
DESIGNING RELIABLE PROGRAMS WITH RAPIDE

Neel Madhav�

Research Associate

Computer Systems Lab

Gates Computer Science Bldg., 4A

Stanford University

Stanford, CA 94305-9040

madhav@cs.stanford.edu

David C. Luckham�

Professor

Computer Systems Lab

Gates Computer Science Bldg., 4A

Stanford University

Stanford, CA 94305-9040

dcl@anna.stanford.edu

Key words: Rapide, prototyping, software architecture,
formal constraints, partial orders of events, analysis tools.

Abstract

Rapide is a language for prototyping large, distributed sys-
tems. Rapide allows the scale design of a system to be con-
structed and analyzed before resources are applied to the
construction of the actual system.

Two important facets of designing reliable systems are
(1) system architecture | the components in the system
and the communication paths between the components, and
(2) system behavior | the requirements on the components
and the communication. Rapide facilitates the design of
system architecture and behavior by (1) providing language
features to realize system designs, (2) providing an expres-
sive model for capturing the execution behavior of systems,
and (3) providing techniques and tools for analyzing system
execution behavior.

This paper introduces the essential concepts of Rapide
and gives an example of system design using Rapide.

Rapide has 4 sublanguages | (1) a type language, (2) an
architecture de�nition language, (3) a constraint language
and (4) an executable language. The paper introduces the
Rapide architecture sublanguage and the Rapide constraint
sublanguage.

The Rapide model of system execution is a set of sig-
ni�cant events partially ordered by causality (also called
posets). This paper discusses Rapide execution models and
compares them with totally ordered event based models.

Rapide provides tools to check constraints on posets to
browse posets and to animate events on a system architec-
ture. This paper brie
y discusses the Rapide analysis tools.

1 Introduction

This paper introduces the essential features of Rapide [4, 6,
3] for designing system architecture and behavior. The pa-
per presents language features of Rapide, the Rapide execu-
tion model and brie
y introduces tools for analyzing system
execution behaviors.

The architecture of a system expresses the structural as-
pects of the system | the modules, the communication pat-
terns, the sharing of data and the composition structure of
the modules. The design of the architecture of a complex
system is crucial for the reliability of the system and the
possibility of its reuse [1, 10, 4, 6, 7, 5].

�

This project is funded by DARPA under ONR contract N00014-

92-J-1928 and AFOSR under Grant AFOSR91-0354.

The constraints on the behavior of the components of
a system determine the design of that component. Formal
constraints thus play an important role in system design.

In general, a system architecture is hierarchical, each
component has an architecture of subcomponents. However,
the hierarchical nature of architectures is not discussed fur-
ther in this conference paper.

Rapide facilitates the design of system architecture and
behavior by (1) providing language features to realize system
designs, (2) de�ning an expressive model for capturing sys-
tem architecture and behavior and (3) providing techniques
and tools for analyzing system models.

Rapide reference architectures have modules and con-
nections between those modules. Each module in Rapide
is described through an interface. Interfaces are types of
modules. The interface of a module lists ways in which the
module may interact with other modules. In addition, in-
terfaces and architectures may have formal constraints on
the behavior of modules and architectures.

Rapide architectures and models are event-based. Sys-
tem behavior and architectural connections are modeled
through partial orders of events, also called posets. The par-
tial ordering represents causal relations between events. If
an event B is partially ordered with respect to an event A,
event A is said to have caused event B. The causal rela-
tionships between events are inferred from the structure of
Rapide programs and are not discussed further in this paper.

The di�erence between execution models that are partial
orders of events compared to total orders of events is the
following | if an event A precedes an event B in a total
order, there is no guarantee that A preceded B (or in our
terminology, caused B1). However, if A caused B, then A
is guaranteed to have occurred before B. A single partial
order model of system execution thus provided strictly more
information about the relationship between events than does
a total order model.

Once a system is designed, it is executed to produce a
poset of events. This poset is a model of the execution be-
havior of the actual system. Rapide provides tools to ana-
lyze poset models of system execution to get early feedback
on the behavior of the actual system.

The Rapide constraint language provides constructs for
high-level speci�cations of modules. The language allows
or forbids the occurrence of patterns of events in an exe-
cution model. If a constraint is violated by the execution

1
Intuitively, an event A caused event B if B could not have oc-

curred if A did not occur. The actual de�nition of causality may vary

with programming environments and languages

of a Rapide system, the design of the Rapide system is
changed to adhere to the constraint. Thus, early feedback
and redesign of systems is facilitated by Rapide. Unreli-
able features in the design and behavior of the system are
thus detected and removed at an early stage of the design
of programs.

There are a number of analysis tools available to exam-
ine posets (and more analysis tools are planned). One of
the analysis tools is a constraint checker that ensures that
posets adhere to given constraints. Another tool is a poset
browser called the Partial Order Viewer and yet another tool
is an animator that shows the movement of events between
di�erent modules called Raptor (Rapide Animator).

Section 2 presents language features in Rapide that sup-
port design of system architectures and formal constraints.
Section 3 presents the Rapide poset execution model for an-
alyzing system architecture and behavior. Section 4 presents
Rapide constraints. Section 5 brie
y introduces analysis
tools.

2 Rapide Architectures

Rapide architectures are made up of components and Rapide
has constructs for specifying connections between compo-
nents.

2.1 Modules and Interfaces

The components of a Rapide architecture are called mod-
ules. Every module has an interface that lists the ways in
which the module may interact with other modules. The
constituents of an interface are names and types of objects
and actions that the module may use to interact with other
modules.

The example below is the interface of a Pump module :

type Pump is interface

in action Set Limit(Amt:Integer),
Turn On Pump(), Handle Up(),
Handle Down(), Turn O� Pump();
out action Report Charge(Amt:Integer);

constraint { { Constraints on the pump actions.
end interface;

We declare the type Pump to be an interface. The in-
terface lists the objects provided and required by modules
of type Pump and the in and out actions of modules of
type Pump. The actions are kinds of activity of interest
that may occur in a module of type Pump. The occurrence
of an action is called an event. The in actions of a mod-

ule are those that are generated by the environment2 of a
module that the module may observe. The out actions of
a module are those generated by the module that the en-
vironment of the module may observe. A Pump module
(module of type Pump) may observe and react to events
Set Limit, Turn On Pump and Turn O� Pump. A Pump
module may generate Report Charge events. The speci�-
cation of how the events generated by a module may be
observed by other modules is given through an architecture.

The following is the syntax of interfaces.

type declaration ::=

2
The environment of a module M are all other modules in the

system except M.

type identi�er is interface expression ' ;'
interface expression ::=
interface f interface constituent g
end [interface]

interface constituent ::=
provides f object name declaration g

j requires f object name declaration g
j in action f action declaration g
j out action f action declaration g
j constraint constraint list

An interface is the type of modules. An interface I may be
viewed as putting constraints on the structure and behavior
of modules of type I. The provides section lists the names
and types of objects a module of type I makes available to its
environment. The requires section lists the names and types
of objects a module of type I expects from the environment.
Events are de�ned as the occurrence of interesting activity
in a system. In actions de�ne the kinds of events a module
of type I may observe from its environment. Out actions
de�ne the kinds of events a module of type I may generate
(and other modules may observe). Constraints specify the
arrangements of events that may occur in a module of type
I. Constraints are discussed in Section 4.

The interfaces of customer modules and the operator
module are the following :

type Customer;
type Operator is interface

in action Get Money(Amt:Integer;P:Pump;
C:Customer),

Pump Result(P:Pump;Amt:Integer),
Change Request(P:Pump;C:Customer);

out action Activate Pump(P:Pump;Amt:Integer);
Give Change(C:Customer;P:Pump;

Amt:Integer);
constraint

{ { Constraints on the operator actions.
end interface;
type Customer is interface

in action Get Change(P:Pump;Amt:Integer);
out action Prepay(Amt:Integer;P:Pump),
Start Pump(P:Pump), Turn Gas On(P:Pump),
Turn Gas O�(P:Pump), Stop Pump(P:Pump),
Ask For Change(P:Pump);

constraint { { Constraints on the customer actions.
end interface;

2.2 Architectures

An architecture is a list of declarations of modules, a list of
connections between modules and a list of constraints.

The following example of an architecture is an Auto-
mated Gas Station.

architecture Automated Gas Station is

N Pumps : Integer is 2;
N Customers : Integer is 5;
P : array [Integer] of Pump is (1 .. N Pumps);
C : array [Integer] of Customer is

(1 .. N Customers);
O : Operator;
?C : Customer; { { Placeholders used to connect

?P : Pump; { { actions.

?Amt : Integer;
connect

?C.Turn Gas On(?P) to ?P.Handle Up();;
?C.Turn Gas O�(?P) to ?P.Handle Down();;
?C.Prepay(?Amt,?P) to O.Get Money(?Amt,?P,?C);;
O.Activate Pump(?P,?Amt) to ?P.Set Limit(?Amt);;
?C.Start Pump() to ?P.Turn On Pump();;
?C.Stop Pump()to ?P.Turn O� Pump();;
?P.Report Charge(?Amt) to O.Pump Result(?P,?Amt);;
?C.Ask For Change(?P) to O.Change Request(?P,?C);;
O.Give Change(?C,?P,?Amt) to

?C.Get Change(?P,?Amt);;
constraints

{ { Constraints on connections
{ {and events in the automated gas station.

end Automated Gas Station;

The architecture de�nition has 3 sections | declarations,
connections and constraints. The architecture declares com-
ponents O, P and C. O is a component of type Operator, P
is an array of components of type Pump and C is an array
of components of type Customer. The declaration section
also has declarations of some variables and some placehold-
ers. Placeholders are special variables that may be rebound
each time a construct they are part of is executed. For ex-
ample, each connection has its own copy of the placeholders
?P, ?C and ?Amt. However, within each connection, di�er-
ent occurrences of the same placeholder must have the same
value.

The connections express the communication between
modules. Placeholders are used to express multiple connec-
tions through a single connection statement. For example,
the third connection statement connects up the Prepay ac-
tion of Pump modules to the Get Money action of O.

Figure 1 shows the gas station architecture.
The following is the syntax of architectures.

architecture ::=
architecture identi�er is

declarations
connections f connection g
[constraints constraints]

end identi�er ;
connection ::=
pattern to pattern ' ;;'

j other pattern connections

Patterns are CSP [2] like expressions and are described
in Section 2.3. Connections connect up patterns of actions
to other patterns of actions.

2.3 Pattern Language

Rapide connections connect patterns to patterns. Event pat-
terns de�ne subsets of event computations.

The syntax of patterns is :

pattern ::=
basic pattern

j pattern binop pattern
j f placeholder declaration g pattern
j '(' pattern ')' j
j empty

j any
j other patterns

binop ::=
'�>'

j and

j or

j '�'
j other binary operators
basic pattern ::=
module name '.' action name

'(' parameters ')'

Basic patterns match any event in the event computation
that is an instantiation of the basic pattern. P1 �> P2 is
the sequence pattern (match of P1 must precede match for
P2), P1 and P2 is a match for both P1 and P2, P1 or P2
is a match for P1 or P2 and P1 or P2 is a match for P1 and
along with a match for P2 such that they match distinct sets
of events. Rapide has a rich pattern language, with other
operators and patterns. We do not describe the full pattern
language in this paper.

3 Rapide Execution Model

The execution behavior of a Rapide system is modeled as
a partial order of events. The partial ordering represents
causal ordering. By contrast other event based simulation
systems such as VHDL have executions that have total or-
ders of events that do not encode causal relationships be-
tween events.

The causal ordering between events is inferred from the
structure of the Rapide program. There are 4 simple rules
for inferring causality. These rules are not given in this
paper in the interests of brevity.

An example of a poset is shown in Figure 2. The event
O.Get Money(5,1,C1) denotes the operator O receiving 5
units of money from customer C1 for pump 1. The event
O.Get Money(10,1,C2) denotes the operator O receiving 10
units of money from customer C2 for pump 1. The event
C2.Start Pump(1) denotes customer C2 starting pump 1.
The event C1.Start Pump(1) denotes customer C1 starting
pump 1. The arrows denote causal relationships. Event
O.Get Money(5,1,C1) precedes O.Get Money(10,1,C2) in
the causal ordering. Event O.Get Money(5,1,C1) precedes
event C2.Start Pump(1), O.Get Money(10,1,C2) precedes
C1.Start Pump(1) and C2.Start Pump(1) precedes
C1.Start Pump(1). Since partial orders are transitive,
O.Get Money(5,1,C1) also precedes C1.Start Pump(1). How-
ever C2.Start Pump(1) is independent with respect to
O.Get Money(10,1,C2).

The causal relationships and independence between events
provide more information than a total ordering.

4 Rapide Constraints

Rapide constraints constrain the behavior of modules and
communication between modules through constraining
posets. This section introduces Rapide constraints through
an example constraint on the gas station.

The Rapide constraint language constrains posets of
events by specifying patterns of events that must not occur
in a poset (or must occur in a poset).

The following is an example of a constraint on the gas
station architecture :

never (O.Get Money(?A,?P,?C1) �>

OPERATOR

ARCHITECTURE OF AN AUTOMATED GAS STATION

CUSTOMER(1)

CUSTOMER(n)

PUMP(1)

PUMP(m)

Turn_On_Pump

Turn_Off_Pump

Handle_Down

Handle_Up

Get_Money

P
re

pa
y

Start_Pump

Stop_Pump

Press_Gas_Lever

Release_Gas_Lever

A
sk

_F
or

_C
ha

ng
e

Change_Request

G
et

_C
ha

ng
e

Pump_Result

Activate_PumpGive_Change

S
et_Lim

it

R
eport_C

harge

Figure 1: Pictorial Representation of a Gas Station Architecture

O.Get_Money(5,1,C1)

O.Get_Money(10,1,C2)

C2.Start_Pump(1) C1.Start_Pump(1)

Figure 2: A Poset Representing Part of a Gas Station Exe-
cution

O.Get Money(?A,?P,?C2)) �
(?C2.Start Pump(?P) �>
?C1.Start Pump(?P));

The constraint says that it should never happen that the
operator accepts money from a customer, ?C1, for a pump
and then accept money from another (di�erent) customer,
?C2, for the same pump and then the customers pump gas
in an order opposite of the order in which they paid.

The � operator says that its two pattern arguments must
match distinct sections of the poset. The � operator puts no
further restrictions on the relation between its arguments.

If the constraint is applied to Figure 2, we see that the
pattern

(O.Get Money(?A,?P,?C1) �>
O.Get Money(?A,?P,?C2))

matches the two Get Money events in the poset and the
pattern

(?C2.Start Pump(?P) �>
?C1.Start Pump(?P))

matches the two Start Pump events in the poset. The
two matches are distinct, therefore the pattern

O.Get Money(?A,?P,?C1) �>
O.Get Money(?A,?P,?C2)) �
(?C2.Start Pump(?P) �>
?C1.Start Pump(?P))

matches the complete poset. The constraint is violated
since it is a never constraint.

The constraint is a classic race condition constraint and
is fairly simple to express in Rapide. The constraint makes

a number of assumptions including the assumption that the
same customer does not appear twice to pump gas. We do
not discuss these assumptions in the interests of brevity.

The syntax of a subset Rapide constraint language is:
constraint ::=
observe �lter constraint body end

j constraint body
�lter ::=
pattern

constraint body ::=
[not] match pattern ' ;'

j never pattern ' ;'

A constraint has a �lter (the �lter may be omitted) and
a constraint body.

The �lter is a pattern used to restrict the poset that the
constraint applies to, to smaller size. Any poset is �rst �l-
tered by �nding all possible matches for the �lter pattern in
the computation. The result is called the �ltered computa-
tion.

If the constraint body is match pattern, the constraint
body pattern must match the �ltered computation exactly
(no left over events). If the constraint body is not match

pattern, the constraint body pattern must not match the
�ltered computation exactly. If the constraint body is never
pattern, the constraint body pattern must never match the
�ltered computation | there must be no subcomputation
of the �ltered computation that matches.

Rapide constraints and �lters are more expressive and
complex than presented in this paper. We present a simple
version of Rapide constraints in the interests of brevity.

5 Rapide Analysis Tools

There are a number of Rapide analysis tools to examine and
analyze posets and more tools are planned.

The three tools we brie
y discuss are a poset browser
called the Partial Order Viewer (POV), the Rapide Anima-
tor (Raptor) and the Rapide Constraint Checker.

The Partial Order Viewer allows posets to be viewed
browsed and reduced in size. It allows users to check for
surprises in their programs. One example of the use of the
Partial Order Viewer on a small poset is a picture very close
to the one in Figure 2. Posets may be reduced in size through
pattern matching or choosing the kinds of events that should
be displayed through an event picker.

The Rapide Animator [11] allows posets to be animated
on an architecture picture. It allows users to visualize the
interactions in their programs. One example of the use of
the Rapide Animator on an architecture and a small poset
is a picture very close to Figure 1 with events in Figure 2
animated on the architecture picture. When events are ani-
mated they travel from the \module of origin" to \destina-
tion modules".

The Rapide Constraint Checker checks posets for given
constraints and reports violations. These violations may
be reported when the program has �nished running or the
user may get reports of violations as the Rapide program
executes.

6 Conclusion

We have dealt with two important facets of designing reli-
able systems (1) system architecture | the components in

the system and the communication paths between the com-
ponents, and (2) system behavior | the requirements on
the components and the communication.

We have presented Rapide facilities for designing reliable
programs: (1) language features to realize system designs,
(2) an expressive model for capturing the execution behav-
ior of systems, and (3) tools for analyzing system execution
behavior.

Rapide is used in a number of other ways including archi-
tecture conformance checking | whether a system conforms
to a Rapide reference architecture [8] and runtime monitor-
ing of systems.

Rapide has been used to design a number of complex
systems and to tackle issues of reliability in those systems [9].

Projects are underway to instrument Java programs to
produce events (instead of Rapide) and then to use Rapide
techniques and tools to analyze and constraint check Java
programs.

References

[1] D. Garlan and M. Shaw. An Introduction to Software
Architecture, volume I. World Scienti�c Publishing
Company, 1993.

[2] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[3] David C. Luckham. A language and toolset for sim-
ulation of distributed systems by partial orderings of
events. In DIMACS Partial Order Method Workshop
IV, Princeton University, 1996.

[4] David C. Luckham, John J. Kenney, Larry M. Au-
gustin, James Vera, Doug Bryan, and Walter Mann.
Speci�cation and analysis of system architecture using
Rapide. IEEE Transactions on Software Engineering,
21(4):336{355, April 1995.

[5] David C. Luckham and James Vera. An event-based
architecture de�nition language. IEEE Transactions on
Software Engineering, September 1995.

[6] David C. Luckham, James Vera, Doug Bryan, Larry
Augustin, and Frank Belz. Partial orderings of event
sets and their application to prototyping concurrent,
timed systems. Journal of Systems and Software,
21(3):253{265, June 1993.

[7] David C. Luckham, James Vera, and Sigurd Meldal.
Three concepts of system architecture. To be published,
1996.

[8] Neel Madhav. Testing Ada 95 Programs for Confor-
mance to Rapide Architectures. In Ada-Europe, Mon-
treux, Switzerland, 1996.

[9] Alexandre Santoro and Woosang Park. SPARC-V9 ar-
chitecture speci�cation with Rapide. to appear, Stan-
ford CSL Technical Report, 1995.

[10] Mary Shaw and David Garlan. Characteristics of
higher-level languages for software architecture. Tech-
nical Report CMU-CS-94-210, CMU, December 1994.

[11] James Vera, Alex Santoro, and Moataz Mohamed. Rap-
tor - The Rapide Animator. Stanford University, Com-
puter Systems Lab ERL 456, Stanford, CA 94305-4055,
1994.

