
 

1

 

A Single Chip Multiprocessor Integrated with High Density 
DRAM

 

Tadaaki Yamauchi

 

1

 

, Lance Hammond

 

2

 

, and Kunle Olukotun

 

2

 

1

 

ULSI Laboratory, Mitsubishi Electric Corporation

 

2

 

Computer Systems Laboratory, Stanford University

 

Abstract

 

A microprocessor integrated with DRAM on the same die has the potential to improve system

performance by reducing memory latency and improving memory bandwidth. In this paper we

evaluate the performance of a single chip multiprocessor integrated with DRAM when the DRAM

is organized as on-chip main memory and as on-chip cache. We compare the performance of this

architecture with that of a more conventional chip which only has SRAM-based on-chip cache. The

DRAM-based architecture with four processors outperforms the SRAM-based architecture on

floating point applications which are effectively parallelized and have large working sets. This per-

formance difference is significantly better than that possible in a uniprocessor DRAM-based archi-

tecture, which performs only slightly faster than an SRAM-based architecture on the same

applications. In addition, on multiprogrammed workloads, in which independent processes are as-

signed to every processor in a single chip multiprocessor, the large bandwidth of on-chip DRAM

can handle the inter-access contention better. These results demonstrate that a multiprocessor takes

better advantage of the large bandwidth provided by the on-chip DRAM than a uniprocessor. 

 

Keywords

 

DRAM, on-chip DRAM, embedded DRAM, L2 caches, on-chip L2 caches, SRAM caches, mul-

tiprocessors, multiprocessor-on-a-chip



 

2

 

1 Introduction

 

Recently, microprocessor chips with integrated DRAM have been developed [1] to close the

speed gap between processors and memory [2,3]. In these chips, the DRAM and the processor are

connected using a wide internal data bus. High speed data transfer over the internal data bus im-

proves memory latency, because the load capacitance of the internal data bus is small compared to

that of an external data bus. The majority of proposals for single chip processor-memory integra-

tion use a very simple processor and fill the remaining area on the chip with DRAM. In this paper

we show that when DRAM is combined with a more powerful microprocessor architecture, such

as a multiprocessor, the on-chip DRAM bandwidth is more efficiently used and the overall perfor-

mance of the chip is dramatically improved.

In a system where all the main memory is on the processor chip, it is possible that some large

applications may run out of main memory. These applications will then require access to off-chip

memory. We investigate the performance of an OS-based page-fault mechanism that provides this

support. Alternatively, the on-chip DRAM may be treated as a very large on-chip cache instead of

main memory. Off-chip main memory is required in this case, but caches which consist of DRAM

can have much larger capacities than the more conventional SRAM cache designs with equal die

area.

The reminder of this paper is organized as follows. In Section 2, we discuss the architectural

model used to evaluate system performance. In Section 3, we discuss the simulation methodology.

In Section 4, a single chip multiprocessor integrated with DRAM main memory is evaluated. The

influence of page faults on integrated DRAM performance is estimated in Section 5. The alterna-

tive configuration with on-chip DRAM designed as a very large on-chip cache is evaluated in Sec-

tion 6. Finally we conclude in Section 7.



 

3

 

2 Architectural Models

2.1 A Single Chip MP with on-chip DRAM

 

High speed DRAMs, such as synchronous DRAMs, have been developed to achieve high data

transfer rates for serial accesses. This speed-up offers a large benefit for bandwidth-intensive ap-

plications. However, improvements in memory latency have not kept up with the almost exponen-

tial increase in processor speed, so system performance is often limited by the memory access time

[2].

Recently, very simple microprocessors integrated with DRAM main memory have been devel-

oped for the embedded systems [1]. In this architecture, the DRAM and the processor are connected

using a wide internal data bus on a single die. The high speed data transfer through the internal data

bus can improve the memory latency, and therefore the performance, because the load capacitance

of the internal data bus is negligibly small compared to that of an external data bus. We propose

adding a more complex processor to an integrated processor and DRAM chip. Since a single chip

multiprocessor has been demonstrated as a promising candidate for future high performance mi-

croprocessor design [4], we use one in the simulations in this paper. 

When present DRAM processes are used to fabricate high performance processors, the proces-

sor’s logic gates typically suffer speed and area penalties. However, some DRAM manufacturers

are developing merged process technologies which can provide high density for the embedded

DRAM without degrading the logic performance. In this paper we will assume that the single chip

multiprocessor integrated with high density DRAM can run at a clock frequency of 500MHz.

Fig. 1 shows the block diagram of a single chip multiprocessor integrated with DRAM. Four 2-

way superscalar processors are interconnected with a 256 bit wide read/replace data bus, whose bit

width is identical to the cache line size. As a result, each line replacement between the cache and



 

4

 

DRAM occupies the bus for only a single CPU cycle. Since the four processors share the read/re-

place bus, arbitration for this resource requires an extra cycle. Each of the four processors has a

16KB SRAM instruction cache and a 16KB SRAM data cache, both accessible in a single 2 ns

clock cycle. Since each cache can only be accessed by a single processor or its single load/store

unit, no additional arbitration overhead is required. A write back with write-miss allocation policy

is implemented to reduce the traffic on the read/replace data bus. Coherency among the individual

data caches is maintained using an update coherence protocol. The data written by each processor

is broadcast to all other data caches through the 64 bit update bus. Each data cache has two I/O ports

to minimize the interference caused by updates.

The capacity of the embedded DRAM main memory is assumed to be 256Mb, organized as 16

independent banks. Having multiple banks reduces the number of bank conflicts, which can have

Update 
Buffer

I-Cache #0

Processor #0

D-Cache #0

Writeback Buffer

Main Memory: 256Mb DRAM

Memory 
Buffer

Cache Refills Writes

Writebacks

U
pd

at
es

Read/Replace Bus (256b)
Update Bus (64b)

Memory Bus (128b x 2)

Memory
Return 
Buffer

Figure 1 Block diagram of a single chip multiprocessor integrated with 256Mb

DRAM on the same die.



 

5

 

a significant effect on the single-chip multiprocessor system [5]. Requests to access the main mem-

ory are queued in the memory buffer until the proper memory bank is free to accept the access. To

manage the multi-bank DRAM properly and generate necessary DRAM control signals such as

RAS and CAS, an extra cycle of latency is incurred as accesses are pulled out of the memory buffer.

Unlike the read/replace bus, the memory bus cycle is twice as long as a CPU clock cycle. As a re-

sult, the peak memory bandwidth without bank conflicts is 8 GB/s. All data that is read from the

DRAM is queued into the memory return buffer. The cache line reaches the processor after a cycle

spent successfully arbitrating for the read/replace bus. Therefore, 5 cycles are required to control

the multi-bank DRAM and its supporting resources, as follows: two cycles for the two bus arbitra-

tions, two cycles for buffering requests going to or from the processors, and one cycle for DRAM

control. The structure of the memory buffers allows memory accesses to be pipelined. In this ar-

chitecture, the number of memory requests is primarily limited by the number of embedded DRAM

banks, and secondarily by contention for the read/replace bus.

The access and cycle times of the embedded DRAM are assumed to be 30ns and 60ns, respec-

tively. These values are quite reasonable for a mass-produced 256Mb DRAM using a 0.25

 

µ

 

m tech-

nology. These times are also reasonable compared with modern discrete DRAMs, which typically

have 50-60ns access times, including the delay of the pin I/O drivers.

A possible problem with this integrated DRAM is that 32MBytes of main memory may not be

enough in high-end computer systems. Since a fixed amount of memory is integrated on the die, it

is difficult to adjust the amount of memory in different systems. In this case, off-chip DRAM may

be added to the system to form another memory hierarchy level below the on-chip main memory.

Data movement between the two can be controlled by a software modification of the existing vir-

tual memory system. All of the applications which we are using to evaluate system performance in



 

6

 

this paper fit within a single 32MByte main memory, so virtual memory operation is normally not

required. However, in section 5, we will evaluate the effects of delays caused by swapping pages

into the on-chip DRAM during page faults simply by reducing the on-chip main memory size

Another way to handle the problem discussed above is to utilize the on-chip DRAM as a very

large on-chip L2 cache instead of on-chip main memory. The large hit ratio possible with an on-

chip DRAM L2 cache can considerably reduce the number of off-chip memory accesses even

though the entire working set of the application cannot fit into the on-chip DRAM.

On multiprogrammed workloads, the different processors in an on-chip multiprocessor may all

be running processes with separate, disjoint data sets. When the working sets of all active processes

don’t fit into the on-chip DRAM, the multiple processes will compete for space in the on-chip

DRAM, causing many page faults. A caching on-chip DRAM may provide superior performance

in this case.

 

2.2 The SRAM-Based Alternative

 

An SRAM L2 cache, which has approximately the same area as the embedded 32MB DRAM in

the configuration in section 2.1, is used in a more conventional system. There are various types of

SRAM memory cells, with different densities and performance characteristics: 4 transistor cells

with high resistance polysilicon passive pullups, 6 transistor cells with TFT PMOS active pullups,

and 6 transistor cells with conventional PMOS active pullups. Six transistor SRAM cells, which

are commonly used for cache memory on processor dies, are about 21 times larger than DRAM

memory cells consisting of only a single transistor and capacitor, in comparable technologies [6].

In commodity SRAMs, 4 transistor cells with high resistance polysilicon passive pullups or 6 tran-

sistor cells with TFT PMOS active pullups are widely used to achieve higher cell densities. For ex-



 

7

 

ample, in the 0.35

 

µ

 

m-based 16Mbit SRAM generation, 6 transistor cells with TFT PMOS are

commonly used, and are only 5 times less dense than commodity DRAM memory cells manufac-

tured in a comparable process [7,8]. Even with the handicap of driving off-chip data lines, these

high-density SRAMs can achieve access times of less than 10ns.

Additionally, the area of the sense amplifiers embedded in each DRAM array is about 25% of

the total area of the memory cells when 128 cells are connected to each bit line [7]. SRAMs typi-

cally do not need nearly as much sense amplifier circuitry as DRAMs. As a result of the large

amount of support logic included in each memory array, the area difference between SRAM and

DRAM is not as extreme as one might expect simply by comparing cell sizes.

Higher density 64Mb SRAMs using more aggressive process technologies have not appeared

yet. However, in this paper we assume that the density of any practical SRAM cache is 8 to 16 times

less than that of an equal-area DRAM main memory. The raw access time of the embedded L2

cache is assumed to be 8ns, or 4 CPU cycles. This small access time is quite reasonable even with

high density SRAMs based on the data presented in [8]. In addition, an arbitration cycle is incurred

to acquire the read/replace bus which is shared among four processors. Only one memory reference

is accepted through the shared resources, such as the read/replace bus and L2 cache tag circuitry,

in a single clock cycle. However, these resources are fully pipelined in order to handle the numer-

ous accesses from all four processors. The entire L2 access cycles may be properly arbitrated at

once because of the fixed, short access time of the embedded SRAM. Therefore, the extra cycles

required in the embedded DRAM case to allow for the memory buffers and the second bus arbitra-

tion are not necessary.

The high speed off-chip DRAM main memory in this configuration is connected to the processor

through a 64-bit memory bus operated at 250MHz. This data rate could be achieved by double data



 

8

 

rate synchronous DRAM (DDR-SDRAM) which major DRAM manufacturers have recently de-

veloped. The off-chip DRAM is handled using buffering mechanisms similar to those used to con-

trol the embedded DRAM. The main memory latency is assumed to be 100ns —50ns of

communication overhead and 50ns of DRAM access time. The off-chip DRAM is configured as

four independent banks. 

We summarize both of the system configurations in Table 1:

 

Table 1

 

 Simulated models of a single chip superscalar MP.

 

Integration with DRAM Integration with SRAM

number of CPUs
CPU configuration
CPU frequency

4
2-way superscalar
500MHz

4
2-way superscalar
500MHz

L1 configuration

L1 capacity
L1 associativity
L1 write policy

L1 line size
L1 access time

Independent cache for 
each CPU
16KB I + 16KB D
4-way
write-back with 
write-miss allocation
32B
1 CPU cycle

Independent cache for each 
CPU
16KB I + 16KB D
4-way
write-back with 
write-miss allocation
32B
1 CPU cycle

L2 configuration
L2capacity
L2 associativity
L2 write policy

L2 line size
Control overhead
L2 access time

-
-
-
-

-
-
-

Common for every CPU
2MB or 4MB unified
2-way
write-back with 
write-miss allocation
64B
1 CPU cycle (Arbitration)
4 CPU cycles
Fully pipelined access

memory configuration
number of banks
memory bus width
bus frequency
Control overhead

DRAM access time
Row cycle time

on-chip 32MB DRAM
16
256b
250MHz
5 CPU cycles (Arbitra-
tions, buffer delay, and 
DRAM control)
30ns
60ns

off-chip DRAM
4
64b
250MHz
5 CPU cycles

100ns
100ns



 

9

 

3 Methodology

3.1 Simulation Environment

 

We execute applications in the SimOS simulation environment [9]. With SimOS, the processors,

the memory hierarchy, and cache coherence issues are modelled in detail. Special attention is paid

to modelling contention between processors due to shared resources such as the central data bus.

SimOS emulates a multiprocessor running the full MIPS-II instruction set interacting with a real-

istic set of I/O components, allowing the full Silicon Graphics IRIX 5.3 operating system to be ex-

ecuted under our benchmarks. SimOS supports three kinds of CPU simulators, which allow trade-

offs to be made between simulation speed and accuracy. In this paper, the slowest, most detailed

CPU simulator is used. This model supports multiple instruction issue in each processor, along with

full emulation of dynamic scheduling, speculative execution, and non-blocking memory referenc-

es. The cache and memory system components shown in Fig. 1 are completely event-driven and

interface to the SimOS processor models.

 

3.2 Applications

 

To evaluate the system performance, six realistic applications are used. Table 2 shows the six

applications: one SPEC95 integer benchmark (compress), one SPEC92 integer benchmark (eqn-

tott), three SPEC95 floating point benchmarks (swim, tomcatv, and applu) and a multiprogram-

ming workload (VCS). The applications are parallelized in different ways to run on a

multiprocessor. The compress benchmark cannot be effectively parallelized, so only one of the four

processors is used. Eqntott is parallelized manually by modifying a single bit vector comparison

routine that is responsible for 90% of the execution time of the application [10]. It is characterized

by its small working set. The SPEC95 floating point benchmarks are automatically parallelized by



 

10

 

the SUIF compiler system [11] across loop iterations at a reasonably coarse level. Our final work-

load, a multiprogrammed engineering workload, consists of several memory intensive applica-

tions. Every process is a copy of the commercial verilog simulator VCS, each simulating large

VLSI circuit. VCS compiles the simulated circuit into code, and the resulting large code segments,

whose size is approximately 4MB, cause a high user instruction stall time. Each process has a

working set smaller than 8MB, including data and code. Thus, four VCS processes benchmark run-

ning together fit into the 32MB on-chip DRAM main memory. Once the operating system assigns

the four processes to four processors, each processor continues to execute the same process without

context switching because there are no extra processes competing for processor time and the entire

working sets fit into the 32MB on-chip DRAM. Only one process is executed on the uniprocessor

system in order to evaluate both systems in the absence of context switches. The six process VCS

benchmark, whose working set doesn’t fit into the 32MB on-chip main memory, is also evaluated

using the caching on-chip DRAM. Here SimOS simulates the behavior of a realistic operating sys-

tem, and, the multiprogrammed workload is scheduled by UNIX priority scheduling with affinity.

 

Table 2

 

 Applications.

 

Floating Point Applications

 

swim shallow water model with 1K x 1K grid

tomcatv mesh-generation with Thompson solver

applu solver for parabolic/elliptic partial differential equations

 

Integer Applications

 

compress compresses and uncompresses files in memory

eqntott translates logic equations into truth tables

 

Multiprogrammed Workload

 

VCS VCS compiled Verilog simulation of a large VLSI circuit. 
1, 4, or, 6 VCS processes which are based on independent 
binary code and data are executed



 

11

 

4 Performance Comparison

 

In this section the performance effect of the embedded DRAM is evaluated for our three system

configurations using the six applications described in section 3.2. In the configurations with an on-

chip SRAM L2 cache, a 2MB L2 cache is used to measure pessimistic results and a 4MB L2 is used

to measure optimistic results, because an on-chip SRAM with area equal to an embedded 32MB

DRAM will probably have an area somewhere between these sizes. Additionally, 2-way supersca-

lar uniprocessor systems are evaluated with all three memory systems to measure the benefit pro-

vided by the single-chip multiprocessor.

The average miss ratio among the four 16KB L1 data and instruction caches and the local miss

ratio of 2MB and 4MB L2 unified caches in 4 x 2-way multiprocessor systems are shown in Fig.

2. In the unparallelized compress benchmark, only data for the single active L1 cache is shown.

The average miss ratios of the L1 instruction caches for all of our benchmarks except VCS are neg-

ligibly small, 0.01%. The average L1 data cache miss ratios for the floating point benchmarks are

7.6% in swim, 4.6% in tomcatv, and 2.7% in applu. These three applications all have large working

set sizes, greater than 16MB. As a result, in the pessimistic SRAM system with only 2MB of L2

cache, 27.3%, 29.1%, and 29.6% local miss ratios are observed in swim, tomcatv, and applu, re-

spectively. The larger 4MB SRAM caches improve matters only slightly, since the large working

sets are still not captured within the cache. These high miss ratios force many references to access

the slow, off-chip main memory. On the other hand, the embedded DRAM doesn’t need to wait for

off-chip references, even with these relatively large benchmarks. As a result, the embedded DRAM

achieves a much better average memory access time.

The average memory latency including both caches and main memory is depicted in Fig. 3. As

Fig. 2 demonstrated, the on-chip SRAM cache based architecture exhibits large local miss rates in



 

12

 

the L2 cache in the three floating point benchmarks. As a result, these applications require signif-

icant numbers of memory accesses to off-chip DRAM in order to handle the L2 misses. In the un-

iprocessor system, this causes a performance loss, but not a dramatic one. Since the single

processor has all of the limited off-chip bandwidth and all four off-chip DRAM banks dedicated to

it, bandwidth limitations never affect performance dramatically. However, the four processors in

the multiprocessor system, working together, are able to demand much more bandwidth from the

memory system. The integrated DRAM’s many banks can easily process multiple references in

flight from all four processors at once and still return data in a timely manner over the high-band-

width on-chip bus. On the other hand, the limited bandwidth provided by the off-chip DRAM bus

and the reduced number of banks that can be economically implemented with discrete chips cannot

handle bursts of cache misses from multiple processors without becoming a bottleneck. This causes

a significant increase in the average latency seen by the individual processors on each memory ac-

swim tomcatv applu compress eqntott 1 VCS 4 VCS
0

5

10

15

20

25

30

35

L
o
c
a
l 
M

is
s
 R

a
ti
o
 (

%
)

L1I

L1D

L2 (2MB)

L2 (4MB)

Figure 2 Average miss ratio among four 16KB L1 data caches and the local miss ratio of 2MB

and 4MB L2 unified caches in 4 x 2-way multiprocessor systems. For the unparallelized com-

press benchmark and one process VCS workload in the uniprocessor system, only the single ac-

tive L1 data cache is considered.



 

13

 

cess in the multiprocessor system. The key insight is that the on-chip DRAM bandwidth is more

 

efficiently

 

 used in a single chip multiprocessor system than in a uniprocessor system. The unipro-

cessor system essentially has too much memory and too little computational resources.

Next we will consider the simulated results of the integer benchmarks. The working set size of

the two integer benchmarks, compress and eqntott, is small. Even with the pessimistic 2MB SRAM

swim tomcatv applu compress eqntott 1 VCS
0

1

2

3

4

5

A
v
e

ra
g

e
 M

e
m

o
ry

 L
a

te
n

c
y
 (

c
y
c
le

s
)

2MB SRAM L2 Cache

4MB SRAM L2 Cache

32MB DRAM Main Memory

(a) a 2-way uniprocessor system:

(b) a 4x2-way multiprocessor system:

swim tomcatv applu compress eqntott 4 VCS
0

1

2

3

4

5

A
ve

ra
g
e
 M

e
m

o
ry

 L
a
te

n
cy

 (
cy

cl
e
s)

Figure 3 Average Memory Latencies, in processor cycles.



 

14

 

L2 cache, most data references hit in the cache — the local miss ratio is less than 1% in both bench-

marks. As a result of this, and since SRAM access times are shorter than DRAM ones, these appli-

cations have lower average memory latencies and better performance with an SRAM L2 cache. The

average miss ratio among the four L1 data caches is only 1.5% in eqntott, better than any of the FP

applications, due to the relatively small size of the data set. On the other hand, the miss ratio of the

single active L1 data cache in the unparallelized compress is high, 10.8%. Because most of these

L1 misses are satisfied in the on-chip SRAM L2 or DRAM, the performance differences are essen-

tially just the difference between the SRAM and the DRAM access time, multiplied by the L1 miss

ratios. As a result, since compress exhibits a higher L1 miss rate, the SRAM-based configurations

demonstrated a much larger latency advantage over the DRAM configuration with that application.

Third, we consider the simulated results of the multiprogrammed benchmarks. As discussed be-

fore, the 4 x 2-way multiprocessor system executes four VCS processes whose whole working sets

fit into 32MB on-chip DRAM. Only one process is executed in the uniprocessor system in order to

avoid context switches, keeping the comparison to a 4 x 2-way multiprocessor fair. The large in-

struction memory requirements, which are about 4MB for each process, cause the relatively high

3.3% L1 instruction cache miss ratio. The L1 data cache miss ratio is 6.9%, on average, in the mul-

tiprocessor system. Each of the four processors has independent L1 instruction and data caches, and

executes its process without context switching. As a result, the average miss ratios of L1 caches in

the multiprocessor system are almost identical to those in the uniprocessor one. On the other hand,

the shared L2 caches perform much worse in the multiprocessor system than in the uniprocessor

one, with 21.4% versus 7.7% local miss rates, respectively, with the larger 4MB cache. This is due

to the larger aggregate working set of the four processes running on the multiprocessor.

In the uniprocessor system, both of the SRAM-based configurations, which achieve low local



 

15

 

miss rates with only one running process, demonstrate much larger latency advantages over the

DRAM configuration. As discussed above, the on-chip SRAM based architecture in the multipro-

cessor system exhibits large local L2 miss rates. As a result, significant numbers of memory ac-

cesses to off-chip DRAM are required, and therefore the SRAM-based configurations in the

multiprocessor system exhibit larger average memory latency than in the uniprocessor system.

Moreover, since all of L1 misses are satisfied in the 32MB on-chip DRAM, the DRAM configura-

tion in the multiprocessor system shows only a small increase in the memory latency compared to

the uniprocessor system. Thus multiprogrammed workload efficiently uses the on-chip DRAM

bandwidth in the multiprocessor system.

We present the simulated results for each application, normalized to the speed of the 4MB

SRAM L2 based architecture in Fig. 4. Each graph breaks down the execution time of uniprocessor

and multiprocessor systems. For the unparallelized compress benchmark, only the uniprocessor

case is shown. This analysis allows us to focus on the percentage of time spent waiting for delays

caused by the memory systems. The time spent waiting for a spin lock or for barrier synchroniza-

tion is included in the CPU execution time. The speed of the load-linked and store-conditional

memory operations used to implement these synchronization primitives affects the amount of the

time the processors spend synchronizing. These synchronization operations make it difficult to di-

rectly compare the multiprocessor and uniprocessor performance numbers using Fig. 4. Later we

will discuss the effective IPC, counting only useful instructions completed per cycle, in order to

look at the numbers together.

Figs. 4(a,b,c) show the results of the swim, tomcatv, and applu benchmarks, respectively. In the

uniprocessor system, the percentage of the non-memory time (CPU execution time and pipeline

stall time) is about 55%, 60%, and 75% in swim, tomcatv, and applu, respectively. The main mem-



 

16

(a) swim: (b) tomcatv:

(c) applu: (d) eqntott:

(e) compress:

Figure 4 Normalized execution times of the 4MB on-chip L2 cache system and the on-chip

DRAM architecture. Results for both the 2-way uniprocessor system and the 4x2-way multiproc-

essor system are presented for the first four benchmarks. For the unparallelizable compress

benchmark, only the results from the 2-way uniprocessor system are shown.

4MB L2 DRAM
0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Uniprocessor
4MB L2 DRAM

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Multiprocessor
4MB L2 DRAM

0

10

20

30

40

50

60

70

80

90

100

110

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Uniprocessor
4MB L2 DRAM

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Multiprocessor

4MB L2 DRAM
0

10

20

30

40

50

60

70

80

90

100

110

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Uniprocessor
4MB L2 DRAM

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Multiprocessor
4MB L2 DRAM

0

20

40

60

80

100

120

140

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Uniprocessor
4MB L2 DRAM

0

20

40

60

80

100

120

140

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Multiprocessor

4MB L2 DRAM
0

20

40

60

80

100

120

140

160

180

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Uniprocessor

Execution

Pipeline Stall

L1I Stall

L1D stall

(f) VCS:

4MB L2 DRAM
0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Multiprocessor
4MB L2 DRAM

0

20

40

60

80

100

120

140

160

180

200

220

240

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Uniprocessor



 

17

 

ory integration causes a small performance enhancement in the swim benchmark. However, tom-

catv and applu show little performance difference between the two architectural models since they

spend less time waiting for memory than swim. With a high-performance single chip multiproces-

sor however, main memory integration has a more significant effect. The data cache stall time in-

creases dramatically in the on-chip L2 cache architecture as a result of large contention for the off-

chip main memory among the four processors. The off-chip bus, which is 4 times narrower than

the on-chip memory bus, increases the data cache stall time tremendously since memory accesses

in flight simultaneously are frequently queued in the memory buffers. On the other hand, the inte-

grated main memory maintains almost the same ratio of data cache stall time to the entire execution

time, even when the number of processors increases from one to four. The high-bandwidth embed-

ded main memory can easily manage many memory requests in flight at once.

Fig. 4(d) shows the results of the eqntott benchmark, which is characterized by a small working

set and a high communication to computation ratio [10]. The high communication to computation

ratio is due to the fact that the eqntott is parallelized at the innermost vector comparison loop. Every

time this loop is executed, the four processors synchronize at a barrier and the master processor

transmits copies of the last three quarter-vectors being compared to the slave processors so they can

perform their portion of the comparison. This update coherence protocol used between L1 caches

can maintain high hit ratios in the data caches even when sharing is frequent, as in eqntott. In the

on-chip SRAM L2 cache system, the memory system accounts for less than 10% of the total exe-

cution time. As Fig.2 shows, its small working set can fit into the L1 data caches—it is a SPEC92

benchmark, and this result demonstrates the largest limitation of that benchmark suite clearly. The

on-chip L2 cache and off-chip main memory accesses are less frequent than in any other bench-

mark. As a result, eqntott does not obtain benefits from main memory integration. The difference



 

18

 

in execution times between the two memory architectures is smaller than that for compress, be-

cause the low number of references that miss in the L1 cache do not stress the lower portions of the

memory system at all.

Fig. 4(e) shows the results of the compress benchmark. Only results of the uniprocessor system

(a) Effective IPC of the 4x2-way multiprocessor:

(b) IPC of the 2-way uniprocessor:

Figure 5 IPCs of evaluated systems while executing several applications. The dramatic per-

formance increase provided by on-chip DRAM with FP applications is obvious in the 4x2-way

case. The effective multiprocessor IPCs are calculated without considering instructions from

synchronization overhead.

swim tomcatv applu compress eqntott 4 VCS
0

1

2

3

4

E
ff

e
ct

iv
e

 I
P

C

swim tomcatv applu compress eqntott 1 VCS
0

1

2

3

4

A
ct

u
a

l I
P

C

2MB SRAM L2 Cache

4MB SRAM L2 Cache

32MB DRAM Main Memory



 

19

 

case are shown because this benchmark cannot be effectively parallelized. Unlike the eqntott

benchmark, the data cache miss ratio of the compress benchmark is quite high. Its working set is a

few hundred KB, so it doesn’t fit into the L1 caches, but it does fit into the L2s. In this application,

most of the data cache misses are satisfied in the on-chip SRAM L2 cache. As a result, the data

cache stall time in the embedded main memory architecture is larger than that in the on-chip SRAM

L2 cache architecture, just because the embedded DRAM access time is larger than the on-chip L2

cache access time.

Fig. 4(f) shows the results of the multiprogrammed benchmark. Compared to other benchmarks,

the large instruction segment results in significant L1 instruction cache stalls. In the uniprocessor

system with the 4MB on-chip SRAM L2 cache, the ratio of the non-memory time is large, 69%. As

with the two integer benchmarks, the 4MB on-chip SRAM L2 cache can handle most of the L1

cache misses. As a result, the on-chip DRAM based architecture is slower because of its inherently

slower access time.

In the multiprocessor system, the situation is quite different. The 4MB on-chip SRAM L2 cache

cannot hold the aggregate working set of four VCS processes at once. In addition, accesses from

the four processors incur queuing delays to the off-chip main memory. As a result, the memory sys-

tem accounts for the significant ratio of the total execution time in the on-chip SRAM L2 cache

system, 74%. On the other hand, the on-chip DRAM architecture maintains almost the same ratio

of memory stall time between the multiprocessor and uniprocessor systems. This is because the

large bandwidth of the on-chip DRAM can easily handle the multiple memory accesses in flight.

Next we will discuss the overall system performance. Fig. 5 (a) shows 4 x 2-way multiprocessor

system performance in all configurations using the effective IPC, counting only useful instructions

completed per cycle. IPCs of the 2-way uniprocessor systems are shown in Fig. 5 (b).



 

20

 

A single chip multiprocessor integrated with DRAM main memory performs best on the three

floating point applications. The swim application, which has the lowest global hit ratio in the L2

cache, reduces the memory latency most significantly. As a result, the embedded DRAM system

obtains the largest performance enhancement over the 2MB SRAM L2 cache configurations —

70%. In this case, the embedded DRAM system is still 63% better than even the optimistic 4MB

SRAM L2 cache system.

In uniprocessor systems, the performance enhancement obtained from embedded DRAM main

memory is relatively small, at most 13% over the SRAM L2 cache systems while running swim.

On the other two floating point benchmarks, tomcatv and applu, performance differences between

the memory system configurations are negligible. These results show that the effects of DRAM

main memory integration are most significant in fairly complex, high-performance processors,

such as single chip multiprocessors or very wide-issue superscalar processors, that can have many

memory requests in progress at once. Such processors are able to take advantage of the large band-

width provided by the wide, on-chip bus to main memory while being able to hide the longer la-

tency of DRAM accesses due to their ability to exploit reasonably large amounts of ILP.

The DRAM-based configuration performs 40% and 25% worse than the SRAM configurations

on the integer benchmarks compress and eqntott, respectively. As we discussed previously, the

working sets for these applications are smaller than even the pessimistic 2MB L2 cache, so few ac-

cesses need to go off-chip in either configuration. As a result, the raw access speed of the L2 SRAM

cache allows that configuration to outperform the embedded DRAM configuration easily.

As with the two integer benchmarks, the DRAM-based configuration performs 55% worse than

the SRAM configurations in the uniprocessor system on the one process VCS benchmark. When

four processes are assigned to four processors, however, the multiprocessor takes advantage of the



 

21

 

large bandwidth of the on-chip DRAM. As a result, the DRAM-based configuration performs 12%

and 83% better than the optimistic 4MB SRAM cache system and the pessimistic 2MB one, respec-

tively. Unlike our floating point benchmarks, the large aggregate working sets exhibit a distinct dif-

ference in the performance between 4MB and 2MB SRAM cache systems.

 

5 Page Fault Effects with On-Chip DRAM

 

All of the applications which we are using to evaluate system performance in this paper fit within

a single 32MByte main memory. Therefore virtual memory operation was not considered in the

previous discussion—the on-chip main memory was always sufficient. However, page faults may

occur when the working set size of applications doesn’t fit into the embedded main memory. To

examine on-chip DRAM performance in the presence of page faults, we simply reduce the 32MB

size of the embedded DRAM to 16MB. When 16KB pages are used, the probability of page faults

on any main memory reference is 0.035%, 0.076%, 0.17%, and, 2.5% in the swim, tomcatv, applu,

and, 4 process VCS multiprogrammed benchmarks, respectively. As the nonzero page fault prob-

ability attests, the working set size of the three floating point and the multiprogrammed benchmarks

is clearly larger than 16MB. To reduce the overhead of page swapping, off-chip DRAM should be

added to the system to form the second level of the main memory hierarchy, as discussed in Section

2.1. When the off-chip DRAM consists of high speed DRAM like that used in the SRAM based

architecture, the maximum bandwidth is up to 2GB/s. The page transfer time of a 16KB page is

roughly estimated to be 8

 

µ

 

s. In this paper, to estimate the performance penalty of page faults, the

page transfer time is simply added to the main memory latency and every processor is stalled dur-

ing the page swap in our three floating point benchmarks. This is the pessimistic case, since the

other three processors in a multiprocessor may be able to make forward progress even while a page

swap is in progress, possibly reducing the penalty down to as little as a quarter of the value we es-



 

22

 

timated. While the processors frequently synchronize each other during the execution of three

floating point benchmarks, the processes in the 4 process VCS multiprogrammed benchmark are

completely independent. As a result the other three processors can continue to execute their own

processes during the page swapping on any one processor. Therefore, the behavior will be much

closer to the optimistic case, and we simulate a page transfer time by stalling all processors for a

quarter of the page transfer time. With longer page swap times, it may also be possible to have an-

other process run on the faulting processor while the page fault is being handled.

Fig. 6 shows the effective IPC of 4 x 2way multiprocessor systems integrated with 16MB of

DRAM main memory for the FP and multiprogrammed applications. The two integer benchmarks

completely fit into a 16MB embedded main memory, and are thus not considered here. The page

penalty of 8

 

µ

 

s is considered in Fig. 6. To clarify the effects of main memory integration, 2MB and

1MB on-chip SRAM L2 cache architectures—half the sizes of the previously examined SRAM

caches—are also examined to provide a point of comparison. The off-chip main memory in both

swim tomcatv applu 4 VCS
0

1

2

3

4

E
ffe

ct
iv

e 
IP

C

1MB SRAM L2 Cache

2MB SRAM L2 Cache

16MB DRAM main memory

Figure 6 Effective IPC of 4 x 2-way multiprocessor systems, including page fault

effects due to insufficient on-chip main memory.



 

23

 

cases is assumed to be large enough to not incur further page faults to lower levels of the memory

hierarchy.

The page faults degrade the effective IPC among our three floating point benchmarks and the

multiprogrammed benchmark. The IPC degradation caused by page faults is relatively small in the

swim benchmark. The embedded DRAM system still obtains a large performance enhancement

over the 1MB SRAM L2 cache configuration — 57%. In this case, the embedded DRAM system

is still 44% better than even the optimistic 2MB SRAM L2 cache system. This is less than the orig-

inal improvement of 63%, but still significant. However, the performance enhancement due to

main memory integration is much smaller in tomcatv, and applu actually slows down. The multi-

programmed benchmark is even worse, with the DRAM-based configuration performing approxi-

mately 50% worse than the SRAM configurations. 

Fig. 7 shows the relative performance of the 16MB integrated DRAM system and the optimistic

2MB on-chip SRAM L2 cache system with varying page fault penalty times on our three floating

point and multiprogrammed benchmarks. When the page fault penalty increases to just over 30

 

µ

 

s,

due to off-chip bandwidths of only 500MB/s to a lower level of DRAM, performance improve-

ments disappear even in swim.

The rapid performance reduction across the range of small penalties shown makes it clear that it

is very important to reduce the page fault penalty in embedded main memory systems, most likely

requiring off-chip silicon memory resources. High speed off-chip DRAM should compose another

main memory hierarchy level below the on-chip DRAM, and the operating system should be opti-

mized to control the main memory hierarchy with minimal page swap penalties. Alternatively, the

limited on-chip DRAM capacity could be controlled as very large on-chip cache instead of as on-

chip main memory. In Section 6, we evaluate the performance of such a system.



 

24

 

6 Performance of DRAM Cache

 

As the previous section shows, page faults to off-chip memory when the on-chip main memory

isn’t sufficient can significantly impact the performance of a system with on-chip DRAM. A dif-

ferent solution is to design the on-chip DRAM as the large L2 cache instead of as main memory.

Unlike the OS-based paging approach, hardware resources such as cache tag circuitry must be add-

ed in order to handle the on-chip DRAM as a cache. However, the miss penalty of the on-chip

DRAM can be minimized, because processors can execute successive instructions as soon as the

critical word is returned to them, as they can with the on-chip SRAM L2 cache. 

For this section, we use our three floating point and the multiprogrammed benchmarks. In the

previous discussion, at most four processes are considered in the multiprogrammed benchmark in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

P
er

fo
rm

an
ce

 R
el

at
iv

e 
to

 2
M

B
 S

R
A

M
 C

ac
he

Page Fault Penalty (µs)

swim

tomcatv

applu

4 VCS

2 MB SRAM

Figure 7 Relative performance of the 16MB on-chip DRAM memory system to the on-chip

2MB SRAM L2 cache system, while varying the page fault penalties incurred during off-chip

accesses from the DRAM. This graph shows penalties associated with off-chip DRAM sup-

port—penalties associated with disk accesses would be far off the right end of this graph. The

vertical line indicates where the 8µs values used in Fig. 6 were sampled.



 

25

 

order to fit the whole working set into the 32MB of on-chip main memory and to avoid context

switches. In this section, we also consider a scenario with six processes running on four processors

in order to evaluate the performance including OS-controlled process switching. Under SimOS,

any workload runs on top of the Silicon Graphics IRIX5.3 operating system which will initiate pro-

cess switches about every 30ms. The stored data in the on-chip cache is gradually replaced after

each process switch, since the on-chip caches are not large enough to contain the working sets of

all the processes. Since less replacement occurs with larger caches, the size of the on-chip cache

greatly affects the performance of this benchmark. 

We evaluate the 16MB on-chip DRAM cache using the three floating point benchmarks and

four- and six-process multiprogrammed benchmarks. The on-chip DRAM cache is direct mapped,

with a line size of 64Bytes. With the on-chip DRAM cache system, the off-chip DRAM system

used by the SRAM L2 cache system shown in Table 1 is also used to handle cache misses. 

Fig. 8(a) shows the performance range of the on-chip DRAM cache system relative to the on-

chip SRAM cache performance in the multiprocessor system. For the 16MB on-chip DRAM cache

system, the top and the bottom of the bar show the performance relative to the pessimistic 1MB and

the optimistic 2MB on-chip SRAM caches, respectively. As a result, the relative performance of

the on-chip DRAM system should be within the range depicted by the vertical bars. As Fig. 8(a)

shows, on-chip DRAM cache system outperforms even the optimistic on-chip SRAM cache one in

all evaluated benchmarks. In the swim benchmark, the 16MB on-chip DRAM cache system

achieves almost the same performance enhancement over the SRAM cache systems as the 32MB

on-chip DRAM main memory system. In the other two floating point benchmarks, tomcatv and ap-

plu, performance enhancements over the 16MB on-chip main memory system are observed. As dis-

cussed in the Section 5, while page swapping in the on-chip DRAM main memory greatly degrades



 

26

 

the performance of the multiprogrammed benchmarks, the on-chip DRAM cache still shows large

performance enhancements. In the four process multiprogrammed benchmark, the 16MB on-chip

DRAM cache system is 98% better than the pessimistic 1MB SRAM system and 49% better than

the optimistic 2MB one. This is much more than the original improvement of 86% and 16% in the

32MB on-chip DRAM main memory system. Compared to the local miss ratio of 21.4% in the

4MB L2 cache, the higher local miss ratios of 33.9% and 43.1% are observed in 2MB and 1MB L2

caches, respectively. The large working set of the benchmark greatly increases the miss ratio of the

smaller L2 SRAM caches. As a result, a wide range of the relative performance is observed. The

on-chip DRAM cache system outperforms the on-chip SRAM cache systems both in the four and

six process VCS multiprogrammed benchmarks. Simply because of their lower local miss ratios

which are 5.3% and 8.3%.

Fig. 8(b) shows the performance range of the on-chip DRAM cache system relative to the on-

chip SRAM cache one in the uniprocessor system. The on-chip DRAM cache with the uniprocessor

system is slightly better than the on-chip SRAM cache one in the swim benchmark. In other two

floating point benchmarks, the effects of the on-chip DRAM cache disappear. Also, the on-chip

DRAM cache system is still worse on the one process VCS benchmark.

These results again show that the effects of the on-chip DRAM cache are most significant in fair-

ly complex high-performance processors, such as single chip multiprocessor.



 

27

 

.

 

7 Conclusion

 

Microprocessors integrated with DRAM on the same die have the potential to enhance system

performance by reducing the average memory latency experienced by many applications, in addi-

swim tomcatv applu 4 VCS 6 VCS
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
e
rf

o
rm

a
n
ce

 R
e
la

tiv
e
 t
o
 S

R
A

M
 C

a
ch

e

swim tomcatv applu 1 VCS
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
er

fo
rm

an
ce

 R
el

at
iv

e 
to

 S
R

A
M

 C
ac

he

(b) a 2-way uniprocessor system:

(a) a 4x2-way multiprocessor system:

Figure 8 Performance range of the 16MB on-chip DRAM L2 cache system relative to the

on-chip SRAM L2 cache system.



 

28

 

tion to reducing energy consumption. The effect of integrating DRAM main memory with a pro-

cessor depends on the performance of the processor and the applications being executed on the

system.

In this paper, we evaluate the potential of on-chip DRAM main memory by analyzing three sys-

tem configurations running several applications. The performance of applications which have large

working sets is significantly enhanced, especially when a high performance CPU is integrated with

DRAM. Our results show that when a single chip multiprocessor, which can supply many memory

requests to the DRAM simultaneously, is integrated with DRAM main memory, the performance

is on average 52% better on FP applications than if the same multiprocessor is integrated with a

comparable on-chip SRAM L2 cache system. However, when a single 2-way uniprocessor is inte-

grated instead, the average performance gain is only 4% with these applications. Similarly, a mul-

tiprogrammed benchmark with large working sets is improved 86% in the multiprocessor system

but only 16% in the uniprocessor one. On the other hand, applications with small working sets

slowed down in the DRAM configurations by an average of 33%, because the large size of the

DRAM was not helpful in reducing the memory access time.

When the integrated main memory isn’t large enough for some applications, page faults fre-

quently occur to bring in memory from off-chip resources. We evaluate the effect of page faults by

reducing the embedded main memory size. In this paper, we simply stall processors while handling

a page fault. This method is very pessimistic, but it is clear that page faults can remarkably degrade

system performance if there is not enough on-chip DRAM. To reduce the page fault penalty, off-

chip high speed DRAM should be added to the system to form another memory hierarchy level be-

low the on-chip DRAM main memory. Data movement between the two can be controlled by a

software modification of the existing virtual memory system. We also evaluate a system with the



 

29

 

on-chip DRAM is designed as a very large on-chip cache. Even when the large working sets don’t

fit into the on-chip DRAM, the performance enhancement allowed by the reduction in off-chip

memory traffic is significant in the multiprocessor system. However, performance improvements

almost disappear in a uniprocessor system.

These results show that a small uniprocessor cannot effectively take advantage of the large band-

width provided by the embedded DRAM architecture. However, when high density DRAM is in-

tegrated with a fairly complex high performance processor, such as a single chip multiprocessor,

system performance can be dramatically improved in applications that have large working sets and

can therefore use processor resources effectively.

 

References

 

[1] T. Shimizu, J. Korematu, M. Satou, H. Kondo, S. Iwata, K. Sawai, N. Okumura, K. Ishimi,

Y. Nakamoto, M. Kumanoya, K. Dosaka, A. Yamazaki, Y. Ajioka, H. Tsubota, Y. Nunomura, T.

Urabe, J. Hinata, and K. Saitoh, “A multimedia 32b RISC microprocessor with 16Mb DRAM,” 

 

Di-

gest of Technical Papers, 1996 IEEE International Solid State Circuits Conference

 

, pp. 216-217,

San Francisco, CA 1996.

[2] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the Memory Wall: The Case for Proces-

sor/Memory Integration,” 

 

23th International Symp. on Computer Architecture

 

, pp. 90-101, Phila-

delphia, PA 1996.

[3] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,

and K. Yelick, “Intelligent RAM (IRAM): Chips that Remember and Compute,” 

 

Digest of Techni-

cal Papers, 1997 IEEE International Solid State Circuits Conference

 

, pp. 224-225, San Francisco,

CA 1997.

[4] K. Olukotun, K. Chang, L. Hammond, B. Nayfeh, and K. Wilson, “The Case for a Single-



 

30

 

Chip Multiprocessor,” 

 

Proceedings of the 7th International Symp. Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS-VII)

 

, pp. 2-11, Cambridge, MA 1996.

[5] T. Yamauchi, L. Hammond, and K. Olukotun, “The Hierachical Multi-Bank DRAM: A

High-Performance Architecture for Memory Integrated with Processors,” to be presented at 

 

17th

Conference on Advanced Research in VLSI

 

, Ann Arbor, MI 1997.

[6] R. Fromm, S. Perissakis, N. Cardwell, B. McGaughy, C. Kozyrakis, D. Patterson, T. Ander-

son, and K. Yelick, “The Energy Efficiency of IRAM Architectures,” 

 

24th International Symp. on

Computer Architecture

 

, Denver, CO 1997.

[7] T. Yamauchi, K. Tanaka, K. Furutani, Y. Morooka, H. Miyamoto, and H. Ozaki, “Fully Self-

timing Data-Bus Architecture for 64-Mb DRAMs,” IEICE TRANS. ELECTRON., VOL. E78-C,

NO.7, pp. 885-865, 1995.

[8] K. Seno et al., “A 9ns 16Mb CMOS SRAM with Offset Reduced Current Sense Amplifier,”

 

Digest of Technical Papers, 1993 IEEE International Solid State Circuits Conference

 

, pp. 248-249,

San Francisco, CA 1994.

[9] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta., “The SimOS approach,” 

 

IEEE Parallel

and Distributed Technology

 

, vol.4, no. 3, 1995.

[10] B. Nayfeh, L. Hammond, and K. Olukotun, “Evaluation of Design Alternatives for a Mul-

tiprocessor Microprocessor,” 

 

Proceedings of the 23th International Symposium on Computer Ar-

chitecture

 

, pp. 66-67, Philadelphia, PA 1996.

[11] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S.-W. Liao, C.-

W. Tseng, M. Hall, M. Lam, and J. Hennessy, “The SUIF Compiler System: A Parallelizing and

Optimizing Research Compiler,” Stanford University Technical Report No. CSL-TR-94-620, May

1994.


