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Abstract

Providing precise exceptions has driven much of the complexity in modern processor
designs. While this complexity is required to maintain the illusion of a processor based
on a sequential architectural model, it also results in reduced performance during normal
execution. The existing notion of precise exceptions is limited to processors based on a
sequential architectural model and there have been few techniques developed that are ap-
plicable to processors that are not based on this model. Processors with exposed pipelines
(typical of VLIW processors) do not conform to the sequential execution model. These
processors have explicit overlaps in operation execution and thus cannot support the tra-
ditional notion of precise exceptions; most exception handling techniques for these pro-
cessors require restrictive software scheduling. In this report, we generalize the notion of
a precise exception and extend the applicability of precise exceptions to a wider range of
architectures. We propose precise exception handling techniques that solve the problem of
efficient exception handling for both sequential architectures as well as exposed pipeline
architectures. We also show how these techniques can provide efficient support for specu-
lative execution past multiple branches for both architectures as well as latency tolerance
for exposed pipeline architectures.

Key Words and Phrases: exception handling, speculative execution, latency tolerance,
exposed pipeline, superscalar, VLIW, instruction-level parallelism, computer architecture.
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1 Introduction

In our research exploring the efficient exploitation of instruction-level parallel processors
we have found a significant lack of information and techniques for exception handling
that are applicable to these processors. Processors that can efficiently exploit instruction-
level parallelism often have characteristics that make exception handling impossible or
prohibitively expensive (in terms of both area and performance penalties). Most of the
techniques that have been reported are focused on providing precise exceptions for tradi-
tional processors that are based on a sequential architectural model. Precise exceptions
provide the ability to fully specify the instruction stream state at the time of an exception
with only the address of the excepting instruction—all instructions before the excepting
instruction have completed execution, no instructions after this instruction have completed
execution. Unfortunately, supporting precise exceptions can require the addition of a sig-
nificant amount of logic that is in the critical path of the processor and which can result
in performance penalties; one study shows that this performance penalty is on the order of
20% [37].

We believe that an undue emphasis on precise exceptions can be detrimental and thus
examine the problem from a different perspective in this report—that of providing recover-
able, but not necessarily precise, exceptions. From this perspective, we examine a range of
techniques, precise as well as imprecise, and develop an understanding of exception han-
dling techniques. Using this understanding, we have developed efficient and useful tech-
niques for supporting recoverable exceptions on both traditional processors as well as on
exposed pipeline processors which rely on the compiler to produce a correct dependency-
free code schedule. In fact, using a generalized notion of “preciseness,” both of these
techniques provide precise exceptions. These techniques are also easily extended to pro-
vide efficient support for other problems such as speculative execution recovery and latency
tolerance. Although all of the examples in this report show a single instruction stream with
a single operation per instruction, this choice was made to simplify the presentation; the
techniques presented are not limited to processors that only support a single operation per
instruction or a single operation issued per cycle.

Exception handling is a critical aspect of processor design and a significant amount of
hardware has been developed to handle exceptions safely and correctly. An exception is
any condition that is outside the scope of normal operation processing—it can be either an
error or a feature and can originate either external or internal to the core processor. When an
exception occurs it must be serviced; following servicing, the excepting instruction stream
is either continued or aborted as appropriate. Exceptions are frequently used to extend
hardware features by transferring control to appropriate software service routines when
required (as is often done to handle special cases of operations). Some exceptions occur
more frequently frequently than others—particularly those involving the virtual memory
system. It is vital that exception handling be as efficient and non-invasive as possible so as
to minimize the performance impact resulting from exceptions.
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Frequency per operationa

Exception Prog-Dev Database Eng
Context switch
Hardware interrupt
System call
TLB refill 0:067% 0:383% 0:481%
VM fault 0:002% 0:008% 0:003%
Other
Total 0:071% 0:397% 0:485%

aOnly those rates that are> 0:001% are shown.

Table 1: Exception occurrence rates from Rosenblumet al.

Action Cost (cycles)
Flush pipelines 3–35
Snapshot processor and memory system 70
Fetch first exception handler instruction 15
Save data registers 454
Save special/system registers 271–336
Miscellaneous overhead 250
Total exception save 1063–1160
Total exception restore 900
Total exception overhead 1963–2060

Table 2: Exception handler entry/exit cost for the Cydra 5 VLIW processor

The importance of efficient exception handling—and especially virtual memory related
exceptions—can be seen in table 1 that shows the frequency of exceptions (per operation)
based on data in Rosenblumet al. [28]. While exception frequencies appear to be low, on
a processor with significant state or exception processing overhead, these exceptions can
result in significant penalties if exceptions cannot be handled efficiently.

Modern processor designs make handling exceptions efficiently very difficult due to
the significant amount of state that must be maintained. Table 2, adapted from Becket al.
[3], shows the actions taken and the cycle penalty involved in entering and exiting the
exception handler for the Cydra 5 numeric processor. The total cost for this processor is
significant—around 2000 cycles—just to enter and exit the exception handler!

The Cydra 5 is a wide instruction exposed pipeline processor that can issue and execute
up to 7 operations per cycle. Because of the complexity of the processor, a significant
amount of state was required to be preserved across exceptions which typically resulted
in a full context switch. With the frequencies shown in table 1, the exception handling
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overhead is on the order of 10 cycles per operation on the Cydra 5—unacceptably high.
Eliminating the register save/restore portion of the process only reduces the cost by a factor
of four; even reducing the cost by a factor of ten, there would still be an unacceptable
1 cycle per operation penalty. Clearly a better solution is needed.

These exception frequencies are somewhat excessive for the Cydra 5 as it was typically
used. Although the Cydra 5 provided virtual memory support, the operating system would
only use it if the memory footprint would not fit into physical memory. Since the Cydra 5
was targeted at supercomputer applications and supported up to 512MB of main memory
(quite a lot of memory in 1985!), it was expected that there would be little effect from
virtual memory related exceptions for most applications and data sets. However, these
exception frequencies are typical of what would be expected in a processor that used similar
technology on the desktop.

Although the context switch penalty for the Cydra 5 seems incredibly high, the amount
of state required to be saved is not significantly different for an aggressive modern pro-
cessor. For example, the new EPIC derived IA-64 processor architecture jointly developed
by HP and Intel [6] and [16] has around half the registers of the Cydra 5 but, since they
are at least twice the width of the Cydra 5 registers (64b or morevs. 32b), the context
switch overhead for the IA-64 architecture could be worse. A Cydra 5 exception requires
additional state to be saved which almost doubles the total state that must be saved during
an exception; details are not yet available for the IA-64 architecture although there will
certainly be non-register state that must be saved for it as well which could easily make
exception handling very expensive.

Precise exception handling takes the simple approach of minimizing the amount of
instruction-stream state that must be preserved across an exception—only the excepting
operation address is required. By instruction stream state we refer to the information nec-
essary to continue execution from the point where the exception was raised following com-
pletion of servicing the exception. Execution state must be preserved as well; this state
includes register file contents, processor configuration information,etc., in addition to the
instruction stream state. Many exceptions will also require saving and restoring some of
this additional state as well.

Although not all exceptions will require a full context switch during entry and exit of
the exception handler, some exceptions (handling a swapped-out memory page for exam-
ple) certainly will and the cost of context switches will have an impact on performance.
For example, the Cydra 5 does not distinguish between the instruction stream state and the
execution state for most exceptions and thus must perform full context switches for almost
every exception. Since the amount of the state that must be saved to perform a full context
switch is dependent on the size of the register files, it is fairly independent of the actual
exception handling technique and we do not address this aspect of exception handling fur-
ther. In this report we only consider the impact of the discussed techniques on restoring
execution of the instruction stream itself. Those cases that require minimal additional state
to be saved will thus receive the most benefit from improving the efficiency of exception
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handling and those cases that require full context switches will see little improvement in
performance.

Supporting precise exceptions has significant hardware costs and performance impli-
cations. Many architectural features make the support of precise exceptions difficult or
impossible—for example: register renaming, deep pipelines, out-of-order and speculative
execution, and exposed (user visible) pipelines. In addition, as feature sizes decrease and
die sizes increase, the cost of communications increases dramatically resulting in a require-
ment to minimize the use of global signals and to maximize the decoupling of processor
activities (including pipelines). These complications all serve to make exceptions more
difficult and expensive to handle.

Our research focus is on efficient instruction-level parallel processors: in this report we
present new approaches to handling exceptions efficiently. First we introduce exception
handling and the traditional approach of providing precise exceptions. Next we describe
two imprecise approaches from the literature that demonstrate that exceptions do not have
to be handled precisely to be correct.

We then explore the problem of exception handling for processors that provide tradi-
tional sequential execution as well as exposed pipeline processors that have visible over-
lapping instruction execution and register use. We propose efficient exception handling
techniques for both classes of processors; for sequential processors, we show that a sim-
ple extension to existing register renaming hardware can eliminate the need for separate
hardware to maintain precise exceptions; for exposed pipeline processors, we show that
the addition of a low-cost structure to the pipeline-to-register-file datapath (or other rele-
vant result datapath) provides non-invasive recoverable (and with our generalized notion
of precise exceptions, even precise) exception handling. In both cases, we have minimized
the hardware required to support exceptions, especially hardware that is on the proces-
sor’s critical path. In addition, we show how these techniques not only address the prob-
lem of providing efficient exceptions but also provide support for hardware-based specu-
lative branch path execution simply and unobtrusively. We also show that our technique
provides a simple mechanism for exposed pipeline processors to provide efficient latency
tolerance—resolving a significant problem that these processors face.

We conclude with some general remarks on exception handling and address future work
in this area that is suggested by our research. In the appendices we develop formal defini-
tions of exception handling terminology, define some specific terms used in this report, and
discuss details of both the modified register renaming scheme and the datapath modification
that are used in our exception handling techniques.

2 Basic exception handling

Exception handling comprises the acknowledgement and servicing of an exceptional condi-
tion. Table 3 shows a few of the possible causes of exceptions; most of these are considered
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Type Source Cause
interrupt external hardware An external signal that requests specific action to

be taken by the processor—examples are timer,
I/O, system fault, and power-fail.

trap software An operation that requires special processing to
execute—examples include illegal or
unimplemented operation, privilege violation,
and system call.

execution problem internal hardware A problem found during operation execution that
requires corrective action before the operation
can complete—examples include virtual memory
system fault, speculative branch misprediction,
arithmetic overflow or underflow, and
divide-by-zero.

Table 3: Types and causes of exceptions

to be recoverable although many execution problems are actually program errors and are
often fatal. Because exceptions are “exceptional” by definition, programs are not able to
determine when they will occur (although a compiler may be able to predict when certain
exceptions are likely or unlikely to occur and to schedule operations taking this information
into account) and they must initially be handled in hardware. The goal of exception han-
dling is to hide the fact that the exceptional condition occurred while correctly resolving
the cause of the exceptional condition. In some cases, the excepting instruction stream is
aborted which can lead to highly visible and descriptive output such as “Segmentation fault,
core dumped” or “General protection fault”). While not a requirement for correctness, the
process of handling the exception should also be efficient so that there is no unnecessary
performance penalty from the exception.

In this section we introduce exception handling for processors that support the sequen-
tial architectural model. After showing how exceptions are handled for models that are
strictly sequential, we then show how exceptions are handled for processors that have
pipelined function units; we also show some of the problems that arise with these pro-
cessors because of pipelining and briefly discuss what is required to support precise excep-
tions. Then we consider relaxing the requirement for precise exceptions and only support-
ing recoverable exceptions in order to reduce processor complexity and consider the cost
and performance implications of these techniques.

2.1 Sequential architectural model exception handling

Harking back to early architectures, most processors present the illusion that they execute
a sequence of operations sequentially, one at a time. This is referred to as the sequential
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architectural model by Smith and Pleszkun [31]. Using this model, they provide the canonic
definition of precise and imprecise:

If a saved process state [following an exception] is consistent with the sequential ar-
chitectural model then the interrupt isprecise. To be more specific, the saved state
should reflect the following conditions:

1. All instructions preceding the instruction indicated by the saved program counter
have been executed and have modified the process state correctly.

2. All instructions following the instruction indicated by the saved program counter
are unexecuted and have not modified the process state.

3. If the interrupt is caused by an exception condition raised by an instruction in the
program, the saved program counter points to the interrupted instruction. The
interrupted instruction may or may not have been executed, depending on the
definition of the architecture and the cause of the interrupt. Whichever is the
case, the interrupted instruction has either completed, or has not started execu-
tion.

If the saved process state is inconsistent with the sequential architectural model and
does not satisfy the above conditions, then the interrupt isimprecise.

We term exceptions that adhere to this definition asinstruction-preciseexceptions to ex-
plicitly declare the level of precision that is required. If instructions contain multiple oper-
ations then we can also haveoperation-preciseexceptions; these exceptions would require
the ability to restore execution to a specific operation within an instruction. When there is
a single operation per instruction (as with most processor architectures) then instruction-
precise and operation-precise are equivalent. Later on when we discuss exposed pipeline
exception handling we extend out treatment of precision further to includeside-effect-
preciseexceptions.

Because precise exceptions are based on a simple non-pipelined processor architec-
ture (the sequential architectural model referred to above) it is a trivial matter to service
an exception by breaking the execution of the instruction stream between two operations,
resolving the problem causing the exception, and restoring execution at the next opera-
tion in the instruction stream. We assume that resolving the execution problem includes
completion or emulation throughout this report.

Consider the execution of four operations in figure 1(a). In this figure, operation pro-
cessing is represented by timing templates that correspond to their execution behavior. At
the beginning of operation processing there is pre-execution overhead such as instruction
fetch, decode, dependency analysis, and register renaming. The next stage of operation
processing is the actual execution of the operation; this is represented by segments cor-
responding to the visible and hidden execution periods. The visible period of operation
execution corresponds to the assumed (user-visible) latency of the operation; the hidden
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x�1

x

x+1

x+2

Exception raised

(a) Normal execution

x�1

x

x+1

x+2

Exception raised Normal execution

Exception serviced

(b) Execution including exception processing

Figure 1: Operation timing in a non-pipelined sequential architecture with an exception
during operationx

portion of operation execution corresponds to the remainder of the operation that may be
overlapped with other actions of the processor. Since a sequential architecture executes
one operation to completion before starting on the next operation there is no hidden period
for a true sequential architecture and thus none is shown in this figure; when we discuss
pipelined architectures the distinction between visible and hidden execution periods be-
comes important. Finally, there is post-execution overhead such as result write-back and
updating bookkeeping information. In this report we assume that operations read their
source operands at the beginning of their execution and write their results at the end of
their execution.

In this example, the latency (and the visible execution period for a sequential architec-
ture) of operationx� 1 is 1 cycle,x (the excepting operation) is 3 cycles, and so forth.
We have marked the point at which an exception caused by operationx may be raised;
commonly, servicing the exception begins at this point.

For purposes of this discussion we assume that the exception is caused by the execution
of operationx and not from an external source. We also assume that operationx is aborted
by hardware and that the exception handler emulates the execution of operationx producing
the appropriate side-effects and then restarts execution at operationx+1; there would be
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only minor timing changes if exception recovery restarted execution at the excepting oper-
ation (if it can ensure that the same exception will not occur again) or continued execution
at some intermediate point within the execution of the excepting operation. In the event
that the exception is caused by an external interrupt the differences would be minimal: the
primary difference is that operationx would complete normally (since it produces no ex-
ceptional condition) and the exception handler would only have to deal with the required
servicing for the interrupt; there is no need to deal with a partially completed operation as
when an operation itself produces an exception. With an external interrupt execution also
restarts at operationx+1 after completion of exception servicing.

The timing including the exception handling process is shown in figure 1(b); in this fig-
ure we show the same instruction stream as in figure 1(a) except that the exception handling
gap is made clear. As before, operationx causes an exception resulting in the instruction
stream being interrupted except that now the appropriate exception handler services the
exception during the exception handling gap. Although the time required to process the
exception could be significant, there is no noticeable effect from the length of servicing
other than to delay restarting execution. The insignificance of the delay may not be true for
real-time architectures or systems; real-time applications require both efficient exception
handling and operating system support—the techniques in this report may be applicable
but are not specifically tailored to this application.

It is easy to see that the only information required for the execution handler to service
the exception is the excepting operation address (x) and the cause of the exception. Since
only one operation is being processed at any time and there is no overlap of any kind, it is
easy to deal with the excepting operation. The processor (or the exception handler) must
also ensure that the appropriate processor state—register values, status information,etc.—
are all preserved appropriately; there are many ways that this state can be preserved and
we do not consider them further in this report. Precise exceptions ensure that at the end of
servicing the exception the execution state is as if operationx had completed normally and
x+1 had not started execution, exactly as required by Smith and Pleszkun.

2.2 Pipelined architecture exception handling

While a sequential architecture makes exception handling conceptually trivial, it does so
with a significant loss in achievable performance. Since operations, including all of their
overhead, are executed sequentially, it is clear that only part of the processor is being uti-
lized at any point in time. The only useful work performed by an operation is during
operation execution and thus there is a significant performance loss due to processing over-
head.

Pipelined processors attempt to improve processor efficiency by overlapping operation
processing in order to better utilize processor resources. In the simple pipelining case,
only the overhead is pipelined. This results in operation execution still being performed
sequentially; the resulting timing is what would be realized if there were no processing
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Figure 2: Operation execution in pipelined architectures

9



overhead. The timing in figure 2(a) shows that the execution time for this case is exactly
that required to perform the execution of the operations—in the event that each operand
depends on its immediate predecessor this is the best performance that can be achieved.
Again, we show an exception being raised during the execution of operationx; it is clear
that an easy division can still be made between operationsx andx+1 despite the overlap
of the overhead for both operations. Although supporting precise exceptions with this
execution model is not quite as easy as with a sequential architecture (we have already
begun processing the overhead for the subsequent operation), it is still relatively easy to
deal with exceptions in a simple pipelined architecture. No execution is overlapped and
since operationx+1 has not started execution when the exception is raised it can be easily
aborted and later restarted following completion of exception handling.

In the event that sequential operations are not dependent on each other then there is
further pipelining that can be done to improve performance—we can overlap operation
execution for multi-cycle operations as well. This improvement results in fully overlapped
operations as shown in figure 2(b) which shows that operations are issued to pipelines
every cycle. In this figure we now show both visible and hidden execution periods. The first
period is the visible execution period; this period is one cycle long (the initiation interval for
the pipeline) and does not overlap with the visible execution period of any other operation—
this allows us to maintain the illusion of a sequential architecture despite the overlapping
execution of different operations. The second period is the hidden execution period; this
period is as long as necessary to complete the execution of the operation and can overlap
with both the visible and hidden execution of other operations. The only requirement of this
overlap is that dependencies between operations are properly enforced by the processor;
this situation is shown in figure 2(c) where operationx+ 2 depends on the result from
operationx and thus its issue is suitably delayed until the required value is available. If
result forwarding were not available the effect would be to further delay operationx+ 2
until the needed result was available in the register file.

By pretending that operations take a single cycle, we are able to initiate their execution
every cycle and to overlap their execution. However, since later operations (such asx+1)
can complete before earlier operations do, we no longer maintain the illusion of sequen-
tial execution and we now have operations completing out-of-order relative to the original
initiation order. While the completion order is often irrelevant when execution proceeds as
planned, a significant problem arises when there is an exception. Without special care (and
typically, additional hardware!), we can no longer use only the excepting operation address
to represent the instruction stream state at the time of the exception. Consider operationx
again: although operationx behaves as before, operationx+1 has already completed. With
the execution timing as shown, at the point at which the exception is raised we do not have
a sequentially consistent state; following exception servicing, if execution were to restart
at operationx+ 1 then this operation would be executed a second time—not the desired
effect! For an operation that performed the functioni  i+ 1, this re-execution would
produce an incorrect and undesirable result.
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Exception raised
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tween operationsx andx+2

Figure 3: Operation execution in in-order pipelined architectures

The addition of in-order completion hardware solves this problem by effectively ex-
tending the post-execution overhead so that although operations complete out-of-order,
they are committed in the same order that they were initiated; operations are committed
when they have reached a known exception-free point in their execution—possibly, but not
necessarily, at completion. The timing for this case is shown in figure 3(a). Although oper-
ation execution is the same as before, extra hardware extends the post-execution overhead
to ensure that the commit order is the same as the original initiation order. Now, when
operationx raises an exception, even though operationx+ 1 has completed execution it
has not yet changed the execution state and we can simply abort the result write-back for
this operation. After servicing the exception, execution can restart at operationx+1; now,
even though the operation is still executed twice, its side effects are only allowed to commit
once, resulting in the desired sequential behavior. True dependencies between operations
must still be handled as before; this results in the execution timing shown in figure 3(b)
which again shows the case where operationx+2 depends on the result from operationx.
Whether or not there are dependent operations, when operationx excepts none of the sub-
sequent operations have been committed and we are again able to define the execution state
with only the excepting operation address and the exception type.

In order to do this, the additional in-order hardware typically performs two functions:
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first, it maintains the out-of-order state so that it can be accessed by operations before the
results are committed to the in-order state; second, it provides a mechanism to recover the
in-order state if necessary. One way to do this is to keep completed results in temporary
storage and to forward these results to dependent operations so that these operations can
execute without requiring their source values to be committed. In the event that an operation
raises an exception, the in-order state is already correct and the out-of-order results in
temporary storage can be safely discarded. When operations are committed, their results
are moved from temporary storage to the register file. This is the technique used in the
Reorder Buffer described by Smith and Pleszkun [31].

Reorder Buffers are associatively searched structures that hold results from operations
that have completed execution. Each time an operation issues, it is allocated the next entry
in the Reorder Buffer. When operations complete, they deliver their results to the Reorder
Buffer. When the oldest operation in the Reorder Buffer has completed successfully, its re-
sults are committed to the register file and the entry is deallocated from the Reorder Buffer.
To access their source operands, operations search both the Reorder Buffer as well as the
register file and the most recent result is used during execution. Exceptions are handled in
instruction stream order and when the oldest operation in the Reorder Buffer is determined
to have raised an exception then at that point the exception is serviced. In addition to the
Reorder Buffer approach, Smith and Pleszkun describe several other approaches as well.
Other discussions of related approaches are available in Torng and Day [35] and Johnson
[18].

Unfortunately, all of this hardware is expensive and is often in the critical path of the
processor. Because of this, the cycle time or pipeline depths may have to increase resulting
in reduced performance. For a relatively simple processor, Wang and Emnett [37] show
that precise exception techniques result in performance penalties from 17–23% on a simple
traditional RISC processor; they also showed a significant chip area penalty of up to 46%
for this support. Clearly, maintaining precise exceptions is expensive.

2.3 Recoverable exception handling

Although requiring some sleight of hand, all of the pipelined architectures described up
to this point maintain the illusion that only one operation is in execution at any point in
time. Aggressive superscalar processors that execute multiple operations concurrently and
allow operations to complete out of the original sequential order still provide precise excep-
tions and must still maintain this illusion; because of the number of outstanding operations
that are possible in these processors, they require significant hardware to ensure that their
exception behavior is that of a non-pipelined sequential processor.

Our goal is to avoid the expense associated with the existing techniques of supporting
precise exceptions and yet retain the ability to handle exceptions correctly and efficiently.
The concept of relaxing precise exceptions has been used in some processor designs but
has not been commonly used due to the importance ascribed to maintaining precise excep-

12



tions. One approach that has occasionally been used for long-running operations (typical
of floating point operations) is simply to define these operations as generating imprecise
exceptions; this is the approach taken in the Digital Semiconductor Alpha processor [9]
which requires explicit exception barrier operations to ensure that all preceding operations
have completed exception free (or have had their exceptions serviced) before the barrier can
be passed. A variation of this approach is to allow the user to determine whether exceptions
are ignored, treated precisely (with a loss of performance to maintain in-order semantics),
or treated imprecisely (with a loss of recoverability in the event of an exception); this is the
approach taken in the IBM/Motorola PowerPC processor [21].

Most of the time when operations are unsuccessful and produce an exception they result
in a program abort; the fact that some of these exceptions are imprecise typically has little
impact on exception handling—it does not matter if it takes a few extra cycles to raise the
exception as long as the process eventually aborts. However, this is not a useful general
solution—virtual memory and other exceptions must still be serviced and execution contin-
ued; aborting is not an option in most cases. In addition, as long as precise exceptions are
maintained for any operation or other exception source, the overhead to provide them will
still be present. Relaxing precision for only a class of operations does not eliminate the cost
and performance penalty associated with this excess hardware; instead, it simply prevents
unnecessary performance penalties resulting from delaying initiation until exception-free
behavior can be ensured for the suspect operations.

In order to address exceptions efficiently—and still execute efficiently when there are
no exceptional conditions—it is clear that the current techniques to provide precise excep-
tions are inadequate. We must therefore reconsider the nature of exceptions and understand
what is necessary to ensure that exceptions are correctly handled. With this understanding
we can then address the problem of efficient exception handling and not fall back by default
on the traditional approach of using precise exceptions.

The goal of exception handling is to correct an exceptional situation that has occurred
(whether from an internal or external source) and transparently to restore the execution of
the instruction stream. This suggests that while precision is asufficientsolution to the prob-
lem, it is in no way anecessarysolution. The only necessary requirement for exception
handling is that exceptions can be recovered from and execution restarted. By focusing
on recoverability we are able to develop a solution that solves the problem at hand and is
able to achieve high performance efficiently. In contrast, focusing only on providing pre-
cise exceptions unnecessarily limits the design space and frequently complicates processor
design.

Before considering recoverable (and imprecise) exceptions in more detail, we must first
examine the actual timing for a precise exception in an in-order fully pipelined processor;
this timing is shown in figure 4(a). As before, operationx causes an exception. This
exception results in operations after the excepting operation being aborted and the contents
of the in-order commit logic and any completed results (such as operationx+ 1) being
flushed. After the exception is serviced and the excepting operation has been emulated,
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execution is restarted effectively by branching to operationx+1.
We are now ready to discuss recoverable exceptions. There have been two previous

techniques that have been developed that provide recoverable imprecise exceptions. Al-
though these techniques correctly handle exceptions that occur, they have been discounted
because they do not provide precise exceptions: the first approach is the Snapshot approach
used by the CDC Cyber 200 Model 205 ([7], described in [23]); the second approach is the
Instruction Window technique introduced by Torng and Day [35].

2.4 Snapshot exception handling

The Snapshot approach takes a snapshot of the entire machine state at the time of the excep-
tion and provides this snapshot to the exception handler. Once the exceptional condition is
remedied, the corrected machine state is restored and execution continues on from the point
that the snapshot was taken. The effect of this approach can be seen in figure 4(b) where
execution continues, delayed but otherwise unchanged, from the non-excepting execution
sequence. The benefit of this approach is that no special post-execution ordering hardware
is required and no redundant work is performed; the fact that operationx completed is pre-
served in the snapshot image and restored following exception handling. Clearly, without
reference to the cost of collecting, preserving, and restoring this information, this tech-
nique provides perfectly transparent exception handling. And if a snapshot state image can
be correctedin situand execution restored, this approach would produce the best exception
handling possible. In addition, since a snapshot results in a perfect image of the execution
state, this approach is applicable to any processor architecture.

Unfortunately, taking a snapshot of the entire processor state presents problems that are
difficult to overcome. The quantity of state information that must be saved, corrected, and
restored is significant even on a simple pipelined processor—the addition of multiple and
possibly deeply pipelined function units with many operations in execution produces un-
manageable volumes of state. Additionally, the synchronous nature of the snapshot process
requires that a single global signal be used to freeze the processor state. With processors
growing dramatically in size, the time required to deliver this signal across a large proces-
sor would be unwieldy. Without some method to pipeline the snapshot process, the long
delay paths could increase the cycle time of the processor. In addition, the requirement that
all state—conceivably every register, pipeline latch,etc.—be saved during a context switch
requires a significant addition of logic and wiring to the processor. This addition not only
increases the size of the processor but, because almost every critical path would be affected,
would be an additional cause of in an increase in the cycle time of the processor. Because
most designs employ some use of Boundary Scan extensions [15] to provide hardware de-
bugging, it is an easy and permissible extension to use these internal paths to provide some
of the necessary logic to perform the freeze and restore portions of the snapshot process;
some mechanism would still be required to edit the imagein situ or to save, edit, and re-
store the frozen image efficiently. All of these problems serve to limit the usefulness of this
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approach despite its unmatched ability to transparently recover from an exception.
This approach is interesting to consider nonetheless due to its position in the spectrum

of exception handling techniques where it is in total opposition to precise exceptions—
while precise exceptions attempt to reduce the required state to a single point of state (an
approach that trades minimization of state for significant hardware costs), the Snapshot
approach makes an exact duplicate of the entire machine at the time of the exception that
is restored after exception servicing is complete (an approach that trades off machine state
for the transparency of exception handling on the execution process).

Because of the benefit of transparent exception handling, variations on the Snapshot
approach have been proposed that attempt to take advantage of its positive features while
attempting to minimize its liabilities. The most notable approach is the Checkpoint Re-
pair technique presented by Hwu and Patt [14] which combines multiple execution state
snapshots (not necessarily including pipeline state information) at specific execution points
with a special sequential execution mode to recover precise exceptions. In the Checkpoint
Repair technique, once an exception is raised, the processor restores an appropriate exe-
cution state and commences re-executing operations sequentially from this point until the
exception point is reached and again results in an exception; at this point the processor state
is that of a sequential architecture and a precise exception can be taken. By keeping the
snapshots internal to the processor and relying on the reproducibility of the exception (the
latter is not necessary for an external interrupt), it is possible to produce precise exceptions
on a complex processor without hardware to explicitly commit results in-order. Because it
falls back on a sequential execution model during the exception handling process, this tech-
nique does not require the bookkeeping logic (most likely on the critical path) that would
be necessary to maintain this machine state for every operation. However, this approach
does require a sizeable amount of area to contain multiple copies of the execution state as
well as the ability to manipulate these copies during an exception. In addition, the time
to respond to an exception can be significant since it requires some operations (those from
the point of the restored snapshot up to the point where the exception is raised again) to be
executed twice. Because of the increased circuit and exception handling costs, neither the
original Snapshot approach nor the Checkpoint Repair approach provides a good general
solution to the problem of efficient exception handling.

2.5 Instruction Window exception handling

The Instruction Window approach allows out-of-order execution without requiring results
to be committed in-order. This approach keeps track of the completion state of opera-
tions in an instruction window which is saved at the time of the exception. This results
in “a modified ‘precise’ interrupt point” that describes the operations that have not yet
completed; these operations may not have been issued or may have been issued and subse-
quently aborted. After servicing the exception, the processor re-executes only those opera-
tions that are still incomplete. The effect of this approach can be seen in figure 4(c) where
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operationx+2 requires re-execution since it was aborted when the exception was raised
but operationx+ 1 requires no further action since it had completed at the time that the
exception was raised.

One significant benefit of this approach over the Snapshot approach is that the state that
must be saved and restored is limited to the contents of the instruction window and is not
distributed across the processor. By localizing the state that must be saved, there is little
global impact from this technique and the complexity of this approach is related to the size
of the instruction window and not the size of the processor.

Unfortunately, this approach still suffers from the need to save and restore a signifi-
cant amount of state from the instruction window. An alternative approach is to provide a
separate instruction window for the exception handler instruction stream and to explicitly
save the contents of the instruction window only when required. Easily handled exceptions
would simply switch into and out of the second instruction window providing quick excep-
tion support; more difficult exceptions would require the original instruction window to be
saved and restored as part of a context switch. Because of the exception handling overhead
required to save and restore the instruction window (as well as the added circuit cost and
other side effects), this approach is also not a general solution to the problem of efficient
exception handling.

2.6 Further thoughts on basic exception handling

Traditional precise exceptions require that a processor be able to provide the illusion of
execution on a sequential processor. As we have seen, providing exceptions on these ar-
chitectures becomes more complicated as the real architecture becomes further and further
away from being truly sequential. Both the Snapshot and Instruction Window approaches
provide recoverable exceptions that do not depend on the presence of special mechanisms
to maintain the sequential state necessary to produce a precise exception point. In the next
two sections we consider approaches for providing efficient exception handling—first for
traditional sequential architectures, then for exposed pipeline processors.

3 Efficient sequential architecture exception handling

Most processors today are based on sequential architectures and thus exceptions must be
handled in instruction stream order—the same order as operations are initiated. We thus
assume that exceptions that are raised during operation execution are not serviced until
all preceding operations have either completed or been committed; this in-order exception
handling is easily and necessarily provided by hardware just as in-order completion is pro-
vided in hardware. It is also convenient, but not required, to stop initiating new operations
after an excepting condition is detected. This feature is not necessary since any operations
that are initiated after the excepting operation will ultimately be discarded and not cause
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any side effects to the execution state; not initiating new operations after the exception is
raised simply reduces unnecessary fetch bandwidth.

In this section we introduce our first instruction-level parallel processor—the dynam-
ically scheduled superscalar processor—and consider exception handling techniques for
these processors. After a brief discussion on how the previously discussed techniques are
applicable to superscalar processors (after all, these processors still support the sequen-
tial architectural model in spite of their ability to support instruction-level parallelism) we
introduce an efficient technique for supporting precise exceptions in these architectures
without the cost and performance penalties that traditional approaches have. We show how
our technique is able to exploit a simple state-based register renaming model to keep the
complexity of the technique low. We then extend this technique (and register renaming
model) to support efficient speculative execution across multiple branches including the
ability to support efficient out-of-order branch misprediction recovery.

3.1 Superscalar processors

Although the techniques discussed in this section are applicable to all sequential architec-
tures, we focus on superscalar processors because of their ability to exploit instruction-level
parallelism. Superscalar processors are designed to execute multiple operations concur-
rently; while these architectures have instructions containing only a single operation, they
are able to exploit instruction-level parallelism across multiple instructions by dynamically
analyzing the instruction stream. This analysis requires determining the data dependencies
between all operations in the analysis window and initiating multiple operations concur-
rently. Although superscalar processors perform this initiation concurrently, all operations
must still be initiated with in-order behavior. Operations are then issued when their source
operands are available and complete when their results are computed. Hardware such as
a Reorder Buffer ensures that the in-order state is properly maintained and that precise
exceptions can be supported.

Before initiation, an operation is simply a small segment of the instruction stream. The
initiation process binds information from the current execution state to an operation so
that it can be executed out-of-order and still execute in the correct in-order environment;
the information that is bound to the operation can include many things—execution mode,
floating point behavior, register mappings,etc. This allows multiple copies of the same
operation from the program to be in execution at the same time, each of which is subtly
different because of the different bindings that are part of the initiated operations.

Register renaming is typically used to eliminate false dependencies that would unnec-
essarily restrict the initiation rate and thus the amount of out-of-order execution that is able
to be exploited. False dependencies are dependencies that arise out of the limited number
of architectural registers and the need to reuse registers to hold values from completely un-
related computations. True dependencies are handled in data-flow fashion and operations
do not issue until their source operands are available.
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Register renaming uses extra implementation registers and a dynamic mapping from
architectural registers (specified in operations) to implementation registers (physically im-
plemented in the processor). Once an operation is initiated, all register references are to
implementation registers: a source register reference is simply replaced with a reference
to the implementation register that was mapped to the specified architectural register at
initiation; a destination register reference is replaced with a reference to a new implemen-
tation register and the register mapping is updated accordingly. By using a new register for
every destination reference, the old register is still available to operations which have not
completed execution and may still need to reference its value.

When a new register mapping is made, the old mapping for the architectural register is
replaced and the old implementation register is marked as “overcome by events” (OBE).
Once all pending references on thisOBE register have completed it is truly free and can
be made available for allocation in subsequent renamings. Figure 5 shows the transitions
for simple register renaming. Without renaming, initiation would have to wait for all pend-
ing references on the the original register to complete so that the false dependency is not
violated; with renaming, initiation continues on with a newly allocated register—renaming
has eliminated the false dependency. Although register renaming can run out of registers
and stall initiation, a well designed processor typically provides sufficient extra registers so
that this is not a significant problem.

3.2 Traditional approaches to exception handling for superscalar pro-
cessors

Superscalar processors use a variety of techniques to maintain separate in-order and out-of-
order execution states so that they can provide precise exceptions. The out-of-order nature
of these processors and the increased number of operations that are outstanding at any
time results in larger hardware structures than before; these structures and supporting logic
are frequently in the critical path and can thus cause significant performance losses. In
addition, the greater the number of operations that are allowed to be outstanding, the larger
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the register file must be to prevent unnecessary initiation stalls which can further limit the
performance. The in-order state is maintained in the architectural register file and thus the
number of implementation registers does not affect the cost of saving registers during an
exception; only the in-order architectural state needs to be preserved and any values that
were produced from operations following the excepting operation are discarded with their
operations when the exception is serviced.

While correct, the imprecise techniques presented in the previous section do not pro-
vide satisfying solutions for the problem of providing efficient exceptions: the Snapshot
approach provides a truly invisible solution to exception handling, but it also requires the
use of global signals to control the freezing of the pipelines and the addition of distributed
hardware to maintain and distribute the snapshot information; the Instruction Window ap-
proach avoids the use of global signals but requires additional issue logic and execution
state information that increases with the size of instruction window. As the out-of-order
execution techniques become more aggressive, the size of the snapshot information and the
instruction window becomes larger and larger.

The fundamental problem with maintaining precise exceptions is the high cost of main-
taining the in-order state that is required to achieve the appearance of sequential execution.
This cost is due to the size of the extra state and its presence in the critical path of a proces-
sor: Future Files require twice the number of architectural registers to be implemented, one
for both in-order and out-of-order register files; Reorder Buffers require extra out-of-order
logic to locate the correct value from several possible values in the buffer and register file.

3.3 The Rename State Buffer approach to exception handling

Instead of providing new structures to maintain the precise exception state information, it
is a much better solution to reuse existing hardware to perform this function. Superscalar
processors already provide the capability to maintain this state with their existing hardware
when augmented with some extra state “on the side.” Because the hardware that imple-
ments this extra state is not in the normal execution path, it does not directly affect either
the cycle time or the pipeline depth (both of which are concerns with previous techniques).
We can thus provide efficient precise exceptions without the additional penalty that the
existing techniques require.

The technique in this section parallels earlier work by Moudgillet al. [22]. Both tech-
niques use a similar approach—saving register rename state—to solving the problems of
precise exceptions and speculative execution. The primary difference between these two
techniques hinges on the method used to determine when registers are actually available to
be freed and when some exceptions are allowed to be serviced.

In order to make the complexity manageable, the earlier work simplified the problem
to handling all exception and speculation recovery in-order using a simple History Buffer
approach. While this simplifies the hardware and significantly reduces the state required, it
also prevents early recovery from mispredicted branches since these exceptions must also
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Figure 6: Modified register renaming state transitions

be handled in order. With branch prediction rates in the 85–95% range and branch distances
of around 7.5 operations [11] this results in a branch misprediction on the order of every
70 operations—every 15 to 20 cycles in a superscalar processor that is able to issue 4 oper-
ations per cycle. Even assuming that branch misprediction recovery only requires a 2 cycle
execution penalty, the resulting performance penalty is around 10%. Because our approach
uses a state-based register rename model, we can easily support out-of-order exception
handling; however, we limit our use of this ability to handling mispredicted branches since
these can be rapidly handled and require no exception handler to be executed.

Superscalar processors use register renaming to eliminate false dependencies; we pro-
pose to extend the use of this existing register renaming hardware to provide efficient pre-
cise exceptions. To do this, we add a fourth state to the register renaming transition diagram
as shown in figure 6. This new state is used to preserve registers that have been unmapped
by an operation but that have not yet been guaranteed to be part of the in-order state. In the
event that some prior operation eventually raises an exception, we must be able to restore
the processor state to the point at which that operation was initiated in order to precisely
handle the exception—this state includes the register renaming mappings. During the time
that operations are completed but not yet committed, their registers are only “potentially
overcome by events” (POBE) and must not be freed; even if there are no further references
pending on these registers, they may still be required to be restored to the in-order state
during exception processing. As shown in the figure, the transition fromPOBE to OBE
(and eventually toFree) occurs once the operation that unmapped the register is committed
or when it is flushed during exception recovery.
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We use a Rename State Buffer to keep copies of the register rename state (essentially
the mappings in effect at initiation) for every operation that could still raise an exception.
Its operation is similar to the Reorder Buffer in that a new entry is allocated when an
operation is initiated and the oldest entry is deallocated when it has completed successfully
and is exception free. Any registers that were unmapped by this operation are now clearly
outdated and must be changed fromPOBE to OBE to reflect that they are now definitely
(rather than possibly) overcome by events; as with the normal register rename process,
once a register isOBE, no further operations can possibly reference this register and as
soon as there are no more references pending on the register it can be deallocated and
returned to the free pool. The transition fromPOBE to Free can be made directly if there
are no pending references on the register when the unmapping operation is committed; this
short-circuit transition is not shown in the figure for simplicity. If the oldest operation in
the Rename State Buffer raises an exception, recovery is easily performed by merging the
saved rename state and the current rename state. Merging the states results in registers
being restored to the in-order state or flushed allowing these registers to become available
fur use once again.

Determining the new state for a register is relatively easy and the details of the in-order
and out-of-order state merge process are provided in appendix C. Determining when regis-
ters are no longer referenced is a slightly harder problem. One solution is to attach a counter
to every register and to increment it whenever an operation is initiated that references the
register; when the operation completes its reference (read or write), then the count is decre-
mented. Although there are likely to be few outstanding operations on a given register at
any time, it is possible that all pending operation could reference a given register and thus
the size of the counter must be able to hold an appropriate value in order to guarantee that
initiation is not stalled due to a reference counter limit.

We propose a simpler way, again leveraging off of existing hardware. To do this, we
keep track of which registers have pending references by a bit vector; every time that an
operation is initiated, the bit corresponding to each referenced register is marked as in-use.
When the register file is read (most likely during the issue of an operation), all pending
operations monitor the register address lines and compare the register address with their
own register references. If any operations still reference this register then a register-in-use
signal is raised for that register read; if no register-in-use signal is raised then the register’s
in-use bit is cleared. When pending operations are kept in separate issue partitions (as is
the case with multiple reservation stations) then we can use a separate in-use bit for each
partition; now, when a register has no pending references on it all of the corresponding
in-use bits are clear. In either case, it is easy to determine at any time if there are any
pending references on a given register and this information can be used with the register
rename state to determine whether or not to free anOBE register—a reference to anOBE
register when there are no further uses on this register pending results in the register being
immediately marked asFree. This technique is readily scalable to large register files and
instruction windows and allows the rapid determination of register rename state transitions
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without requiring significant overhead to monitor and maintain the in-use state.
Maintaining the register rename state for the entire range of pending operations can

become expensive, particularly with the presence of long latency operations; sufficient
buffer space must be provided to tolerate the longest latency operation so that initiation
does not have to stall due to lack of buffer space. However, the presence of this extra state
does not directly affect the critical path since it is simply a history mechanism and is not
used to perform routine renaming actions but only to recover the appropriate in-order state
when an exception occurs; in contrast, the value resolution required by the Reorder Buffer
and the double-sized register file in the Future File directly affect the time required for
register accesses.

There are several ways that the size of the required state can be reduced, some with
a loss of performance during exception recovery. First, if pipelines provide early non-
exception status then we can use this information to remove saved register mappings before
the corresponding operations actually complete. We can thus distinguish between operation
commit (when the operation is guaranteed to complete successfully) from completion and
result write-back (when the in-order state is actually modified). This solution reduces the
depth of the Rename State Buffer since instructions that are known to be exception-free can
commit their register mappings early without fear of an exception being raised; however,
it does require early notification of exception-free execution which could require some
change in the pipelines to produce this information. This technique could also be effective
in reducing the size of an instruction window since exception free operations may no longer
be required to occupy entries. External interrupts can still be handled rapidly by using
the oldest complete in-order register state if these exceptions require immediate servicing;
otherwise, an interrupt could simply cause initiation to stall and then wait for all operations
to complete before being serviced.

Another approach for further reducing the required state is to use sparse saved rename
states. There are two ways that we can implement this sparse state. First, following the lead
used in the Checkpoint Restore technique, we can restrict the entries saved in the Rename
State Buffer to known high-risk operations—memory operations and speculatively exe-
cuted branch operations—and deal with exceptions from intervening operations by restart-
ing sequential execution from the the oldest saved state. However, as with the Checkpoint
Repair approach, if an operation that does not have a saved rename state raises an excep-
tion, the need to re-execute operations requires multiple execution modes that undesirably
complicate the design and reduce the performance.

We can modify this sparse technique to improve performance for a minor increase in
saved state; we do this by combining sparse rename states with the incremental changes
between the saved states. This takes advantage of the fact that most of the register rename
state changes very little between operations; by saving the state at high risk operations and
keeping track of the intervening incremental changes, we can iteratively recover the saved
state for any operation. Although restoration may take multiple cycles, this modification
avoids operation re-execution and multiple execution modes in the processor. In addition,
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since the state is saved for the high-risk operations, the likelihood that incremental recovery
would be required is low and results in an inconsequential additional performance penalty.

This combination approach is particularly interesting with superscalar processors since
these processors can initiate multiple operations each cycle. For these processors, we might
save only a single state per cycle; this simplifies both logic and storage requirements. In
addition, because most superscalar processors are able to initiate only a few operations per
cycle—typically two to four—the complexity of restoring the appropriate state may be low
enough to implement the restoration process so that it also can be performed in a single
cycle.

We can further require that all recovery occurs in-order and further reduce the state as
described in Moudgillet al. to keep only an in-order and current out-of-order state directly
accessible and to save the incremental changes for each operation that has not completed.
While this dramatically reduces the required rename state, as was noted earlier it does not
allow early recovery from speculative branches which can cause performance penalties.
In addition, since registers that areOBE are not freed until their unmapping operation is
committed, more registers may be needed to compensate for the performance penalty from
delaying when registers are freed. The performance impact of increased register file size
and delayed misprediction recovery must be weighed against the state savings that this
simplification provides. As die sizes become larger and larger, the extra area to maintain
a “random access” register rename state may become insignificant and the performance
penalties from requiring in-order branch misprediction recovery may outweigh the state
size.

Using a Rename State Buffer provides a simple way to utilize the existing register re-
name hardware to solve the additional problem of exception recovery. Because this logic is
already present in the processor, any penalty incurred by it is already taken into account in
the design; the increase in complexity due to the additional state is expected to be minor and
the complexity due to the saved state has no effect on the critical path. Because the state
is only used to recover a precise exception point, it does not require saving or accessing
outside of the register rename logic and allows fully nested exception handling. In addi-
tion, the use of sparse state saving simplifications provides reasonable tradeoffs between
complexity, buffer size, and recovery time.

However, this ability to provide efficient precise exceptions is not just limited to provid-
ing exceptions but has a further application to improve processor performance: using fast
exceptions, we can now efficiently provide speculative execution across multiple branch
paths as long as there are sufficient registers such that initiation does not stall. This results
in support for speculative execution with the speculation depth limited only by the number
of registers (and the depth of the Rename State Buffer) and not on the number of branches
points that are speculatively executed across.

In this approach, speculative execution is simply treated as an exception that requires
no exception handler to correct—once the exception is raised, no further action is required
beyond restoring the rename state to that of the mispredicted operation (effectively gener-
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ating a “misprediction exception”). When a branch is predicted, execution continues along
the predicted path; when a misprediction occurs, the rename state is rolled back to that
corresponding to when the branch operation was initiated and execution is restarted along
the correct path; execution can be continued along this path even if the branch itself is from
a speculative path. Unissued speculative operations are easily flushed and issued specu-
lative operations are either aborted or allowed to complete normally and to deposit their
results in registers that are marked asOBE thus not affecting the in-order register state.
Handling exceptions along speculative paths requires little further complication as well:
since non-misprediction exceptions are already handled in-order, any exceptions that arise
in speculative code will be handled in-order as well. These speculative operations will no
longer affect the in-order execution state after they are known to be from an incorrect path
and the exception will be ignored.

3.4 Further thoughts on Rename State Buffers

The use of a Rename State Buffer provides an easy and effective mechanism for providing
not only precise exceptions but also speculative branch traversal. Because the basic register
renaming mechanism is already present and the additional hardware is out of the critical
path for routine execution, there is effectively no additional penalty to provide these fea-
tures. Also, because exceptions (and mispredictions) are handled precisely in hardware,
there is no extra state that must be saved during exception handling as in the Snapshot and
Instruction Window approaches. The disadvantage of this approach is the size of the extra
state that is required; this state can be significant and the use of this approach may require
a fallback to maintaining a sparse state to keep the size within reason. In addition, there
is an increase in the number of non-free registers (although not allocated, registers that are
POBE cannot be freed even if there are no further references pending on these registers)
which requires larger register files. However, this approach does dramatically reduce the
complexity and cost required to support precise exceptions and speculative execution.

4 Efficient exposed pipeline architecture exception han-
dling

Although superscalar processors have been moderately successful at achieving improved
performance over simple sequential architecture processors, they are limited in the amount
of instruction-level parallelism that they can exploit by the complexity of the hardware
that performs these functions—complexity that increases quadratically with the size of the
analysis window. Not all processors support the sequential architectural model and some
processors have departed from this model in order to achieve higher performance. They
do this by eliminating the complex dynamic analysis hardware that results in longer and
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slower pipelines and rely exclusively on the compiler to schedule code correctly. These
processors are exposed pipeline processors.

In this section we introduce our second instruction-level parallel processor—the stati-
cally scheduled exposed pipeline processor—and consider exception handling techniques
for these processors. We show how the basic characteristics of exposed pipeline processors
lead to efficient high-performance implementations; we also discuss the fundamental prob-
lem of these architectures—the difficulty of supporting any mismatch between the view of
the processor used to schedule the instruction stream and the actual behavior of the pro-
cessor implementation. We then discuss traditional approaches to exception handling used
by exposed pipeline processors and how these do not provide satisfying solutions to pro-
viding efficient exception handling. After introducing an extension to the notion of precise
exceptions that is applicable to exposed pipeline processors we introduce a technique that
is consistent with this new notion of precise exceptions. This technique not only provides
efficient precise exceptions for exposed pipeline architectures but also provides essentially
zero-cost latency tolerance as well. We then apply the register renaming approach described
in the previous section to exposed pipeline processors and show how exposed pipeline pro-
cessors can also support efficient hardware speculation across multiple branches.

4.1 Exposed pipeline processors

While maintaining a single instruction stream, exposed pipeline processors use instructions
that have explicitly overlapped operation execution; frequently, these processors have in-
structions that contain multiple independent operations and have been often referred to as
very long instruction word (VLIW) processors. Within an instruction, all of the operations
can be initiated in parallel with no hardware analysis. Parallel initiation across multiple
instructions is possible but requires similar analysis hardware as that required to perform
similar functions in superscalar processors.

By exposing the pipelines, we place the onus of correctly scheduling the instruction
stream on the compiler. Because the compiler employs significantly more comprehensive
techniques than are feasible to implement in hardware, the resulting code schedule can be
very efficient and can exploit a significant amount of the instruction-level parallelism that
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is available in the application. Of course, not all of the analyses can be performed more
successfully in software—for example, memory disambiguation analysis can only be ap-
proximated in a compiler but can be performed perfectly in the hardware since the run-time
addresses are readily available. The exposed pipeline execution timing shown in figure 7
is very similar to the overlapped pipeline execution timing from figure 2(b) except that the
entire execution of the pipeline is explicitly shown—as with sequential architectures, there
is no hidden period in exposed pipeline architectures. However, because the instruction
stream is a complicated fabric of interwoven operations, providing traditional precise ex-
ceptions is impossible and providing efficient recoverable exceptions has been difficult and
has required special compiler support (and scheduling restrictions) to accomplish.

Exposed pipeline processors offer the potential of significant performance advantages
over traditional architectures. Since the hard work involved in scheduling operations is
exclusively performed in the compiler, the hardware is able to execute operations from
the instruction stream by inspection without any dynamic dependency analysis to prevent
data or resource conflicts. Not all of these processors are wide-issue architectures: the
Stanford MIPS and MIPS-X processors [25] and [4] were developed using this principle
and were instrumental in shaping the movement towards processors which were simpler,
more efficient, and higher performing than the existing processors of the time. Unfortu-
nately, these designs were hampered by the difficulties of maintaining precise exception
handling and follow-on designs abandoned most of the exposed pipeline characteristics
from the original designs. Some modern processors still support vestigial aspects of ex-
posed pipelines in their use of delayed load and branch operations although recently there
has been a movement away from these operations in superscalar processors because their
presence complicates dynamic analysis as well as exception handling.

Although exposed pipelines can be effective when applied to sequential architectures
designed to issue and execute one operation per cycle (as did the Stanford MIPS processor),
the most significant benefit of exposed pipeline architectures is observed for processors that
issue and execute multiple operations per cycle (typical of VLIW processors). In these pro-
cessors, not only are the pipelines exposed (explicit pipelining) but also the allocation of
resources (such as buses and ports) and the assignment of operations to specific pipelines.
By using instructions that contain multiple independent operations, the processor is able to
process all the operations within the instruction in parallel without requiring any dynamic
analysis. The Multiflow Trace series [5] and the Cydrome Cydra 5 [3] VLIW processors
use this technique and are very successful at exploiting instruction-level parallelism, partic-
ularly for applications with significant sections of loop-based numeric code. By exposing
the pipelines, these processors are able to exploit significant amounts of instruction-level
parallelism (e.g.up to 28 operations in parallel for the Multiflow Trace series) and still have
an efficient and manageable processor implementation.

The benefits of exposed pipelines are not without their drawbacks. The primary liabil-
ity is the difficulty that these architectures face to handle differences between the sched-
uled instruction stream and the actual processor implementation. These differences include
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changes in operation latencies, changes in pipeline makeup, and variable latency oper-
ations. One aspect of this liability is market-related—because processors with exposed
pipelines are difficult to make binary compatible between generations or even between sys-
tems within a generation, these architectures have been unattractive to users and software
developers alike since separate software versions for each machine configuration are re-
quired. There have been a number of techniques that can be used to mitigate or avoid
to this problem—some examples include architecture neutral distribution formats (ANDF)
[8], translation [2], [29] and [29], emulation [33] and [1], special operation encodings [20],
virtual machines [38] and [12] and even dynamic scheduling [27]. Unfortunately, few of
these techniques achieve both performance as well as compatibility and none of them ad-
dresses the problem of efficient exception handling.

Another aspect is engineering-related—because these processors cannot easily handle
any perturbation of the execution timing, it has been difficult to exploit data caches and
to provide efficient exception handling. Since operations are scheduled by the compiler
with the assumption that their results are produced at specific times, code that aggressively
depends on this behavior requires that the scheduled timing be supported exactly: if a result
is produced and written early then it is possible that a still-needed value is overwritten and
the new value will be read in error; if a result is delayed and not available as scheduled
(typical of cache misses) then it is possible that an old value will be read in error. In either
case, the precise scheduling required by the code schedule is violated and the program will
execute incorrectly.

Dealing with early results is easy—although performance does not benefit from the
improved execution of the operation, the pipelines can be easily extended to ensure that
the result is delayed until it is expected; this solution is unsatisfying but effective. On
the other hand, dealing with late results is more of a problem, but is not impossible. A
typical solution for late results is to stall the machine until the result is available. While
this approach works, it does require global signals which can be difficult to implement with
any reasonable cycle time on large processors. Limited dynamic scheduling around late
results is possible as well as presented by Rau in [26] and [27] and extended by Rudd in
[30]; however, this approach may increase the complexity of the processor beyond what
is desirable. We show that one side benefit of our exception handling technique is that it
provides a simple and effective approach to handling late results by treating this situation
as producing an exception that requires no handler to be executed and which results in an
execution penalty of exactly the number of cycles that the result is late.

4.2 Traditional approaches to exception handling for exposed pipeline
processors

If we are not willing to give up the benefits of exposed pipelines, we must find an efficient
exception handling technique. For the remainder of this section we use the more detailed
timing and instruction schedule shown in figure 8. The schedule is annotated with the
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Figure 8: Operation execution on processors with exposed pipelines
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exposed operation latencies. For example, operationx� 3 produces its result so that it
is available in two cycles and is available for operationx� 1 if desired. Because of the
exposed pipeline, the original destination register maintains its original value until the new
value is written and thus the old value is available for other operations until the write is
scheduled, thus reducing the register pressure by more efficiently scheduling register use.
In this operation sequence, operationx is the excepting operation and the computationf �o is
marked with an asterisk to highlight its exception generating behavior. Unlike the previous
timing diagrams in this report, we have not shown the overhead portions for simplicity.

The full completion point marks the end of the region of contiguous operations that
have issued and completed by the time that the exception is raised. Beyond this point,
operations have issued but only some have completed by the time that the exception is
raised. Although an exception may be raised prior to the completion of an operation, we
assume that it occurs at the end of an operation for simplicity of presentation. The range
from the full completion point up to the point where the exception is raised is the exception
region and requires significant care to preserve its semantic behavior while processing the
exception. The size of this region could be reduced by starting from a full commit point
(which marks the end of the region of contiguous operations that have committed by the
time that the exception is raised) instead of a full completion point. The primary benefit
of this simplification is to reduce the number of operations within the window which could
reduce the complexity somewhat.

One additional point to note about this operation schedule: there is an overlapped reg-
ister use in the exception region that must be carefully handled to ensure correctness. Reg-
isterRx has an overlapped use in this instruction schedule and this use is annotated on the
timing diagrams to highlight the problem. Because the compiler is aware of when operands
are read and results are written, overlapped register uses are allowed in exposed pipeline
architectures. As long as the appropriate dependencies are satisfied, the schedule is correct
and will produce the expected execution results when the timing is exactly as scheduled.
However, a schedule that uses overlapped registers can no longer be executed sequentially.
This lack of sequential execution behavior is the source of both the high achievable perfor-
mance as well as the complications that we have discussed. In this example, the overlapped
register use becomes an issue since it occurs during the exception region. Operationx+1
writes the destination registerRx and operationx+ 3 uses this result as its source even
though the register is scheduled to be written later by the earlier operationx� 1. Since
the scheduled write for operationx+1 and read for operationx+3 occur in the schedule
prior to the scheduled write for operationx�1, there is no problem during non-excepting
execution. Unfortunately, when the exception is raised things become complicated and en-
suring that the semantics are faithfully maintained is difficult. We can certainly avoid the
overlapped register use by ensuring that the compiler is restricted from scheduling them;
however, the resulting code schedule will not be as efficient as possible due to the increased
register pressure and performance will suffer. We would like to have exceptions handled
correctly without the performance losses from unnecessary code scheduling restrictions.
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Figure 9: Snapshot timing on exposed pipeline processors

The simplest conceptual approach to preserve the execution state is the Snapshot ap-
proach; figure 9 shows the exception timing for this approach. As might be expected, this
approach has no entry or exit overhead for exception handling and represents the ideal tim-
ing for servicing an exception: at the point that the exception is raised the machine state is
frozen, the exceptional condition is corrected, and the processor is thawed with execution
continuing as if the exception had never occurred. The advantage of the snapshot approach
is its flexibility: it allows corrective actions to be performed immediately (in situ) or to be
deferred until later (across a context switch); in both cases, once the exception is serviced
and the processor is thawed, execution continues on as if the exception had never occurred.
The disadvantage of this approach, as we saw in section 2.3, is that it is both difficult and
expensive to implement and can have significant cycle time limitations due to the presence
of global signals. As we have seen, the performance penalty of this approach outweighs its
conceptual simplicity.

A simple approach, similar to that used by both the Cydra 5 and the Multiflow Trace
series, is to use self-draining pipelines; this approach allows any operations in the pipelines
to complete before servicing the exception. When the exception is raised, it is not ser-
viced until all issued operations have completed and all pipelines are drained. Any other
exceptions that occur during this period must also be detected and the exception handler
must service all exceptions raised in the exception region before normal execution can be
restored. Following servicing, execution is restarted immediately after the point where the
exception was raised. For this approach to work, the instruction stream must be scheduled
so that it is sequentially executable; restricting the scheduling to accomplish this results in
reduced performance and increased register pressure.

To see the effect of overlapped register uses in the exception region, consider what
happens when the pipelines are drained and execution is restarted. This timing is shown in
figure 10(a): when execution continues with operationx+3, the source value read fromRx
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Figure 10: Exception timing on exposed pipeline processors
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will be (incorrectly) the value produced by operationx�1 and not the value produced by
operationx+1. This problem arises because operationx�1, while originally scheduled
to complete after operationx+3 issued, instead completed during the pipeline drain and
modified its destination register at that time.

When the exception is raised, the pre-exception execution results in the out-of-order
completion of operations (relative to the scheduled completion order). As the exception
causes the source register for operationx+3 (Rx) to be written out-of-order while draining
the pipelines, there is a clear conflict between the exception handling technique and the
register allocation and operation scheduling performed by the compiler.

An additional problem that is not shown in this example relates to pipelined (delayed)
branch operations. When branches are pipelined, they take effect at the end of their ex-
ecution just as do other operations. This means that at the point when the exception is
raised, there can be several outstanding branches that must be accounted for when execu-
tion restarts following the exception. In addition, these branches must not take effect during
the execution of the exception handler. This problem requires that the branch effects must
be cached and used to prime the instruction fetch process after execution restarts. We must
thus provide additional hardware to handle the special case of branch operations.

One simple solution to the problem of out-of-order completion is to ensure that there
are no overlapped register uses in the instruction stream, in effect producing a code sched-
ule that is compatible with the sequential architectural model without benefiting from the
presence of exposed pipelines. This is the approach taken by the Cydra 5 compiler which
allocates destination registers at the start of the operation but schedules subsequent uses of
the produced values only after the operations are known to have completed. This presents
a schizophrenic view of the architecture for the compiler: register scheduling uses a unit
latency operation model where result registers are allocated immediately on issue just as in
a sequential architecture; operation scheduling still uses an exposed pipeline model where
operations are not scheduled until the compiler knows that the results are available.

One drawback of this solution is the increase in register pressure due to allocating reg-
isters at the beginning of operation execution. This has an effect on register availability
when long-latency operations are used although the exact value of overlapped register use
is difficult to quantify. It is clear that overlapped register use results in the need for fewer
registers (smaller and faster register files) and produces greater code density (improved
performance). Another drawback is that some operations require special case modes of ex-
ecution (which cannot be eliminated by restricted scheduling) that will increase processor
complexity to handle; branch operations, for example, either change the instruction fetch
address or cache their results for use during post-exception recovery and have no other im-
mediate effect. The instruction fetch process must then be able to use these cached values
as appropriate, thus increasing its complexity. In addition to branch operations, there may
be other operations that change the machine state in ways that affect the behavior of oper-
ations beyond that of simple data dependencies that must also be treated specially. Finally,
draining the pipelines requires issued operations to complete which delays starting execu-

33



tion of the exception handler. This delay could be significant for simple exception handlers
that do not otherwise require significant state to be saved or restored. While this solution
requires a minimum of hardware and only a moderate increase in compiler complexity, it
results in several drawbacks that reduce its desirability as an exception handling technique.

As a starting point towards improving the exception process, let us first consider a mod-
ification of the Instruction Window approach. This modification allows it to approximate
the Snapshot approach insofar as emulating the scheduled execution semantics. When op-
erations are issued, their source operand values are stored in the instruction window. The
timing for this is shown in figure 10(b).

As before, the instruction window keeps track of all operations in the potential ex-
ception region. When an exception occurs we abort all in-process operations and service
the exception. We use the contents of the Modified Instruction Window to restart execu-
tion. Because any incomplete operations (including pipelined branches) are aborted, there
is no special state required to be saved. When exception servicing is complete, execution
proceeds sparsely from the Modified Instruction Window without re-executing completed
operations. Because source operand values are saved in the window at the time that the
operations are originally issued there is no requirement to schedule registers to avoid over-
lapped register uses—post-exception execution occurs as if the proper value were read from
the register file. However, maintaining all of this information is not without its cost: during
a context switch, the entire contents of the Modified Instruction Window is required to be
saved and later restored. When all of the operations in the instruction window at the time
that the exception was raised have completed, execution then continues on normally as if
the exception had never happened.

We can implement the sparse execution process in several ways. The simplest way is to
keep explicit track of which operations have completed and then just skip over them while
processing the operations in the instruction window; this is the approach presented in the
figure which shows the shadows of the operations that are skipped over. Unlike the original
Instruction Window approach (as implemented for sequential architectures), we cannot re-
move the completed operations from the instruction window unless we otherwise account
for their presence to ensure that the proper operation timing is met for those operations that
still need execution. In order to simplify the process, we may actually want to re-execute
the completed operations as long as they are appropriately flagged as already-completed
operations so that there are no duplicated side-effects; the primary concern is memory
operations—the earlier problem withi i+1 is not an issue here since the original source
values are cached in the instruction window. The operations that have not completed sim-
ply issue with their cached source operands (since the state of the register file could be
different from when they originally issued) and execute normally. We again assume that
the excepting operation is emulated during servicing and thus is not re-executed during this
period. While sparse execution continues, the register file is in an out-of-order state; when
normal execution is restored, the register file now maintains the in-order state once again
as required and the occurrence of the exception is invisible to the instruction stream.
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This instruction window modification requires extra logic and state to be implemented;
fully handling an exception may require saving and restoring this additional state since the
exception handler will likely also execute out of the same instruction window; for higher
performance, it may be possible to provide a temporary mirror for the window so that sim-
ple exceptions that do not require a full context switch can be serviced immediately. Fully
duplicating the instruction window would double the size and complexity of this approach;
however, since the exception handler in this case does not have to run at maximum per-
formance (although it shouldn’t unnecessarily penalize the performance either), it may be
possible to use a simple auxiliary instruction window that is much smaller—possibly even
capable of holding only a single instruction. By limiting execution to strictly sequential ex-
ecution during exception servicing a single instruction window could be used, dramatically
reducing the complexity.

The performance penalty from the Modified Instruction Window approach is greater
than desired since operation re-execution adds further to the exception overhead. However,
this technique does have the advantage of requiring no special scheduling restrictions (as
were required with the Self-draining Pipeline approach) and thus the compiler can still take
advantage of the exposed pipelines for operation and register scheduling. A minor variation
on this approach is to allow all operations in execution to complete and save the results (in
contrast to the source values) in the instruction window. However, because side-effects that
are not captured by the register file would be difficult to collect, this variation does not
necessarily improve the situation.

A variation of the Modified Instruction Window approach is the Current-State Buffer
approach described bÿOzeret al. [24]. This approach maintains execution and operation
state information in the instruction window instead of the operations and source values; this
structure maintains the instruction address and both the completion and exception status for
each operation in the window.

In the Current-State Buffer approach, raising an exception causes in-process operations
to be aborted. Following the exception, the Current-State Buffer provides information on
which instructions need to be fetched and which operations are to be executed. In order
to minimize the increase in required fetch bandwidth, only instructions with uncompleted
operations are fetched—instructions which have all operations completed are not fetched.
Uncompleted operations from instructions in the Current-State Buffer are then re-issued
in order resulting in sparse execution just as before. Having multiple fetch modes again
complicates the fetch unit. However, because no source values are stored in the Current-
State Buffer, this approach requires scheduling restrictions to ensure correct execution.

While this approach reduces the exception state significantly over the Modified In-
struction Window approach, the achieved state savings is in exchange for increased fetch
complexity and bandwidth as well as undesirable code scheduling restrictions. The timing
for this approach is indistinguishable from the Modified Instruction Window timing shown
in figure 10(b).

One complication from this approach is the requirement that code must be properly
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scheduled to avoid problems when exceptions occur. Because the minimal saved state
does not include any values (source or result), there is the possibility that operations that
complete prior to the exception will modify registers that are required by uncompleted
operations during sparse re-execution after the exception. This complication requires the
same code schedule restrictions as does the Self-draining Pipeline approach. Because of
code schedule restrictions and the requirement to fetch only the uncompleted instructions
during the sparse re-execution period, this approach will likely achieve worse performance
than the Modified Instruction Window approach with at best only a slight reduction in
required hardware.

The extra state bits that maintain the execution status of the various operations in the
buffer are unnecessary and only serve to prevent instructions from being fetched. Without
these bits, all instructions would be fetched and it is easy to determine if the operation has
completed (assuming that operations do not complete early) by simply comparing the oper-
ation latencies with the time between the full completion point and the excepting operation
point.

While the Modified Instruction Window is an interesting solution, it does not improve
the efficiency over the simple Self-draining Pipeline approach although it does remove the
compiler register allocation constraints. What we are really looking for is an approach
that emulates the Snapshot approach in providing transparent exception handling as well
as in having no scheduling restrictions simply to support exceptions. In addition, this ideal
approach should not require any extra overhead (such as operation re-execution or draining
pipelines) to enter and exit the exception handler. The goal is to produce the effect of
stopping execution immediately when the exception is raised and restarting execution from
that point after servicing the exception.

4.3 The Replay Buffer approach to exception handling

The definition of precise exceptions presented earlier in section 2.1—instruction-precise
or operation-precise exceptions—does not apply to exposed pipeline processors because
the instructions are interwoven in the instruction stream. There is no way to break exe-
cution between instructions without requiring scheduling restrictions such that code that
is executed sequentially will still produce the correct results. This is because operation
side-effects do not occur in the same order as operations initiation. Figure 10(a) shows
this problem clearly for the Self-draining Pipeline approach where the drain causes oper-
ationx+3 to read the incorrect result fromRx. We could extend an approach such as the
Reorder Buffer approach to accommodate operations that have exposed latencies greater
than one cycle (non-unit latency operations), but this would further complicate the Reorder
Buffer logic and could result in further performance penalties.

In order for exceptions to be correctly handled we need to take one of two approaches:
either the instruction stream must be scheduled so that it is sequentially executable (either
at the instruction or operation level—resulting in either instruction-precise or operation-
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precise behavior) or we must be able to duplicate the side-effect order across an exception.
This later approach leads to the definition of side-effect-precise exceptions in similar vein
to the definition of precise exceptions in Smith and Pleszkun:

A side-effect-preciseexception meets the following conditions at the time that the
exception is serviced:

1. All side-effects scheduled to take place prior to the last initiation have taken
effect and have modified the process state correctly.

2. The status of side-effects scheduled to take place during the last initiation may or
may not have completed but their behavior must be deterministic and resolvable
during exception servicing.

3. All side-effects scheduled to take place after the last initiation have not taken
effect and have not modified the process state.

When instructions contain a single operation that has (or appears to have) unit latency,
the exception is operation-precise, instruction-precise, and side-effect-precise. However,
when operations have non-unit latency then the exception must be side-effect-precise or
scheduling restrictions must guarantee that there are no conflicts that could arise during
exception handling. The exception handling approach that we propose for exposed pipeline
architectures, the Replay Buffer approach, is side-effect-precise.

Although discredited earlier in both its basic approach as well as its modification to the
Modified Instruction Window approach, self-draining pipelines along with a minor hard-
ware addition provide exactly the support that we need to attain our goal: this results in
the Replay Buffer approach. The difference is in the application of self-draining pipelines:
rather than having the results delivered directly to the register file as results drain from the
pipelines, they are instead collected into Replay Buffers. These buffers hold the drained re-
sults and maintain the precise ordering as scheduled and originally executed (except for the
exception itself); they are also of limited complexity as they are essentially first-in, first-out
(FIFO) buffers whose sole purpose is to collect and later replay these results. When exe-
cution continues following exception servicing, these results are replayed as appropriate to
duplicate the behavior of what would have occurred during non-excepting execution.

As shown in figure 11, Replay Buffers fit into the normal processor organization with
only a minimal circuit impact. This figure shows the simplified processor organization for
normal data flow from a pipeline to a register file; adding in Replay Buffers to capture the
results when appropriate requires the addition of only a single multiplexor delay and some
possible wire delay into the flow path as shown in the figure. During replay periods, the
Replay Buffer acts as a surrogate pipeline replaying the collected results with the correct
timing as scheduled. Because the replay data is stored in a simple FIFO-like structure it
is trivial to quickly determine whether or not the multiplexor should be propagating result
data from the pipeline or replaying collected results from the Replay Buffer. The primary
cost of adding in the Replay Buffer is the increase in circuit area for the Replay Buffer
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Figure 12: Exception timing using Replay Buffers on exposed pipeline processors

and the lengthened wires for the data flow from the pipeline through the multiplexor to the
register file. The details of Replay Buffer operation are presented in appendix D.

An important feature of this approach—in fact, the feature that makes it provide the
same perceived effect as the Snapshot approach—is that Replay Buffers are not limited to
collecting only simple results that are eventually delivered to the register file. In addition to
simple results, these buffers can also collect other state-changing effects: pending branch
addresses are easily saved as they are produced from the branch pipeline thus eliminating
the need for an independent pending fetch address buffer as was required in previous de-
signs; control register changes (as long as they do not affect the behavior of operations that
have already been issued when the state is changed) are also easily saved and replayed later.

Replay Buffers provide an easy mechanism for collecting results from pipelines, buffer-
ing the results while the exception handler is executing, and replaying the results during the
post-exception recovery. During replay, they duplicate the result delivery that would have
occurred during normal execution and thus allow transparent exception handling and re-
covery for very little hardware cost.

In the simplest case, the pipeline drain process occurs before beginning execution of
the exception handler; this approach results in the same performance as the original Self-
draining Pipeline approach, although avoiding any code scheduling restrictions specifically
for supporting exceptions. It is also much simpler to implement in hardware than the Modi-
fied Instruction Window approach and requires significantly less state—no instruction win-
dow must be maintained, no sparse execution mechanism is required, and no special branch
address stack is needed. These benefits alone are justification enough for its use. However,
we can do better than this.

By performing the pipeline drain concurrently with executing the exception handler, we
are able to handle exceptions with no entry/exit penalty and thus the exception penalty is
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limited to the cost of the exception handler itself. The timing for this approach is shown in
figure 12. When the exception is raised, execution switches to exception execution mode
and the exception handler is executed. As before, we assume that the correct result is
produced by the exception handler and the appropriate side-effects are updated. During the
drain region operations continue to execute normally and their results are collected as they
drain from the pipeline. Following exception servicing, execution restarts at the instruction
following the point where the exception was raised and the collected results are replayed
so that the scheduled result delivery timing is produced as the exception not occurred.

In this figure, all actions involving the Replay Buffer are shown as half-height segments
to represent their two-phase character—the upper half indicates that result information is
being collected into the buffer during a hidden execution period and the lower half indicat-
ing that result information is being replayed from the Replay Buffer as if it were delivered
from the pipeline at that point in time. The combination of collection and replay results in
the effect of normal execution. The upper-half segments in this figure represent the results
being collected for operationsx�1 andx+2 and the lower-half segments represent these
same results being delivered from the buffers during replay. Because the pipeline drain oc-
curs concurrently with the exception handler execution, there is no penalty from draining
pipelines as there was when using the Self-draining Pipeline approach. Note that in this
diagram the exception handler gap is wider than in previous ones—this is an artifact of
showing the overlap of the pipeline drain (to the Replay Buffers) and does not indicate that
the exception handling period is actually lengthened.

As with the hardware used in other exception handling approaches, Replay Buffers
alone are inadequate to fully support exceptions; since Replay Buffers only preserve the
produced results and state-changes for operations that are in execution at the time that the
exception is raised, they do not preserve any existing processor state, especially the current
register file contents, and the exception handler is responsible for preserving any necessary
state that it might modify. Almost all of the normal techniques for preserving this state
are compatible with Replay Buffers: hardware support (such as shadow registers) results in
very fast entry and exit for simple exception handlers but have hardware cost trade-offs that
must be considered; software support to preserve register and other state information may
be required for more complicated exception handlers as well as for full context switches.

In this discussion we have assumed that the exception handler is longer than the pipeline
drain. While this may often be the case, it is by no means the rule and this technique would
be inadequate if we were restricted to requiring that this condition hold. With Replay
Buffers, overlapping result collection and replay is not a problem; in fact, there can be
concurrent result collection, execution handler execution, and result replay with no com-
plications whatsoever.

Because we allow the pipeline drain to overlap both the exception handler execu-
tion as well as the post-servicing execution restart we have a further application for this
approach—we can also trivially provide latency tolerance and support for delayed results
with almost no extra work. Typically, exposed pipeline architectures do not have any tol-

40



x�3

x�2

x�1

x

x+1

x+2

x+3

Delay signaled Drain complete
Normal execution

Pipeline delay

Drain region
Replay region � � �

! Rx

! Rx

Rx !

Figure 13: Delayed result timing using Replay Buffers on exposed pipeline processors

erance for late results without the addition of special hardware and global signals. There
are many dynamic analysis techniques that can be applied, but most of these techniques
require some form of global signal to stall the processor so that the proper result order-
ing is maintained. The ability to provide latency tolerance eliminates the most significant
compatibility issue that plagues exposed pipeline processors.

The only modification that must be made to the Replay Buffer approach is that we need
to add a “late result” exception that is similar to the “misprediction exception” that was
used to allow the Rename State Buffer approach to support speculative execution across
branches. No exception handler is executed for a late result exception and the operation
issue mechanism simply stalls while carrying out all the other aspects of Replay Buffer
exception handling. The length of the stall is simply the number of cycles that the result will
be late. In a pipeline this may be a constant value that is known at design time; for a data
cache this is the time that it takes the requested data to be delivered which can be variable
depending on the location of the data in the memory hierarchy; this variability requires that
the length of the idle period must be controlled by the pipeline that is producing the late
result.

Figure 13 shows the same operation schedule as before except that instead of raising an
normal exception, a “late result” exception is raised and operationx arrives one cycle late;
this late result exception results in a one cycle bubble in the operation initiation sequence.
During the normal completion cycle for instructionx, all operations in the processor (except
for operationx) produce their results as expected; up to this point the behavior is identical
to a normal exception. Because of the late result, initiation is suspended and the processor
stalls waiting for the late result to clear. No exception handler operations are executed and
the processor allows normal operations to be collected in the Replay Buffers as if a normal
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exception was being processed; the late operation continues to execute normally until its
result is ready. When the late result is delivered, normal execution is restored with the
collected results replayed from the Replay Buffers.

In this example there is only a single late operation that results in a one cycle delay in
producing the result. When the late result is available it is marked as an exception-mode
result; this ensures that the result is not collected but is delivered to the register file (or
other destination) immediately. Since all other results were delivered on-time, the register
file now has the same state that would exist if the operation had completed on time and ex-
ecution can continue normally following the exception. By making late operations appear
to be trivially-serviced exceptions we have now added the ability for latency tolerance into
exposed latency architectures simply and elegantly. In addition, it is possible that other late
operations that are already in execution when a late result is being serviced will be able to
hide some or all of their delay and may not require a further late result exception.

4.4 The Renaming Replay Buffer approach to exception handling

It has been difficult to provide speculative execution support for exposed pipeline pro-
cessors: recovering the execution state, including future side-effects from pipelines, at the
point of the mispredicted branch is difficult. Replay Buffers do not directly support specula-
tive execution; however, the Replay Buffer approach can be used as the basis for providing
speculative execution.

In order to support execution along speculative branch paths, we combine the Replay
Buffer and Rename State Buffer approaches into a hybrid Renaming Replay Buffer ap-
proach. Unlike the Rename State Buffer which leverages off of existing renaming hard-
ware, the Renaming Replay Buffer approach requires the addition of this renaming hard-
ware to an exposed pipeline processor; because this additional hardware may be in the
critical path, there may be increases in the pipeline depth or cycle time which have to
be traded off with any expected performance increase from following speculative branch
paths.

In contrast to superscalar processors, the Renaming Replay Buffer approach uses reg-
ister renaming not to support precise exceptions or to eliminate false dependencies but
instead to maintain the correct register file contents across speculative execution bound-
aries. We use multiple Replay Buffers per pipeline so that the side effects following each
speculatively executed branch are preserved in the event that the branch was mispredicted.

When a branch is speculated, the renaming state is preserved; just as in the Renaming
State Buffer approach, we use the modified four state register renaming shown in figure 6.
Because the purpose of the register renaming is exclusively to be able to recover the correct
register file at branch misprediction points we only need to save this state information
when branches are predicted and not for every instruction. In contrast with the previous
requirement to keep the register rename state entries until the corresponding instruction
and all previous instructions can no longer cause an exception, in the Renaming Replay
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Buffer approach these entries only need be kept until the corresponding branch and all
previous branches have been correctly predicted; this is a benefit of limiting the use of
register renaming to providing only speculative execution support. When a branch has
been correctly predicted, the state in Replay Buffers corresponding to the prediction point
is no longer required; when a branch has been mispredicted, a misprediction exception
is raised, the correct register rename state for the mispredicted branch is recovered, and
execution continues from the branch with results being replayed from appropriate Replay
Buffers. As with the late result exception, no exception handler is executed.

There is a further complication in the event that a speculative operation raises an ex-
ception. With superscalar processors, we deal with exceptions using the in-order commit
hardware that is already present; with the Renaming Replay Buffer approach there is no
in-order commit hardware and we must use a different solution. Instead, with the Renam-
ing Replay Buffer approach, speculative exceptions result in the expected pre-exception
behavior as in the normal Replay Buffer case except that the exception is not immediately
serviced; however, result collection into the next Replay Buffer does occur normally for the
exception. Because the exception may be from a mispredicted path, invoking the exception
handler is deferred until the execution is confirmed to come from a non-speculative path.
Only at this point is the exception serviced normally (although delayed from the original
non-speculative case which was able to immediately begin execution of the exception han-
dler); if the path is confirmed to be an incorrect speculation then the exception is ignored
when the processor state is rolled back to the correct path following determination of the
misprediction.

Unfortunately, the Renaming Replay Buffer approach is more invasive than the sim-
ple Replay Buffer approach: in addition to the overhead from adding register renaming
to the microarchitecture, there is also overhead from requiring multiple Replay Buffers per
pipeline. This overhead is more significant than before due to possibly significant increases
in result bus loading, wire length, and multiplexor size. Whether or not these penalties are
outweighed by improved performance depends on many factors including branch predic-
tion performance and misprediction penalties. However, the cost of the renaming process
itself may be able to be hidden by delaying part of the register renaming process beyond
initiation: since the instruction stream is scheduled by the compiler to match the hardware
behavior, as long as the renaming is performed consistently for all operations it can be done
at any convenient time. There may be a significant benefit from this delay—by deferring
register renaming for result registers until the scheduled result time it is possible to sup-
port efficient predicated execution (where a specified flag determines whether or not the
side-effects for the operation actually take effect) with register renaming. If all registers
are renamed at initiation then the predication flag must be known at this time as well; by
delaying the renaming we also delay the requirement to know the value of the predication
flag which may result in improved performance.
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4.5 Further thoughts on Replay Buffers

With the Replay Buffer approach we have now achieved the benefits of the Snapshot ex-
ception handling approach—fully transparent exceptions—as well as the possibility of sup-
porting speculative execution across branches. This benefit is achieved without any of the
overhead (particularly global signal constraints) and a significant reduction in the critical
path logic that is required for the superscalar approach. In the event of a context switch, we
have added in the contents of the Replay Buffers for the non-speculative Replay Buffers
to the state that must be saved, but this may still be much less than the contents of all the
pipeline latches. In addition, it may be possible to compress the Replay Buffers so that
empty entries are not actually saved and restored. By the addition of efficient exception
handling, latency tolerance, and speculative execution, we have significantly improved the
usability and performance of exposed pipeline architectures.

Although we have developed an approach that requires no compiler support to ensure
correctness, it may actually be the case that the extra replay state (only for the relevant ex-
ception Replay Buffer—not from all of the Replay Buffers) is excessive and results in too
great a penalty when a context switch is performed. While we do not expect this to be the
case, we can easily add in the same compiler scheduling restrictions that the Self-draining
Pipeline and Current-State Buffer approaches require and reduce the state dramatically. If
this is done, normal exceptions would still have no overhead penalty; however, context
switches would ignore most of the contents of the Replay Buffers and only be required
to save the Replay Buffer contents that controls the instruction fetch and other processor
control—all other Replay Buffers would replay their results and ensure that all side-effects
take effect before the exception is serviced. The information that is saved is primarily the
pending branch addresses from pipelined branch operations; however, specific implemen-
tations may require that other pending execution state changes must also be saved. Not
saving the rest of the Replay Buffers significantly reduces the non-register state that is
required to be saved during exception context switches. The problem with this variation
is the loss in performance due to reduced code efficiency and increased register pressure.
Whether or not the performance reduction due to scheduling restrictions is more significant
than the improved exception context switch performance depends on the specific processor
implementation and application suite.

We have now shown that, contrary to expectation, exposed pipeline processors can
readily support efficient exception handling, trivial latency tolerance, and only somewhat
invasive speculative execution support—all in hardware, with no required scheduling re-
strictions, and with essentially no servicing cost other than that specifically required to
correct the problem. The Replay Buffer technique enhances the high-performance that ex-
posed pipeline architectures provide with the ability to efficiently handle exceptions and
speculative execution without the hardware overhead that traditional processors require.
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5 Afterward, conclusions, and future work

In this report we have provided an overview of exception handling and the problems asso-
ciated with handling them efficiently. We have generalized the notion of precise exceptions
to clarify the scope of precision for an exception and to extend the application of precise
exceptions to processors that do not adhere to the classical definition of sequential archi-
tecture. Finally, we have proposed new exception handling techniques for both traditional
sequential architectures as well as exposed pipeline architectures that not only provide more
efficient exception handling than previous approaches but also are easily extended to sup-
port speculative execution; in the case of exposed pipelines, our technique also provides a
solution to the problem of latency intolerance that plagues these processors.

We have shown that these exception handling methods can achieve high-performance
with minimal processor impact. In addition, this work offers some intriguing opportuni-
ties for future work. The most important items of future work are to produce models for
both the Rename State Buffer and Replay Buffer techniques to perform complexity and
performance analyses. We can then consider cost/performance tradeoffs for the various
techniques. One example of these tradeoffs revolves around the impact of the additional
registers required to support register renaming. This requires considering both the cost
of the additional registers (area and latency) with the improved performance from being
able to speculate across multiple branches. Of course, there are other effects that must be
considered as well such as the effect of this speculation on cache behavior. Another exam-
ple of these tradeoffs revolves around the loss in performance from restricting scheduling
techniques with the cost savings of not having to save the Replay Buffer contents. This re-
quires a detailed study of both scheduling aspects as well as exception frequency. Both of
these examples require the definition of both a detailed processor description and sufficient
operating system requirements to accurately model the effects of handling exceptions.

In this report we have assumed that exceptions are handled in instruction stream order
although we have allowed this restriction to be relaxed for branch mispredictions. Another
item of future work is to explore the cost and performance tradeoffs of this relaxation and
to investigate other situations that in-order exception servicing can be relaxed profitably.
The most likely situation for relaxation is servicing virtual memory related exceptions—
particularly TLB refills since these were shown in table 1 to be the most significant ex-
ception in the analyzed applications. In this case, if the TLB refill can be quickly handled
using either hardware or a rapidly accessible exception handler (such as in microcode) then
the exception can be easily serviced and normal execution restored without the expense of
a normal exception; in the event that the problem is more significant (the required memory
page is swapped out, there is an access violation,etc.) then the exception would end up be-
ing serviced normally. Determining when out-of-order exception handling is appropriate—
which kinds of exceptions, whether limited to non-speculative operations or allowed for all
operations,etc.—is important and may result in improved exception performance.
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A Formal Definitions

In order to unambiguously describe the behavior of a processor in the presence of excep-
tional conditions we need to be very clear with our terminology. This appendix is provided
to ensure that these terms are accurately and unambiguously provided to the reader so that
their use in this report is understood.

We begin with basic definitions for processor execution:

Definition A.1 Let aninstructionbe defined as a possibly ordered collection of one or more inde-
pendent operations

I j ,
�
: : : ; i j;k; : : :

	

A given architecture may specify the execution order of operations within an instruc-
tion:

� Concurrent—results will be correct only if execution of all operations is performed in paral-
lel. This is the ordering used with exposed pipeline architectures.

� Partially ordered—results will be correct when execution is performed in a partial order such
that no later operationi j;k is executed before an earlier operationi j;k�δ. Operations may be
executed concurrently as long as the partial order is not violated elsewhere in execution. This
is the ordering used for the IBM DAISY architecture [10]).

� Unordered—results will be correct under any possible execution order. This ordering could
be used with an instruction where all operations have unit latency; this situation might arise
in a superscalar processor that uses an expanded instruction cache [17] or some other mech-
anism to cache previously computed dependency information.

In this report, we assume that operations within an operation must be initiated concur-
rently.

Definition A.2 Let aninstruction streambe defined as an ordered sequence of instructions

S,
�
: : : ; I j�1; I j ; I j+1; : : :
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Instructions in an instruction stream are assumed to be processed in order by the pro-
cessor; instruction execution can be required to be performed as follows:

� An instruction must appear to complete before the next instruction is initiated. This is the
case for sequential architectures.

� Instructions must be executed with the exact timing that corresponds to the code schedule.
This is the case for exposed pipeline architectures.

� Out-of-order instruction processing is allowed as long as the appearance of correct comple-
tion ordering is maintained at the instruction level.

Now that we have defined the normal conditions, let us move on and consider what
happens with exceptional conditions.

Definition A.3 Let anexcepting instructionbe defined as an instruction during which one or more
of the following occurs:

1. An interrupt is received by the processor from an external source.

2. An operation results in an exceptional condition requiring processing beyond that supported
directly by the processor.

Exceptions may be handled immediately on receipt of an exception signal or may be
deferred until it is known that no exceptions from prior operation execution can occur. The
exception handler must deal with the whether or not the excepting instruction requires re-
execution, continued execution, or emulation to be completed. In addition, when multiple
exceptions are raised concurrently the exception handler must be able to deal with all the
exceptions correctly.

The original definition of a precise exception as given by Smith and Pleszkun [31] is
presented here in a form consistent the other exception definitions that are presented. In
addition, this definition includes an extension allowing multiple operations per instruction
which is not inconsistent with the original definition. A precise exception using this def-
inition is preferably calledinstruction-precisesince the exception occurs at an instruction
boundary.

Definition A.4 Given an instruction stream S and and excepting instruction Ix with an excepting
operation ix;y, let aninstruction-precise exceptionbe defined as follows:

1. All operations in instructions Ip, 8p< x, have executed to completion.

2. The operations in instruction Ix may or may not have executed to completion.

3. No operations in instructions Is, 8s> x, have executed to completion.
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With the extension to allow multiple operations per instruction, this definition also cor-
responds to the definition ofrelatively preciseexceptions as described byÖzer et al. [24].

If we narrow the boundary to that of the excepting operation then we haveoperation-
preciseexceptions.

Definition A.5 Given an instruction stream S and and excepting instruction Ix and operation ix;y,
let anoperation-precise exceptionbe defined as follows:

1. All operations in instructions Ip, 8p< x, have executed to completion.

2. All operations ix;q in instruction Ix, 8q< y, have executed to completion.

3. The excepting operation ix;y in instruction Ix may or may not have executed to completion.

4. No operations ix;r in instruction Ix, 8r > y, have executed to completion.

5. No operations in instructions Is, 8s> x, have executed to completion.

Operation-precise and instruction-precise are equivalent when there is a single oper-
ation per instruction. However, allowing multiple operations per instruction may make
operation-precise difficult if not impossible to support if individual operations are not ex-
plicitly addressable and the execution order is not guaranteed to appear sequential.

Unfortunately, because of the interweaving of operations in the instruction stream, these
definitions do not apply to processors with exposed pipelines unless we restrict the schedul-
ing to ensure that some level of sequential execution is guaranteed—either at the instruction
level (as with the Cydrome Cydra 5 VLIW architecture) or at the operation level (as with
the IBM DAISY VLIW architecture). These scheduling restrictions result in reduced effi-
ciency code schedules and increased register pressure.

Let us redefine an operation in terms of its side-effects.

Definition A.6 Let aside-effectbe defined as a single action performed by the microarchitecture.
There are two classes of side-effects: externally visible (read r, write w) side-effects and internally
generated (computation c) side-effects. Externally visible side-effects take effect as defined by the
architecture and thus have specific time requirements for when they occur; each side effect can be
written e@t where e is the side effect and t is the specific time that this side effect is to take place.
Internally generated side-effects must eventually take place but because they are internal do not
require any special ordering or time specification and can be considered to be executed in dataflow
fashion.

Definition A.7 Let anoperationbe defined as the smallest unit of specification i available for use
in a program. An operation consists of specific actions that are described by its side-effects:

i ,
�
f: : : ; rd; : : :g ;f: : : ;ce; : : :g ;

�
: : : ;wf ; : : :
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Since externally visible side effects can be specified to take place at arbitrary times it
is not unlikely that two operationsi j ;k1 and i j+δ;k2

(these operations are initiatedδ cycles
apart) could have side effectse1@t1 ande2@t2 respectively that take effect with arbitrary
order:

� t2 > t1+δ) e1 occurs beforee2.

� t2 = t1+δ) e1 occurs at the same time ase2.

� t2 < t1+δ) e1 occurs aftere2.

Operations defined in this manner are consistent with the three-phase split issue model
introduced in Rudd [30].

We are now ready to redefine exceptions in terms of side effects.

Definition A.8 Given an instruction stream S and and excepting instruction Ix, let a side-effect-
precise exceptionbe defined as follows:

1. All side-effects scheduled to occur prior to the exception being serviced have completed.

2. The side-effects scheduled to occur during the exception being serviced may or may not have
completed.

3. No side-effects scheduled to occur after the exception being serviced have completed.

Side-effect-precise exceptions are directly applicable to exposed pipeline processors.
Instruction-precise exceptions are also side-effect precise since the side-effects for one
instruction take place before the initiation of a subsequent instruction; operation-precise
exceptions are only side-effect-precise if there is a single operation per instruction. Tech-
niques that have a gray area where some instructions or operations have not completed
(such as the Instruction Window or snapshot approaches) are imprecise even though they
are fully recoverable.

Definition A.9 A recoverable exception is an exception that can be handled transparently with
no perceived effect on the execution of an instruction stream. Recoverable exceptions may rely on
hardware or the exception handler to ensure that execution is restored appropriately but may not
require that an application provide special “recovery” code.

Although recovery code allows execution of an application to be continued without er-
ror, the effect of an exception would not be transparent and thus not recoverable from the
perspective of the instruction stream. Recovery code is essentially an application-specific
exception handler; although there are times that this kind of behavior is desirable, a re-
coverable exception should allow any application to execute correctly without requiring
recovery code.
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B Glossary

This appendix defines a number of terms that are used in this report so that their use is clear
without ambiguity.

� architectural register—

A register specified by the architectural specification and referenced in operations.

� branch prediction—

When the result of a conditional branch is predicted to go one way and instruction fetch (and
possibly execution) proceeds along this path. In the event that the prediction was incorrect
(a branch misprediction) then the incorrectly fetched values are thrown away and any state
changes caused by operations speculatively executed along this path must be restored.

� branch misprediction—

When the result of a conditional branch is predicted incorrectly.

� commit—

When all side effects of an operation are guaranteed to be part of the in-order state.

� complete—

When all actions required by an operation have been made part of the in-order state.

� core processor—

The processor itself, separate from any special purpose structures or co-processors that might
be implemented on the same die or module.

� dataflow—

When operations as executed in an arbitrary order after all of their source operands become
available.

� drain region—

The region during which pipelines drain their results either into the register file or into Replay
Buffers.

� exception—

Any exceptional condition that requires special treatment to be properly handled. Exceptions
may be a result of an error, an incomplete implementation, or a requirement to perform an
immediate action.

� exceptional condition—

Any condition that is not expected to arise during normal execution.
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� exception execution mode—

The mode that operations are executed in during exception servicing (in contrast to exception
mode). Results produced during normal execution are normal-mode results.

� exception frequency—

The frequency that a given exception is raised, typically on a per-operation basis.

� exception region—

The region from the full completion (or full commit) point to the time that the exception is
serviced.

� exception servicing—

When an exceptional condition is handled and resolved; the original instruction stream may
be either restored or aborted as appropriate.

� execute—

When an operation is processed in a pipeline and any actions required by the operation are
performed.

� execution problem—

Any situation that arises after an operation has issued and begun execution that requires
intervention to complete.

� execution state—

The complete information required to duplicate conditions in the processor. It includes pro-
cessor controls, register file contents,etc.

� exposed pipeline processor—

An architecture where the details—particularly the operation latency—of the pipelines are
visible and available for the compiler to use to schedule code. Operation behavior is guaran-
teed to be precisely according to the architectural specification.

� false dependency—

A dependency caused by aliasing due to limited register name-space. Other than the resource
conflict there is no true dependency and renaming the problematic registers eliminates the de-
pendency. These dependencies are commonly write-after-read (WAR) and write-after-write
(WAW). In some cases where subsequent reads can return different results this can also in-
clude read-after-read (RAR) dependencies as well.

� forwarding —

See result forwarding.
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� function unit —

A computation structure that operations are issued to and that produces results.

� full commit region—

This point marks the end of the region of contiguous operations that have been committed by
the time that the exception is serviced.

� full completion region—

This point marks the end of the region of contiguous operations that have issued and com-
pleted by the time that the exception is serviced.

� implementation register—

A register that is physically implemented in the processor.

� initiate—

The binding of in-order execution state to an operation so that the operation can be executed
in the appropriate context.

� in-order execution—

When execution continues precisely as scheduled by the compiler. No rearrangement of
operations is allowed.

� instruction—

A collection of one or more operations that are guaranteed by the compiler to be mutually
independent.

� instruction stream—

The dynamic sequence of instructions that are executed by the processor.

� instruction stream state—

The state corresponding to the current execution position in the instructions stream.

� interrupt —

An exception caused by a signal from outside the processor.

� issue—

The delivery of an initiated operation to a pipeline for execution.

� non-unit latency—

When an operation takes more than one cycle to execute, typically the number of cycles
actually required to complete.
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� normal execution mode—

The mode that operations are normally executed in (in contrast to exception mode). Results
produced during normal execution are normal-mode results.

� operation—

The smallest unit of action available for use in a program. An operation is considered to be
atomic when viewed from outside the microarchitecture.

� out-of-order execution—

When execution is performed in dataflow style as required source values become available.
Precise exception handling requires some support for in-order completion when out-of-order
execution is performed.

� pipeline—

A function unit that takes multiple cycles to produce a result but allows operations to be
issued it to every cycle.

� pipeline depth—

The number of cycles required by a pipeline to produce its result.

� predicated execution—

When execution side-effects are contingent on the value of a predication flag. If the flag is
true, the side-effects take place normally; when the flag is false, the side-effects (including
any exceptions) are ignored. This technique is useful for eliminating some branches (and
their associated penalties).

� register renaming—

The mapping of an architectural register to a specific implementation register. There are
several approaches to register renaming: registers can be renamed at initiation (or other
scheduled time) so that each architectural register reference is replaced with the appropri-
ate implementation register (as was assumed in this report)—this requires a register file with
more implementation registers than architectural registers and requires that some mechanism
is available to tell when unknown values become available; registers can be unrenamed but
require an associative lookup to resolve the appropriate value—this requires a register file
or associated structure (such as a Reorder Buffer) that can keep track of multiple values and
return the correct value for any reference; or registers can be unrenamed but unknown val-
ues replaced with tags that are used to associatively match the correct value when the value
becomes available (this approach is the Tomasulo algorithm[34] used in the IBM 360 Model
91)—this approach requires no additional registers or structures to store multiple values but
does require.that there is hardware to monitor the result buses so that all unknown values can
be resolved.
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� replay region—

The region during which results are replayed from Replay Buffers into the register file.

� reservation station—

A dynamic analysis structure that keeps track of initiated but not yet issued operations and,
when source operands and function units are available, issues these operations to the appro-
priate function units.

� result forwarding —

When a result value is delivered directly to the point at which an operation is being issued
before it is made part of the in-order state. This early delivery allows out-of-order execution
to proceed without delay.

� sequential architecture—

An architecture which hides all details of the implementation and requires that the execution
behavior is as if each operation executed to completion before beginning execution of the
next operation.

� speculative execution—

When instructions are executed before they are known to be on the correct execution path.
Speculative execution may be scheduled statically (typically using non-trapping versions of
normal operations but possibly including special operations such as memory prefetch opera-
tions) or dynamically by continuing execution along a predicted branch path.

� superscalar processor—

An architecture that is capable of initiating operations from multiple instructions concur-
rently.

� true dependency—

A dependency caused by a requirement to use data and execution can not continue across
a dependency until the dependency is resolved. These dependencies are read-after-write
(RAW) dependencies.

� VLIW processor—

See very long instruction word processors.

� very long instruction word processor—

An exposed pipeline processor that supports multiple operations per instruction.

� unit latency—

When an operation takes (or appears to take) only a single cycle to execute.
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� virtual memory —

Where the physical memory addressed by a processor is augmented by additional storage
that is not directly addressable by the processor (typically a hard disk but possibly memory
that is resident somewhere else in a computer network). An address may reference data that
is currently in memory, has been moved to additional storage and (is “swapped out”), or is
invalid. Virtual memory typically requires precise exceptions and operating system support.

C Modified register rename states and exceptions

The modified register rename states need some justification to ensure their correctness. This
appendix describes the behavior of the instruction stream, the effect on register renaming,
and the requirements to restore the register rename state at an exception or other state
recovery.

For this discussion, we assume the following:

� Operations initiate in-order—

Initiation binds the execution state to the initiated operation including the current register
mappings and updates the register rename map to reflect any changes made by the initiated
operation.

� Register rename state is saved each initiation—

At the end of initiation the current register rename state is saved in the Rename State Buffer.

� Operations are committed in order—

When an operation is committed, all previous operations have committed. Since commit-
ting means that operations are guaranteed to eventually complete without exception, these
operations may complete out-of-order with no ill effects.

� Mispredicted branches may be serviced out-of-order—

Since no exception handler is required to be invoked to service these we want to be able
to recover the potentially significant performance gain from restoring execution to a correct
path as early as possible. Speculative path mispredictions do not cause a problem since all
possible branches along the path will also be speculative and any of these paths can be flushed
if the path itself is determined to be mispredicted by an earlier branch.

� Exceptions are serviced in-order—

No exception is serviced unless all previous operations have been committed. Waiting until
all previous operations have been committed prevents needless execution of an exception
handler and the attendant memory references—instruction and data. This may be overly
restrictive as some exceptions (such as virtual memory exceptions) may be simple enough
and frequent enough to produce sufficient benefit to make special casing these exceptions
reasonable.
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Figure 14: Modified register renaming state transitions

Out-of-order rename state
Free Alloc POBE OBE

In-order
rename
state

Free Free OBE OBE OBE
Alloc error! Alloc Alloc error!
POBE Free OBE POBEa OBE
OBE Free OBE OBE OBE

aThis is an ambiguous transition—see text for explanation.

Table 4: Modified register renaming state merge rules
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Figure 14 is duplicated from section 3 for reference. Table 4 provides the details of
the actions taken when a future (speculative) rename state is rolled back to the appropriate
in-order rename state during an exception.

We evaluate the possible states that are possible for registers by considering the current
state at the time of initiation (in-order rename state) and examining each of the possible
future (out-of-order rename states) that they can (or cannot) be in. The reference oper-
ation is the operation that requires the rename state restored—all previous operations are
assumed to have completed, all subsequent operations are assumed to be useless and will ul-
timately complete and have their results discarded; subsequent operations could be aborted
or flushed but it is assumed that the logic to perform this would be expensive and that it is
better to have these operations simply compute their results (with the possible exception of
memory operations) and to have these results ignored by making their destination registers
OBE.

� In-order state:Free—

The register was free when the operation was initiated. Any change in the state of the register
was caused by subsequent operations and can be safely flushed.

– Out-of–order state:Free—

The register is still free) Free.

– Out-of–order state:Alloc—

The register was allocated by a subsequent operation and there may be outstanding
references that must be dealt with)OBE.

– Out-of–order state:POBE—

The register was allocated and by a subsequent operation and later flushed but there
may be outstanding references that must be dealt with)OBE.

– Out-of–order state:OBE—

The register was allocated and by a subsequent operation and later flushed and there
are still outstanding references that must be dealt with)OBE.

� In-order state:Alloc—

The register was allocated when the operation was initiated. Any change in the state of the
register was caused by a subsequent operation and the original mapping must be restored.

– Out-of–order state:Free—

This cannot occur since all changes were performed by subsequent operations and thus
could not have been committed) error!.

– Out-of–order state:Alloc—

The register is still allocated) Alloc.

– Out-of–order state:POBE—

The register was unmapped by a subsequent operation and must be restored) Alloc.
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– Out-of–order state:OBE—

This cannot occur since all changes were performed by subsequent operations and thus
could not have been committed) error!.

� In-order state:POBE—

The register was unmapped by an uncommitted operation. This operation may have later
been committed causing the register to become reallocated by subsequent operations. With
the exception of thePOBE state, these changes can be easily flushed; thePOBE state is
ambiguous and must be treated conservatively.

– Out-of–order state:Free—

The operation unmapping the register eventually was committed and all outstanding
references completed with no further use of the register has occurred) Free.

– Out-of–order state:Alloc—

The operation unmapping the register eventually was committed and all outstanding
references completed; a subsequent operation allocated the register and there may be
outstanding references that must be dealt with)OBE.

– Out-of–order state:POBE—

There are two possibilities for this case: either the register is stillPOBE and thus must
remain so until the unmapping operation is committed or the register was freed and
unmapped by subsequent operations that have been flushed. The conservative approach
is to wait until the state entry containing this register listed asPOBE is being removed
from the Rename State Buffer at which point it can be madeOBE or Free (depending
on whether or not there are outstanding references on it) safely in-order) POBE.

– Out-of–order state:OBE—

The operation unmapping the register eventually was committed and there are outstand-
ing references have completed)OBE.

� In-order state:OBE—

The register was unmapped and may have been reallocated by subsequent operations.

– Out-of–order state:Free—

All outstanding references for this unmapped register have completed and no further
use of the register has occurred) Free.

– Out-of–order state:Alloc—

All outstanding references for this unmapped register from the original operation have
completed. Subsequent operations allocated and later flushed the register and there
may be outstanding references that must be dealt with)OBE.

– Out-of–order state:POBE—

All outstanding references for this unmapped register from the original operation have
completed. A subsequent operation allocated the register and there may be outstanding
references that must be dealt with)OBE.
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Pipeline
Result Value

Replay Buffer
Action

Multiplexor
Action

normal-mode idle collect idle idle
normal-mode result collect result idle
exception-mode idle no effect idle
exception-mode result no effect propagate pipeline result

(a) Result collection (exception execution modeOR Replay Buffer is not
empty)

Replay Buffer
Contents

Multiplexor
Action

idle idle
result propagate Replay Buffer result

(b) Result replay (normal execution modeAND Re-
play Buffer is not empty)

Table 5: Basic Replay Buffer collection and replay behavior

– Out-of–order state:OBE—

Whether or not the register has been reallocated, not all outstanding references have
completed)OBE.

D Replay Buffer pipeline drain and restore behavior

Replay Buffers collect and later replay results from exposed pipeline processors during the
exception handling process. For simplicity we initially assume that pipelines have a fixed
latency and that there is one Replay Buffer per pipeline; in addition, we assume that a given
pipeline produces results in the same order that operations were issued to it but delayed by
the depth of the pipeline. These are not limiting assumptions and after presenting the basic
Replay Buffer behavior we show how these assumptions can be relaxed with some increase
in Replay Buffer complexity.

D.1 Simple single-latency pipelines and Replay Buffers

The drain and replay behavior of Replay Buffers during result collection and replay are
shown in table 5. When an exception is raised, execution switches from normal execution
mode to exception execution mode and the Replay Buffers begin collecting pipeline results;
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replay continues as long as there are normal-mode results that need to be collected from
the pipeline. Normal-mode pipeline results (and idle entries to preserve the proper result
timing) are collected by Replay Buffers and exception handler results are propagated to the
register file and take immediate effect. When the exception handler is completed, collected
results are replayed.

Collection into a Replay Buffer occurs after execution switches to exception execution
mode and continues while there are still results to be collected from the pipeline: normal-
mode results draining from the pipelines are stored into the Replay Buffer each cycle;
exception-mode results are not collected. The depth of a Replay Buffer is determined by
the depth of the pipeline that feeds it; the number of collected entries in a Replay Buffer
is the lesser of the number of exception-mode cycles used in the exception handler or the
actual depth of the pipeline.

The depth of a Replay Buffer corresponds to the depth of the associated pipeline—
since ann-deep pipeline can haven results pending we need to be able to hold alln of these
results when the pipeline is drained; exception-mode results are not collected and so no
space needs to be reserved for these results. In the following examples we assume that the
exception takesk cycles (including all pipeline delays) to be serviced. Normal exception
handling behavior (long exception handler) can be seen clearly from the following sequence
of events:

� 0∼ throughn� 1∼: Exception is raised and exception handler begins execution; Replay
Buffers collect results—

During execution of the exception handler, exception-mode operations are issued to the
pipeline. Since the pipeline isn cycles deep, no exception-mode results are produced during
this period and all results produced are from the normal-mode operations issued prior to the
exceptions being raised; thesen normal-mode results are collected in order by the Replay
Buffer.

� n∼ throughk�1∼: Execution handler continues execution—

The Replay Buffer is now full and there are no more normal-mode results produced by the
pipeline; execution-mode results are propagated through the multiplexor and take effect im-
mediately.

� k∼ throughk+n�1∼: Exception servicing completes; normal execution commences from
the point of the exception; Replay Buffers replay results—

Exception-mode results continue to propagate through the pipeline but since exception ser-
vicing is complete, all exception side-effects are also complete and these results are all idle.
Normal operations are issued to the pipeline but taken cycles to produce results. Results
collected in the replay buffer produce results which take effect in the correct order as if the
exception had not occurred.

� k+n∼ on: Replay completes; normal execution continues—
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All collected results have been replayed and the Replay Buffer is empty. Normal results from
operations issued after exception servicing was completed are produced by the pipeline and
take effect immediately

The actual number of entries in the Replay Buffers is affected by the length of the
exception handler; in the event that the exception handler requires fewer cycles than the
depth of the pipeline, saym cycles, then there will only bem entries in the Replay Buffer.
While this can happen for long pipelines when an easily serviced exception occurs, this
behavior is also typical for “late result” or “misprediction” exceptions which may take few
cycles to be resolved. In the following example, we again assume that the exception takes
k cycles to be serviced. Short exception handler behavior can be seen clearly from the
following sequence of events:

� 0∼ through k� 1∼: Exception is raised and exception handler executes; Replay Buffers
collect results—

During execution of the exception handler, exception-mode operations are issued to the
pipeline. Since the pipeline isn cycles deep, no exception-mode results are produced before
the exception handler completes with the possible exception of a late result value delivered
from the pipeline. Thus almost all results produced are from the normal-mode operations
issued prior to the exceptions being raised which are collected in order by the Replay Buffer.
A total of k results are collected by the Replay Buffer during this period.

� k∼ throughn�1∼: Execution servicing completes, Replay Buffers collect results; normal
execution commences from the point of the exception; Replay Buffers replay results—

Although the exception is no longer being serviced, the Replay Buffer contains collected
result entries and there are still pre-exception results that will be produced by the pipeline;
thus the Replay Buffer must continue to collect results from the pipeline. Now that normal
execution is restored, new operations are being issued to the pipeline; in addition, collected
results must be replayed so that the proper result timing is produced. Result collection and
replay are thus performed concurrently by the Replay Buffer. During this period there arek
entries in the replay buffer—for every replayed result, a new result is collected keeping the
number of entries in the buffer the same.

� n∼ throughn+ k�1∼: All pre-exception results have been collected, Replay Buffers con-
tinue to replay results; exception mode pipeline results are delivered; normal execution
continues—

No more pre-exception normal-mode results are received from the pipeline and collection
into the Result Buffer ceases; since exception servicing is complete, idle exception-mode re-
sults are delivered from the pipeline. Normal operations continue to be issued to the pipeline.
Because result replay occurs and no further results are collected from the pipeline, the num-
ber of entries in the buffer decreases—results collected in the replay buffer continue to be
replayed until the buffer is empty.
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� n+k∼ on: Replay completes; normal execution resumes—

All collected results have been replayed from the Replay Buffer. Normal results from oper-
ations issued after exception servicing was completed are produced by the pipeline and take
effect immediately

Because there may be exceptions while previous results are being replayed, a Replay
Buffer may not be empty and may contain normal-mode results from collection during ear-
lier exceptions. This is not a problem and normal-mode results are collected and replayed
properly in this case: exception-mode operations are the same as pipeline bubbles and their
presence should have no effect on the non-exception state; normal-mode operations that
surround these pipeline bubbles will be collected and later replayed maintaining the proper
timing as if these pipeline bubbles did not exist. In both cases, this behavior is exactly as
desired.

This intermixed normal-mode and execution-mode result ordering does not affect the
required size of the Replay Buffers. At any time there can be at mostn normal-mode re-
sults pending in a pipeline. When an exception occurs, some or all of these results will be
collected by the replay buffer; because the pipeline depth isn there cannot be more than
n normal-mode results produced during exception servicing. In the event that normal exe-
cution is restored, a new normal-mode operations is issued to the pipeline and a collected
normal-mode result is replayed from the Replay Buffer; at this point in time there are still
n normal-mode operations pending—n�1 of these operations are in the Replay Buffer and
1 of these operations is in the pipeline. If an exception is immediately raised, no further
normal-mode operations will be issued and eventually the 1 new normal-mode result in the
pipeline will be collected by the Replay Buffer—again there will ben results pending with
all n normal-mode results now in the Replay Buffer; once again, the pipeline contains only
exception-mode results. Any combination of normal-mode and exception-mode operations
will result in similar behavior and there always will be at mostn normal-mode operations
pending that will eventually be collected by the Replay Buffer.

D.2 More complicated multiple-latency pipelines and Replay Buffers

Up to this point we have considered only a single pipeline and associated Replay Buffer.
Most processors are not this simple and will have multiple pipelines (or at least a single
pipeline with multiple latencies for different operations) for each result datapath. Multiple
pipelines which all have the same latencies are trivially handled; multiple latencies from a
single pipeline or multiple pipelines with different latencies requires more care—there is
now a possibility of multiple normal-mode results being produced from different pipelines
in the same cycle due solely to the different pipeline latencies.

Handling multiple pipelines with the same latency requires only a single Result Buffer
since we can treat the multiple pipelines as equivalent to a single complicated pipeline; hav-
ing multiple pipelines with different latencies (or a single pipeline with multiple latencies)
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Pipeline
Result Value

Replay Buffer
Contents

Replay Buffer
Action

Multiplexor
Action

normal-mode idle idle collect idle idle
normal-mode result idle collect result idle
normal-mode idle result no effect idle
normal-mode result result scheduling error! idle
exception-mode idle don’t care no effect idle
exception-mode result don’t care no effect propagate pipeline result

(a) Pipeline drain

Pipeline
Result Value

Replay Buffer
Contents

Multiplexor
Action

normal-mode idle idle idle
normal-mode result idle propagate pipeline result
normal-mode idle result propagate Replay Buffer result
normal-mode result result scheduling error!
exception-mode idle don’t care idle
exception-mode result don’t care propagate pipeline result

(b) Result replay

Table 6: Extended Replay Buffer collection and replay behavior

can be simply handled by including a Replay Buffer for each pipeline. Since the instruction
stream is statically scheduled there will never (in correct code!) be more than one non-idle
result from any of the pipelines (or Replay Buffers) in the same cycle so this problem is
relatively simple as long as some mechanism for producing an idle result is ensured when
there are no non-idle results to deliver.

However, this implementation now requires multiple Replay Buffers for any result dat-
apath that has multiple latencies associated with it which is undesirable—especially since
these buffers will never be better than sparsely occupied. Since there can only be one non-
idle result in any cycle, each equivalently delayed entry in a set of related Replay Buffers
cannot have more than one non-idle result between them. It may be desirable to combine
these Replay Buffers to reduce the storage requirements but because the separate pipelines
have different latencies, a combined Replay Buffer cannot have the simple FIFO structure
that it has had to this point.

There are two solutions to this problem. First, we can assume that the total area required
by Replay Buffers is inconsequential and that the only problem is the amount of state
that would be required by a context switch. If we use scheduling restrictions to avoid
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saving and restoring this state (as was noted in section 4.5) then we can safely ignore the
problem; if we do require saving and restoring the Replay Buffer contents, then we can
save a merged version of the Replay Buffer contents and later restore it to a single Replay
Buffer (an existing buffer or one specifically added for this purpose) then we have achieved
the same saved state as would have been present in a combined buffer without the hardware
complexity required for a combined buffer provided exclusively in hardware. Second, we
can modify the Replay Buffers to handle inputs from multiple sources.

Combining Replay Buffers requires that a combined buffer be able to emulate the FIFO
nature of having a separate buffer for each individual pipeline (or latency) while maintain-
ing only a single set of collected values. Because the Replay Buffers are no longer simple
FIFO structures, Combining Replay Buffers require the extended behavior shown in table 6.
This behavior takes into account that a given Replay Buffer entry may already contain a
valid result: while this situation will not occur during a simple exception, it can occur
when there is an exception raised while replay from a previous exception is in progress.
The different depths of each of the now-combined Replay Buffers and pipelines cause this
problem—a Replay Buffer for a deep pipeline may still be collecting results while a Replay
Buffer for a short pipeline is empty following replay.

Solving this problem is conceptually simple although it does have hardware implica-
tions that must be considered; the solution requires that a count of the collected entries in
a Combined Replay Buffer for each pipeline be maintained; this is then used as an index
into the collected result array to store a value in the Replay Buffer when it is collected. Ev-
ery collection from a given pipeline—normal-mode idle or result—would increment this
counter, every replay would decrement it. By using a unary or positional representation for
the count this can easily be accomplished with shift registers associated with each pipeline
this would eliminate the need for both incrementer/decrementer logic and could eliminate
any decoder logic for selecting the correct entry for a normal-mode result from a given
pipeline during collection. Unfortunately, each entry in the collected result would require
result buses for each possible pipeline source routed to it and the multiplexor would have
to have all possible buses routed to it as well. Depending on the configuration, the increase
in the complexity and size from the buses may produce worse cost and performance than
the simpler technique that maintains separate Replay Buffers and performs the combin-
ing action when the state is saved for a context switch. Both techniques accomplish the
same goal of supporting multiple pipelines and latencies and thus the decision on which
is the appropriate design technique must be determined when details of the process and
implementation requirements are known.
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