
Remote Memory Access in
Workstation Clusters

Ben Verghese
Mendel Rosenblum

Technical Report: CSL-TR-97-729

July 1997

This work was supported in part by ARPA contract DABT63-94-C-0054.
Mendel Rosenblum is partially supported by a National Science Foundation Young
Investigator award.

i

Remote Memory Access in Workstation Clusters

Ben Verghese and Mendel Rosenblum

Technical Report: CSL-TR-97-729

July 1997

Computer Systems Laboratory
Department of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305-2140
{pubs}@cs.Stanford.EDU

Abstract

Efficient sharing of memory resources in a cluster of workstations has the promise of greatly
improving the performance and cost-effectiveness of the cluster when running large memory-
intensive jobs. A point of interest is the hardware support required for good memory sharing
performance. We evaluate the performance of two models: the software-only model that runs on a
traditional distributed system configuration, and requires support from the operating system to
access remote memory; and the hardware-intensive model that uses a specialized network
interface to extend the memory system to allow direct access to remote memory. Using SimOS,
we do a fair comparison of the performance of the two memory-sharing models for a set of
interesting compute-server workloads. We find that the software-only model, with current remote
page-fault latencies, does not provide acceptable memory-sharing performance. The hardware
shared-memory system is able to provide stable performance across a range of latencies. If the
remote page-fault latency can be reduced to 100 microseconds, the performance of the software-
only model becomes acceptable for many, though not all, workloads. Considering the
interconnection bandwidth required to sustain the software-only page-level memory sharing, our
experiments show that a gigabit network is necessary for good performance.

Key Words and Phrases: CC-NUMA, memory sharing, NOW, workstation cluster, remote
memory.

Copyright 1997
Ben Verghese and Mendel Rosenblum

— 1 —

1.0 Introduction

Efficient sharing of resources in workstation clusters has received much recent attention because
of the advances in high performance interconnection network technology. New distributed file
systems that support more efficient coupling of disk storage have been proposed [ADN+95], as
well as new studies of CPU sharing mechanisms, such as remote execution and process migration
[Arp+95]. The low latency and high bandwidth of the interconnection networks have also
prompted interest in sharing of memory resources. The increasing memory requirements of
compute-intensive applications and the large amount of “idle” memory in a workstation cluster is
driving system designers to consider schemes to efficiently utilize the total memory in a cluster,
possibly by a single workstation. Such a scheme would be attractive because it could greatly
improve the performance and the cost-effectiveness of a cluster, while simplifying the cluster-
wide resource-allocation problem.

Much of the work on memory-sharing has focussed on mechanisms and policies for utilizing the
“idle” memory of the cluster as an alternative to swapping to disk [FMP+95] [ACP+94]
[DWA+94]. Given high disk latencies and the speed of current fast interconnects, getting data
from a remote node’s memory instead of a slow magnetic disk has been shown to be a big win. In
this study we are interested in a different comparison; can remote memory be used as an extension
of local memory, not just as a disk cache? Does the performance of current memory-sharing
solutions support this model, i.e., how do these solutions compare to just having enough local
memory.

Although memory-sharing solutions are similar in principle, their implementations can be quite
different. One area of interest is the hardware support required for access to remote memory. For
this study we choose two approaches that represent opposite ends of the hardware support
spectrum. The Berkeley NOW proposal [ACP+94] represents a software-only approach that uses
system software extensions to support remote memory. This solution is attractive because it
potentially requires only commodity hardware, including interconnects and network interfaces. In
this solution, the operating system uses the interconnection network to transfer page-sized blocks
of information to and from the memories as needed by the execution of the workload.

At the opposite end of the spectrum from the NOW proposal is the hardware-based distributed
shared-memory model of the CC-NUMA architecture. In a CC-NUMA machine, the
interconnection network enters the system at the memory bus. The specialized network interface
logic used is able to fetch cache lines from remote memory when required. Some examples of
CC-NUMA machines from academia are the Stanford FLASH [Kus+94], MIT Alewife
[ACD+91], and the Wisconsin Typhoon [RLW94], and from industry are the Convex Exemplar,
Sequent STiNG, and SGI Cray Origin. Though the above systems are all tightly coupled
multiprocessors, the same hardware model can be used to connect clusters of workstations too,
e.g. the distributed FLASH proposal [Kus+94] and the SUN s3.mp [NAB+94].

In this study, we do a performance comparison between the different memory-sharing models
using SimOS [RHW+95], a complete machine simulator, and a set of relevant workloads. SimOS
allows for a fair comparison of the models by providing identical simulated hardware, except for
differences required by the memory-sharing models. Based on our results, a software-only model

— 2 —

is unable to provide the necessary memory-sharing performance. If in the future the page-fault
latency can be lowered to the 100 microseconds range, the performance of the software model
becomes acceptable for many, though not all, workloads. In contrast, the hardware shared-
memory model provides stable performance for a range of remote cache-miss latencies.

Section 2.0 gives a motivation for using memory sharing and describes the two memory-sharing
models. Section 3.0 explains our experimental environment, including the simulator support for
implementing the memory-sharing models, and the workloads. In Section 4.0, we present
experimental results from running the workloads with each model, and analyze their performance
based on the memory-access characteristics of the different workloads. Section 5.0 analyzes the
possible performance of a future optimistic NOW model. Section 6.0 discusses other factors that
may affect the performance of the two memory-sharing models, Section 7.0 discusses related
work, and Section 8.0 concludes.

2.0 Memory-sharing Models

Memory-sharing in workstation clusters is motivated by two different possible uses of these
clusters. In the more traditional workstation-based distributed systems environment, memory-
sharing enables more effective use of the available memory. Rather than having each user’s
workstation have enough memory to accommodate the largest possible job, memory sharing
allows a workstation to utilize the “idle” memory of other users’ workstations to run large jobs,
without excess slowdowns caused by paging to disk. Workstations in this configuration are
physically distributed on users’ desks, and must also continue to support the smaller interactive
jobs such as editors and window servers while crunching on the large resource intensive jobs.
Since the memory of modern workstations can account for 25% to 50% of the machine’s price,
the ability to get by without stacking every machine with excess memory makes this an attractive
proposal.

In the second environment, memory sharing is used to construct “compute servers” from a cluster
of commodity workstations. This proposal differs from the traditional workstation-based
distributed system in that the machines can be physically co-located in the same machine room,
and can support a workload of resource-intensive jobs submitted by a collection of users. The
system software attempts to balance the jobs across the cluster’s machines with a goal of
maximizing throughput. Again, memory-sharing allows for efficient execution of jobs with
memory requirements larger than a single workstation’s memory, and simplifies the resource-
allocation problem.

The two environments have implications for both the interconnect technology used and the types
of workloads supported. The wide physical distribution of the nodes in the user-workstation
environment suggests that commodity local-area interconnect technology will be used to connect
these machines. Wire transmission delays and limited bandwidth will cause the communication to
be slower compared to the interconnect used to communicate between the co-located
workstations of the “compute-server” environment.

The workloads being supported in the two environments also differ. The load balancing of
compute-intensive jobs of multiple users on the “compute-server” cluster provides for the
possibility of having one or more unrelated processes on a single workstation. This enables the

— 3 —

system to potentially hide the latency of communication for accessing remote memory by
overlapping it with useful computation. This throughput enhancing technique is less applicable to
the single-user workstation environment.

Both environments require the same basic model of execution where remote memory is viewed,
both conceptually and through performance, as a transparent extension of local memory. Figure 1
shows the type of memory sharing we study in this paper. Workstation 2 is running a workload
whose memory requirement exceeds the available local memory. Rather than paging to disk, the
memories of other workstations in the cluster are used to hold the additional pages needed by the
workload. We assume that there is always sufficient remote memory available.

Just as the virtual memory abstraction of modern machines is implemented by a combination of
hardware and operating system support, remote memory access requires such support as well. We
study two memory-sharing models. The NOW model uses a software-only approach, and requires
extensive support from the operating system, while the CC-NUMA model uses a hardware-
intensive approach. Both the CC-NUMA model and the NOW model are capable of providing
memory-sharing in either of the environments. Figure 2 shows the access mechanisms to local
and remote memory in the two models. The following sections present these models in detail.

2.1 The NOW Memory Model

In the NOW model for sharing memory, each node is a workstation with a processor, local
memory, and an interface to a high-speed interconnect such as an ATM or a Myrinet switch. To
avoid changes to the workstation hardware, access to the network is through the standard
interface provided by the I/O bus. Memory-sharing is implemented by having the operating
system use remote memory as a fast paging disk.

In the NOW model, an access to a page not in local memory results in a page fault exception. The
OS fault handler determines that the page is in the memory of another workstation, and sends a
request for the page over the network. At the remote workstation, the kernel services this request
by locating the requested page and shipping the data back. This sharing model has been recently

Workstation 1 Workstation 2 Workstation 3
FIGURE 1. Memory-sharing example showing memory allocation in a three workstation cluster.A work-
load running on workstation 2 is using remote memory on workstations 1 and 3 in addition to local memory on
workstation 2. The total memory requirement of the workload is (L + R1 + R2), with (R1 + R2) being allocated
remotely. A part of local memory has been allocated to the kernel and other processes.

Kernel
Other

Programs

Workload

Other Local

Memory Allocation Key

Free

&

L

R1

R2Workload
Local
Memory

Workload
Remote
Memory

Workload
Remote
Memory

— 4 —

used in proposed schemes such as network RAM [ACP+94], global memory manager (sharing of
memory pages) [FMP+95], and co-operative caching (a global file system buffer cache)
[DWA+94].

The latency of a remote page-fetch can be quite high, therefore the faulting user process is
descheduled for the duration of the page fetch, and another process is scheduled, allowing
communication to be overlapped with computation. When the remote page is received by the
requestor, it is copied from the network interface into local memory using DMA, and the OS is
informed through an interrupt that the page is ready. The OS then puts the faulting process back
on the run queue, and this process finds the page in local memory when it runs next. Another page
will potentially have to be evicted from local memory to free up space.

In this model the most important factor is the page-fault latency for fetching a page (4 Kbytes)
from the memory of a remote node. We explore the performance impact of various values for this
latency. Anderson et al [ACP+94] have demonstrated that the latency for a page fetched from
remote memory over an ATM network is about 1 to 1.5 milliseconds. We will use 1 millisecond as
the default page-fault latency for the NOW architecture. Additionally, Jamrozik et al [JFV+96]
showed that by using sub-pages, the first sub-page containing the referenced data could be
received substantially faster. Based on the sub-page scheme, we will also study a page-fault
latency of 0.5 milliseconds.

2.2 The CC-NUMA Memory Model

In the hardware-intensive approach of the CC-NUMA model, the interconnection network is
attached directly to the memory bus through specialized network interface logic. This model
provides transparent access to remote memory by having the interface snoop the cache miss
requests coming from the processor, and recognize requests for cache lines that are on remote

Kernel
 Memory

User
Memory

Memory 1 Memory N

Kernel
Memory

User
Memory

Processor
1

User
Memory

Memory 1 Memory N

User
Memory

Processor
1

Local
Access

Remote Access:
Network interface logic

Local
Access

1

2

3

Remote Access:
1. Causes a page fault
2. Page moved to localmemory
3. Cache line fetched

from local memory from remote memory

CC-NUMANOW
FIGURE 2. The access mechanisms to local and remote memory for the two memory-sharing models.A
cache miss to local memory leads to direct access of the data in both models. The same is true for a cache miss to
remote memory in the CC-NUMA model, since the hardware does all the work transparently. For a cache miss to
remote memory in the NOW model the OS needs to fetch the page from a remote memory.

hardware fetches cache line

Processor
N

Processor
N

Kernel
Memory

Kernel
Memory

— 5 —

nodes. For these cache lines, the hardware sends a message to the remote node requesting the
data.

In addition to shipping data bytes back and forth, the network interface logic has to track the
processors caching each line, and maintain cache coherency. DASH[LLG+92],
Alewife[ACD+91], and Typhoon[RLW94] are existing examples of these systems, which are
referred to as CC-NUMA (cache-coherent non-uniform memory architecture) multiprocessors.
This model allows the operating system and user applications to treat the memory of the
workstations as they would that of a shared-memory multiprocessor.

The tight coupling of the network interface with the memory system, and the high-speed
processing of the hardware communication engine allows for very low latency communication.
The low overhead means that the total communication time can be dominated by the wire
transmission delays. For the compute server model, such as the Stanford FLASH
machine[Kus+94], a remote access stalls the processor for around 1200 nanoseconds. During this
time the processor is limited in its ability to overlap computation with the communication (Newer
processors do not necessarily have this limitation, Section 6.1).

A variation on this model has the workstations physically distributed on users’ desks, and
transmission delays result in higher communication latencies. Such CC-NOW (cache-coherent
network of workstations) clusters [Kus+94] [NAB+94] are estimated to have remote-memory
access times around 3000 nanoseconds.

2.3 Qualitative Comparison of the Models

Given the differences between the two memory models, it is difficult to say which model will
perform better for different workloads. The NOW model pays a much higher communication cost
(0.5 - 1 milliseconds vs. 1.2 - 3 microseconds) yet it receives more data (4 Kbyte page vs. 128
byte cache line), and has the additional advantage of being able to overlap computation with the
communication. The performance benefits of these features depend heavily on the application
workload. For example, if the application’s locality of reference corresponds to accessing entire
pages, fetching whole pages may have an advantage over repeated cache misses to fetch the page.
Similarly, if additional processes are available in the workload to overlap computation with the
remote page fault processing, the NOW model can do useful work while the CC-NUMA
processor would be stalled.

3.0 Experimental Environment

To compare the two different models for remote memory access we use SimOS [RHW+95], a
complete machine simulator. SimOS models the processor, caches, memory, I/O devices, and
interconnection network of a node in a workstation cluster in sufficient detail to run commercial
operating systems and applications. Using SimOS has a number of advantages over attempting
this study on a real system. On real machines, a fair comparison between memory models would
be difficult because of the differences in system architectures and operating systems. SimOS
provides a common platform for comparing the memory models in otherwise identical
environments. A real implementation would give us only one point in the parameter space, and

— 6 —

would make it cumbersome to explore the performance of interesting variations on the basic
models. SimOS provides the flexibility to change memory-sharing models and their parameters.

For both memory-sharing models, we simulate the same high-end workstation representing a
node in the cluster. The system parameters of the node were chosen to be representative of a
workstation that might typically be found on a desktop today. Each node includes a 300Mhz
MIPS R4000-like processor with 32K on-chip instruction and data caches, one megabyte 2-way
unified secondary cache with a 300 nanoseconds miss latency to local memory and a 128 byte
cache line size, and several common I/O devices, including SCSI disks with timing based on a HP
97560 disk.

For the CC-NUMA case, we configured SimOS with a NUMA memory system model. The
NUMA memory system models the local bus, the latency and occupancy of the local and remote
network interface logic, the interconnection network, and the DRAM access time. Pages are
allocated to local memory on a first-touch basis until local memory is filled. Once local memory is
filled, pages are allocated from remote memory. This is a static allocation scheme, and NUMA
optimizations such as page migration and page replication are not used. The processor stall time
for cache misses is dependent on whether the page is located in local or remote memory.

Implementing the NOW model proved to be much more interesting because of the large operating
system component. The obvious approach would have been to extend the kernel to fully support
one or more of the proposed NOW implementations. This would have resulted in fixing the
relatively large software overheads in the client and the server as seen in the current NOW
proposals, and limiting our flexibility to investigate the effect of future more aggressive NOW
implementations and interconnection networks. On the other hand, it was also not possible to
simply have the entire effect of the NOW model configured as a parameter in the simulation, as
was done for the CC-NUMA model. The operating system needed to be aware of the remote-
memory page fault, in order to support the overlap of communication and computation by
possibly scheduling another job during the communication latency. This implies functionality that
wasn’t present in the operating system.

We use a novel hybrid approach, extending the kernel to implement some of the functionality
required for the NOW model, and implementing the rest of the necessary functionality in SimOS.
We extended the OS to “know” about remote pages. A reference to these pages by the workload
causes a remote-memory page fault that trapped into the operating system. This page-fault
handler deschedules the faulting process so other processes can be run. When the page is received
from the remote node, SimOS generates an interrupt to inform the OS. The handler for this
interrupt reschedules the faulting process. These trap, interrupt, and scheduler overheads seemed
unavoidable for any NOW implementation that supports the overlapping of communication and
computation.

All the other overheads for handling remote memory access in a NOW — formatting and sending
the request for the remote page, all round-trip network timing, network bandwidth effects, and
service time on a remote node — are modelled as a remote-memory page-fault latency in the
SimOS simulator. This gave us the ability to evaluate the NOW model over a range of latencies.
SimOS also maintains complete usage information for the local pages, and uses this to implement
a perfect LRU page replacement policy.

— 7 —

Whereas existing academic and commercial systems have demonstrated NUMA machines that
have similar overheads to our CC-NUMA model, the NOW simulation model needs to be
considered as optimistic. Existing systems have shown considerable overheads for network
communication, protocol processing, page replacement, etc. Our NOW models assume that these
overheads can be made quite small. For example, in the NOW model we assume that by using
sub-pages, the whole page can be received in 0.5 milliseconds. Actually only the first one Kbyte
can be received in 0.5 milliseconds, and the whole page would take about one millisecond,
possibly causing additional faults.

SimOS is used to boot a commercial operating system, SGI’s IRIX 5.3, and run representative
compute-server workloads. The fast simulation mode in Simos is used to run each workload till
all initialization is done. At this point the memory and global file cache is “warm”. The
subsequent “interesting” part of the workload is then simulated in detail.

In picking workloads for the study, we had two goals. First, we wanted applications that would be
representative of large jobs that would run on clusters of workstations. Second, we wanted
workloads that represent the two possible environments for memory-sharing described in
Section 2.0; single applications to represent the user-workstation environment, and
multiprogrammed workloads for the “compute-server” environment. We use six compute-
intensive workloads for this study as shown in Table 1, three multiprogrammed and three single
large applications. These workloads represent applications from different disciplines — program
development, circuit simulation, gate-delay computation, scientific applications with graphics,
system simulation, and databases.

4.0 Experimental Results

To compare the memory-sharing models we configured SimOS to model the four configurations:
NOW (one millisecond page-fault latency), SUBPAGE (NOW model with 0.5 millisecond page-
fault latency), CC-NUMA (1.2 microsecond remote cache-miss latency), and CC-NOW (NUMA
model with 3 microsecond remote cache-miss latency). We simulated the execution of the
workloads on the memory-sharing configurations with differing amount of local memory

TABLE 1. Description of the six workloads used in the study.The first three are multi-programmed and the next
three are single applications.

Workload Description
Memory Utilized

(Mbytes)

PMAKE Multiprogrammed - Two parallel makes of the gnuchess program 61.3

VCS Multiprogrammed - Two Chronologic VCS verilog simulations 25.4

SPLASH Multiprogrammed - Ocean and Raytrace from SPLASH 73.0

DB Sybase database server with TPC-B type queries 43.2

SIMOS Simulation of a 4 processor system on SimOS 42.3

DELAY CAD tool for gate delay and timing 78.9

— 8 —

� CC-NUMA
� CC-NOW

 SUBPAGE
� NOW

 LOCAL

|
0

|
10

|
20

|
30

|0.0

|1.0

|2.0

|3.0

|4.0

 VCS

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

�
�

�

�

�

�

�

�

�

�

�

�

� CC-NUMA
� CC-NOW

 SUBPAGE
� NOW

 LOCAL

|
0

|
15

|
30

|
45

|
60

|
75

|0.0

|1.0

|2.0

|3.0

|4.0

 SPLASH

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

�

�
����

�

�

�

�

�
�

�

�

�

�

�

�

�

� CC-NUMA
� CC-NOW

 SUBPAGE
� NOW

 LOCAL

|
0

|
10

|
20

|
30

|
40

|0.0

|1.0

|2.0

|3.0

|4.0

 SIMOS

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

�
�

����

�

�

�
�

�
�

�

�

� CC-NUMA
� CC-NOW

 SUBPAGE
� NOW

 LOCAL

|
0

|
15

|
30

|
45

|
60

|
75

|0.0

|1.0

|2.0

|3.0

|4.0

 PMAKE

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

������

�
�

�
�

�
�

�

�

�

�

�

�

� CC-NUMA
� CC-NOW

 SUBPAGE
� NOW

 LOCAL

|
0

|
10

|
20

|
30

|
40

|0.0

|1.0

|2.0

|3.0

|4.0

 DB

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

����
�

�

���
�

�

�

�

�

�

�

� CC-NUMA
� CC-NOW

 SUBPAGE
� NOW

 LOCAL

|
0

|
20

|
40

|
60

|
80

|0.0

|1.0

|2.0

|3.0

|4.0

 DELAY

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

��
����

��

����

�

�

�

�

�

PMAKE VCS

SPLASH DB

DELAY SIMOS

FIGURE 3. Relative execution time from actual runs as a function of local memory size.Results are shown
for four configurations, CC-NUMA, CC-NOW, SUBPAGE, and NOW. The execution times are shown relative to
the case where all memory is local, which is 1 (LOCAL).

— 9 —

available to the workload. By varying the amount of local memory, we can explore the ability of
the memory-sharing configurations to use the memory of other workstations.

Figure 3 shows the workload execution time for each workload and memory-sharing
configuration plotted against the available local memory size. The execution time shown is
relative to the unlimited local memory case (LOCAL) where no remote memory is being used.
We truncated results above a seemingly unacceptable four times slowdown over the LOCAL case.

Figure 3 clearly shows that the OS-based memory-sharing architecture (NOW and SUBPAGE)
results in poor performance for all the workloads as local memory decreases. The performance is
competitive only when the local memory size approaches the total memory footprint of the
workload. In this limiting case remote memory is not being used. The faster SUBPAGE model
improves performance over the NOW model, but still results in large slowdowns when compared
to having enough local memory.

A closer look at the NOW runs with smaller local memory shows that a significant increase in
execution time is caused by large increases in the idle time. This idle time results from the
workload’s processes being descheduled while pages are faulted in from remote memory. While
these NOW models provide a significant performance improvement when compared with paging
to a disk, they are still too slow to replace having enough local memory.

The CC-NUMA model, on the other hand, provides consistently good performance for the
workloads. The performance for CC-NUMA is close to that of LOCAL even for small local
memory sizes. Unlike the NOW and SUBPAGE models, CC-NUMA performance degrades
gracefully as the local memory is reduced. If the remote-cache-miss latency is increased to 3
microseconds (CC-NOW), the absolute performance decreases. However, this does not change
the nature of the performance profiles.

The size of local memory used, at the low end of the range of runs, may seem small compared to
workstation memories. However, we are only showing memory available to the workload, kernel
code and initial data. As explained in Section 2.0, significant additional local memory is normally
used on workstations by the kernel and other programs, such as the X-server and editors, and this
memory is then not available to the workload. Also, we have chosen complex applications with
interesting data sets, however in real life they could use significantly larger data-sets requiring
much more memory.The behavior of these workloads, as available local memory is reduced,
should be representative of larger programs too.

4.1 Analysis of Results

For the OS-based (NOW) model, the PMAKE workload shows the best performance. The
performance of the SPLASH and DELAY workloads comes next. The performance of the VCS,
SIMOS, and DB workloads degrades rapidly when local memory is reduced. To understand the
reasons behind the observed performance, we configured SimOS to generate a cache miss trace
that was then used to characterize the memory-access and cache-miss patterns of the workloads.
The results are show in Figure 4 and Table 2.

Figure 4 shows two graphs for each workload. The first graph shows the size of the memory
working-set over the execution of the workload. The different lines show the memory accessed

— 10 —

over short intervals of 10 milliseconds and relatively long intervals of one second, and the change
in the total memory footprint of the workload. The second graph shows the average required fault
rate as a function of available user memory. A perfect LRU page replacement policy was used in
determining the fault rate, and we assumed that local memory was warmed with pages from the
application’s memory footprint on a first-touch basis. Both graphs include the fixed initial part of
memory used by the kernel for its code and initial data.

Table 2 shows the cache-miss characteristics for the workloads: cache-misses/1000 instructions
for the 1Mbyte cache size that we use in our experiments, and for a 512Kbyte and a 4 Mbyte

 max
 1s
 10ms

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|0

|20

|40

|60

|80

 Execution Time (sec)

 W
or

ki
ng

 S
et

 S
iz

e
(M

by
te

s)

|
0

|
20

|
40

|
60

|
80

|0

|2000

|4000

|6000
|8000

 Memory Size (Mbytes)

 F
au

lt
R

at
e

(f
au

lts
/s

ec
)

 max
 1s
 10ms

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|0

|10

|20

|30

 Execution Time (sec)

 W
or

ki
ng

 S
et

 S
iz

e
(M

by
te

s)

 max
 1s
 10ms

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|0

|15

|30

|45

|60

 Execution Time (sec)

 W
or

ki
ng

 S
et

 S
iz

e
(M

by
te

s)

|
0

|
15

|
30

|
45

|
60

|0

|2000

|4000

|6000

|8000

 Memory Size (Mbytes)

 F
au

lt
R

at
e

(f
au

lts
/s

ec
)

 max
 1s
 10ms

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|0

|10

|20
|30

|40

|50

 Execution Time (sec)

 W
or

ki
ng

 S
et

 S
iz

e
(M

by
te

s)

|
0

|
15

|
30

|
45

|
60

|0

|2000

|4000

|6000

|8000

 Memory Size (Mbytes)

 F
au

lt
R

at
e

(f
au

lts
/s

ec
)

FIGURE 4. Working set sizes and fault rates for the six workloads.There are two graphs for each workload, the
upper shows the working set size versus time and the lower shows the fault rate versus memory size. For the work-
ing set graph there are three lines corresponding to three window sizes 10 milliseconds (10ms), one second (1s), and
the full run (max). The fault rates are for an LRU policy. These graphs are generated using a trace of cache misses.

PMAKE SPLASH

 max
 1s
 10ms

|
0

|
1

|
2

|
3

|
4

|
5

|0

|10

|20

|30

|40

|50

 Execution Time (sec)

 W
or

ki
ng

 S
et

 S
iz

e
(M

by
te

s)

|
0

|
15

|
30

|
45

|
60

|0

|2000

|4000

|6000

|8000

 Memory Size (Mbytes)

 F
au

lt
R

at
e

(f
au

lts
/s

ec
)

DB SIMOS

 max
 1s
 10ms

|
0

|
1

|
2

|
3

|
4

|
5

|0

|20

|40

|60

|80

 Execution Time (sec)
 W

or
ki

ng
 S

et
 S

iz
e

(M
by

te
s)

|
0

|
20

|
40

|
60

|
80

|0

|2000

|4000

|6000

|8000

 Memory Size (Mbytes)

 F
au

lt
R

at
e

(f
au

lts
/s

ec
)

DELAY

|
0

|
10

|
20

|
30

|
40

|0

|2000

|4000

|6000

|8000

 Memory Size (Mbytes)

 F
au

lt
R

at
e

(f
au

lts
/s

ec
)

VCS

— 11 —

cache for comparison; and the percentage of cache misses that were satisfied from local memory
for two different sizes of local memory.

We now describe three important workload characteristics, and show how they affect the
performance of the workloads.

4.1.1 Page-fault Rates

From Figure 4, the page-fault rate curves provided a good predictor for the performance of the
NOW model. A low page-fault rate means there is little communication with remote memory
while a high page-fault rate seriously degrades the performance because the processor will
potentially be idle during the page-fault service time. This difference can best be seen in the fault
curves for the PMAKE and VCS workloads.

The relatively shallow page-fault curve of the PMAKE workload means that the remote page
fetches performed by the NOW model will only gradually increase as the amount of local
memory decreases. Furthermore, the workload has good spatial locality so in each ten millisecond
window only few pages are accessed. The end result is the relatively good performance for NOW.

At the other end of the spectrum is the VCS workload. It has a very sharp knee in the page-fault
curve, which represents an important working set of the workload. The working-set graph shows
that most of the pages in the memory footprint are touched frequently, and the accesses to pages
are quite random in the short term. As a consequence, if the available local memory is reduced
below 20 Mbytes the page-fault rate increases drastically. This explains the huge drop in the
NOW model’s performance when local memory dropped below this threshold.

The other workloads are between these two extremes. The SPLASH and DELAY workloads
exhibit page-access locality, and fault curves similar to PMAKE. The DB and SIMOS workloads
have fairly steep fault curves similar to VCS because they show more random accesses to pages.

TABLE 2. Cache miss characteristics for the workloads.The left three columns show misses per 1000 instruc-
tions (non-idle) for each workload for three different cache sizes, 512Kbytes, 1Mbyte, and 4Mbytes. The right two
columns show percentage of misses to local memory for two sizes of local memory. For each workload, “Small” is
the memory size of the second point from the left on the CC-NUMA curve in Figure 3, and “Large” is that for the
second point from the right on the same curve.

Workload
Cache Misses (per 1000 instr.)

Percentage of misses from
local memory

512 Kbyte 1 Mbyte 4 Mbyte Small Mem. Large Mem.

PMAKE 9.1 5.9 3.2 55% 90%

VCS 257.0 210.0 80.0 74% 97%

SPLASH 68.4 58.1 28.5 18% 46%

DB 19.0 8.7 2.5 75% 99%

SIMOS 25.8 14.9 7.7 36% 75%

DELAY 6.2 1.7 1.1 38% 97%

— 12 —

4.1.2 Multiprogramming

The shape of the fault curve also helps explain the inability of the OS-based models to overlap
communication with computation through multiprogramming, for some of the workloads. For
workloads with a gradual rise in the fault curve, such as PMAKE, it is possible to give some
memory to additional processes without causing large increases in the fault rate. The execution of
the additional process can be used to hide all or part of the page-fault latency. This effect can also
be seen to a lesser extent in the SPLASH workload.

The VCS workload demonstrates the lack of applicability of this technique to hide idle time for
workloads with steep fault curves. In such workloads, decreasing the memory available to a
process to make room for another process, can increase the fault rate to such an extent that any
benefit from overlapping computation with communication is swamped by the increase in idle
time.

The hardware-based model will not see any benefit from multiprogramming, if anything it will
degrade performance by causing additional cache misses due to interference by the multiple
applications.

4.1.3 Cache-miss Rates

The performance of the hardware-based models (CC-NUMA and CC-NOW) is not dependent on
page faults, but is dependent on the number of cache misses to remote memory because the
processor is stalled for the duration of a cache miss. The remote-memory stall time is dependent
on two factors, the cache-miss rate of the application and the fraction of misses that go to remote
memory. A high cache-miss rate will degrade the performance of these models. For our
experiments, we do static first-touch placement of pages in local memory. Therefore, the fraction
of misses to remote memory is a combination of the amount of local memory, and the
effectiveness of first-touch at placing the appropriate pages in local memory.

Table 2 helps explain the behavior of the VCS and SPLASH workloads, the two workloads that
show the greatest performance degradation for the hardware models. The VCS workload has an
extremely high cache miss rate for the one megabyte cache used in the study. As the amount of
local memory is reduced, the fraction of cache misses to remote memory increases, resulting in
additional processor stall time that hurts performance. The longer latencies for CC-NOW
exacerbate this problem resulting in the large slowdowns for small local memory sizes seen in
Figure 3.

The SPLASH workload has a high cache-miss rate, and suffers from poor initial layout of pages
in local memory. The first-touch policy resulted in a majority of cache misses going to remote
pages even in the large local memory configuration. The combination of these effects caused the
large slowdowns seen by the hardware models. It is particularly noticeable in the CC-NOW
model which performs worse than the OS-based models for some local memory sizes. The OS-
based models always copy remote pages to local memory so their memory-sharing performance is
independent of the workload’s cache-miss rate.

— 13 —

The other workloads have low cache-miss rates or good locality or both, allowing the hardware-
based approach to perform well across the range of local memory sizes. Larger caches size will
reduce the cache-miss rate, and so improve the performance of the workloads for the hardware
model. Moving from an 1 Mbyte to a 4 Mbyte cache reduces the miss rate by 50% or more for all
the workloads.

5.0 Optimistic NOW Models

The results from the previous section showed that a NOW model, based on parameters from
currently existing implementations, performs poorly when local memory is limited. We decided
to investigate whether the performance of the NOW model can be made competitive with the case
of having enough local memory, and what the page-fault latency would need to be to achieve this
performance.

We assumed an extremely fast page-fault mechanism, and cranked down the page-fault latency to
100 microseconds. Transferring a 4 Kbyte page in less than 100 microseconds requires bandwidth
that is significant compared to that of available commodity interconnection networks. This was
not an issue for the base NOW and SUBPAGE models because the page-fault latency was much
higher. Therefore, for smaller latencies the NOW model incorporated network queuing to account
for limited bandwidth, resulting in two new models, the MYRNOW and the ATMNOW. These
are projections of how fast the NOW model needs to be, and there are no current systems known
to us that are close to this page-fault latency.

The MYRNOW model assumes a gigabit style high-end network modelled on the Myrinet
[Bod+95]. The uncontended latency for requesting a four Kbyte page is 100 microseconds split
into two components, 20 microseconds of actual latency for a zero-size page, and 80
microseconds of transmission latency, assuming an actual unidirectional data throughput of
400Mbits/s.

The ATMNOW model is based on a currently available ATM-speed network. The uncontended
latency is about 220 microseconds; 20 microseconds of actual latency for a zero-size page, and
200 microseconds of transmission latency, assuming a data throughput of 160Mbits/s. In both
these models, the 20 microseconds of latency includes two end-to-end network latencies, and the
time for the remote node to accept the request and find the requested page.

Figure 5 shows the relative execution times for the workloads for four different models — the
new MYRNOW, and ATMNOW models and the previously considered hardware-based models,
CC-NUMA and CC-NOW. The workloads can be divided in three categories based on their
performance.

For the PMAKE and SPLASH workloads, the performance of the MYRNOW model is within the
acceptable range. In fact, it actually performs better than the CC-NOW model, though not the CC-
NUMA model. Both of these workloads are multiprogrammed, and have shallow page-fault
curves. The idle time is less because of the smaller page-fault latency in the MYRNOW model,
and it is able to hide much of this idle time by overlapping computation with communication. The
SPLASH workload also has a poor distribution of pages in local and remote memory for the
hardware models, as explained in Section 4.1.3.

— 14 —

� CC-NUMA
� CC-NOW

 MYRNOW
� ATMNOW

 LOCAL

|
0

|
10

|
20

|
30

|
40

|0.0

|1.0

|2.0

|3.0

|4.0

 SIMOS

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

�
�

����

�

�

�
�

�
�

�

�
�

�

�

�

� CC-NUMA
� CC-NOW

 MYRNOW
� ATMNOW

 LOCAL

|
0

|
10

|
20

|
30

|
40

|0.0

|1.0

|2.0

|3.0

|4.0

 DB

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

����
�

�

���
�

�

�

��

�

�

�

� CC-NUMA
� CC-NOW

 MYRNOW
� ATMNOW

 LOCAL

|
0

|
15

|
30

|
45

|
60

|
75

|0.0

|1.0

|2.0

|3.0

|4.0

 SPLASH

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

�

�
����

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

� CC-NUMA
� CC-NOW

 MYRNOW

 LOCAL

|
0

|
10

|
20

|
30

|0.0

|1.0

|2.0

|3.0

|4.0

 VCS

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

�
�

�

�

�

�

�

�

�

�

FIGURE 5. Relative execution time of the optimistic NOW models.Each graph shows execution time for dif-
ferent memory sizes, relative to the case with all memory local. There are four curves, the MYRNOW (MYRINET
model), ATMNOW (ATM model), and the CC-NUMA, and CC-NOW models for comparison. We did not run the
ATMNOW configuration for VCS.

� CC-NUMA
� CC-NOW

 MYRNOW
� ATMNOW

 LOCAL

|
0

|
15

|
30

|
45

|
60

|
75

|0.0

|1.0

|2.0

|3.0

|4.0

 PMAKE

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

������

�
�

�
�

�
�

�

�

�
�

�
�

� CC-NUMA
� CC-NOW

 MYRNOW
� ATMNOW

 LOCAL

|
0

|
20

|
40

|
60

|
80

|0.0

|1.0

|2.0

|3.0

|4.0

 DELAY

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

��
����

��

����

�
�

�

�

�

�

PMAKE

DELAY SIMOS

SPLASH DB

VCS

— 15 —

The comparison in performance between the MYRNOW and CC-NOW configurations is
interesting. The cache-miss latency for accessing all the cache lines in a page from remote
memory is about 100 microseconds for the CC-NOW case (3 microseconds per cache line and 32
cache lines in a page). This is the same as the page fault latency for the MYRNOW case, which in
addition can also hide some of the latency by running another process.

For the DELAY and SIMOS workloads, the performance of the MYRNOW model is not better
than that of CC-NOW. The smaller page-fault latency has helped, but unlike the previous two
workloads, these are not multiprogrammed, so the page-fault latency cannot be hidden. However,
their performance is still within the acceptable range because of the smaller page-fault latency.

For the VCS and DB workloads, even the MYRNOW architecture cannot deliver acceptable
performance for smaller values of local memory. As explained in Section 4.1.1, these workloads
have a sharp knee in the fault curve, and the high consequent fault rate and poor spatial locality
cause the performance to degrade sharply and become unacceptable. The VCS workload is
multiprogrammed with two jobs executing simultaneously. The results for a workload with only a
single VCS job, shown in Figure 6, confirm that the performance is inherent to the memory access
characteristics of the VCS application.

The ATMNOW model performs worse than the MYRNOW model for the workloads, though
provides acceptable performance for some workloads, such as PMAKE and DELAY. The
implication here is that the latency and network bandwidth of the MYRNOW will be needed to
maintain good memory-sharing performance with a OS-based (NOW) model.

6.0 Other Performance Issues

Additional factors, current and future, can affect the performance of the memory-sharing models.
Some of these are trends, such as advances in processor architectures, increases in processor
speed, and increases in page size, while others are smarter software policies. We do a brief

� CC-NUMA
� CC-NOW

 MYRNOW

 LOCAL

|
0

|
5

|
10

|
15

|
20

|
25

|0.0

|1.0

|2.0

|3.0

|4.0

 VCS_1

 Memory Size (Mbytes)

 R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
���

�

�

��
�

�

�

FIGURE 6. Performance of the MYRNOW model.We compare the performance of the MYRNOW model with
that of the CC-NUMA models for a workload with only a single VCS application. It shows performance similar to
the VCS workload

— 16 —

analysis to see how some of these trends and policies might affect the performance results we
have presented.

6.1 Processor Advances

We see two trends in processor architectures that are likely to affect the performance of memory-
sharing models. The first is faster processors, and this is likely to benefit the software-based NOW
model. The second is latency tolerating and hiding techniques, and these will benefit the
hardware-based model.

Faster processors can help the performance of the software-based NOW model by reducing the
time spent executing the server routines and the trap handlers on the client. By cranking down the
page-fault latency, as in the MYRNOW model, we have already assumed significantly lower
service times on the server, achieved through faster processors and other techniques. For the
client-side trap handlers, the actual time spent in the kernel is only a small fraction of the total
time for these models, most of the slowdown is due to idle time, as seen in Figure 7. For example,
taking the case of the MYRNOW model for the worst performing workload, VCS, the kernel time
is less than 25% of the total time. If the processor speed were to double (600 MHZ), the maximum
reduction we would see in this case would be about 10%. This reduction would not bring the
performance of the NOW model into the acceptable range for the VCS workload. The effect of
increasing processor speed on the other workloads and the other NOW models would be even less
than this, and so will not significantly change our results.

A number of features to hide or tolerate the latency of cache misses are being incorporated into
processor architectures. These features, such as out-of-order execution, non-blocking caches, and
prefetching, will improve the performance of the hardware-based model by reducing the stall time
for remote access as seen by the workload. In fact, a multi-threaded processor attempts to hide
cache-miss latency the same way that the OS-based model tries to hide page-fault latency, by
executing from a different context [TEL95]. Increasing the size and associativity of the
processor’s secondary cache will also help by reducing the number of cache misses seen.The OS-
based model will not see any sharing benefit from these changes because every referenced page
will have to be faulted into local memory.

||0

|100

|200

|300

|400

|500
 N

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e Idle

 100

 174

 126
 100

 457

 217

 100

 451

 238

 100

1657
 458

 100

 872 575

 100

 389

 171

loc sp myr
PMAKE

loc sp myr
SPLASH

loc sp myr
SIMOS

loc sp myr
VCS

loc sp myr
DB

loc sp myr
DELAY

Kernel
User

FIGURE 7. Breakdown of execution time for the SUBPAGE and MYRNOW models .Execution times are for
the smallest memory size simulated, and are normalized to the all LOCAL case. The bars for the VCS and DB
workloads overflow the figure.

— 17 —

6.2 Page Size

Another trend, increasing page size, primarily affects the performance of the OS-based model.
The performance impact of larger page sizes would be a trade-off between the changes in the
resulting fault rate (decided by the spatial locality of accesses to pages) and the bandwidth
component of latency of a remote page fetch. The sub-page technique can be used to reduce the
latter. A larger page-size would help workloads like PMAKE that have good spatial locality, but
would hurt workloads like VCS and DB that exhibit more random accesses to pages.

6.3 OS-based policies

In our experiments we assumed a static first-touch placement of pages in the hardware-based
model. This can result in a poor placement of pages, as we saw in the SPLASH workload, and
cannot respond to temporal changes in the working set. The locality of data can be improved in
the hardware model by dynamically migrating “hot” pages to local memory, thus improving
performance [VDG+96]. While the OS-based model is forced to bring a referenced page to local
memory, the OS in the hardware-based model can selectively migrate “hot” pages to local
memory, thus avoiding the problem of thrashing that we see in some of the workloads. Therefore,
a hardware-based model with an intelligent page migration policy, should always perform better
than a pure OS-based model.

Performance of the NOW model could be improved by pre-fetching of pages, choosing intelligent
page-replacement policies [PGG+95][FMP+95], and sub-page fetching [JFV+96]. The effect of
these features are implementation and workload dependent.

7.0 Related Work

There has been little work comparing the performance of memory-sharing models for compute-
server workloads. The only directly related work has been by Li & Petersen [LiP91]. Their work,
while not done in the same context, addresses a similar question. They addressed the question of
how to use additional slower memory in a computer system — either as slower extended memory
directly accessible from the processor, or as a cache between the file system and main memory.
They concluded that the former resulted in better performance. Our work differs on the following
points. We frame the problem in the context of currently interesting systems, and the system used
for evaluation has relevant modern characteristics, such as fast processors and large caches; their
work was based on a SUN3/180. In addition to single application workloads, we consider
multiprogrammed compute-server workloads as well. The latency of page faults can potentially
be hidden in a multiprogrammed workload. Their runs, on an actual implementation, were
restricted to a single set of latency parameters. Using SimOS, we are able to run the workloads for
variations in each model, and explore the effect of changes in latency and interconnection
bandwidth.

There has also been work comparing the performance of parallel applications on different
implementations of software DSM systems on the NOW model, with that of the CC-NUMA
model [JKW95][CDK+94][BZS93]. While the memory models being compared are the same, the
nature of parallel applications and the issues considered are completely different from that of
compute-server workloads of sequential applications.

— 18 —

8.0 Conclusions

Efficient sharing of memory resources in a cluster of workstations has the promise of greatly
improving the performance and cost-effectiveness of the cluster when running large memory-
intensive jobs. For memory-sharing to be effective, remote memory must be presented as an
extension of local memory, both conceptually and through performance. Using SimOS we do a
fair evaluation of the performance of different memory-sharing architectures using a variety of
representative workloads.

With the increasing speed of commodity interconnection networks, we were interested in the
possibility of achieving memory-sharing using a software-only solution. We analyzed the
memory-sharing performance of such a solution, the OS-based NOW model that uses the
mechanism developed for remote paging across a network to another workstation’s memory.
Based on our results for this model, if a significant part of a workload’s data does not fit in local
memory, the performance of workloads degrades to greater than two times slowdown. The
latency of the remote page-fetch cannot be hidden by overlapping computation with
communication for multiprogrammed workloads.

If in the future, the effective latency for a remote page fetch can be reduced from the current 0.5 -
1 millisecond to about 100 microseconds, the software-only model will be able to provide
acceptable performance for many workloads. However, for the class of workloads that are
characterized by mostly random accesses to memory, such as the commercial CAD simulator and
the database, this form of memory-sharing is unsuitable and continues to show poor performance.
Achieving this optimistic remote page-fault latency is likely to be difficult, requiring a memory-
server response time of a few tens of microseconds, and a fast interconnect with latencies in the
microseconds and bandwidth in the gigabits/sec range.

In contrast, the hardware-based model is able to consistently provide good stable memory-sharing
performance. This is true for both environments of interest to us; the machine room type
environment where the CC-NUMA model is comparable to the all-local-memory case, and the
distributed user-workstation type environment where the CC-NOW model is within two times
slowdown. Processor architecture trends and OS-based policies are likely to improve the
performance of the hardware-based model. Our results lead to the conclusion that hardware
support is required for efficient memory-sharing in workstation clusters when running memory-
intensive jobs.

Bibliography

[ACD+91] A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor.MIT/LCS Memo TM-454, Massachusetts Institute of Technology,
1991.

[ACP+94] T. Anderson, D. Culler, D. Patterson. A Case for NOW (Networks of Workstations).
Presented atPrinciples of Distributed Computing,August 1994.

[ADN+95]T. Anderson et al. Serverless Network File Systems. InProceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, pages 109-126, December 1995.

[Arp+95] R.H. Arpaci et al. The interaction of parallel and sequential workloads on a network of
workstations. In Proceedings of 1995 ACM SIGMETRICS Joint International

— 19 —

Conference on Measurement and Modeling of Computer Systems, pages 267-278, May
1995.

[Bod+95] N. J. Boden et al. MYRINET: A GIGABIT PER SECOND LOCAL AREA
NETWORK. IEEE-Micro,Vol.15, No.1,pages 29-36, February 1995.

[BZS93] B. Bershad, M. Zekauskas, W. Sawdon. The Midway distributed shared memory
system.COMPCON Digest of Papers, pages 528-537, Feb. 1993.

[CDK+94] A. Cox et al. Software versus hardware shared-memory implementation: a case study.
In Proceedings of the 21st Annual International Symposium on Computer
Architecture, pages 106-17, April 1994.

[DWA+94]M. Dahlin, R. Wang, T. Anderson, D. Patterson. Cooperative Caching: Using Remote
Client Memory to Improve File System Performance. InProceedings of the First
Symposium on Operating Systems Design and Implementation, pages 184-190, March
1989.

[FMP+95] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, C. Thekkath. Implementing
Global Memory Management in a Workstation Cluster. InProceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, pages 201-212, December 1995.

[JFV+96] H. Jamrozik et al. Reducing Network Latency Using Subpages in a Global Memory
Environment. InProceedings, Architectural Support for Programming Languages and
Operating Systems, pages 258-267, October 1996.

[JKW95] K. Johnson, F. Kaashoek, D. Wallach. CRL: High-Performance All-Software
Distributed Shared Memory. InProceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pages 213-228, December 1995.

[Kus+94] J. Kuskin, et al. The Stanford FLASH Multiprocessor. InProceedings of the 21st
International Symposium on Computer Architecture, pages 302-313, April 1994.

[LLG+92] D. Lenoski et al.The Stanford DASH Multiprocessor.IEEE Computer 25(3), pages
63-79, March 1992.

[LiP91] K. Li and K. Petersen. Evaluation of Memory System Extensions. InProceedings of
the 18th International Symposium on Computer Architecture, pages 84-93, May1991.

[NAB+94] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, D. Lee, and M. Park. “The S3.mp
Scalable Shared Memory Multiprocessor.” InProceedings of 27th Hawaii
International Conference on Systems Sciences, pages. 144-153, January 1994

[PGG+95] R. H. Patterson et al. Informed Prefetching and Caching. InProceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, pages 79-95, December
1995.

[RHW+95]M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete Computer Simulation:
the SimOS approach. InIEEE Parallel and Distributed Technology, Fall 1995.

[RLW94] S. Reinhardt, J. Larus, D. Wood. Typhoon and Tempest: User-Level Shared Memory.
ACM/IEEE International Symposium on Computer Architecture (ISCA), pages 392-
403, June 1995.

[TEL95] D Tullsen, S Eggers, H Levy. Simultaneous multithreading: Maximizing on-chip
parallelism. In Proceeding International Symposium on Computer Architecture
(ISCA), April 1994).

[VDG+] B Verghese, S Devine, A Gupta, and M Rosenblum. Operating System Support for
Improving Data Locality on CC-NUMA Compute Servers. InProceedings,
Architectural Support for Programming Languages and Operating Systems, pages
279-289, October 1996.

