decompositions

onto the virtual processor space have been calculated.

Within a caller procedure r, we represent information about a call to procedure q by

treating the call as if it were just another loop nest in r. We add vertices to r’s communication

graph for each call to q outside of a parallel loop nest (calls inside parallel loops are already

represented by the communication graph vertex for that loop nest). Any constraints on

the decompositions from the body of q become constraints on the call vertex in r. This

representation lets us find dynamic decompositions involving the call vertex that minimize

data-reorganization communication between the call and the surrounding loop nests in r.

We refer to a communication graph vertex representing a call to procedure q by vq.

To create a vertex vq in r’s communication graph, we must determine which arrays are

accessed within the code represented by that vertex, along with the corresponding array

access functions. We set the vertex vq to access all actual parameters at the call site and all

global arrays accessed in q. We then translate the linear data decompositions for the arrays

in vq across the call from q into the context of r. Let Dx be the linear data decomposition

of array x mapped into r. Then the constraints for array x in vq are initialized to N (Dx).

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 125

In this way, all constraints found in the callee procedures are propagated up in the caller

procedure.

Next we calculate the array access functions for the arrays in the call vertex. Let P

be the virtual processor space for the callee’s static decomposition region. We treat P as

the iteration space in the call vertex, i.e. I = P . The array access function for the array

variable x in the call vertex is given by solving for Fxq in the equation DxFxq = I , where

I is the identity matrix. The linear data decomposition functionsD : A ! P thus become

the array access functionsF : I ! A in the call vertex, whereA is the array space for each

array. Using the linear data decompositions as access functions preserves the relationship

between the linear data decompositions of different arrays. This information was provided

by the original array access functions in the intraprocedural version of the algorithm. After

calculating the array access functions, the vertex and edge weights involving the call vertex

are computed in the same way as all other vertices.

The complete algorithm for creating call vertices, Create Call Vertices, is

shown in Figure 6.2. The algorithm starts by looking at the static decomposition re-

gions for the callee q. For simplicity of presentation we assume that there is a single static

decomposition region for entire procedure q; below we describe what happens if this is not

the case. The algorithm creates a separate vertex in the caller’s communication graph for

each connected component of the callee’s interference graph. The decompositions for the

data and computation within each connected component are relative to one another, and the

decompositions for data and computation in separate connected components are completely

independent. Thus by creating distinct vertices in the communication graph, we ensure that

the decompositions we find for each connected component remain independent.

A difficulty arises, however, whenever aliased arrays are in separate connected compo-

nents. For example, consider the following code:

program main1

real x[N]

call sub1(x, x)

end

126 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Create Call Vertices
(Gc : communication graph, /* caller’s communication graph */
q : procedure, /* callee */
r : procedure, /* caller */
call : call site)

return (Gc : communication graph)

Gs, Gs
0 : interference graph; /* Gs = (Vc; Vd; E) */

Dx, Dy : matrix;
mapped : array of boolean;
vq, vq0 : communication graph vertex;

if call within parallel loop nest then return Gc;

Gs = static decomposition region for q in Gc;
foreach connected component Gs

0 of Gs do
vq = new communication graph vertex;
Add vq to Gc;

foreach vy 2 Vd0, where y is an actual parameter or global variable do
Dy = linear data decomposition for vy;
Dx = map Dy up from call from y in q to x in r;
add x to list of arrays in vq;
initialize constraints for x to N (Dx);
solve for Fxq in DxFxq = I and add to list of array access functions for x in vq;

if mapped[x] in call then
vq

0 = communication graph vertex containing x in Gc;
vq = merge vq and vq0;

end if;
mapped[x] = true;

end foreach;
end foreach;
return Gc;

end algorithm;

Figure 6.2: Algorithm for creating call vertices in the caller’s communication graph.

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 127

subroutine sub1(y, z)

real y[N], z[N]

...

end

In FORTRAN, this code is legal only if arrays y and z in sub1 are read-only. It is possible

that the arrays y and z are in separate connected components of the interference graph

representing the static decomposition region for the callee sub1. However, both y and z

map to the same array x in the caller main1. The data decompositions in the connected

components for y and z are not really independent as the variables are aliased. In this case,

we simply merge the communication graph vertices corresponding to the two connected

components for y and z. The constraints on x from both y and z are summed and the array

access functions are combined.

After creating the call vertices, the algorithm initializes the constraints for the arrays

and generates the list of array accesses. To create the array access function for array x, we

solve for Fxq in the equation DxFxq = I , where Dx is an n�m matrix and I is the n � n

identity matrix. To guarantee that a solution exists, there are three cases to consider:

1. The system DxFxq = I has a single solution for Fxq.

2. The system DxFxq = I is under-constrained and has infinitely many solutions for

Fxq. This occurs when the rank of the n � m matrix Dx is less than the number

of columns, rank (Dx) < m. In this case there are free variables in the solution

which are completely arbitrary. For example, given the linear data decomposition

Dx =
h

0 1
i
, we have rank (Dx) = 1 and m = 2. This gives the equation

DxFxq = I
h

0 1
i
Fxq =

h
1
i

Fxq =

2
4 f11

1

3
5

where f11 can be any arbitrary value. Informally, the first dimension of array x is

already local to a single processor in the linear data decomposition Dx. Thus, it does

128 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

not matter what the array access function for the first dimension of x is, since all

accesses to that dimension go to the same processor (the fact that the first dimension

of x is local is already represented in the constraints, N (Dx) = span f(1; 0)g). The

array access function we derive in this example, Fxq, is equivalent to the array access

in the following loop nest:

for i1 = 1 to N do

x[f11*i1,i1] = ...

3. The system DxFxq = I is over-constrained and has no solution for Fxq. This

could happen if the rank of the n � m matrix Dx is less than the number of rows,

rank (Dx) < n. Specifically, from linear algebra we know that the system only has

a solution when range (I) � range (Dx)[72]. Since I is the n � n identity matrix,

range (I) = Rn, the full n-dimensional space. Since we know that rank (Dx) < n,

then range (I) � range (Dx). In this case, we add the n � rank (Dx) basis vectors

to the columns of Dx to give Dx
0 with range

�
Dx

0� = Rn. At this point, since

rank
�
Dx

0� = n (i.e. Dx
0 is full row-rank) the matrixDx

0 has a right-inverse[72], thus

we can solve for Fxq.

For example, consider the linear data decomposition Dx =

2
6664

1 0

0 0

0 1

3
7775. We have

rank (Dx) = 2 and n = 3. This gives the equation

DxFxq = I
2
6664

1 0

0 0

0 1

3
7775Fxq =

2
6664

1 0 0

0 1 0

0 0 1

3
7775

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 129

We then add the column vector

2
6664

0

1

0

3
7775, to Dx, givingDx

0 =

2
6664

1 0 0

0 0 1

0 1 0

3
7775, and

2
6664

1 0 0

0 0 1

0 1 0

3
7775Fxq =

2
6664

1 0 0

0 1 0

0 0 1

3
7775

Fxq =

2
6664

1 0 0

0 0 1

0 1 0

3
7775

Informally, what happens in this case is that the array is not mapped into all di-

mensions of the virtual processor space. In the above example, the original lin-

ear data decomposition Dx maps the two-dimensional array x into the first and

third dimensions of a three-dimensional virtual processor space. Adding the ad-

ditional column to create Dx
0 has the effect of expanding x into three dimensions

and then mapping that third dimension into the second dimension of the three-

dimensional virtual processor space. The resulting array access function Fxq in

this example is equivalent to the array access function for the following code:

for i1 = 1 to N do

for i2 = 1 to N do

for i3 = 1 to N do

x[i1,i2,i3] = ...

For an example of how call vertices are created, consider the code from Figure 6.1(b).

We add a vertex to main2’s communication graph for the call to sub2. Since the actual

parameter x in main2 corresponds to the formal parameter y in sub2, the new vertex is set

to access array x. If the linear data decomposition for array y in sub2 is Dy =
h

1 0
i
,

then mapping the decomposition into main2 gives Dx =
h

1 0
i
. The array access

130 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

function for x at the call vertex is then

2
4 1

0

3
5, and the constraints for array x are initialized

to N (Dx) = span f(0; 1)g.

The above discussion assumed that there was a single static decomposition region

for each callee procedure. When a callee procedure has multiple static decomposition

regions, the arrays have a different linear data decomposition for each region. Which of

these different linear data decompositions do we use to create the call vertices? Only the

decompositions at procedure entry and exit in q are relevant to the caller r. We want

the decompositions in the code executed before the call to q to match the decompositions

upon entry to q, and the decompositions for code executed after the call to q to match the

decompositions at exit from q. To simplify finding the data decompositions for each array

at procedure entry and exit in the callee, we modify the procedures so that they have a

single entry and a single exit point. Then we add two extra vertices to the communication

graph, one at the procedure entry point and one at the exit point. These two vertices are set

to access all arrays that are accessed within the procedure. The data decompositions found

at the entry and exit vertices represent the data decompositions at procedure entry and exit,

respectively.

In the case where there are multiple static decomposition regions in a callee q, we create

two sets of communication graph vertices for the call to q in the caller r. One set of vertices

corresponds to the region at entry to procedure q and one set corresponds to the region

at exit from procedure q. We use the static decomposition regions for q’s entry and exit

vertices, respectively. In r’s communication graph, we connect the entry vertices for the

call to q to the exit vertices by edges with weight 0. This ensures that the algorithm will

not try to merge these vertices into the same static decomposition region when analyzing r.

6.2.2.2 Propagating Array Accesses into Calling Procedures

For any calls within a parallel loop nest, the array access functions within the callee are

mapped across the call and are added to the list of array access functions for that loop nest.

The algorithm for summarizing array accesses, Gather Call Accesses, is shown in

Figure 6.3. The algorithm takes all the array accesses in procedure q and maps them into

the caller r. If the array access is only a function of variables local to q, then it is discarded.

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 131

Otherwise, the algorithm adds the access to the list of accesses in the caller. If the call is

within a parallel loop nest, then the algorithm adds the accesses to the list of accesses for

the parallel loop nest.

For the example code from Figure 6.1(a), the algorithm maps the array access y[i2]

in sub1 into an access of x[2*i1,42] in main1. It then adds this access to list of array

accesses for loop nest 1.

algorithm Gather Call Accesses
(Gc : communication graph, /* caller’s communication graph */
q : procedure, /* callee */
r : procedure, /* caller */
call : call site)

return
(Gc : communication graph)

F , F 0 : matrix;
vq : communication graph vertex;

foreach array access F in q do
F 0 = map F across call;
add F 0 to list of accesses in r;
if call within parallel loop nest then
vq = communication graph vertex for loop containing call in Gc;
add F 0 to list of array access functions in vq;

end if;
end foreach;

return Gc;
end algorithm;

Figure 6.3: Algorithm for gathering the array accesses in a callee procedure.

132 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Bottom Up Traversal
(G : call graph) /* G = (V;E) */

Gc : communication graph;
u, v : procedure;

foreach v 2 V in bottom-up order do
Gc = build communication graph for v;

foreach call-site call 2 succ(v) do
u = callee procedure at call-site call;
Gc = Create Call Vertices(Gc, u, v, call);
Gc = Gather Call Accesses(Gc , u, v, call);

end foreach;

Dynamic Decomps(Gc);
end foreach;

end algorithm;

Figure 6.4: Algorithm for propagating decomposition constraints up the call graph repre-
senting the program.

6.2.2.3 Moving up the Call Graph

The driver algorithm for the bottom-up traversal is shown in Figure 6.4. As the algorithm

moves up the call graph, constraints on decompositions from callee procedures are rep-

resented in the call vertices of the caller’s communication graph. Array accesses in the

callee procedures are also passed up into the caller procedure, in case there are any parallel

loops that contain calls. The algorithm then runs Dynamic Decomps (Figure 5.5) on the

caller’s communication graph. The vertices, including the vertices representing procedure

calls, are partitioned into static decomposition regions and the linear decompositions are

calculated. The linear decompositions and array accesses in the caller procedure are then

passed up the call graph to its callers, and so on. By the time the algorithm reaches the

main program, all the constraints for the entire program have been collected and the final

linear decompositions are calculated. Since the information for each callee procedure is

6.2. FINDING VIRTUAL PROCESSOR MAPPINGS 133

summarized in its caller’s communication graphs, each procedure is only analyzed once

during the bottom-up pass through the call graph.

For the example from Figure 6.1(b), the communication graph for procedure main2

will contain one vertex for the call to sub2 and one vertex for loop nest 2. The constraints

for array x at the call vertex are N (Dx) = span f(0; 1)g and at the loop nest vertex

N (Dx) = ;. Running Dynamic Decomps merges these two vertices into the same static

decomposition region, resulting inN (Dx) = span f(0; 1)g at both vertices. The final linear

data decomposition for x is thenDx =
h

1 0
i
, and the linear computation decomposition

for both the loop nest and the call is also
h

1 0
i
.

6.2.3 Top-down Traversal

After the linear data decompositions have been found at the main procedure, the algorithm

traverses the call graph once more in top-down order. The linear data decompositions for

the global variables and actual parameters found in each caller procedure are mapped down

into all the callee procedures. Figure 6.5 shows the algorithm Record Call Vertices

which takes the data decompositions in caller procedures and applies them to callee proce-

dures.

The Record Call Vertices algorithm starts with a call vertex vq in the caller’s

communication graph. It takes the linear data decompositions for each array at vq in the

caller r and translates them across the call into data decompositions in the callee q. This

gives us the linear data decompositions for the formal parameters and global arrays in q.

The next step is to calculate the linear data decompositions for any local arrays in q,

and the linear computation decompositions for the loop nests in q. The algorithm runs

the Propagate Nullspaces algorithm from Figure 4.4 to update the nullspaces of

the linear decompositions for the local arrays and loop nests, and uses Calc Matrices

from Figure 4.6 to calculate the linear decompositions matrices. Finally, the algorithm

calculates the offsets for all arrays and loop nests in the procedure to give the complete

affine decompositions.

For the on-going example from Figure 6.1(b), The linear data decomposition for x in

main2 Dx =
h

1 0
i
, is mapped back down into sub2 to give Dy =

h
1 0

i
. This

134 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Record Call Vertices
(Gcr : communication graph, /* caller’s communication graph */
Gcq : communication graph, /* callee’s communication graph */
r : procedure, /* caller */
q : procedure, /* callee */
call : call site)

return
(Gcq : communication graph)

Gs, Gs
0 : interference graph; /* Gs = (Vc; Vd; E) */

Γ, ∆ : set of vector space;
Dx, Dy : matrix;
vq : communication graph vertex;

/* vq contains a list of arrays and corresponding array access functions */

if call within parallel loop nest then return Gcq;

Gs = static decomposition region for q in Gcq;
foreach connected component Gs

0 of Gs do
vq = communication graph vertex for Gs

0 in Gcr;

foreach array x in vq, where x is an actual parameter or global variable do
Dx = linear data decomposition for x;
Dy = map Dx down through call from x in r to y in q;
set linear data decomposition for vy 2 Vd;

end foreach;
end foreach;

(Γ, ∆) = current nullspaces for G0
s;

Propagate Nullspaces(Gs, Γ, ∆); /* See Figure 4.4 */
Calc Matrices(G0

s, Γ, ∆); /* See Figure 4.6 */
calculate the offset decompositions for Gcq;

return Gcq;
end algorithm;

Figure 6.5: Algorithm for recording linear decompositions in the callee’s communication
graph from call vertices in the caller’s communication graph.

6.3. FINDING PHYSICAL PROCESSOR MAPPINGS 135

results in a linear computation decomposition for loop nest 3 ofC3 =
h

1 0
i
.

The complete algorithm for the top-down traversal is shown in Figure 6.6. If there are

multiple paths in the call graph to a callee procedure from different callers, then it is possible

for there to be multiple conflicting decompositions required in the callee procedure. In this

case, the compiler can clone the callee procedure to create a new copy of the procedure for

each different decomposition.

6.3 Finding Physical Processor Mappings

We find the physical processor mappings in the interprocedural case using the same tech-

nique as for the intraprocedural case described in Section 4.2. The physical processor

mapping phase examines each loop nest (in all procedures) to gather any constraints that

loop nest may have on the folding function. The constraints are then combined to find the

final folding function. The complete algorithm for finding interprocedural decompositions

is shown in Figure 6.7.

6.4 An Interprocedural Decomposition Example

In this section we illustrate how the interprocedural decomposition algorithm works for the

code in Figure 6.8. Figure 6.9 shows the call graph and the corresponding communication

graphs for each procedure in the sample code. For simplicity of presentation, only the ver-

tices that correspond to either loop nests or procedures calls are shown in the communication

graphs; the entry and exit vertices, and the hierarchy structure are not shown.

In the bottom-up traversal, the algorithm first finds the linear decompositions for the

leaf procedure sub3. The array access functions for the loop nests inside this procedure

are:

F 1
x5 = F 1

y5 = F 1
z5 =

2
4 1 0

0 1

3
5

136 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

algorithm Top Down Traversal
(G : call graph) /* G = (V;E) */

Gcu, Gcv, Gcv
0: communication graph;

u, v, v0 : procedure;
recorded : boolean;

foreach v 2 V in top-down order do
recorded = false;
Gcv = communication graph for v;

foreach call-site call 2 pred(v) do
u = caller procedure at call-site call;
Gcu = communication graph for u;
Gcv

0 = Record Call Vertices(Gcu, Gcv , u, v, call);

if recorded and not compatible(Gcv , Gcv
0)

v0 = clone v;
set communication graph for v0 to Gcv

0;
else
Gcv = Gcv

0;
end if;
recorded = true;

end foreach;
end foreach;

end algorithm;

Figure 6.6: Algorithm for propagating linear data decompositions down the call graph
representing the program.

6.4. AN INTERPROCEDURAL DECOMPOSITION EXAMPLE 137

algorithm IPA Decomps Driver
(G : call graph) /* G = (V;E) */

Bottom Up Traversal(G);
Top Down Traversal(G);
calculate the virtual-to-physical mapping;

end algorithm;

Figure 6.7: Interprocedural algorithm for finding decompositions.

Dynamic Decomps find the following linear decompositions for sub3:

C5 =

2
4 1 0

0 1

3
5 ; Dx = Dy = Dz =

2
4 1 0

0 1

3
5

Next the algorithm examines procedure sub2, which has a single call to sub3. Vertex

6 is created in sub2’s communication graph to represent the call to sub3, and the linear

data decompositions for arrays x, y and z are then mapped into sub2. This results in the

following array access functions for procedure sub2:

F 1
x4 = F 1

y4 =

2
4 1 0

0 1

3
5 ; F 2

x4 =

2
4 �1 0

0 1

3
5

F 1
x6 = F 1

y6 = F 1
z6 =

2
4 1 0

0 1

3
5

which gives the following decompositions for sub2:

C4 = C6 =
h

0 1
i
; Dx = Dy = Dz =

h
0 1

i

Similarly, the algorithm creates the vertex 7 in sub1’s communication graph to represent

138 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

program main
real x[N,N], y[N,N], z[N,N]
for i1 = 1 to N do /* doall */ /* Loop nest 1 */

for i2 = 1 to N do /* doall */
x[i1,i2] = y[i1,i2] = z[i1,i2] = f1(i1,i2)

end for

for i1 = 1 to N do /* doall */ /* Loop nest 2 */
for i2 = 1 to N do /* doall */
x[i1,i2] = x[i1,i2] + z[i1,i2]
y[i1,i2] = y[i1,i2] + z[i1,i2]

end for
call sub1(x, y, z)
call sub2(x, y, z)

end

subroutine sub1(x, y, z)
real x[N, N], y[N,N], z[N,N]
for i1 = 1 to N do /* doall */ /* Loop nest 3 */

for i2 = 1 to N do /* doall */
x[i1,i2] = y[i1,i2] + y[i1,N-i2+1]

call sub3(x, y, z)
end

subroutine sub2(x, y, z)
real x[N,N], y[N,N], z[N,N]
for i1 = 1 to N do /* doall */ /* Loop nest 4 */

for i2 = 1 to N do /* doall */
y[i1,i2] = x[i1,i2] + x[N-i1+1,i2]

call sub3(x, y, z)
end

subroutine sub3(x, y, z)
real x[N,N], y[N,N], z[N,N]
for i1 = 1 to N do /* doall */ /* Loop nest 5 */

for i2 = 1 to N do /* doall */
z[i1,i2] = z[i1,i2] + x[i1,i2] + y[i1,i2]

end

Figure 6.8: Sample code with multiple procedures.

6.4. AN INTERPROCEDURAL DECOMPOSITION EXAMPLE 139

sub3

sub1 sub2

main

call tosub3

3 7

call tosub3

4 6

5

call to

1 2

call to

8 9

sub1 sub2

KEY:

call graph edge

call graph vertex

communication graph edge

communication graph vertex

Figure 6.9: Call graph and the corresponding communication graphs for the code in Fig-
ure 6.8 during the bottom-up traversal.

the call to sub3. The array access functions in sub1 are:

F 1
x3 = F 1

y3 =

2
4 1 0

0 1

3
5 ; F 2

y3 =

2
4 1 0

0 �1

3
5

F 1
x7 = F 1

y7 = F 1
z7 =

2
4 1 0

0 1

3
5

140 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

and the resulting decompositions for procedure sub1 are as follows:

C3 = C7 =
h

1 0
i
; Dx = Dy = Dz =

h
1 0

i

Next, the linear data decompositions for arrays x, y and z from sub1 and sub2 are mapped

into main. The call to sub1 is represented by vertex 8 in main’s communication graph

and the call to sub2 is represented by vertex 9. This leads to the following array access

functions for procedure main:

F 1
x1 = F 1

y1 = F 1
z1 =

2
4 1 0

0 1

3
5

F 1
x2 = F 1

y2 = F 1
z2 =

2
4 1 0

0 1

3
5

F 1
x8 = F 1

y8 = F 1
z8 =

2
4 1

0

3
5

F 1
x9 = F 1

y9 = F 1
z9 =

2
4 0

1

3
5

In the resulting linear decompositions, vertices 1, 2 and 8 form one static decomposition

region and vertex 9 forms its own static decomposition region:

C1 = C2 =
h

1 0
i
; C8 =

h
1
i
; Dx = Dy = Dz =

h
1 0

i

C9 =
h

1
i
; Dx = Dy = Dz =

h
0 1

i

The bottom-up traversal is now complete, and the algorithm begins the top-down

traversal. Figure 6.10 shows the call graph and the corresponding communication graphs

for each procedure in the sample code during the top-down pass. First the algorithms maps

the linear data decompositions found at vertex 9 in main back down into procedure sub2,

and the linear data decompositions for vertex 8 in main down into the subroutine sub1.

The algorithm then calculates the final linear decompositions for sub1:

C3 =
h

1 0
i
; Dx = Dy = Dz =

h
1 0

i

6.4. AN INTERPROCEDURAL DECOMPOSITION EXAMPLE 141

sub3’

sub1 sub2

main

sub3

call to

1 2

call to

8 9

sub1 sub2

call tosub3

3 7

call tosub3’

4 6

5 5’

KEY:

call graph edge

call graph vertex

communication graph edge

communication graph vertex

Figure 6.10: Call graph and the corresponding communication graphs for the code in
Figure 6.8 during the top-down traversal.

Similarly, the final linear decompositions for sub2 are:

C4 =
h

0 1
i
; Dx = Dy = Dz =

h
0 1

i

The linear data decompositions in sub1 and sub2 are then mapped into the subroutine

sub3. The linear data decompositionsDx, Dy andDz in sub3 are
h

1 0
i

along the path

from sub1 and
h

0 1
i

along the path from sub2. Since these decompositions differ,

the compiler clones sub3 to create two copies. The routine sub3 is now called from only

sub1 and the routine sub3’ is now called from sub2. The final linear decompositions

142 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

for sub3 are:

C5 =
h

1 0
i
; Dx = Dy = Dz =

h
1 0

i

and the final linear decompositions for sub3’ are:

C50 =
h

0 1
i
; Dx = Dy = Dz =

h
0 1

i

In all cases, the algorithm sets the offsets to zero. We use the default BLOCK virtual-to-

physical mapping for both static decomposition regions. The final decompositions for the

loop nests and arrays in static decomposition region f1; 2; 3; 5; 7; 8g are:

bp �
h

1 0
i
~{ < bp+ 1

bp �
h

1 0
i
~a < bp+ 1

where b is the block size and p is the processor number. Similarly, for the loop nests and

arrays in static decomposition region f4; 50; 6; 9g, we have:

bp �
h

0 1
i
~{ < bp+ 1

bp �
h

0 1
i
~a < bp+ 1

6.5 Issues in Interprocedural Decomposition Analysis

Many programs rely on programming language characteristics that make interprocedural

decomposition analysis difficult. It is possible that we are able to analyze individual proce-

dures, but lose precision when extending the analysis across procedure boundaries. In this

section, we discuss three problems common to scientific codes that impact interprocedural

decomposition analysis: unnecessary storage re-use, array reshapes and insufficient type

information. Unnecessary storage re-use occurs when unrelated arrays share the same me-

mory locations, and cause unnecessary constraints on the decompositions. Array reshapes

and insufficient type information can cause the mapping of array access functions and affine

decompositions across calls to fail.

These problems are not unique to decomposition analysis and can hinder other types of

interprocedural analyses as well. Here, we discuss specifically how they affect the quality

6.5. ISSUES IN INTERPROCEDURAL DECOMPOSITION ANALYSIS 143

of the decompositions that our algorithm is able to find. We describe these three issues in

more detail in the following subsections, and outline additional analyses that can be used

to address the problems. These additional analyses have not yet been implemented in the

SUIF compiler, unless noted otherwise.

6.5.1 Unnecessary Storage Reuse

Programmers commonly re-use storage for unrelated data objects to save space. Since

decomposition analysis finds decompositions for each array based on its memory loca-

tion, all accesses to arrays that share the same memory must be treated as accesses to

the same array. Thus, if there are conflicting constraints on these data objects, the qual-

ity of the resulting decompositions may suffer. For example, consider the following code:

real x[N,N], y[N,N]

program main

call sub

call init array(x)

/* Loop Nest 1 */

for i1 = 1 to N do /* doall */

for i2 = 1 to N do

x[i1,i2] = y[i1,i2] + x[i1,N-i2+1]

call sub

end

subroutine sub

call init array(x)

/* Loop Nest 2 */

for i1 = 1 to N do

for i2 = 1 to N do /* doall */

x[i1,i2] = 2 * x[N-i1+1,i2]

end

144 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

subroutine init array(z)

real z[N,N]

/* Loop Nest 3 */

for i1 = 1 to N do /* doall */

for i2 = 1 to N do /* doall */

z[i1,i2] = f1(i1,i2)

end

In both sub and main, the global variable x is completely over-written by the call to

init array before it is used in the procedure. No values of x calculated in main are

ever used in sub, and similarly, no values of x calculated in sub are ever used in main.

However, the decomposition analysis must honor all constraints on x in all procedures. The

linear data decomposition for arrayx insub isDx =
h

0 1
i

withN (Dx) = span f(1; 0)g.

The constraint on x is then propagated into procedure main for the calls to sub (there

are no constraints on x from init array). In main, the initial constraint for x at loop

nest 1 is N (Dx) = span f(0; 1)g. When the constraints on x are merged in main, we

have N (Dx) = span f(0; 1); (1; 0)g which spans the entire array space. Since the values

in x are not actually shared between main and sub, we would like to avoid merging the

constraints.

The compiler could mitigate the problem of unnecessary storage re-use by performing

interprocedural array renaming analysis. This analysis would determine if there are any true

dependences between the data objects that share storage. If there are no true dependences,

then different memory could be allocated for the logically different variables. This analysis

requires the compiler to determine whether the different variables are entirely written before

being read and is analogous to array privatization analysis[37, 75].

6.5.2 Array Reshapes

Many languages (including FORTRAN-77, FORTRAN-90 and C) allow programs that rely

on the model that memory is one dimensional and linearly addressed. A consequence of

this model is that a legal program can access the same memory in very different ways. In

6.5. ISSUES IN INTERPROCEDURAL DECOMPOSITION ANALYSIS 145

particular, arrays in scientific codes are often reshaped across procedure calls such that the

number or size of the dimensions differs across procedures. As we saw in Section 6.2.1,

array reshapes cause the mapping of an affine function across a call to fail if the resulting

function is not affine. In order for the mapping to succeed, the dimensions of the array in

the callee must correspond to complete dimensions of the array in the caller. This means

that we can handle array sections, where one or more complete dimensions of an array are

passed as a parameter (for example, the code in Figure 6.1(a)). However, we cannot handle

subsections of array dimensions passed as parameters, or linearized arrays, for example:

program main

real data[200]

call sub1(data)

call sub2(data)

end

subroutine sub1(x)

real x[20,10]

for i1 = 1 to 20 do

for i2 = 1 to 10 do

x[i1,i2] = : : :

end

subroutine sub2(x)

real x[5,10,4]

for i1 = 1 to 5 do

for i2 = 1 to 10 do

for i3 = 1 to 4 do

x[ii,i2,i3] = : : :

end

146 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

The data decomposition for x in sub1 treats it as a two-dimensional array. When the data

decomposition is mapped into main, the array is now one-dimensional and the resulting

data decomposition function is non-affine. The compiler can solve this problem if it can

find a consistent size and shape for the array everywhere in the program. If the memory

allocated for data were always accessed as a 20 � 10 array, then the compiler could

simply replace the declaration of data[200] by data[20,10]. However, if the array

is accessed with different shapes in different parts of the program, as in sub2 above, then

we cannot map affine functions successfully for this array.

6.5.3 Insufficient Type Information

Many languages allow formal parameters to have incomplete or parameterized types. In

these cases, the semantics of the program again rely on the assumption of a linear memory

model. Since we often need array bounds information to map affine functions across calls,

missing type information can cause the mapping to fail. In many cases, the compiler could

address this problem by propagating type information from the actual parameters down into

the formal parameters. For example, in the following code, the array z in procedure sub1

has a parameterized type (legal in FORTRAN):

program main

real x[20,10], y[100,50]

call sub1(x, 20, 10)

call sub1(y, 100, 50)

end

subroutine sub1(z, m, n)

real z[m,n]

integer m, n

: : :

end

If the variables m and n are known constants, the compiler can perform interprocedural

constant propagation to complete the type information (this analysis is implemented in

6.6. LIBRARIES AND USER-DEFINED DECOMPOSITIONS 147

SUIF and was used for our experimental study). If m and n have different values along

different paths to the subroutine sub1 then the compiler can clone the subroutine to make

different copies for each of the different values.

Another case where additional analysis can be used to extract type information is when

the dimension size is unspecified, e.g. in FORTRAN, the dimension size is marked with *.

For example, in the code below the array z in procedure sub1 has a variable size:

program main

real x[10,20,3], y[80,20]

call sub1(x, 10*20*3)

call sub1(y, 80*20)

end

subroutine sub1(z, size)

real z[*]

integer size

: : :

end

In this case, the compiler could use a simple interprocedural type propagation analysis to fill

in the missing types. Again, cloning may be necessary if there is different type information

along different paths to the same procedure in the program.

6.6 Libraries and User-Defined Decompositions

In order to perform full interprocedural analysis, the compiler must have all the sources of

the input program. If the sources are not available then communication of global arrays

and parameters may be incurred upon entry and exit to the unanalyzed procedures. For

library routines where the sources are not available, different versions of the routines can

be provided with different data decompositions and the compiler can call the routine with

matching decompositions after they are found.

148 CHAPTER 6. AN INTERPROCEDURAL DECOMPOSITION ALGORITHM

Another option is to keep a summary of the expected decompositions for the variables

in the library routines. The requested decompositions at the call are then used as input

in the decomposition algorithm. The decompositions at the call are marked as fixed, and

the algorithm will then try to match the decompositions in the other loop nests. The

same technique is used to deal with any user-specified data decompositions already in the

program.

6.7 Summary

In this chapter, we presented an algorithm for calculating decompositions interprocedurally.

The algorithm is built on top of the decomposition algorithms from the previous chapters.

The focus of this chapter was on how to propagate and represent the necessary information

across the different procedures.

The interprocedural algorithm for finding affine decompositions onto the virtual pro-

cessor space visits each procedure twice, once in a bottom-up traversal of the call graph

and once in a top-down traversal of the call graph. The bottom-up traversal begins by

running the intraprocedural decomposition algorithm from the previous chapter on the leaf

procedures in the call graph. It then propagates the array accesses and linear data decom-

positions up from the callee procedure into the caller procedure. Next, the algorithm runs

the intraprocedural decomposition analysis on the caller procedures, and continues up the

call graph. When the algorithm reaches the main procedure, it calculates the final linear

decompositions. The top-down pass then pushes the final linear decompositions down

from the caller procedures into the callee procedures, and calculates the offsets to form the

complete affine decompositions.

We also discussed three problems common to scientific codes that can hinder interproce-

dural decomposition analysis: unnecessary storage re-use, array reshapes and insufficient

type information. Unnecessary storage re-use generates unnecessary constraints on the

decompositions, and can cause the quality of the final decompositions to suffer. Array

reshapes and insufficient type information can cause the mapping of array access functions

and affine decompositions across calls to fail. It is possible, however, for the compiler to

perform additional analysis to mitigate the effects of some of these problems.

Chapter 7

Experimental Results

All the algorithms described in this paper have been implemented in the SUIF compiler

system[76]. To evaluate the effectiveness of our proposed algorithm, we applied the

compiler to a suite of benchmark programs. We ran the compiler-generated code on the

Stanford DASH multiprocessor[55] and a Digital AlphaServer 8400, and compared our

results to those obtained without using our techniques.

7.1 Experimental Setup

7.1.1 Target Architectures

We ran our experiments on two different architectures, a 32-processor Stanford DASH

multiprocessor and an 8-processor Digital AlphaServer 8400.

Stanford DASH Multiprocessor. DASH is a distributed shared address space multipro-

cessor. The machine we used for our experiments consists of 32 processors, organized

into 8 clusters of 4 processors each. Each cluster is based on a Silicon Graphics POWER

Station 4D/340, a bus-based centralized memory machine. The processors are 33 MHz

MIPS R3000s, each with a 64 KB first-level cache and a 256 KB second-level cache. Both

the first- and second-level caches are direct-mapped and have 16-byte lines. Each cluster

149

150 CHAPTER 7. EXPERIMENTAL RESULTS

has 28 MB of main memory. A directory-based protocol is used to maintain cache coher-

ence across clusters. It takes a processor 1 cycle to retrieve data from its first-level cache,

about 10 cycles from its second-level cache, 30 cycles from its local memory and 100-130

cycles from a remote memory. The DASH operating system allocates memory to clusters

at the page level. The page size is 4 KB and pages are allocated to the first cluster that

touches the page. Within a cluster, the operating system uses a standard page-coloring page

placement policy where consecutive virtual pages are mapped round-robin to consecutive

colors (physical pages with the same color map to the same location in a physically-indexed

cache).

On DASH, communication between processors in different clusters results in a 100-130

cycle latency. This long latency (compared to 1 cycle for a first-level cache hit or even 30

cycles for access to local memory) means that minimizing communication is essential to

performance. False-sharing is not likely to be a problem due to the small cache-lines (each

line holds only two double-words) on DASH. However, it is important for applications to

have good spatial locality since the directed-mapped caches can lead to conflict misses.

Digital AlphaServer 8400. The Digital AlphaServer 8400 is a bus-based centralized

shared address space multiprocessor. The machine we used consisted of 8 300 MHz 21164

processors. Each 21164 has on-chip 8 KB split instruction and data first-level caches, and

a 96 KB combined second-level cache. The first-level caches are direct-mapped and the

second-level cache is three-way set associative. The cache line size for the second-level

cache is 64 bytes. Each processor also has a 4 MB direct-mapped external cache and the

machine was configured with 4 GB of main memory. It takes a processor 2 cycles to retrieve

data from the first-level cache, 6 cycles from the second-level cache, 12 cycles from the

external cache and a minimum of 90 cycles from main memory[27, 30]. The page size is

8 KB, and the operating system uses a bin-hopping page placement policy where virtual

pages are assigned colors in the order that the page faults occur.

The AlphaServer has a single centralized memory and no remote memory. It uses a

write-invalidate cache-coherence protocol – when a processor does a write, all other cached

copies are invalidated. The next time another processor accesses the data, it misses in the

cache. Thus, if a processor has data cached, then communication between processors incurs

7.1. EXPERIMENTAL SETUP 151

at least a 90 cycle latency. Minimizing communication is important to performance, only

if the data would have been in the cache. If the data are not likely to be in the cache, then

the processor would have had to go to main memory to access it anyway. The long cache

lines (8 double-words) mean that false-sharing is a potential performance problem. The

direct-mapped first- and third-level caches can lead to conflict misses, making good spatial

locality also important for performance.

7.1.2 The SUIF Compiler

The inputs to the SUIF compiler are sequential FORTRAN or C programs. The output

is parallelized source code that is a combination of C and/or FORTRAN with calls to a

portable run-time library. The SUIF output is then compiled on the parallel machine using

the native C and FORTRAN compilers.

The applications parallelized by SUIF for shared address space machines follow a

master/slave model of parallelism. The master process executes the sequential portions

of the program while the slaves wait at a barrier. When the master reaches the start of a

parallel region, it notifies the slaves. The slaves and the master then operate in parallel until

they reach a barrier at the end of the parallel region.

7.1.3 Methodology

We compiled each program under SUIF both with and without the decomposition analysis.

We then compiled the SUIF output using the native C and FORTRAN compilers on the

target machine. When compiling with the native compilers, we always used the highest

optimization level available.

All of our results are expressed in terms of speedup in execution time over the best

sequential version of the programs. In all cases, we timed the execution of the complete

application, including any time spent doing initialization or post-processing. All timings

use wall-clock time, and the runs were done on an unloaded system. To obtain the best

sequential version of a program, we compared the execution time of the program compiled

with SUIF against the execution time of the program compiled with only the native compiler.

We compiled several different versions of each program, described below. An overview

152 CHAPTER 7. EXPERIMENTAL RESULTS

of the passes of the SUIF compiler for shared address space machines is shown in Figure 7.1.

A description of the context of the decomposition analysis within the complete compiler

system was described in Chapter 2. Here we describe the specific passes of the SUIF

compiler that were used in each of our experiments:

Base Parallelization (base): The programs are compiled using only basic parallelization

techniques. No decomposition analysis is performed. The parallelization pass has

a loop nest optimizer that analyzes one loop at a time to expose outermost loop

parallelism. Iterations of the outermost doall loop in each loop nest are distributed

across the processors, and each processor executes equal-sized blocks of consecutive

iterations. In Figure 7.1 this option corresponds to executing the compiler passes

along the path marked 1.

The following two variations perform decomposition analysis in addition to basic par-

allelization. The decomposition pass finds a mapping of both the computation and the data

across the processors. Since we are performing our experiments on shared address space

machines, using the data decompositions to perform data transformations is an optimization

– it is not needed for correctness. This allows us to investigate the impact of using just the

computation decompositions to generate code, as well as the impact of using both compu-

tation and data decompositions (it does not make sense to use just the data decompositions

without the computation decompositions because that would map the data to processors

that are not necessarily going to use that data).

Computation Scheduling Only (comp sched): The programs are compiled with decom-

position analysis to find computation decompositions (and the corresponding data

decompositions). The computation decompositions are passed to a scheduler that

generates code to partition the parallel loops across the processors and inserts calls

to the run-time library. Partitioning iterations of the loops using the computation

decompositions means that the processors execute computation that re-uses the same

data, thereby improving temporal locality. The scheduler also takes advantage of the

data decomposition information to optimize the synchronization in the program[73].

The data layouts are left unchanged and are stored according to the default convention

7.1. EXPERIMENTAL SETUP 153

Shared Addr

Fortran

C/Fortran

 C

Executable

Computation

SUIF

Scheduling

Data
Transformation

1

2

3

Comp and Data
Decomposition

Parallelization

Pre-Parallelization
Analyses

Figure 7.1: An overview of the SUIF parallelizing compiler for shared address space
machines. The numbered arrows show different possible paths through the compiler.

154 CHAPTER 7. EXPERIMENTAL RESULTS

of the input language. In Figure 7.1 this option corresponds to executing the compiler

passes along the path marked 2.

Computation Scheduling and Data Transformations (comp sched + data transform):

The programs are compiled with decomposition analysis to find the computation and

data decompositions. The computation is scheduled in the same manner as with the

comp sched option above. In addition, the compiler uses the data decompositions

to transform the data layout in the parallelized code to improve spatial locality. In

Figure 7.1 this option corresponds to executing the compiler passes along the path

marked 3.

The decomposition analysis also provides opportunities for additional optimizations

(see Section 2.5). We investigated the impact of one such optimization, compiler-directed

page coloring (CDPC)[18] on the AlphaServer. CDPC is a technique for improving cache

utilization and eliminating cache conflicts of parallelized code on shared address space

machines. With CDPC, the compiler uses its knowledge of the data decompositions to direct

the operating system’s page allocation policy into making each processor’s data contiguous

in the physical address space. The operating system uses these hints to determine the

virtual-to-physical page mapping when the pages are allocated.

The following two variations use compiler-directed page coloring with the base compiler

and with the decomposition analysis. In the latter case, we only run coloring with the version

that uses both the computation and data decompositions to generate code. This is because

coloring relies on each processor’s data for each individual array already being contiguous

in the shared address space, while it tries to make the data across different arrays contiguous.

However, only using the computation decomposition tends to scatter each processor’s data

across the shared address space and thus it does not make sense to combine it with CDPC.

Base Parallelization with Coloring (base + coloring): The programs are compiled with

the base parallelizer and compiler-directed page coloring is applied. CDPC relies on

the compiler to supply information about the data access patterns of each processor

to a run-time library. The run-time library then uses the information to customize

the application’s page mapping policy. The base parallelizer does not know exactly

which processor accesses which data. Thus in this case the compiler assumes a

7.1. EXPERIMENTAL SETUP 155

default partitioning of the data across the processors, where each processor accesses

equal-sized blocks of the outermost dimension of each array.

Computation Scheduling and Data Transformations with Coloring (comp sched +

data transform + coloring): The programs are compiled in the same manner as

the comp sched + data transform version above. The data decompositions specify

exactly which processor is going to access which data, and this information is passed

to the coloring run-time library.

7.1.4 Application Suite

The list of benchmarks used in this study are shown in Table 7.1. The first four benchmarks

in the table are program kernels, and the remaining benchmarks are complete programs.

The kernels are used to help explain the behavior observed in the programs. In addition to

benchmarks from the SPEC92 and SPEC95 benchmark suites, we also have programs from

Lawrence Livermore National Lab (LLNL) and the Institute for Computer Applications in

Science and Engineering (ICASE). Table 7.2 shows the data set sizes of the benchmarks

for the problem sizes that we used in this study.

Benchmark Description Source

ADI integration alternating direction implicit integration hand-written
LU decomposition LU decomposition without pivoting hand-written
stencil five-point stencil hand-written
vpenta invert pentadiagonal matrices SPEC92 (nasa7)
applu partial differential equation solves SPEC95
erlebacher 3D tridiagonal solves ICASE
simple 2D Lagrangian hydrodynamics LLNL
swim shallow water simulation SPEC92,SPEC95
tomcatv mesh generation SPEC92,SPEC95

Table 7.1: Descriptions of the benchmarks.

These benchmarks were chosen because the SUIF compiler is able to find a significant

amount of parallelism in them, yet these programs still show poor speedups when using

only basic parallelization techniques (i.e. without any decomposition analysis). Figure 7.3

156 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size Data Set Size
(MB)

ADI integration 256� 256 1.5
512� 512 6.0

1024� 1024 24.0
2048� 2048 96.0

LU decomposition 256� 256 0.5
512� 512 2.0

1024� 1024 8.0
2048� 2048 32.0

stencil 512� 512 4.0
1024� 1024 16.0
2048� 2048 64.0

vpenta 128� 128 1.6
applu 33� 33� 33 31.6
erlebacher 64� 64� 64 4.6
simple 202� 182 3.1
swim 256� 256 3.6

512� 512 14.2
tomcatv 256� 256 3.6

512� 512 14.2

Table 7.2: Data set sizes of the benchmarks.

shows the parallel coverage and the 32-processor speedups obtained on the Stanford DASH

multiprocessor with the base parallelizer. Parallel coverage is defined as the percentage of

the original sequential program that can be executed in parallel. For all the benchmarks

studied on DASH, the parallel coverage is 99% or greater. A program with a coverage of

99% with perfect utilization on 32 processors results in a speedup of 24:4. However, the

speedups we observed often fell far below the ideal, ranging anywhere from as low as 4:2

for vpenta to a high of 19:5 for the 1024� 1024 size of LU decomposition.

Figure 7.4 shows the parallel coverage and the best speedups obtained on the Al-

phaServer with the basic parallelizer. The parallel coverage for the benchmarks on the

AlphaServer is 96% or more. The coverages are lower than on DASH as the Alpha 21164

processors are significantly faster than DASH’s MIPS R3000 processors. This effect is due

7.1. EXPERIMENTAL SETUP 157

Benchmark Problem Size Parallel Coverage Speedup
% (32 processors)

ADI integration 256� 256 100 6.0
1024� 1024 100 8.0

LU decomposition 256� 256 100 8.1
1024� 1024 100 19.5

stencil 512� 512 100 15.6
vpenta 128� 128 100 4.2
erlebacher 64� 64� 64 100 11.6
swim 256� 256 99 15.6
tomcatv 256� 256 99 4.9

Table 7.3: Parallel coverage and 32-processor speedups for the benchmarks on the DASH
multiprocessor. Parallel coverage is defined as the percentage of the sequential execution
time that can be executed in parallel.

to the fact that the parallelizable loop nests also tend to be more amenable to other compiler

optimizations, such as software pipelining, loop unrolling, prefetching, etc. The impact

of these optimizations is significant on the Alpha 21164, a statically scheduled quad-issue

processor with prefetch instructions. In contrast, the R3000 is a simple single-issue pro-

cessor with no prefetch instruction, and its native compiler does not need to perform these

aggressive optimizations. The result is that the small amounts of non-parallelizable code

are not as well optimized and take up a larger percentage of the total execution time on the

Alpha.

Several of the programs showed high speedups, notably the 1024� 1024 problem size

of stencil at 9:4 and the 512 � 512 problem size of swim at 11:3. These programs have

super-linear speedups because once the data is partitioned across the 8 processors, it fits

into the individual processor’s caches. However, a number of the programs showed very

poor speedups, for example, 256 � 256 tomcatv at 1:5, 256 � 256 ADI at 1:7, and both

simple and vpenta at 1:8. For comparison, perfect utilization of 8 processors with 96%

coverage should give a speedup of 6:25.

158 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size Parallel Coverage Speedup
% (8 processors)

ADI integration 256� 256 100 1.7
512� 512 100 2.8

1024� 1024 100 3.6
2048� 2048 100 4.3

LU decomposition 512� 512 100 5.9
1024� 1024 100 8.9
2048� 2048 100 9.0

stencil 512� 512 100 5.5
1024� 1024 100 9.4
2048� 2048 100 4.4

vpenta 128� 128 96 1.8
applu 33� 33� 33 100 4.9
erlebacher 64� 64� 64 99 4.5
simple 202� 182 99 1.8
swim 256� 256 99 6.4

512� 512 100 11.3
tomcatv 256� 256 97 1.5

512� 512 97 2.9

Table 7.4: Parallel coverage and 8-processor speedups for the benchmarks on the Digital
AlphaServer. Parallel coverage is defined as the percentage of the sequential execution
time that can be executed in parallel.

7.2 Experimental Results

In this section we present experimental results for each of the benchmark programs, com-

piled under the different schemes described above.

7.2.1 Distributed Shared Address Space Machine

The speedup graphs for the Stanford DASH Multiprocessor are shown in Figure 7.2 through

Figure 7.8. The problem size is shown in the upper left corner of the graphs. Each figure

plots the speedups for the base version of the application, in addition to the comp sched and

comp sched + data transform versions.

7.2. EXPERIMENTAL RESULTS 159

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up adi

256x256

�
�
�

�
� � �

� �
�

�
�

�

�

�

�

�

�
�

�

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12
|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up adi

1024x1024

�
�

�
� �

�
� �

�
�

�
�

�

�

�

�

�

�

�

�

Figure 7.2: Speedups for ADI integration on the DASH Multiprocessor.

ADI Integration. Figure 7.2 shows the results for ADI integration. ADI is an iterative

computation and each iteration has two phases — the first phase sweeps along the columns

of the arrays and the second phase sweeps along the rows (two representative loops of the

code were shown in Section 4.1.4.1).

The base compiler analyzes each loop nest separately and parallelizes the column

sweeps in the first phase, and the row sweeps in the second phase. This means each

processor accesses very different data in different parts of the program, and causes poor

temporal locality. Furthermore, while data accessed by a processor in the row sweeps are

contiguous (the code is written in C and the arrays are thus allocated in row-major order),

the data each processor accesses in the column sweeps are distributed across the shared

address space. This leads to poor spatial locality. As a result, the base version performs

poorly on this program, with maximum speedups of only 6 and 8 on the 256 � 256 and

1024� 1024 problem sizes, respectively.

In the comp sched version, the compiler finds decompositions that use doall parallelism

160 CHAPTER 7. EXPERIMENTAL RESULTS

in the row-sweep phase and switch to doacross parallelism in the column-sweep phase.

Now each processor accesses the same block of rows during both the row sweeps and

the column sweeps. This computation decomposition improves the spatial locality in

addition to improving the temporal locality and eliminating most of the inter-processor

communication. This version of ADI gets a speedup of 23 on 32 processors. Since each

processor access blocks of rows of the array, each processor’s data is already contiguous in

the shared address space and the data transformations have no effect.

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up

lu
256x256

��
��

����
����

�

�

�
�

�

���

���

���
�

�
�
�
�

�

�
�

�
��

�

�

��

�

�
�

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up

lu
1024x1024

��

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�
�
�
�
�

�
�

�
�
�
��

�
�
�
�
�

�

�

�

Figure 7.3: Speedups for LU decomposition on the DASH Multiprocessor.

LU Decomposition. Figure 7.3 shows the results for LU decomposition. In the base

version, the number of iterations in the parallel loop varies with the index of an outer

sequential loop. As a result, each processor accesses different data each time through the

outer loop.

The decomposition analysis assigns all operations on the same column of data to the

7.2. EXPERIMENTAL RESULTS 161

same processor. For load balance, the columns and operations on the columns are dis-

tributed across the processors in a cyclic manner. By fixing the assignment of computation

to processors, the compiler replaces the barriers that followed each execution of the par-

allel loop by locks. The comp sched version has good load balance, good data re-use and

inexpensive synchronization; however, the local data accessed by each processor are scat-

tered in the shared address space, increasing chances of interference in the cache between

columns of the array. The interference is highly sensitive to the array size and the number

of processors. This interference effect is especially pronounced when the array size and

the number of processors are both powers of 2. For example, with a 1024� 1024 matrix,

every 8th column maps to the same location in DASH’s direct-mapped 64 KB cache. The

speedup for 31 processors is 5 times better than for 32 processors.

The data transformation pass restructures the columns of the array so that each proces-

sor’s cyclic columns are made into a contiguous region. After restructuring, the performance

of the comp sched + data transform version stabilizes and is consistently high. In this case

the compiler is able to take advantage of inexpensive synchronization and data re-use with-

out incurring the cost of poor cache behavior. Speedups become super-linear in some cases

due to the fact that once the data are partitioned among enough processors, each processor’s

working set starts to fit into the cache.

Five-point Stencil and Swim. Figure 7.4 shows the speedups for five-point stencil. The

application swim also performs a stencil computation and has the same behavior as the

five-point stencil kernel. Figure 7.7 shows the results on DASH for swim.

In the base version, the compiler distributes the outermost parallel loop across the

processors, and each processor updates a block of array columns (the code is written in

FORTRAN and thus the arrays are allocated in column-major order).

The decomposition analysis assigns two-dimensional blocks to each processor, since

this mapping has a better computation to communication ratio than a one-dimensional

mapping used by the base version (in Figure 7.4, the number of processors in each of the

two dimensions is also shown under the total number of processors). However, without

also changing the data layout, the performance of the comp sched version is worse than

the base version because now each processor’s portion of the data is not contiguous in the

162 CHAPTER 7. EXPERIMENTAL RESULTS

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 S
pe

ed
up stencil

Number of Processors

1x
1

2x
1

2x
2

4x
2

3x
3

4x
3

4x
4

5x
4

6x
4

5x
5

7x
4

6x
5

8x
4

512x512

�

�
�

��

�
�

�

��

�
�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

Figure 7.4: Speedups for five-point stencil on the DASH Multiprocessor.

shared address space. As a result the program’s poor spatial locality outweighs the benefits

of the better computation to communication ratio.

After the data transformation is applied, the comp sched + data transform version of

the program has good spatial locality as well as less communication, and thus we achieve a

speedup of 29 on 32 processors. Note that the performance is very sensitive to the number

of processors. This is due to the fact that each DASH cluster has 4 processors and the

amount of communication across clusters differs for different two-dimensional mappings.

Vpenta. The performance results for vpenta are shown in Figure 7.5. In the base version,

the compiler interchanges the loops in the original code so that the outer loop is parallelizable

and the inner loop carries spatial locality. Without such optimizations, the program would

not even get the slight speedup obtained with the base compiler.

For this particular program, the base compiler parallelizes the same loops as the decom-

position analysis. However, since the compiler can determine that each processor accesses

exactly the same partition of the arrays across the loops, the code generator can eliminate

barriers between some of the loops. This accounts for the slight increase in performance of

the comp sched version over the base compiler.

7.2. EXPERIMENTAL RESULTS 163

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up vpenta

128x128

�
�
�

� � � � � � � � � ������
�

�

�

�

�

�

� �
� �

�
� �

�
�
��
��

�

Figure 7.5: Speedups for vpenta on the DASH Multiprocessor.

This program operates on a set of two-dimensional and three-dimensional arrays. Each

processor accesses a block of columns for the two-dimensional arrays, thus no data reorga-

nization is necessary for these arrays. However, each plane of the three-dimensional arrays

is partitioned into blocks of rows, each of which is accessed by a different processor. Thus

after applying the data transformations the data accessed by each processor is contiguous.

With the improved data layout, the comp sched + data transform version of the program

finally runs with a decent speedup. We observe that the performance dips slightly when

there are about 16 processors, and drops when there are 32 processors. This performance

degradation is likely due to increased cache conflicts between different arrays on the same

processor. Further data and computation optimizations that focus on operations on the same

processor would be useful.

Erlebacher. The erlebacher application performs three-dimensional tridiagonal solves.

It has a number of fully parallel computations that are interleaved with multi-dimensional

reductions and computational wavefronts in all three dimensions caused by forward and

backward substitutions. Partial derivatives are computed in all three dimensions with

three-dimensional arrays. Figure 7.6 shows the resulting speedups.

164 CHAPTER 7. EXPERIMENTAL RESULTS

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up erlebacher

64x64x64

�
�

�

�
�

� �

� �
�

�
�

�

�

�

�

�

� �

�

Figure 7.6: Speedups for erlebacher on the DASH Multiprocessor.

The base version always parallelizes the outermost parallel loop. This strategy yields

local accesses in the first two phases of erlebacher when computing partial derivatives in

the X and Y dimensions, but ends up causing non-local accesses in the Z dimension.

The decomposition analysis finds a computation decomposition so that no non-local

accesses are needed in the Z dimension. Each processor accesses a block of columns for

the two arrays that hold the partial derivatives in the X and Y directions, and a block of

rows for the array in the Z direction. Thus in this version of the program, the third array

has poor spatial locality. As a result, the comp sched version only improves the perfor-

mance of erlebacher slightly over the base-line version. The data transformation phase

of the compiler restructures the Z direction array so that local references are contiguous in

memory. Because two-thirds of the program is perfectly parallel with all local accesses, the

optimizations only realize a modest performance improvement.

Tomcatv. Figure 7.8 shows the speedups for tomcatv. This program contains several

loop nests that have dependences across the rows of the arrays and other loop nests that have

no dependences. Since the base version always parallelizes the outermost parallel loop,

each processor accesses a block of array columns in the loop nests with no dependences.

7.2. EXPERIMENTAL RESULTS 165

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up swim

256x256

�

�

�

�

�

� �
� �

�

�
�

�

�

�

�
�

�

�

�

Figure 7.7: Speedups for swim on the DASH Multiprocessor.

 linear speedup
� base

 comp sched
� comp sched + data transform

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up tomcatv

256x256

�
�

� �
� � � � � �

�
�

�

�

�
�

�

�
�

�

Figure 7.8: Speedups for tomcatv on the DASH Multiprocessor.

166 CHAPTER 7. EXPERIMENTAL RESULTS

However, in the loop nests with row dependences, each processor accesses a block of array

rows. As a result, there is little opportunity for data re-use across loop nests. Also, there

is poor cache performance in the row-dependent loop nests because the data accessed by

each processor is not contiguous in the shared address space.

The decomposition analysis selects a decomposition so that each processor always

accesses a block of rows. The row-dependent loop nests still execute completely in parallel.

Thus the comp decomp version of tomcatv exhibits good temporal locality; however, the

speedups are still poor due to poor spatial locality. After transforming the data to make

each processor’s rows contiguous, the cache performance improves. Whereas the maximum

speedup achieved by the base version is 5, the comp sched + data transform version of

tomcatv achieves a speedup of 18.

A summary of the experimental results for DASH are shown in Table 7.5. For each

program we compare the speedups on 32 processors obtained with the base compiler

against the speedups obtained with decomposition analysis together with computation

scheduling and data transformations. The table shows that decomposition analysis can

have a significant impact on the performance of applications on DASH. Among the kernels,

the optimized versions ran from 1:7 times faster than the base version (1024 � 1024 LU

decomposition) to 4:0 times faster (256� 256 LU decomposition) on 32 processors. For

the full programs, the improvements for the optimized version over the base version ranged

from 1:1 times faster for swim to as much as 3:7 times faster for tomcatv on 32 processors.

7.2.2 Centralized Shared Address Space Machine

The speedup graphs for the Digital AlphaServer 8400 are shown in Figure 7.9 through

Figure 7.17. The problem size is shown in the upper left corner of the graphs. Each figure

plots the speedups for the base, comp sched and comp sched + data transform versions. In

addition, we also show results for base + color and comp sched + data transform + color

versions.

ADI Integration. Figure 7.9 shows the results for ADI integration on the AlphaServer.

As was the case on DASH, the versions with decomposition analysis outperform the base

7.2. EXPERIMENTAL RESULTS 167

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

adi
256x256

�
�

�
� � � �

�

�

�
�

�
� �

� �

�
�

�
� � � �

�

�

�
�

�
� � �

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5
|6

|7

|8

 Number of Processors

 S
pe

ed
up

adi
512x512

�

�

�
�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�
�

� �
�

�

�

�

�

�

�
�

�
�

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3
|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

adi
1024x1024

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

adi
2048x2048

�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�
�

�

Figure 7.9: Speedups for ADI integration on the AlphaServer 8400.

168 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size Base Optimized Ratio
Speedups (32 processors) Optimized/Base

ADI integration 256� 256 6.0 22.2 3.7
1024� 1024 8.0 22.9 2.9

LU decomposition 256� 256 8.1 32.3 4.0
1024� 1024 19.5 33.5 1.7

stencil 512� 512 15.6 28.5 1.8
vpenta 128� 128 4.2 14.3 3.4
erlebacher 64� 64� 64 11.6 20.2 1.7
swim 256� 256 15.6 17.9 1.1
tomcatv 256� 256 4.9 18.0 3.7

Table 7.5: Summary of results on the Stanford DASH Multiprocessor. The table compares
the 32-processor speedups obtained with the base compiler against the speedups obtained
with decomposition analysis.

version due to better temporal locality for the 256 � 256, 512 � 512 and 1024 � 1024

problem sizes. The comp sched version uses doacross parallelism for some of the loops in

ADI integration. The improvements due to the decomposition analysis are greater in the

larger problem sizes because the overhead of the doacross parallelism is better amortized.

For the 2048�2048 problem size the decomposition analysis has little effect. This is due to

the fact that each array has 2048 �2048 �8 = 32 MB of data (the array elements are doubles).

Even when partitioned across 8 processors, each processor’s portion of a single array uses

the entire 4 MB external cache and there is no opportunity for re-use. Compiler-directed

page coloring had little impact on the performance.

LU Decomposition. Figure 7.10 shows the results for LUdecomposition. The 512�512

and 1024 � 1024 problem sizes of the program showed similar performance. The entire

working set of the 512 � 512 size (2 MB) completely fits in the 4 MB external cache of

one processor, so on the AlphaServer we do not see same erratic behavior that we saw on

DASH. The 1024 � 1024 size also fits entirely in the external caches at two processors,

and again the performance for all versions is very similar. Even at 2048 � 2048 enough

of the working set fits into the cache that all the versions without coloring have the same

behavior. Since there is a single array, coloring defaults to a standard policy of mapping

7.2. EXPERIMENTAL RESULTS 169

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

lu
512x512

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|2

|4

|6

|8
|10

|12

 Number of Processors
 S

pe
ed

up

lu
1024x1024

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|2

|4

|6

|8

|10
|12

 Number of Processors

 S
pe

ed
up

lu
2048x2048

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7.10: Speedups for LU decomposition on the AlphaServer 8400.

170 CHAPTER 7. EXPERIMENTAL RESULTS

pages in a round-robin fashion based on their virtual addresses.

Five-point Stencil. Figure 7.11 shows the results for five-point stencil. The speedups for

the versions with decomposition analysis are step-functions due to the way the 8 processors

are partitioned for two dimensions of parallelism (in Figure 7.11, the number of processors

in each of the two dimensions is also shown under the total number of processors). For

example, even when there are 7 processors we still have a 3� 2 partitioning and thus only

use 6 processors. For the 512 � 512 problem size, base outperforms the versions with

decomposition analysis. As we saw with DASH, the poor spatial locality of the comp sched

version causes its performance to degrade. In the base version, an access to a non-local

element often prefetches the next element needed since each processor is updating a block

of array columns (with the array allocated column-major). This effect does not occur as

often in the versions with decomposition analysis because each processor is updating a

two-dimensionalN=
p
P �N=

p
P block, whereN is the size of each array dimension and

P is the number of processors. In the base version, each processor must communicate 2N=8

cache lines, since 8 array elements (doubles) fit in one 64-byte cache line. In the versions

with decomposition analysis, each processor must communicate (2N=
p
P + 2N=(8

p
P))

cache lines. For machines like the AlphaServer with small values ofP and long cache lines,

the computation to communication ratio is actually worse with two-dimensional blocks than

with one-dimensional strips.

For the 1024 � 1024 problem size, the versions of the program without CDPC show

similar behavior to the 512� 512 problem size. The speedups are super-linear in the base

version because the data set size is 16 MB (two arrays of doubles) which starts to fit in

the 4 MB external cache at 4 processors (in the 512 � 512 problem size the data size is

4 MB and it fits into the external cache even on 1 processor). The speedups with CDPC are

extreme because the coloring optimization lays out the data so that it fits exactly into each

processor’s cache at 4 processors. For the 2048� 2048 problem size, however, the 32 MB

working set just starts to fit into the caches at 8 processors, and coloring has little effect.

Vpenta. Figure 7.12 shows the results for vpenta. The performance of comp sched

and base versions are the essentially the same on the AlphaServer, whereas on DASH

7.2. EXPERIMENTAL RESULTS 171

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3
|4

|5

|6

|7

|8

 S
pe

ed
up

stencil

Number of Processors

1x
1

2x
1

2x
2

3x
2

4x
2

2048x2048

�

�

�

�

�

�
�

�

�

�

�

� �

� �

�

�

�

�

�

�

�
� �

�

�

�

� �

� �

�

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|3

|6

|9

|12

|15

|18

 S
pe

ed
up

stencil

Number of Processors

1x
1

2x
1

2x
2

3x
2

4x
2

1024x1024

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 S
pe

ed
up

stencil

Number of Processors

1x
1

2x
1

2x
2

3x
2

4x
2

512x512

�

�

�

�

�

�

�
�

�

�

�

� �

� �

�

�

�

�

�

�
�

�

�

�

�

�

� �

� �

�

Figure 7.11: Speedups for five-point stencil on the AlphaServer 8400.

172 CHAPTER 7. EXPERIMENTAL RESULTS

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

vpenta
128x128

� �
� � � � � �

�

�

�

�

�

�

�

�

� �
� � � � � �

�

�

�

�

�

�

�

�

Figure 7.12: Speedups for vpenta on the AlphaServer 8400.

the comp sched version showed a slight performance increase due to the synchronization

optimizations.

Applu. Figure 7.13 shows the results for applu. There are two key routines in applu that

account for 54% of the sequential execution time on the AlphaServer. One routine iterates

across planes of the arrays in a forward direction, and the other iterates across the planes

in a reverse direction. Since the base version always partitions consecutive loop iterations

across the processors, different processors access different data across these two routines.

For example, if the block size is b =
l
N

P

m
where N is the size of the array dimension and

P is the number of physical processors, then in the forward routine processor 0 accesses

planes 1 : : : b whereas in the reverse routine it accesses planes N : : : (N � b + 1). In the

comp sched version, however, the computation is scheduled so that each processor accesses

the same data across the two routines. The resulting increase in temporal locality accounts

for the performance gain of comp sched over base. The data transformations have no effect

as the data accessed by each processor are already contiguous in the shared address space.

CDPC combined with decomposition analysis, gives the best overall performance.

7.2. EXPERIMENTAL RESULTS 173

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

applu
33x33x33

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

Figure 7.13: Speedups for applu on the AlphaServer 8400.

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

erlebacher
64x64x64

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

Figure 7.14: Speedups for erlebacher on the AlphaServer 8400.

174 CHAPTER 7. EXPERIMENTAL RESULTS

Erlebacher. Figure 7.14 shows the results for erlebacher. The speedup curves are

similar to those on DASH and coloring has little impact on the performance.

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

simple
202x182

�

�
�

�
�

� � �

�

�

�

�

�

�

�

�

�

�
�

�
� � � �

�

�

�

�

�

�

�

�

Figure 7.15: Speedups for simple on the AlphaServer 8400.

Simple. Figure 7.15 shows the results for simple. For this program, we modified the

original version of the application (distributed as part of the RiCEPs benchmark suite)

slightly. We performed array renaming on two arrays to eliminate unnecessary storage re-

use across procedures (see Section 6.5.1). We also fused two loops that were nested inside

an outer loop to create a perfectly nested loop. These modifications are automatable, though

they are currently not implemented in the SUIF compiler (simple is the only application in

the suite that we modified manually). The benchmark contains an ADI integration which

does row sweeps and column sweeps across two-dimensional arrays. As was the case with

the ADI integration kernel, the decomposition analysis uses doall parallelism in the row-

sweep phase and switches to doacross parallelism in the column-sweep phase. Since the

decomposition analysis partitions rows of the arrays across the processors (the program is

written in FORTRAN and the arrays are allocated column-major), the data transformations

are needed to realize any performance gains.

7.2. EXPERIMENTAL RESULTS 175

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1
|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

swim
256x256

�

�

�

�

�

�

�

�

�

�

� � �

� �
�

�

�

�

�

�

�

�

�

�

�

� � �

� �

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|2

|4

|6

|8

|10

|12

|14

|16

 Number of Processors

 S
pe

ed
up

swim
512x512

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

Figure 7.16: Speedups for swim on the AlphaServer 8400. The graph on the left is the
SPEC92 version of the benchmark and the graph on the right is the SPEC95 version.

176 CHAPTER 7. EXPERIMENTAL RESULTS

Swim. Figure 7.16 shows the speedups for the application swim on the AlphaServer. The

behavior is similar to the behavior of the five-point stencil shown in Figure 7.11. Again,

the base versions outperform the versions with decomposition analysis. The one-processor

times for all versions are very close in performance, which indicates that the computation

scheduling and data transformations are not introducing additional overhead. In this case,

the computation to communication ratio problem is worse than for five-point stencil since

the array elements are single-precision (4 bytes) rather than doubles. This means that in the

base version, each processor must communicate only 2N=16 cache lines for a dimension of

size N , since 16 elements fit in one 64-byte cache line. In the versions with decomposition

analysis, each processor must communicate (2N=
p
P + 2N=(16

p
P)) cache lines, where

P is the number of processors.

Tomcatv. Figure 7.17 shows the results for tomcatv. The SPEC92 version (256� 256

problem size) has the same behavior on the AlphaServer as on DASH. The SPEC95 version

(512 � 512 problem size) shows super-linear speedup with coloring because the 14 MB

working set starts fitting in the caches at 4 processors.

A summary of the experimental results for the AlphaServer are shown in Table 7.6.

For each program we compare the speedups on 8 processors obtained with the base com-

piler against the speedups obtained with decomposition analysis together with computation

scheduling and data transformations. For both the base and optimized numbers, we use

the maximum speedup obtained either with or without compiler-directed page coloring.

The table shows that decomposition analysis can lead to large improvements in application

performance, even on a centralized shared address space machine such as the AlphaServer.

Among the kernels, the optimized versions ran as much as 3:4 times faster than the base

version for vpenta on 8 processors, however the 512 � 512 five-point stencil and the

2048 � 2048 LU decomposition slow down slightly. Among the applications, the opti-

mized versions of 256� 256 tomcatv and simple performed well, with 3:9 and 3:2 times

improvement over the base version, respectively. The optimizations caused swim to de-

grade in performance for both problem sizes; the speedup for the optimized version is only

59% of the speedup obtained for the base version on the 256� 256 problem size.

7.2. EXPERIMENTAL RESULTS 177

 linear speedup
� base

 comp sched
� comp sched + data transform
� base + color
� comp sched + data transform + color

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Processors

 S
pe

ed
up

tomcatv
256x256

� �
� � � � � �

�

�

�

�

�

�

�

�

� �
� � � � � �

�

�

�

�

�

�

�

�

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|2

|4

|6
|8

|10

 Number of Processors

 S
pe

ed
up

tomcatv
512x512

�

�

�
�

� � � �

�

�

�

�

�

�

�

�

�

�

� �
�

� � �

�

�

�

�

�

�

�

�

Figure 7.17: Speedups for tomcatv on the AlphaServer 8400. The graph on the left is the
SPEC92 version of the benchmark and the graph on the right is the SPEC95 version.

7.2.3 Summary of Results

Our experimental results on DASH and the AlphaServer demonstrate that decomposition

analysis can significantly improve application performance. The programs in our applica-

tion suite are all highly parallelizable, but their speedups on both DASH and the AlphaServer

were disappointing using only basic parallelization techniques.

On DASH, a distributed shared address space machines with non-uniform memory

access times, good placement of the data and computation is often a pre-requisite to scalable

performance. We also found that decomposition analysis can improve performance on

centralized address space machines such as the AlphaServer. Even though the memory

access times are uniform, the improved spatial locality and reduction in coherence traffic

178 CHAPTER 7. EXPERIMENTAL RESULTS

Benchmark Problem Size Base Optimized Ratio
Speedups (8 processors) Optimized/Base

ADI integration 256� 256 1.7 2.1 1.2
512� 512 2.8 4.0 1.4

1024� 1024 3.6 5.1 1.4
2048� 2048 4.3 4.7 1.1

LU decomposition 512� 512 5.9 6.0 1.0
1024� 1024 9.8 10.2 1.0
2048� 2048 12.9 9.4 .73

stencil 512� 512 5.5 5.2 .95
1024� 1024 17.9 18.9 1.1
2048� 2048 4.4 4.4 1.0

vpenta 128� 128 1.8 6.2 3.4
applu 33� 33� 33 4.9 7.0 1.4
erlebacher 64� 64� 64 4.5 6.0 1.3
simple 202� 182 1.8 5.7 3.2
swim 256� 256 6.4 3.8 .59

512� 512 16.3 10.8 .66
tomcatv 256� 256 1.5 5.9 3.9

512� 512 3.1 9.1 2.9

Table 7.6: Summary of results on the AlphaServer 8400. The table compares the 8-
processor speedups obtained with the base compiler against the speedups obtained with
decomposition analysis.

can lead to considerable improvements in performance.

We found that to realize all of the gains of the decomposition analysis, we need to perform

both computation scheduling according to the specified computation decompositions and

data transformations according to the data decompositions. In some cases, just using the

computation decompositions without the data decompositions resulted in performance that

was worse than the base case. We also found that decomposition analysis is useful for an

additional optimization, compiler-directed page coloring.

Chapter 8

Conclusions

To achieve good performance on parallel systems, programs must make effective use of the

computer’s memory hierarchy as well as its ability to perform computation in parallel. A

key performance issue is finding a good decomposition of the data and computation across

the processors of the machine.

A popular approach to decomposition problem has been to use languages with data

decomposition extensions, such as HPF. However, it is often difficult for a programmer

writing sequential code to determine a good data decomposition for a program. Because the

mapping of data and computation are so tightly coupled, the programmer must fully analyze

the parallelism of the program to find the data decompositions. This is a challenging task for

programmers that have little experience with parallel applications. Since the programmer

does not relay the computation decomposition to the HPF compiler, the HPF compiler must

re-derive the programmer’s intended computation decomposition. This means that the user

must have also have a good understanding of how the compiler calculates the computation

decompositions to understand the resulting performance of the program.

The best solution is for the compiler to calculate both the computation and data de-

compositions automatically. Performing the decomposition analysis automatically not only

frees programmers from doing the complex analysis themselves, but can also can lead to

more efficient code. By calculating the data and computation decompositions at the same

time, the compiler is able to model both the parallelization and communication inherent in

the program. The compiler no longer has to infer the computation decomposition indirectly

179

180 CHAPTER 8. CONCLUSIONS

from the data decomposition. In the cases where the compiler is unable to fully analyze the

code, it would be more useful for the programmer to supply the compiler with facts about

the program (e.g. no arrays in this procedure are aliased), rather than specifying the data

decompositions directly.

8.1 Contributions

In this thesis we have presented a new compiler algorithm that calculates decompositions

for dense-matrix scientific codes. The contributions of this thesis are as follows:

Decomposition Framework. We have developed a linear algebra framework for ex-

pressing and calculating decompositions. This framework has several important properties.

First, we can generate a system of equations that specifies the conditions the computation

and data decompositions must satisfy, and then solve for the decompositions systematically.

Second, we are not limited to an arbitrary set of possible decompositions. Finally, using

the mathematical model allows us to succinctly represent the data and computation that are

assigned to the same processor by the nullspaces of the decomposition matrices.

Decomposition Algorithm. Based on our mathematical decomposition framework, we

developed a novel compiler algorithm that calculates data and computation decompositions.

The algorithm is based on partitioning the program into static decomposition regions,

regions of the program that have no data reorganization communication. Within the regions,

the decompositions we find are optimal in that they are guaranteed to have the largest degree

of parallelism with no data reorganization.

Within each region, we use the mathematical model to generate a system of equations

that describes the decompositions. As the algorithm progresses, it gathers constraints on

the nullspaces that must be satisfied in order for a solution to exist to the set of equations.

Since we use the nullspaces directly to calculate the cost of a particular decomposition, we

can solve incrementally as we merge loop nests into larger and larger static decomposition

regions.

Ours is the first algorithm that calculates decompositions directly while simultaneously

8.1. CONTRIBUTIONS 181

modeling the benefits of parallelization and the cost of communication. Decomposition

algorithms that are modeled after languages such as HPF and have separate alignment and

distribution phases, face the problem that alignment and distribution are inter-related. We

avoid this problem by solving directly for the affine decompositions. Our algorithm also

handles dynamic data reorganization, and incorporates replication and synchronization.

Interprocedural Decompositions. We developed the first decomposition algorithm that

performs interprocedural analysis. Any decomposition algorithm that handles realistic

programs must be able to analyze across procedures. Otherwise, if the data decompositions

of arrays do not match across procedure boundaries, then the program could potentially

incur large amounts of communication at every procedure call entry and call return. Also,

interprocedural analysis is needed to find decompositions for parallel loops that contain

procedure calls.

Our interprocedural decomposition algorithm succinctly summarizes all the necessary

information on decompositions within a procedure. It does not need to re-solve for the

decompositions in a procedure each time that procedure is called. We also identified several

program characteristics that cause a loss of precision when performing interprocedural

decomposition analysis.

Implementation and Evaluation. We implemented our decomposition algorithm as part

of the SUIF compiler system, and showed how decomposition analysis fits into the design

of a complete parallelizing compiler. We evaluated the effectiveness of our algorithm by

applying it to a suite of benchmark programs. We ran the compiler-generated code on two

different architectures, a distributed shared address space machine and a centralized shared

address space machine.

Our experimental results show that our decomposition algorithm improves program

performance by as much as a factor of four on both of these machines. In many cases,

decomposition analysis is a pre-requisite for achieving scalable performance. Decomposi-

tion analysis can also enable additional optimizations on shared address space machines,

including synchronization optimizations and compiler-directed page coloring.

182 CHAPTER 8. CONCLUSIONS

8.2 Future Work

Our compiler currently splits the parallelization analysis, decomposition analysis, data

transformations and uniprocessor locality analysis into separate phases (see Chapter 2).

One drawback to this organization is that the decomposition analysis is restricted by the

loop nest structure of the program. We operate on code within loop nests and treat the

statements within a single iteration as an indivisible unit. This limits the range of decom-

positions that our analysis can find; for example, we cannot assign different computation

decompositions to two statements in the same loop nest. Another drawback to the current

compiler organization is that uniprocessor optimizations happen only after all the multi-

processor transformations are completed. However, there may be cases where between

two decompositions that are equivalent in terms of parallelism and communication, one is

preferable in terms of uniprocessor locality. To address these issues, tighter integration is

needed between the different passes. The compiler also needs to model the effects of data

and computation transformations on both uniprocessor and multiprocessor performance.

Bibliography

[1] V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,

J. Mellor-Crummey, C.-W. Tseng, and S. Warren. Requirements for data-parallel

programming environments. IEEE Parallel and Distributed Technology, 2(3):48–58,

Fall 1994.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B.-H.

Lim, K. Mackenzie, and D. Yeung. The MIT Alewife machine: Architecture and

performance. In Proceedings of the 22nd International Symposium on Computer

Architecture, pages 2–13, Santa Margherita Ligure, Italy, June 1995.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, MA, second edition, 1986.

[4] E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr. Compiling Fortran 8x array features

for the Connection Machine computer system. In Proceedings of the ACM SIGPLAN

Symposium on Parallel Programming: Experience with Applications, Languages,

and Systems (PPEALS), New Haven, CT, July 1988.

[5] J. R. Allen and K. Kennedy. A parallel programming environment. IEEE Software,

2(4):22–29, July 1985.

[6] S. P. Amarasinghe. Parallelizing Compiler Techniques Based on Linear Inequalities.

PhD thesis, Dept. of Electrical Engineering, Stanford University, January 1997.

[7] S. P. Amarasinghe and M. S. Lam. Communication optimization and code generation

for distributed memory machines. In Proceedings of the SIGPLAN ’93 Conference on

183

184 BIBLIOGRAPHY

Programming Language Design and Implementation, pages 126–138, Albuquerque,

NM, June 1993.

[8] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proceedings of the

Third ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 39–50, Williamsburg, VA, April 1991.

[9] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation transfor-

mations for multiprocessors. In Proceedings of the Fifth ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 166–178, Santa Barbara,

CA, July 1995.

[10] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality

on scalable parallel machines. In Proceedings of the SIGPLAN ’93 Conference on

Programming Language Design and Implementation, pages 112–125, Albuquerque,

NM, June 1993.

[11] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-

performance computing. Computing Surveys, 26(4), December 1994.

[12] T. Ball and J. R. Larus. Efficient path profiling. In Proceedings of the 29th Annual

International Symposium on Microarchitecture (MICRO-29), Paris, France, December

1996.

[13] P. Banerjee, J. Chandy, M. Gupta, E. Hodges, J. Holm, A. Lain, D. Palermo, S. Ra-

maswamy, and E. Su. The PARADIGM compiler for distributed-memory multicom-

puters. IEEE Computer, 28(10), October 1995.

[14] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,

Boston, MA, 1988.

[15] D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill. Solving alignment using

elementary linear algebra. In Languages and Compilers for Parallel Computing,

Seventh International Workshop, volume 892. Springer-Verlag, 1995.

BIBLIOGRAPHY 185

[16] B. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer

programming. In Proceedings of the International Conference on Parallel Architec-

tures and Compilation Techniques (PACT), pages 111–122, Montreal, Canada, August

1994.

[17] T. Blank. The MasPar MP-1 architecture. In Proceedings of the 1990 Spring COMP-

CON, San Francisco, CA, February 1990.

[18] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam. Compiler-

directed page coloring for multiprocessors. In Proceedings of the Seventh International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-VII), pages 244–257, Cambridge, MA, October 1996.

[19] D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Dept. of

Computer Science, Rice University, March 1987.

[20] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multipro-

cessors. Journal of Supercomputing, 2:151–169, October 1988.

[21] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific

Programming, 1(1):31–50, Fall 1992.

[22] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Array distribution in data-

parallel programs. In Languages and Compilers for Parallel Computing, Seventh

International Workshop, volume 892, pages 76–91. Springer-Verlag, 1995.

[23] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Automatic array alignment

in data-parallel programs. In Proceedings of the Twentieth Annual ACM Symposium

on the Principles of Programming Languages, pages 16–27, Charleston, SC, January

1993.

[24] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Pappworth, and P. K. Rodman. A

VLIW architecture for a trace scheduling compiler. In Proceedings of the Second

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-II), pages 180–192, October 1987.

186 BIBLIOGRAPHY

[25] B. Creusillet and F. Irigoin. Interprocedural array region analyses. In Languages and

Compilers for Parallel Computing, Eighth International Workshop, volume 1033.

Springer-Verlag, 1996.

[26] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.

The complexity of multiway cuts. In Proceedings of the 24th Annual ACM Symposium

on the Theory of Computing, May 1992.

[27] J. H. Edmondson et al. Internal organization of the Alpha 21164, a 300-MHz 64-

bit quad-issue CMOS RISC microprocessor. Digital Technical Journal, 7(1), 1995.

Special Edition.

[28] S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. In Proceedings of the

1991 International Conference on Parallel Processing, pages 377–381, St. Charles,

IL, August 1991.

[29] S. J. Eggers and R. H. Katz. The effect of sharing on the cache and bus performance

of parallel programs. In Proceedings of the Third International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS-III),

pages 257–270, Boston, MA, April 1989.

[30] D. M. Fenwick, D. J. Foley, W. B. Gist, S. R. VanDoren, and D. Wissell. The

Alphaserver 8000 series: High-end server platform development. Digital Technical

Journal, 7(1), 1995. Special Edition.

[31] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M. Wu.

Fortran D language specification. Technical Report TR90-141, Dept. of Computer

Science, Rice University, December 1990.

[32] S. Frank, H. Burkhard III, and J. Rothnie. The KSR-1: Bridging the gap between

shared memory and MPPs. In Proceedings of the 1993 Spring COMPCON, pages

285–294, San Francisco, CA, February 1993.

[33] J. Garcia, E. Ayguadé, and J. Labarta. A novel approach towards automatic data

distribution. In Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

BIBLIOGRAPHY 187

[34] J. R. Gilbert, S. Chatterjee, and R. Schreiber. Mobile and replicated alignment of

arrays in data-parallel programs. In Proceedings of Supercomputing ’93, Portland,

OR, November 1993.

[35] M. Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers.

PhD thesis, College of Engineering, University of Illinois at Urbana-Champaign,

September 1992. UILU-ENG-92-2237, CRHC 92-19.

[36] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques

for parallelizing compilers on multicomputers. IEEE Transactions on Parallel and

Distributed Systems, 3(2):179–193, March 1992.

[37] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. De-

tecting coarse-grain parallelism using an interprocedural parallelizing compiler. In

Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

[38] M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S.-W. Liao, and M. S. Lam. In-

terprocedural analysis for parallelization. In Languages and Compilers for Parallel

Computing, Eighth International Workshop, volume 1033. Springer-Verlag, August

1996.

[39] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufmann Publishers, San Mateo, CA, 1990.

[40] W. Hillis. The Connection Machine. The MIT Press, Cambridge, MA, 1985.

[41] C.-H. Huang and P. Sadayappan. Communication-free hyperplane partitioning of

nested loops. Journal of Parallel and Distributed Computing, 19(2):90–102, October

1993.

[42] D. Hudak and S. Abraham. Compiler techniques for data partitioning of sequentially

iterated parallel loops. In Proceedings of the 1990 ACM International Conference on

Supercomputing, Amsterdam, The Netherlands, June 1990.

188 BIBLIOGRAPHY

[43] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the Fifteenth

Annual ACM Symposium on the Principles of Programming Languages, San Diego,

CA, January 1988.

[44] K. Kennedy and U. Kremer. Automatic data layout for High Performance Fortran. In

Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

[45] K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce

communication on SIMD machines. Journal of Parallel and Distributed Computing,

8(2):102–118, February 1990.

[46] K. Knobe, J. Lukas, and M. Weiss. Optimization techniques for SIMD Fortran

compilers. Concurrency: Practice and Experience, 5(7):527–552, October 1993.

[47] K. Knobe and V. Natarajan. Automatic data allocation to minimize data motion on

SIMD machines. The Journal of Supercomputing, 7:387–415, 1993.

[48] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High

Performance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

[49] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures

on distributed memory machines. In Proceedings of the Second ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, Seattle, WA, March

1990.

[50] U. Kremer. Automatic Data Layout for Distributed Memory Machines. PhD thesis,

Dept. of Computer Science, Rice University, October 1995. CRPC-TR95-559-S.

[51] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and

compiler optimizations. In Conference Record of the Eighth Annual ACM Symposium

on the Principles of Programming Languages, Williamsburg, VA, January 1981.

[52] D. Kulkarni, K. Kumar, A. Basu, and A. Paulraj. Loop partitioning for distributed

memory multiprocessors as unimodular transformations. In Proceedings of the 1991

ACM International Conference on Supercomputing, Cologne, Germany, June 1991.

BIBLIOGRAPHY 189

[53] K. G. Kumar, D. Kulkarni, and A. Basu. Deriving good transformations for mapping

nested loops on hierarchical parallel machines in polynomial time. In Proceedings of

the 1992 ACM International Conference on Supercomputing, pages 82–91, Washing-

ton, DC, July 1992.

[54] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,

D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The

Stanford FLASH Multiprocessor. In Proceedings of the 21th International Symposium

on Computer Architecture, pages 302–313, Chicago, IL, April 1994.

[55] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy.

The DASH prototype: Implementation and performance. In Proceedings of the

19th International Symposium on Computer Architecture, pages 92–105, Gold Coast,

Australia, May 1992.

[56] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing

between distributed arrays. In Frontiers ’90: The 3rd Symposium on the Frontiers of

Massively Parallel Computation, College Park, MD, October 1990.

[57] J. Li and M. Chen. Compiling communication-efficient programs for massively

parallel machines. IEEE Transactions on Parallel and Distributed Systems, 2(3):361–

376, July 1991.

[58] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-

memory machines. Journal of Parallel and Distributed Computing, 13(2):213–221,

October 1991.

[59] D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence

analysis. In Proceedings of the SIGPLAN ’91 Conference on Programming Language

Design and Implementation, Toronto, Canada, June 1991.

[60] D. J. Palermo and P. Banerjee. Automatic selection of dynamic data partitioning

schemes for distributed-memory multicomputers. In Languages and Compilers for

Parallel Computing, Eighth International Workshop, volume 1033. Springer-Verlag,

1995.

190 BIBLIOGRAPHY

[61] J. Palmer and G. Steele, Jr. Connection Machine model CM-5 system overview. In

Frontiers ’92: The 4th Symposium on the Frontiers of Massively Parallel Computa-

tion, McLean, VA, October 1992.

[62] W. Pugh. A practical algorithm for exact array dependence analysis. Communications

of the ACM, 35(8):102–114, August 1992.

[63] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution

in distributed memory machines. IEEE Transactions on Parallel and Distributed

Systems, 2(4):472–482, October 1991.

[64] A. Rogers and K. Pingali. Process decomposition through locality of reference. In

Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and

Implementation, Portland, OR, June 1989.

[65] M. Schlansker and M. McNamara. The Cydra 5 computer system architecture. In

Proceedings of the 1988 IEEE International Conference on Computer Design: VLSI

in Computers and Processors (ICCD ’88), October 1988.

[66] Steven L. Scott. Synchronization and communication in the T3E Multiprocessor.

In Proceedings of the Seventh International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-VII), pages 26–36,

Cambridge, MA, October 1996.

[67] T. J. Sheffler, R. Schreiber, J. R. Gilbert, and S. Chatterjee. Aligning parallel arrays

to reduce communication. In Frontiers ’95: The 5th Symposium on the Frontiers of

Massively Parallel Computation, pages 324–331, McLean, VA, February 1995.

[68] T. J. Sheffler, R. Schreiber, W. Pugh, J. R. Gilbert, and S. Chatterjee. Efficient

distribution analysis via graph contraction. In Languages and Compilers for Parallel

Computing, Eighth International Workshop, volume 1033. Springer-Verlag, 1996.

[69] http://www.sgi.com/hardware/servers/technology.html. Silicon

Graphics web site.

BIBLIOGRAPHY 191

[70] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for

shared-memory. Computer Architecture News, 20(1):5–44, March 1992.

[71] J.P. Singh, T. Joe, A. Gupta, and J. L. Hennessy. An empirical comparison of the

Kendall Square Research KSR-1 and Stanford DASH Multiprocessors. In Proceedings

of Supercomputing ’93, pages 214–225, Portland, OR, November 1993.

[72] G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, Orlando,

FL, Third edition, 1988.

[73] C-W. Tseng. Compiler optimizations for eliminating barrier synchronization. In

Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 144–155, Santa Barbara, CA, July 1995.

[74] P.-S. Tseng. A Parallelizing Compiler for Distributed Memory Parallel Computers.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,

May 1989.

[75] P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sixth

Workshop on Languages and Compilers for Parallel Computing, Portland, OR, August

1993.

[76] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K.

Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF: An

infrastructure for research on parallelizing and optimizing compilers. ACM SIGPLAN

Notices, 29(12):31–37, December 1994.

[77] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Dept.

of Computer Science, Stanford University, August 1992. CSL-TR-92-538.

[78] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of the

SIGPLAN ’91 Conference on Programming Language Design and Implementation,

pages 30–44, Toronto, Canada, June 1991.

192 BIBLIOGRAPHY

[79] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maximize

parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452–471,

October 1991.

[80] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-

bridge, MA, 1989.

[81] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of the 22nd

International Symposium on Computer Architecture, pages 24–36, Santa Margherita

Ligure, Italy, June 1995.

[82] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic

MIMD/SIMD parallelization. Parallel Computing, 6:1–18, 1988.

[83] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.

Addison-Wesley, New York, NY, 1991.

