NEW METHODS FOR SURFACE RECONSTRUCTION
FROM RANGE IMAGES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Brian Lee Curless
June, 1997



© Copyright 1997 by Brian Lee Curless
All Rights Reserved



| certify that | have read this dissertation and that in my opinion it isfully adequate,
in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Marc Levoy (Principal Adviser)

| certify that | have read this dissertation and that in my opinion it isfully adequate,
in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Pat Hanrahan

| certify that | have read this dissertation and that in my opinion it isfully adequate,
in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

David Heeger

Approved for the University Committee on Graduate Studies:







To Jelena



Vi



Abstract

The digitization and reconstruction of 3D shapes has numerous applications in areas that
include manufacturing, virtual smulation, science, medicine, and consumer marketing. In
this thesis, we address the problem of acquiring accurate range data through optical trian-
gulation, and we present a method for reconstructing surfaces from sets of data known as
range images.

The standard methods for extracting range data from optical triangulation scanners are
accurate only for planar objects of uniform reflectance. Using these methods, curved sur-
faces, discontinuous surfaces, and surfaces of varying reflectance cause systematic distor-
tions of the range data. We present a new ranging method based on analysis of the time
evolution of the structured light reflections. Using this spacetime analysis, we can correct
for each of these artifacts, thereby attaining significantly higher accuracy using existing
technology. When using coherent illumination such as lasers, however, we show that |aser
speckle places afundamental limit on accuracy for both traditional and spacetime triangu-
lation.

The range data acquired by 3D digitizers such as optical triangulation scanners com-
monly consists of depths sampled onaregular grid, asample set known asarangeimage. A
number of techniqueshave been devel oped for reconstructing surfaces by integrating groups
of aligned range images. A desirable set of propertiesfor such algorithmsincludes: incre-
mental updating, representation of directional uncertainty, the ability to fill gapsin the re-
construction, and robustness in the presence of outliers and distortions. Prior algorithms
possess subsets of these properties. Inthisthesis, we present an efficient volumetric method
for merging range images that possesses all of these properties. Using this method, we are
ableto mergealarge number of rangeimages (asmany as 70) yielding seamless, high-detail
models of up to 2.6 million triangles.
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Chapter 1
| ntroduction

Methods to digitize and reconstruct the shapes of complex three dimensional objects have
evolved rapidly in recent years. The speed and accuracy of digitizing technologies owe
much to advances in the areas of physics and electrical engineering, including the devel-
opment of lasers, CCD’s, and high speed sampling and timing circuitry. Such technologies
allow usto take detailed shape measurements with precision better than 1 part per 1000 at
rates exceeding 10,000 samples per second. To capture the complete shape of an object,
many thousands, sometimes millions of samples must be acquired. The resulting mass of
data requires algorithms that can efficiently and reliably generate computer models from
these samples.

In this thesis, we address methods of both digitizing and reconstructing the shapes of
complex objects. The first part of the thesis is concerned with a popular range scanning
method known as optical triangulation. We show that traditional approachesto optical tri-
angulation have fundamental limitations that can be overcome with a novel method called
gpacetime analysis. The second part of thisthesis concerns reconstruction of surfacesfrom
range data. Many rangefinders, including optical triangulation scanners, can acquire regu-
lar, dense samplings called range images. We describe a new method for building complex
models from range images in away that satisfies anumber of desirable properties.

In this chapter, we describe some of the applications of 3D shape acquisition (Sec-
tion 1.1) followed by a description of the variety of acquisition methods (Section 1.2). In
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2 CHAPTER 1. INTRODUCTION

Section 1.3, we pose the problem of surface reconstruction from range images. In Sec-
tion 1.4, we place the goals of this thesis in the context of Stanford’s 3D Fax Project. In
Section 1.5, we describe the contributions of this thesis, and in the last section we outline
the remainder of the thesis.

1.1 Applications

The applications of 3D shape digitization and reconstruction are wide-ranging and include
manufacturing, virtual simulation, scientific exploration, medicine, and consumer market-

ing.

1.1.1 Reverseengineering

Many manufacturable parts are currently designed with Computer Aided Design (CAD)
software. However, in some instances, a mechanical part exists and belongs to a working
system but has no computer model needed to regenerate the part. This is frequently the
case for machines currently in service that were designed before the advent of computers
and CAD systems, as well as for parts that were hand-tuned to fit into existing machinery.
If such apart breaks, and neither spare parts nor casting moldsexist, then it may be possible
to remove a part from aworking system and digitize it precisely for re-manufacture.

1.1.2 Collaborativedesign

While CAD tools can be helpful in designing parts, in some cases the most intuitive design
method is physical interaction with themodel. Thisis especially true when the model must
have esthetic appeal, such asthe exteriors of consumer products ranging from perfume bot-
tles to automobiles. Frequently, companies employ sculptors to design these modelsin a
medium such as clay. Once the sculpture isready, it may be digitized and reconstructed on
acomputer. The computer model isthen suitable for dissemination to local engineersor re-
mote clients for careful review, or it may serve as a starting point for constructing a CAD
model suitable for manufacture.
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1.1.3 Inspection

After amanufacturer has created acomputer model for apart either by shape digitization of
aphysical model or through interactive CAD design, he has avariety of options for creat-
ing thispart, both as aworking prototype and as astarting point for mass manufacture. Ulti-
mately, the dimensions of thefinal manufactured part must fall within sometolerancesof the
original computer model. In this case, shape digitization can aid in determining where and
to what extent the computer model and the shape of the actual part differ. These differences
can serve as a guide for modifying the manufacturing process until the part is acceptable.

1.1.4 Special effects, games, and virtual worlds

Synthetic imagery is playing an increasingly prominent rolein creating specia effects for
cinema. In addition, video games and gaming hardware are moving steadily toward inter-
active 3D graphics. Virtual reality as a means of ssimulating worlds of experience is also
growing in popularity. All of these applications require 3D models that may be taken from
real life or from scul ptures created by artists. Digitizing the shapes of physical modelswill
be essential to populating these synthetic environments.

1.1.5 Dissemination of museum artifacts

Museum artifacts represent one-of-a-kind objects that attract the interest of scientists and
lay people world-wide. Traditionally, to visualize these objects, it has been necessary to
visit potentially distant museums or obtain non-interactive images or video sequences. By
digitizing these parts, museum curators can make them available for interactive visualiza-
tion. For scientists, computer models afford the opportunity to study and measure artifacts
remotely using powerful computer tools.

1.1.6 Medicine

Applications of shape digitization in medicine are wide ranging aswell. Prosthetics can be
custom designed when the dimensions of the patient are known to high precision. Plastic
surgeons can use the shape of an individual’'s face to model tissue scarring processes and
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visualize the outcomes of surgery. When performing radiation treatment, a model of the
patient’s shape can help guide the doctor in directing the radiation accurately.

1.1.7 Home shopping

Asthe World Wide Web provides a backbone for interaction over the Internet, commercial
vendors are taking advantage of the ability to market products through this medium. By
making 3D modelsof their productsavailable over the Web, vendors can allow the customer
to exploretheir productsinteractively. Standardsfor disseminating 3D modelsover theweb
are dready underway (e.g., the Virtual Reality Modeling Language (VRML)).

1.2 Methodsfor 3D Digitization

A vast number of shape acquisition methodshaveevolved over thelast century. These meth-
ods follow two primary directions. passive and active sensing. Passive approaches do not
interact with the object, whereas active methods make contact with the object or project
some kind of energy onto it. The computer vision research community is largely focused
on passive methods that extract shape from one or more digitized images. Computer vision
approaches include shape-from-shading for single images, stereo triangulation for pairs of
images, and optical flow and factorization methodsfor video streams. While these methods
require very little special purpose hardware, they typicaly do not yield dense and highly
accurate digitizations required of a number of applications.

The remainder of this section summarizes the active range acquisition methods. Fig-
ure 1.1 introduces a taxonomy which we follow. This taxonomy is by no means compre-
hensive; rather, it isintended to introduce the reader to the variety of methods available.

Among active sensing methods, we can discern two different approaches: contact and
non-contact sensors. Contact sensors aretypically touch probesthat consist of jointed arms
or pulley-mounted tethers attached to anarrow pointer. Theangles of thearmsor thelengths
of the tethersindicate the location of the pointer at all times. By touching the pointer to the
surface of the object, a contact event is signaled and the position of the pointer is recorded.
Touch probes come in a wide range of accuracies as well as costs. Coordinate Measuring
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Active shape acquisition

7N

Contact Non-contact
CMM . .
Reflective Transmissive

Non-optical \ Industrial CT

/ \ Optical
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Interferometry ﬁg‘,'ﬁ’ ggf%%t&]s
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Figure 1.1: Taxonomy of active range acquisition methods.
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Machines (CMM’s) are extremely precise (and costly), and they are currently the standard
tool for making precision shape measurementsin industrial manufacturing. The main draw-
backs of touch probes are:

e They aredow.
e They can be clumsy to manipulate.
e They usualy require a human operator.

e They must make contact with the surface, which may be undesirable for fragile ob-
jects.

Active, non-contact methods generally operate by projecting energy waves onto an ob-
ject followed by recording the transmitted or reflected energy. A powerful transmissive
approach for shape capture is industrial computer tomography (CT). Industrial CT entails
bombarding an object with high energy x-rays and measuring the amount of radiation that
passes through the object along various lines of sight. After back projection or Fourier pro-
jection dlice reconstruction, the result is ahigh resol ution volumetric description of the den-
sity of spacein and around the object. Thisvolumeissuitablefor direct visualization or sur-
facereconstruction. The principal advantages of thismethod over reflective methods are: it
islargely insensitive to the reflective properties of the surface, and it can capture the inter-
nal cavities of an object that are not visible from the outside. The principal disadvantages
of industrial CT scanners are:

e They arevery expensive.

e Large variationsin material densities (e.g., wood glued to metal) can degrade accu-
racy.

e They are potentially very hazardous due to the use of radioactive materials.

Among active, reflection methods for shape acquisition, we subdivide into two more
categories. non-optical and optical approaches. Non-optical approaches include sonar and
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microwaveradar (RAdio Detecting And Ranging), which typically measure distancesto ob-
jects by measuring the time required for a pulse of sound or microwave energy to bounce
back from an object. Amplitude or frequency modulated continuous energy waves can also
be used in conjunction with phase or frequency shift detectors. Sonar range sensors are
typically inexpensive, but they are aso not very accurate and do not have high acquisi-
tion speeds. Microwave radar istypically intended for use with long range remote sensing,
though close range optical radar isfeasible, as described below.

The last category in our taxonomy consists of active, optical reflection methods. For
these methods, light is projected onto an object in astructured manner, and by measuring the
reflections from the object, we can determine shape. In contrast to passive and non-optical
methods, many active optical rangefinders can rapidly acquire dense, highly accurate range
samplings. In addition, they are safer and less expensive than industrial CT, with the limita-
tion that they can only acquire the optically visible portions of the surface. Several surveys
of optical rangefinding methods have appeared in the literature; the survey in [Bes 1989]
isespecialy comprehensive. These optical methods include imaging radar, interferometry,
active depth-from-defocus, active stereo, and triangulation.

Imaging radar isthe same asmicrowave radar operating at optical frequencies. For large
objects, avariety of imaging radars have been demonstrated to give excellent results. For
smaller objects, on the order of one meter in size, attaining 1 part per 1000 accuracy with
time-of-flight radar requires very high speed timing circuitry, because the time differences
to be detected arein thefemtosecond (10~'2 second) range. A few amplitude and frequency
modulated radars have shown promise for close range distance measurements.

Interferometric methods operate by projecting aspatially or temporally varying periodic
pattern onto a surface, followed by mixing the reflected light with areference pattern. The
reference pattern demodulatesthe signal to reveal the variationsin surface geometry. Moire
interferometry involves the projection of coarse, spatially varying light patterns onto the
object, whereasholographic interferometry typically relies on mixing coherent illumination
with different wave vectors. Moire methods can have phase discrimination problemswhen
the surface does not exhibit smooth shape variations. This difficulty usually places alimit
on the maximum slope the surface can have to avoid ranging errors. Holographic methods
typically yield range accuracy of afraction of the light wavelength over microscopic fields
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of view.

Active depth from focus operates on the principal that the image of an object isblurred
by an amount proportional to the distance between points on the object and the in-focus
object plane. The amount of blur varies across the image plane in relation to the depths of
theimaged points. Thismethod hasevolved as both apassive and an active sensing strategy.
In the passive case, variationsin surface reflectance (al so called surface texture) are used to
determine the amount of blurring. Thus, the object must have surface texture covering the
whole surface in order to extract shape. Further, the quality of the shape extraction depends
on the sharpness of surface texture. Active methods avoid these limitations by projecting a
pattern of light (e.g., acheckerboard grid) onto the object. Most prior work in active depth
from focus has yielded moderate accuracy (up to one part per 400 over the field of view
[Nayar et al. 1995]).

Active stereo uses two or more cameras to observe features on an object. If the same
featureis observed by two cameras, then the two lines of sight passing through the feature
point on each camera's image plane will intersect at a point on the object. Asin the depth
from defocus method, this approach has been explored as both a passive and an active sens-
ing strategy. Again, the active method operates by projecting light onto the object to avoid
difficultiesin discerning surface texture.

Optical triangulation is one of the most popular optical rangefinding approaches. Fig-
ure 1.2a shows atypical system configurationin two dimensions. Thelocation of the center
of thereflected light pul seimaged on the sensor correspondsto aline of sight that intersects
the illuminant in exactly one point, yielding a depth value. The shape of the object is ac-
quired by trand ating or rotating the object through the beam or by scanning the beam across
the object. Dueto thefinite width of thelight beam, inaccuracies arise when the surface ex-
hibits significant changes in reflectance and shape. The first part of thisthesisis concerned
with describing the range accuracy limitations inherent in traditional methods, followed by
the introduction of a new method of optical triangulation, called spacetime analysis, which
substantially removes these limitations.
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Figure 1.2: Optical triangulation and range imaging. (&) In 2D, a narrow laser beam illuminates a
surface, and alinear sensor images the reflection from an object. The center of theimage pul se maps
to the center of the laser, yielding arange value. (b) In 3D, alaser stripe triangulation scanner first
spreads the laser beam into a sheet of light with acylindrical lens. The CCD observesthe reflected
stripe from which adepth profileis computed. The object sweeps through thefield of view, yielding
arange image. Other scanner configurations rotate the object to obtain a cylindrical scan or sweep
alaser beam or stripe over a stationary object. (c) A range image obtained from the scanner in (b) is
acollection of pointswith regular spacing.

1.3 Surfacereconstruction from range images

In this section, we describe the goal of the second part of thisthesis: surface reconstruction
from range images. We begin with a brief explanation of range imaging.

1.3.1 Rangeimages

Many active optical rangefinders sample the shape of an object along a set of regularly
spaced lines of sight, yielding a grid of depths known as a range image. These rangefind-
ers may be thought of as range cameras, i.e., they take pictures of a scene, but each image
pixel contains a depth instead of a color. While conventional cameras typically take pic-
turesthat correspond to a perspective projection, theimaging geometry of rangefinders may
vary widely, asdiscussed in Chapter 5. Figure 1.2 illustrates how alaser stripetriangulation
scanner can acquire arange image. If we think of a surface as being described by a func-
tion, f, then arangeimage, f isasampling of this surface, where each samplef(j, k)isthe
observed distance to the surface as seen along the line of sight indexed by (j, k).
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1.3.2 Surfacereconstruction

Each range image provides a detailed description of an object as seen from one point of
view. Before attempting to reconstruct the entire shape of an object, we require multiple
rangeimages. Asdepicted in Figure 1.3, asingle range image generally cannot acquire all
sides of an object, thus requiring multiple range images to be taken. In fact, many objects
aretoo complex to be captured by asmall number of rangeimagestaken, for instance, from
mutually orthogonal directions and their opposites (i.e., from the six faces of a cube). Due
to self occlusions, an object may require alarge number of range scans to see every visible
pointl. In some cases, points on the surface of an object are shiny enough to reflect most
light that strikesthem in amirror-likefashion. Such pointsmay only be seen when observed
from particular angles, requiring multiple range images in order to see al of them.

Taking many range images offers two additional advantages: noise reduction and im-
proved sampling rate. Real sensors suffer from noise due to a variety of causes including
laser speckle and CCD scanline jitter. Multiple noisy sightings of a point on a surface can
contribute to a reduced-variance estimate of the location of that point. Also, portions of a
surface observed at a grazing angle from one point of view tend to be undersampled. Tak-
ing many range images increases the likelihood of sampling the surface when it is directly
facing the sensor.

Sincewe require multiplerangeimagesto capture the shape of an object, we must devise
amethod to reconstruct a single description of this shape. The problem of reconstructing a
surface from range images can be stated as follows:

Given aset of p aigned, noisy rangeimages, /1, - - -, f,, find the 2D manifold
that most closely approximates the points contained in the range images.

Note that in order to merge a set of range images into a single description of an object,
it is necessary to place them al in the same coordinate system; i.e., they must be registered
or aligned with respect to each other. The alignment may arise from prior knowledge of the
pose of the rangefinder when acquiring the range image, or it may be computed using one

Indeed, for some scanning technol ogies, pointson the visible surface of an object may be “unacquirable’
due to the geometry of the sensor. Optical triangulation scanners, for example, cannot acquire concavities
inaccessible to atriangular probe with probe angle defined by the optical triangulation angle.
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Figure 1.3: Range images taken from multiple viewpoints

of a number of algorithms. We assume in this thesis that the range images are aligned to a
high degree of accuracy before we attempt to merge them.
A number of algorithms have been proposed for surface reconstruction from range im-

ages. Our experience with these algorithms has led usto develop alist of desirable proper-
ties:

¢ Representation of range uncertainty. The datain range images typically have asym-
metric error distributions with primary directions along sensor lines of sight. The
method of surface reconstruction should reflect thisfact.

e Utilization of all range data, including redundant observations of each object surface.
If properly used, thisredundancy will provide areduction of sensor noise.

¢ Incremental and order independent updating. Incremental updates allow usto obtain
areconstruction after each scan or small set of scans and allow us to choose the next
best orientation for scanning. Order independence is desirable to ensure that results
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arenot biased by earlier scans. Together, incremental and order independent updating
allowsfor straightforward parallelization.

¢ Time and space efficiency. Complex objects may require many range images in or-
der to build a detailed model. The range images and the model must be represented
efficiently and processed quickly to make the algorithm practical.

e Robustness. Outliers and systematic range distortions can create challenging situa-
tions for reconstruction algorithms. A robust agorithm needs to handle these situa-
tions without catastrophic failures such as holesin surfaces and self-intersecting sur-
faces.

¢ Norestrictionsontopological type. Thealgorithm should not assumethat theobject is
of aparticular genus. Simplifying assumptions such as “the object is homeomorphic
to asphere’ yield useful resultsin only arestricted class of problems.

¢ Ability tofill holesin thereconstruction. Given aset of range imagesthat do not com-
pletely cover the object, the surface reconstruction will necessarily be incomplete.
For some objects, no amount of scanning would completely cover the object, because
some surfaces may be inaccessible to the sensor. In these cases, we desire an algo-
rithm that can automatically fill these holes with plausible surfaces, yielding amodel
that is both “watertight” and esthetically pleasing.

Prior algorithms possess subsets of these properties. In thisthess, we present an effi-
cient volumetric method for merging range images that possesses all of these properties.

1.4 The 3D Fax Project

The work described in thisthesis fitsinto aframework for digitizing the shape and appear-
anceof objects. the 3D Fax Project at Stanford University. Figure 1.4 showstheflow of data
in thisframework from scanning through construction of CAD models and manufacture of
a hardcopy.
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Figure 1.5: A photograph of the Cyberware Model MS 3030 optical triangulation scanner used for
acquiring range images in thisthesis.

Theinput devicefor thisproject isan optical triangulation scanner manufactured by Cy-
berware Laboratories (pictured in Figure 1.5). The scanner performstriangulation in hard-
ware using a traditional method of analysis which is prone to range errors. Alternatively,
we can apply a triangulation method called “spacetime analysis’ to minimize these range
artifacts, as described in thisthesis.

The range data obtained from the scanner is in the form of a dense range image. By
repeatedly scanning an object from different points of view, we obtain a set of range im-
ages that are not necessarily aligned with respect to one another. Using an iterated closest
point algorithm developed in [Bed & McKay 1992] and modified for aligning partial shape
digitizations in [Turk & Levoy 1994], we transform the scans into a common coordinate
system.

After alignment, the range images provide the starting point for performing a surface
reconstruction. One method for merging the range images into a single surface is called
“zippering.” Thismethod operates directly on triangle meshes, and whileit iswell-behaved
for relatively smooth surfaces, it has been show to fail in regions of high curvature. An
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alternative method isto merge the meshesin avolumetric domain followed by an isosurface
extraction. This method has a number of advantages over the zippering approach, as will
be shown in thisthesis.

After merging a set of range images, it is typically the case for a complex object that
some portion of the object remains to be digitized. The problem of deciding how best to
orient the object relative to the scanner is the so-called “next best view” problem, an ac-
tive area of research in the 3D Fax Project. We believe that defining the emptiness of space
around an object using the volumetric method described in thisthesiswill play an important
rolein developing an effective next best view agorithm.

Once asatisfactory model isobtained, it is suitable for anumber of operationsincluding
simplification, color texturing, smooth-surface fitting, and rapid prototyping. The meshes
generated by the merging process are typically dense, with vertices spaced less than 0.5
mm apart. Objects containing large flat areas may be represented with much fewer trian-
gles, thus the need for mesh simplification algorithms. Color data may aso be collected
for scanned objects, and one research goal isto derive illumination independent body color
and “shininess’ for each point on the surface. In addition, the merged meshes aretriangular
tessellations, but CAD packages for manufacture and animation typically require NURBS
surfaces. To address this need, Krishnamurthy & Levoy [1996] have developed a method
for interactively creating tensor product B-spline surfaces from dense polygonal meshes.
Finally, the models generated by the volumetric method of merging meshes are generally
manufacturable with rapid prototyping technology. Near the end of thisthesis, we describe
the manufacture of one of our models using stereolithography.

1.5 Contributions

The contributions of this thesis are two-fold. First, we describe and demonstrate a new
method for optical triangulation, known as spacetime analysis. We show that this new
method yields:

¢ Immunity to reflectance variations

e Immunity to shape variations
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We also show that the influence of laser speckle remains a fundamental limit to the ac-
curacy of both traditional and spacetime triangulation methods.

Second, we describe a new, volumetric algorithm for building complex models from
range images. We demonstrate the following:

e Themethod isincremental, order independent, represents sensor uncertainty, and be-
haves robustly.

e The method is optimal under a set of reasonable assumptions.

¢ Extending the method to qualify the emptiness of space around an object permits us
to construct hole-free models.

e Through careful choiceof data structuresand resampling methods, the method can be
made time and space efficient.

Using the volumetric algorithm to combine the range images generated with our optical
triangulation method, we have constructed the most complex computer models published
to date. Inaddition, because these models are hole-free, we are able demonstrate their man-
ufacturability using a layered manufacturing method called stereolithography.

1.6 Organization

Chapter 2 beginswith amore detailed description of optical triangulation methods. Wethen
characterize the primary sources of error in traditional optical triangulation and conclude
with a discussion of some previouswork.

Next, in Chapter 3, we develop anew method for optical triangulation called “ spacetime
analysis’. We show how this method corrects for errors due to changes in reflectance and
shape, but is still limited in accuracy by laser speckle.

In Chapter 4, we describe an efficient implementation of the spacetime method, and we
demonstrate results using an existing optical triangul ation scanner modified to alow digiti-
zation of the imaged light reflections. Portions of Chapters 2-4 are described in [Curless &
Levoy 1995].
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The next four chapters concern the problem of surface reconstruction from range im-
ages. In Chapter 5, we describe some previous work in the area, and then provide a math-
ematical framework that motivates a new method for surface reconstruction. This new
method showsthat the maximum likelihood surfaceisan isosurface of afunction in 3-space.

In Chapter 6, we develop a new volumetric algorithm for surface reconstruction from
range images. This algorithm utilizes the mathematical framework described in the previ-
ous chapter and extendsit to allow description of the occupancy of space around the surface.
This extension leadsto amethod for generating model swithout boundaries. In addition, we
discuss some of the limitations of the volumetric method and suggest some possible solu-
tions.

The potential storage and computational costs of the volumetric method requireimple-
mentation of an efficient algorithm. In Chapter 7, we describe one such agorithm and then
analyze its asymptotic compl exity.

Next, in Chapter 8, we demonstrate the results of reconstructing range surfacesusing the
volumetric method and the data acquired with the scanning system described in Chapter 4.
Portions of Chapters 5-8 are also described in [Curless & Levoy 1996].

Finally, in Chapter 9, we summarize the contributions of this thesis and describe some
areas of future work.



Chapter 2

Optical triangulation: limitations and
prior work

Active optical triangulation is one of the most common methods for acquiring range data.
Although this technology has been in use for over two decades, its speed and accuracy has
increased dramatically in recent yearswith the devel opment of geometrically stableimaging
sensors such as CCD’s and lateral effect photodiodes.

Researchers and manufacturers have used optical triangulation scanning in a variety of
applications. In medicine, optical triangulation has provided range data for plastic surgery
simulation, offering safer, cheaper, and faster shape acquisition than conventional volumet-
ric scanning technologies[Pieper et al. 1992]. Inindustry, engineershave used triangul ation
scanners for applications that include postal package processing [Garcia 1989] and printed
circuit board inspection [Juha & Souder 1987]. Triangulation scanners also provide datato
drive computer graphics applications, such as digital film-making [Duncan 1993].

Figure 2.1 shows atypical system configuration in two dimensions. The location of the
center of the reflected light pulse imaged on the sensor corresponds to aline of sight that
intersectstheilluminant in exactly one point, yielding adepth value. The shape of the object
isacquired by trandating or rotating the object through the beam or by scanning the beam
across the object.

In this chapter, we begin with an overview of optical triangulation configurations (Sec-
tion 2.1). Next, we discuss the limitations of traditional methods in both qualitative and

18
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Figure2.1: Optica triangulation geometry. Theilluminant reflects off of the surface and forms an
image on the sensor. The center of theilluminant maps to a unique position on the sensor based on
the depth of the range point. In order for al pointsaong the center of the laser sheet to bein focus,
theangles§ and « are related to one another by Equation 2.1.

a quantitative contexts (Section 2.2). Finally, we describe previous efforts to evaluate and
correct for the errorsinherent in traditional triangul ation methods (Section 2.3).

2.1 Triangulation Configurations

The range acquisition literature contains many descriptions of optical triangulation range
scanners, of which we list a handful [Rioux et al. 1987] [Hausler & Heckel 1988] [Mundy
& Porter 1987]. Several survey articles have also appeared [Jarvis 1983] [Strand 1983], in-
cluding Bed’s excellent survey [Bed 1989] which describes numerous optical range imag-
ing methods and estimates relative performances. The variety of optical triangulation con-
figurations differ primarily in the structure of the illuminant (typically point, stripe, multi-
point, or multi-stripe), the dimensionality of the sensor (linear array or CCD grid), and the
scanning method (move the object or move the scanner hardware).

2.1.1 Structureof theilluminant

The structure of the illuminant can take a variety of forms. A beam of light forms a spot
on asurface and provides a single range value. By passing the beam through a cylindrical
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lens, a light stripe can be projected onto an object to collect arange profile (Figure 1.2b).
Researchers have also tried projecting multiple spots or multiple stripes onto an object for
more parallelized shape acquisition, though multiple steps are usualy required to disam-
biguate the light reflections. When imaging the reflected light onto a sensor with lenses, the
single point and stripe illuminants offer the advantage that, at any instant, all intersections
of thelight with the object must liein aplane. Sincelensesimage pointsin aplaneto points
in another plane, the sensor can be oriented to keep the beam or sheet of light in focus, thus
reducing depth of field problems. When the focal plane istilted, the image plane must aso
be tilted so asto satisfy the Scheimpflug condition [Slevogt 1974]:

tan @ = M tan 6 (2.1

where ¢ and « are the tilt angles of the focal and image planes, respectively, as shown in
Figure2.1, and M isthe magnification on the optical axis. The resulting triangulation ge-
ometry has the property that the focal, image, and lens planes all intersect in asingle line.
Note that multi-point and multi-stripe systems generally cannot take advantage of this op-
timal configuration, because the illumination usually does not liein aplane.

2.1.2 Typeof illuminant

The type of illuminant can be either coherent or incoherent. Coherent illuminants such as
lasers offer several distinct advantages over their incoherent counterparts. First, lasers can
be held in tight focus over along range. Second, since laser light is tuned to asingle wave-
length, the sensor can be coated with a bandpass wavelength filter, decreasing sensitivity to
ambient light. In addition, the optics do not have to be corrected for chromatic aberrations,
and elements such as prisms can be used with ease. Lasers used in triangulation also do not
typically have problemswith heat dissipation, whereas incoherent illuminants of sufficient
power frequently do. The disadvantages of using lasers are laser speckle (random coherent
interference due to surface roughness) and the need for special safety precautions among
lasers operating at visible and ultraviolet wavelengths. We will discuss the impact of laser
speckle on range accuracy in Sections 2.2.4 and 3.4.
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2.1.3 Sensor

Sensors for optical triangulation systems also come in a variety of forms. For narrow
beam illumination, point (zero-dimensional) sensors such as photodiodes or line (one-
dimensional) sensors such as lateral effect photodiodes and linear array CCD’s are suffi-
cient, though point sensors must be scanned to provide another dimension. For light stripe,
multi-point, and multi-stripe systems, a two-dimensional sensor is necessary and typically
comes in the form of a CCD array, though point and line sensors can also be scanned to
provide the required dimensions.

2.1.4 Scanning method

The method of scanning an object isalso amatter of choice. During asingle rangeimaging
sweep, the illumination-sensor system can be stationary while a platform trand ates and ro-
tates the object through the field of view, or the object may be stationary while the scanner
moves. Alternatively, both the object and the scanning equipment may be stationary while
rotating mirrors sweep the illuminant and sensor viewing directions across the object. For
this latter scanning approach, the sensor viewpoint must sweep in synchrony with theillu-
minant to ensure that the sensor tracks the moving illuminant and keepsit in focus (see, for
example, [Rioux et al. 1987]). In addition, an optical triangulation scanner can collect range
datain continuous sweeps such that consecutive range points are adjacent in space (barring
surface discontinuities). Alternatively, the scanning may proceed in spatially digoint steps
where the object moves an arbitrary amount relative to the scanner between acquisitions.
In Chapters 3 - 4, we will be concerned with scanners which perform continuous sweeps
or which move in small steps relative to the object, because these types of motion permit
correction of systematic artifacts.

2.2 Limitationsof traditional methods

For optical triangulation systems, the accuracy of the range data depends on proper inter-
pretation of imaged light reflections. The most common approach is to reduce the problem
to one of finding the “center” of aone dimensional pulse, where the “center” refersto the
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position on the sensor which hopefully maps to the center of the illuminant. Typically, re-
searchers have opted for a statistic such as mean, median or peak of the imaged light as
representative of the center. Each of these statistics gives the correct answer when the sur-
faceis perfectly planar. In this case, the sensor records a compressed or expanded image of
the illuminant’s shape, depending on the orientation of the surface with respect to theillu-
minant and sensor. The location of the center of the imaged pulse is not altered under these
circumstances.

2.2.1 Geometricintuition

The general accuracy of these statistics breaks down, however, whenever the surface per-
turbs the shape of theilluminant. Perturbations of the shape of the imaged illuminant occur
whenever:

e The surface reflectance varies.
¢ The surface geometry deviates from planarity.
e Thelight pathsto the sensor are partially occluded.

e Thelightis coherent, and the surface is sufficiently rough to introduce laser speckle.

In Figures2.2-2.4, we give examples of how thefirst three circumstances result in range
errorseven for an ideal triangulation system with infinite sensor resolution and perfect cal-
ibration. For purposes of illustration, we omit theimaging optics of Figure 2.1 and treat the
sensor as one-dimensional and orthographic. Further, we assume an illuminant of Gaussian
cross-section, and we use themean for determining the center of animaged pulse. Figure2.2
shows how a step refl ectance discontinuity results in range pointsthat do not lie on the sur-
face. A comparison of Figures2.2aand 2.2b shows that the range error worsens with larger
reflectance steps. Figure 2.3 provides two examples of shape variations resulting in range
errors. Note that in Figure 2.3b, the center of the illuminant is not even striking a surface.
In this case, a measure of the center of the pulse resultsin a range value, when in fact the
correct answer isto return no range value whatever. Finaly, Figure 2.4 shows the effect of
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Figure2.2: Range errors dueto reflectance discontinuities. (a) The changein reflectance from light
gray to dark gray distortsthe image of the illuminant, perturbing the mean and resulting in an erro-
neous range point. (b) Same as (a), but the reflectance step is larger, causing a larger range error.

Iluminant

@

IHluminant

(b)

Figure2.3: Rangeerrorsdueto shapevariations. () When reflecting off of the surfacesat the corner
shown, theleft half of the Gaussian is much more compressed than theright half. Theresultisashift
in the mean and an erroneous range point. (b) When the illuminant falls off the edge of an object,
the sensor images some light reflection. In thiscase, arange point isfound where thereisno surface

at al aong the center of the illuminant.
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Iluminant

Figure 2.4: Range error dueto sensor occlusion. A portion of the light reflecting from the object is
bl ocked before reaching the sensor. The mean yields an erroneous range point, even when the center
of theilluminant is not visible.

occluding the line of sight between the illuminated surface and the sensor. Thisrange error
isvery similar to the error encountered in Figure 2.3b.

The fourth source of range error islaser speckle, which arises when coherent laser illu-
mination bounces off of asurfacethat isrough compared to awavelength [ Goodman 1984].
The surface roughness introduces random variations in optical path lengths, causing aran-
dom interference pattern throughout space and at the sensor. Figure 2.5 shows a photograph
of laser speckle arising from a rough surface!. For triangulation systems, the result is an
imaged pulse with a noise component that affects the mean pulse detection, causing range
errors even from a planar target (see Figure 2.6).

L Although optically smooth surfaces (i.e., mirrors) do not introduce laser speckle, they are also extremely
hard to measure. Mirrored surfaces only reflect light to the sensor when the surface is properly oriented. Fur-
ther, mirrored surfaces generally result in interreflections that significantly complicate range anaysis. Asa
result, diffusely reflecting surfaces are desirable for range scanning. Diffuseness arises from surface rough-
ness, which in turn leads to laser speckle.
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Figure2.6: Influence of laser speckleontraditional triangul ation. Theimage of the Gaussianisnoisy,
causing a random shift in the position of the mean, ¢;. The uncertainty in the mean’s position, o,
maps to an uncertainty in the observed range, o,.. Notethat the direction of range uncertainty follows
the center of thelaser beam.
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Figure 2.7: Plot of errors due to reflectance discontinuities. Asthe size of the reflectance step (rep-
resented as theratio of reflectances on either side of the step), the deviation from planarity increases
accordingly. Smaller triangulation angles (theta) exhibit greater errors.

2.2.2 Quantifyingtheerror

To quantify the errorsinherent in using traditional mean analysis, we numerically computed
the errors introduced by reflectance and shape variations for an ideal triangulation system
with asingle Gaussian illuminant. We define the normally incident irradiance profile of the
Gaussian illuminant as:

—2x?

Er(z) = I exp l "

(2.2)

where [, isthe power of the beam at its center, and w is ameasure of beam width, taken to
be the distance between the beam center and the ¢=2 point. This measure of beam width is
commonin theopticsliterature. We present the range errorsin ascale invariant form by di-
viding all distances by the beam width. Figure 2.7 illustrates the maximum deviation from
planarity introduced by scanning areflectance discontinuity of varying step magnitudesfor
four different triangulation angles. Asthe size of the step increases, the error increases cor-
respondingly. In addition, smaller triangulation angles, which are desirablefor reducing the
likelihood of missing data due to sensor occlusions, actually result in larger range errors.
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Figure 2.8: Plot of errors dueto corners. They-axisindicatesthe closest distance between therange
data and the actual corner, while the x-axis measures the angle of the corner. Tighter corners result
in greater range errors.

Thisresult isnot surprising, as sensor mean positions are converted to depths through adi-
vision by sin §, where § is the triangul ation angle, so that errorsin mean detection trandate
to larger range errorsfor smaller triangul ation angles.

Figure 2.8 showsthe effects of a corner on range error, wherethe error istaken to be the
shortest distance between the computed range data and the exact corner point. The corner is
oriented so that theillumination direction bisectsthe corner’sangleas shownin Figure2.3a
As we might expect, a sharper corner results in greater compression of the left side of the
imaged Gaussian rel ativeto theright side, pushing the mean further to the right on the sensor
and pushing the triangulated point further behind the corner. In this case, the triangulation
angle has little effect as the greater mean error to depth error amplification is offset almost
exactly by the smaller observed left/right pulse compression imbalance.

We can estimate what the absolute values of these errors are for a typical triangulation
system. For example, the triangulation angle of our scanner hardware is 30°, and the laser
width isabout 1 mm across adepth of 0.3 m. For this configuration, we would expect errors
of 0.8 mm for a 10:1 reflectance step and 0.5 mm for a corner angle of 110°.
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Figure 2.9: Gaussian beam optics. A collimated beam is focused by the lens to a width, w,, and
spans a desired depth of field zp. Bringing the beam into tight focus resultsin arapidly expanding
beam (w,.,(2)). A wide beam expands slowly (w4 (2)), but may be too wide over the desired
depth of field. The optimal beam (w,,;(z)) expands only by afactor of /2 over the depth of field.
For this optimal configuration, the distance between the beam waist and the v/2 point is called the
Rayleigh range, zy.

2.2.3 Focusing the beam

One possible strategy for reducing the errors described in the previous section isto narrow
the illuminating beam. Unfortunately, there are practical limitations to implementing this
strategy. First, in order to take advantage of the smaller beam width, the sensor resolution
must increase. This leads to expensive sensors. Second, using lenses to focus a Gaussian
beam arbitrarily over the field of view is not possible due to diffraction limits. The best
candidate for a tightly focused illuminant over alarge depth of field is alaser beam. The
irradiance profile of a laser beam is typically Gaussian as described by Equation 2.2, and
the width of the beam expands from its narrowest point as [Siegman 1986]:

wherew, isthe beam waist or width of the beam at its narrowest point, = isthe distancefrom
thispoint, and X isthe wavelength of thelaser. Figure 2.9 shows how the beam expandsfor
variousbeamwaists. Notethat asthewaist becomes narrower, the beam expandsfaster. For
agiven depth of field, zp, we want the beam to be as tight as possible to limit the effects
of triangulation errors. If the waist is too narrow, then the beam expands too rapidly and
becomestoo largeat theedges of thefield of view. If thewaististoo large, it expandssowly,
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but is still too large at the edges of the field of view. The optimum beam width is attained

)\ZD
Wy = | ———
2

Inthis case, the beam reaches amaximumwidth of «w = /2w, andthevaluezr = zp/2
corresponds to what is known as the Rayleigh range of the beam. The variation in widthis

thus:
A o M
2 T T

The best width to rangeratio at the edges of the field of view is:

when the waist obeys the relation:

— =y (2.3)
2D TZD
The discussion of range errors due to reflectance and shape variations in the previous
section shows that the errorsof an optical triangulation system are on the order of the width
of theilluminant. Thus, the beam width to range ratio is a measure of the relative accuracy
of the system. Equation 2.3 tells us that once we have selected a range of interest, diffrac-
tion limitsimpose abound on the relative accuracy in the presence of reflectance and shape
variations.

Note that Bickel et al. [1985] have explored the use of axicons (e.g., glass cones and
other surfaces of revolution) to attain tighter focus of a Gaussian beam. Therefracted beam,
however, has a zeroth order Bessal function cross-section; i.e., it has numerous side-lobes
of non-negligibleirradiance. The influence of these side-lobesis not well-documented and
would seem to complicate triangulation. In addition, once the sensor resolution is fixed,
then arbitrarily narrowing the beam actually becomes undesirable. If theimage of the beam
spans only one or two pixels, then the computed mean will not attain sub-pixel accuracy.
See Section 3.5 for adiscussion of the beam width in asignal processing context.
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2.24 Influence of laser speckle

Even under the most ideal circumstances of scanning a planar object with no reflectance
variations, the accuracy of optical triangulation methods using coherent illumination are
still limited by an unavoidable interference phenomenon: laser speckle. In this section, we
describe how laser speckle arises and how it resultsin range errors.

In order to analyze the effects of laser speckle, we must consider the wave nature of
light and, in particular, the effects of diffraction. One of the most powerful toolsfor study-
ing these effectsis scalar diffraction theory. Scalar diffraction theory treatslight asascalar
field rather than as a coupled electric and magnetic field. Experiment has shown that this
approximation is valid as long as (1) the diffracting aperture is large compared to a wave-
length and (2) the diffracted fields are not being observed too close to the aperture. Both of
these criteriaare satisfied in the current context.

Throughout this section we adopt the notation of Goodman [1968]. For a monochro-
matic wave, the scalar field at a point in space may be written:

u(x,t) = U(x) cos[2mvt + ¢(x)]

where U(x) and ¢(x) are the amplitude and phase of the wave at position x, and v is the
optical frequency. It proves convenient to re-write this expression as.

u(x,t) = Re[U(x) exp(—i2mvt)]

where U(x) isacomplex function (called a phasor):

U(x) = U(x) exp[—i6(x)

and Rel] isthereal part of itsargument. When solving problemsin scalar diffraction theory,
it sufficesto represent the field with U(x ), because the time dependence is the same every-
whereand isknown apriori. Researchers sometimesrefer to U(x) asthefield “amplitude”,
though it should be remembered that it is a complex quantity. Note that when taking phys-
ical measurements, we evaluate the intensity of afield, given by:
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Now consider theimaging geometry shown in Figure 2.10. A striking result from scalar
diffraction theory is the fact that the image formed by a lens is the same as the image de-
scribed by geometrical optics, filtered by an amplitude spread function (also known as a
point spread function):

Ui(zi,y:) = Uy, yi) * b, y:) (24)

where U; is the resulting image field, and U, is the geometrical opticsimage, whichisin
turn given by the relation:

1 T Y
Uy(zi,y:) = —U, [ —=5, —= 25
e gi) = 3700 (=35, -2 (25)
where U, isthefield in the object plane, and M isthe magnification factor. The amplitude
spread function is simply the Fourier transform of the lens pupil:

h(xi,y;) = //_Oo P(Ad; s, Ad;sy) exp|—i2m (@8, + yisy)]|dsyds, (2.6)

where P(z, y) describes the shape of the pupil (usually acircular disc), d; isthe distanceto
theimage, and X isthe optical wavelength. For acircular lensaperture, the pupil functionis
unity with aradiusof « and zero outside. The amplitude spread functionfor such an aperture
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Figure2.11: Speckledueto diffractionthroughalens. Theimage of thesurfaceisfiltered by theam-
plitude spread function. Because the surfaceisrough compared to awavelength, theimage contains
noisy phaseterms that influence nearby points on the surface through the amplitude spread function.
Theresult islaser speckle. Source: [Goodman 1984].

resembles acircularly symmetric “sinc” function?, where the first zero crossing is at:

Ad;

a

r~ 0.61

Note that the imaging equations (2.4 - 2.6) relate object and image fields, not intensities.
The intensities must be computed by finding the square magnitude of thefields.

Speckle arises in an image when the surface is rough compared to the optical wave-
length. The result israndom variationsin the relative phases of imaged points. If the imag-
ing system were to exhibit no diffraction effects (i.e., if the amplitude spread function were
an impulse function), then these phases would have no impact, because they would vanish
when computing the intensities. However, real imaging systems do exhibit diffraction ef-
fects, and the amplitude spread function serves to distribute the random variations across
the image plane. Theresult islaser speckle. Figure 2.11 illustrates the this phenomenon.

In the remainder of this section, we attempt to quantify the effect of laser speckle on

2sinc(ar:) = sin(ro)

- e
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range accuracy. To do so, we consider the case of atwo-dimensiona world, which permits
usto remove referencesto the y coordinatein the equations above. This simplification will
aid in the discussion of the issues of laser speckle, but will not significantly ater the ba-
sic results. Note that in this two-dimensional world, the amplitude spread function for an
imaging aperture is smply the “sinc” function. In addition, we will treat the triangulation
imaging geometry as though it were an axially aligned imaging geometry. Thisapproxima-
tionintroduces someerror, because some of theimaged light originatesfrom regionsoutside
of the plane in focus (the center of the illuminant), but for narrow illuminants, this error is
negligible [Francon 1979].

For a Gaussian illuminant incident on the surface of an object, thefield at the surface of
the object takesthe form:

Us () = Golw) explic(e,)] 2.7)

where (7, (z,,) isthe Gaussian illuminant and ¢, () representsthe random phase variations
introduced by the roughness of the surface. We can now write the field at the image plane
as.

U;(2;) = {G, () explidg ()]} * b))

where G, (x;) and ¢, («;) aretheimages of the Gaussian and and phase terms, respectively,
as given by geometric optics. From this equation, we can compute the intensity measured
at the image plane:

Li(z;) = Uy(2;) U () (2.8)

Equations 2.7 - 2.8 describe the physical image of a Gaussian illuminant after experi-
encing random phase variations and diffraction “filtering.” Errorsin determining the mean
of thisimage result in range errorsin triangulation systems using traditional analysis. The
mean is defined by:
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(2.9)

C; =

For acentered Gaussian, this mean should be exactly zero; however, the random phase vari-
ationsintroduce statistical variationsin the mean that we can quantify as:

oo = () = (e)) = ()2 (2.10)

where the expected value of the mean isassumed to be zero. Figure 2.6 illustratesthe influ-
ence of laser speckle in atriangulation system. The error in the mean mapsto arange error
through the relation:

Mo,

0-7" .
sin #

In other words, oncewe have computed the variationsin detecting the mean at the sensor, we
must map it into arange error through multiplication by theimaging system’s magnification
factor, M, and division by the triangulation factor, sin 6.

Computing the standard deviation described by Equations 2.9 and 2.10 analytically has
proven to be extremely difficult. Instead, we have performed numerical ssmulations. These
simulations require some characterization of the phase function, ¢,(z,), which describes
the roughness of the surface. Researchers typically model this function to be proportional
to the height profile, 3(x,) of the surface:

b.(x) = ()

This 3(x,) is typicaly taken to be a random process with Gaussian statistics at each
point on the surface and a Gaussian autocorrelation spectrum. The pointwise statistics are
thus parameterized by the surface height variance, %, also called the roughness, and the
correlation length, o [Fujii et al. 1976]. Asaresult, the parameter space we must exploreis
four dimensional: afunction of the width of thelaser, the width of the point spread function,
the surface roughness and the correlation length. To date, we have thoroughly studied the
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deviation of the mean for surfaces rough compared to a wavelength with zero correlation
length, and we have arrived at a qualitative understanding of the behavior when the surface
roughness parametersare varied. For uncorrelated rough surfaces, the variation of the mean

1 wz)\dz
Op. X —
©2V 2a

where w; is the width of the image of the Gaussian illuminant, d; is the distance from the

followsthereation:

lensto the aperture, and « isthe aperture radius. Mapping thisinto arange error we obtain:

M wz)\dz
2sin f 2a

~
~o

Noting that «wv = Mw; isthe width of the illuminant in object space, and d, = Md; isthe
distance to the object, the range error can be re-written as:

1 wAd
. R \/ 2 211
o 2sin f 2a ( )

Thisrelation yields several insights. First of all, the range error is fundamentally indepen-

dent of the resolution of the sensor; it is an inescapable consequence of the speckle phe-
nomenon. Secondly, we expect that narrowing the aperture will increase the speckle noise
and thereby increase the range error. Finally, the range error varies with the square root of
the width of the laser as seen from the sensor. Narrowing the laser ought to decrease range
noise.

Numerical experiments with various surface roughness and correlation length parame-
tershaveyielded some quantitativeresultsthat follow qualitative expectations. Insummary,
as the correlation length grows, we observe a decrease in the computed range error. Simi-
larly, as the surface roughness decreases, the range error also decreases. This result is not
surprising; the limiting case of a perfectly smooth planar surface should result in no laser
speckle and thus no range error. Increasing the correlation length and decreasing the rough-
ness bring the results closer to the perfectly smooth case.

To give a sense for the size of the range errors, we can substitute some typical values
into Equation 2.11. The triangulation system used for experiments in Chapter 4 has a 30
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degree triangulation angle, an aperture radius of about 5 mm, a stand-off of 1 meter and
uses a HeNe laser source (A = 632.8 nm). We would therefore expect the range error due
to reflections from a “perfectly” rough surface to be approximately 0.25 mm. This error
correspondsto roughly half the resolution of the sensor being used. Real surfaces, however,
are not perfectly rough, so we would expect smaller range errorsin practice.

2.3 Prior work on triangulation error

Several researchers have observed the limitations in triangulation accuracy due to re-
flectance and shape variations [Buzinski et al. 1992] [Soucy et al. 1990] [Mundy & Porter
1987]. In addition, researchers have studied the effect of laser speckle on range determi-
nation and have indicated that speckle is afundamental limit to the accuracy of laser range
triangulation, as described in the previous section, though its effects can be reduced with
well-known speckle reduction techniques [Baribeau & Rioux 1991] [Dorsch et al. 1994].
These speckle reduction methods, however, typically require spatial averaging, resultingin
atrade-off between noise and spatial resolution. Using aless coherent light source appears
to be a better alternative, as it leads to less speckle noise without loss of resolution. Re-
gardless, changing the viewpoint generally resultsin adifferent speckle pattern, so multiple
range images acquired from different viewpoints can be combined to reduce noise without
loss of resolution. We demonstrate thislast ideain Section 8.3.

Mundy & Porter [1987] attempt to correct for variationsin surface reflectance by noting
that two imaged pulses, differing in position or wavelength are sufficient to overcome the
reflectance errorson aplanar surface, though somerestrictive assumptions are necessary for
the case of differing wavelengths, and they do not address errors due to shape variations.
Kanade et a. [1991] describe a rangefinder that finds peaksin time for a stationary sensor
with pixels that view fixed points on an object as the illuminant sweeps across the scene.
This method is very similar to the spacetime analysis presented in this thesis for solving
some of the problems of optical triangulation; however, the authorsin [Kanade et al. 1991]
do not indicate awareness that their design addresses these problems. Further, we show that
the principle generalizes to other scanning geometries.
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Chapter 3
Spacetime Analysis

Many optical triangulation scanners operate by sweeping the illumination over an object
whileimaging the reflected light over time. The previous chapter clearly demonstrates that
analyzing the imaged pul ses at each time step leads to systematic range errors. In thischap-
ter, we describe a new method for optical triangulation called spacetime analysis. We show
that by analyzing the time evolution of the imaged pulses, this new method can reduce or
eliminate range errors associated with traditional methods.

We begin with an intuitive description of how the spacetime analysis works (Sec-
tion 3.1), followed by arigorousderivation of its propertiesunder a set of assumptions such
aslinear scanning and orthographic sensing (Section 3.2). Wethen describe how the method
generalizes when weakening or removing these assumptions (Section 3.3). In Section 3.4,
we consider therole of laser speckle in spacetime analysis and show that it still imposes a
[imit on triangulation accuracy. Finally, we put optical triangulation scannersinto asignal
processing context and draw conclusions about how to improve them (Section 3.5).

3.1 Geometricintuition

Figure 3.1 illustrates the principle of spacetime analysis for a laser triangulation scanner
with Gaussian illuminant and orthographic sensor as it trandates across the edge of an ob-
ject. Asthe scanner stepsto theright, the sensor images asmaller and smaller portion of the
laser cross-section. By timets, the sensor no longer imagesthe center of theilluminant, and

38
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IHTuminant

Figure3.1: Spacetime mapping of aGaussian illuminant. The Gaussiansat | ft represent the profile
of the illuminant at times ¢; through t4. The solid Gaussians at right represent the images of the
illuminant at these same times. The dashed Gaussian represents the time evolution of these images
for asingleline of sight, corresponding to a single point on the targeted surface. Although the solid
Gaussiansat right may be distorted or clipped by depth discontinuitiesor reflectance changesin the
surface, the dashed Gaussian isalwaysthe same shape (unlessitismissing entirely), anditiscentered
at alocation that corresponds exactly to arange point. These properties of the dashed Gaussian are
the keys to the spacetime analysis.

conventional methods of range estimation fail. However, if welook along the lines of sight
from the corner to the laser and from the corner to the sensor, we see that the profile of the
laser isbeing imaged over time onto the sensor (indicated by the dotted Gaussian envel ope).

Thus, we can find the coordinates of the corner point (x., z.) by searching for the mean of
a Gaussian along a constant line of sight through the sensor images. We can express the
coordinates of this mean as atime and a position on the sensor, where thetimeisin general
between sensor framesand the position is between sensor pixels. The position on the sensor
indicates a depth, and the time indicates the lateral position of the center of the illuminant.
Intheexample of Figure 3.1, wefind that the spacetime Gaussian corresponding to the exact
corner hasitsmean at position s. onthe sensor at atimet. between ¢, and ¢; during the scan.
We establish the corner’s position by triangulating the center of the illuminant at time ¢.
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Figure 3.2: Triangulation scanner coordinate system.

with the sensor line of sight corresponding to the sensor coordinate s. and thelateral sensor
position at ¢..

3.2 A completederivation

For amorerigorous analysis, we consider the time evolution of theirradiancefrom atrans-
lating differential surface element, 50, as recorded at the sensor. We refer the reader to
Figure 3.2 and Table 3.1 for a description of coordinate systems and symbols. Note that in
contrast to the previous section, the surface element is trand ating instead of the illuminant-
sensor assembly. The element has a normal n and an initial position p, and is trandating
with velocity v, so that:

p(t) =Po -+ tv

Our objectiveisto compute the coordinatesp, = (., z,) given thetempora irradiance
variations on the sensor. For smplicity, we assume that v. = (—wv,0). The illuminant we
consider is alaser with aunidirectional Gaussian radiance profile:

—2x?

Li(x,w) = Ipexp l 2

] 5w — wp) (31)
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00 | Differentia surface e ement

p(t) | Position of surface element

pPo | Position of surface element (z,,z,) a timet =0
n Normal of surface element

v Velocity of whole object

wi | Direction of illuminant

ws | View direction

Table 3.1: Symbol definitionsfor spacetime analysis.

where I, isthe power of the beam at itscenter, w isthe e~* half width, and the deltafunction
indicates the directionality of the beam. In accordance with Figure 3.2, we will assume that
wr = (0,1). The differential reflected radiance from the element in the direction of the
sensor issmply:

AL(p(1),ws) = fr(w, ws)ln - wi| Lu(p(t), w)de (32)

where f,(w, wg) isthebidirectional reflection distribution function (BRDF) of the point p,,
evaluated at the incident direction, w, and outgoing sensor direction, wgs. Note that we as-
sume that the BRDF isdefined in aglobal sensefor the surface element, rather than relative
to its normal. Further, we treat incoming directions as pointing toward the surface rather
than away from the surface, which is consistent with the description of theradiancefield in
terms of position and direction.

Substituting Equation 3.1 into Equation 3.2 and integrating over all incident directions,
we find the total radiance reflected from the element to the sensor to be:

L(p(t), ws) = f(wg,ws)ln - wllyexp [ul (33)

Projecting the point p(¢) onto the sensor, we find:

s = (x, — vt)cosb — z,sin O (34
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Figure 3.3: Spacetimeimage of the Gaussian illuminant. After scaling the sensor scanlinesto map
to depth and lateral displacement, we seethat apoint isimaged to atilted Gaussian in the spacetime
image. The center of the Gaussian maps to the coordinates of the point, the amplitude depends on
the reflectance coefficient and beam strength, and the width is fixed by the scanner geometry.

where s isthe position on the sensor and 4 is the angle between the sensor and laser direc-
tions. We combine Equations 3.3-3.4 to give us an equation for the irradiance observed at
the sensor as a function of time and position on the sensor:

[—2(:1;0 —

t2
Es(t,s) = fi(wp,ws)n-wi|lexp 5 vt) ] d(s — (x, — vt)cosb — z,sin 0)
w

To simplify this expression, we condense the light reflection terms into one measure:

PLs = fr(vawS)|n : wL|

which we will refer to as the reflectance coefficient of point p. We also note that « = vt
is ameasure of the relative x-displacement of the point during a scan, and = = s/sin is
the relation between sensor coordinates and depth values along the center of the illuminant.
Making these substitutions we have:

—2(x — z,)?
2

Es(x,z) = prslpexp l ] d((x —x,)cos0 + (2 — z,)sin b) (35

w
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Figure 3.4: From geometry to spacetime image to range data. (&) The original geometry. (b) The
resulting spacetimeimage. TA indicates the direction of traditional analysis, while SA isthe direc-
tion of the spacetime analysis. The dotted line corresponds to the scanline generated at the instant
shownin(a). (¢) Rangedataafter traditional mean analysis. (d) Range data after spacetimeanalysis.

This equation describes a Gaussian running along a tilted line through the spacetime
sensor plane or spacetimeimage as depicted in Figure 3.3. We definethe spacetimeimageto
be the image whose columns arefilled with sensor scanlinesthat evolve over time. Through
the substitutions above, position within a column of this image represents displacement in
depth, and position within a row represents time or displacement in lateral position. From
Figure 3.3, we see that the tilt angle is 6 with respect to the z-axis, and the width of the
Gaussian adong thelineis:

Thepeak valueof theGaussanisp s [, anditsmean alongthelineislocated at (=, z,),
the exact location of the range point. Note that the angle of the line and the width of the
Gaussian are solely determined by the fixed parameters of the scanner, not the position, ori-
entation, or BRDF of the surface element. Thus, extraction of range points should proceed
by computing low order statistics along tilted linesthrough the spacetime image, rather than
along columns (scanlines) asin the conventional method. Figure 3.4 illustrates this distinc-
tion. Further, we establish the position of the surface element independent of the orienta-
tion and BRDF of the element and, assuming no interreflections, independent of any other
nearby surface elements. The decoupling of range determination from local shape and re-
flectanceis complete. As aside effect, the peak of the Gaussian yields the irradiance at the
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sensor due to the point. Thus, we automatically obtain an intensity image precisely regis-
tered to the rangeimage, information which can assist in atask such as object segmentation.

3.3 Generalizing the geometry

We can easily generalize the previous resultsto other scanner geometries under the follow-
ing conditions:

e Theillumination direction is constant over the path of each range point.
e The sensor is orthographic.

e Themotionis purely trandational.

The illumination and sensing directions are different.

The illumination and trand ation directions are different

The first three conditions ensure that the reflectance coefficient, prs = f,(wi,ws)|n -
wr |, isconstant, the fourth condition guarantees that actual triangulation can occur, and the
fifth condition ensuresthat the illumination is scanning across pointsin the scene. Notethat
the illumination need only be directional; coherent or incoherent light of any patternis ac-
ceptable, though anarrow pattern will avoid potential depth of field problemsfor the sensor
optics. In addition, the trandational motion need not be of constant speed, only constant
direction. We can correct for known variationsin speed by applying a suitable warp to the
spacetime image.

We can weaken the need for orthography if we assume that the BRDF does not vary ap-
preciably over the sensor’s viewing directions. The range of viewing directions depends on
thefocal length of thelens system and the range of positionsasingle point can occupy while
being illuminated during a scan, which in turn depends on the width of theilluminant. Inthe
general perspective case, the spacetime analysis proceeds along curves rather than straight
lines. If the image of a point traverses a small displacement on the sensor relative to the
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focal length, then assumption of local orthography is reasonable. In addition, general per-
spective can lead to changes in occlusion relationships during a scan that cause an illumi-
nated point to be visible for afinite time and then become invisible while still illuminated.
This effect results in a partial image of the occluded point’s spacetime Gaussian and will
result in arange error for this point. These pointswill be easy to identify: they will be near
step discontinuities in the resulting range image. When acquiring multiple range images,
these points can be eliminated in favor of unoccluded acquisitions of the same portions of
the surface. Thus, while perspective sensors can create some complicationsin applying the
gpacetime analysis, typical lens configurations will yield reasonable results.

We can also weaken the requirement for pure trandation, as long as the rotational com-
ponent of motion represents a small change in direction with respect to the f, (wr,ws)n -
wy | product. This congtraint is reasonable for motion trajectories with largeradii of curva-
turerelativeto the beam width. Asin the perspective case, the spacetime analysis proceeds
in general along curves, and changes in occlusion relationships can lead to erroneousrange
data. Nonetheless, for moderate rotational trajectories, the spacetime analysis will lead to
improved range data.
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3.4 Influenceof laser speckle

In the previous chapter, we devel oped the equationsthat are needed to analyze the influence
of laser speckle on range determination. The results of statistical analysis show that laser
speckle places alimit on the attainable accuracy when using traditional triangulation. Does
gpacetime analysis eliminate this limitation? One encouraging observation is the fact that
the imaging equation (2.4) is space-invariant, so that moving the object field corresponds
to moving the image field. In this way, speckle behaves as though it adheres to the sur-
face, much like anoisy reflectance variation. This observation would seem to indicate that
the spacetime analysiswould correct for speckle noise. However, when we move the obj ect
with respect to anon-uniformilluminant (such as alaser beam with Gaussian cross-section),
then the object field is not ssimply trandating. As aresult, the speckle does not completely
adhere to the surface, and spacetime analysis faces the same limitation as traditional trian-
gulation: laser speckle imposes a fundamental limit on accuracy. In this section, we will
develop some of the equations necessary to demonstrate this result.

For the spacetime analysis, we must consider amoving surface and follow asingle point
on the surface to observe theimage of the Gaussian mapped over time. Conversely, we can
consider a moving illuminant, and follow a single line of sight from a stationary sensor.
These two cases are equivaent as far as the resulting speckle patterns are concerned, but
the latter yieldsasimpler analysis.

We can describe the field at the surface of the object in terms of the moving illuminant:

U, (2,,t) = Go(x, — v,t) explid,(z,)]
where the Gaussian is moving with velocity »,. Mapping this to the image plane:
U, (2, t) = {Gy(x; — vit) explicy(x:)]} * h(z;)
where ¢, and ¢, are the images of the Gaussian and phase functions given by geometric

optics, and v; isthe velocity of the imaged Gaussian. To smplify thisrelation, we can first
expand the convolution:
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o0

Ui(z;,t) = / Gz — vit — a)expligy(x; — o) h(a)da

Next, we consider asingle line of sight, =:; = 0, so that:

o0

UZ»((),t):/ Gy (—vit — a) explicy(—a)]h(a)da

— 0

For a symmetric amplitude spread function, and after some strai ghtforward manipul ations,
this relation becomes:

Ui(0,) = Gyln) * {explidy(m)]h(n)} [n=v (36)

As described in the previous chapter, the intensity is the square magnitude of the field,
but in this case, the mean we seek iswith respect to time:

/OO 11,0, 1)dt
c = _gg— (37)

/ L0, 1)t

The error can be solved as the variance of the mean as described in the previous chapter:

N
[T

oo, = [(¢]) = ()] = (c}) (39)

Figure 3.5 illustrates the influence of laser speckle when using spacetime triangul ation.
For traditional analysis, the uncertainty in the position of the mean on a sensor scanline cor-
responds directly to adepth error along the center of theilluminant. For spacetime triangu-
lation, the error in the mean maps to an error in determining when the laser sheet’s center
intersects a line of sight at a range point. The range error is distributed aong the sensor’s
line of sight, and obeys the relation:

(3.9)
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Figure 3.5: Influence of laser speckle on spacetime triangulation. When performing the spacetime
analysis, theline of sightto the pointisfixed, but thetime at which the center of the laser passesover
the range point varies with range. Laser speckle introduces uncertainty, o., asto when the laser is
centered over the range point. The effect is range uncertainty, o,., along the line of sight from the
Sensor.

As in the case for traditional analysis, computing an analytical solution using Equa-
tions 3.6-3.9 has proven to be extremely difficult. Instead, we have performed numeri-
cal simulations that lead us to the same result as we found for traditional analysis (Equa-

tion 2.11):
1 wAd
A 1/ 2 1
7 2sin f 2a (3.10)

Thus, the error in spacetime triangul ation under coherent illumination isindependent of

sensor resolution and increases with the narrowing of the aperture and the widening of the
laser sheet. In addition, numerical analysis reveals that, just as in the case for traditiona
triangulation, smoother surfaces lead to reductionsin range error.
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Figure 3.6: Speckle contributions at the sensor due to a moving coherent illuminant with square
cross-section. The sensor and surface are stationary while the illuminant sweeps across the surface.
A single pixel maps to a single point on the surface, but a neighborhood of pointson the surface in-
fluence thepixel intensity asaresult of diffraction at the aperture. Thisneighborhoodisindicated by
the region between the lines drawn from the sensor to the surface. (a) Astheillumination translates
totheright (shown hereat timet; ), only part of the neighboring points, mostly to theleft of therange
point, areilluminated. Only these pointswill contributeto the observed, speckle-corrupted intensity
at thesensor. (b) Attimet,, theilluminationuniformly coversthe neighborhood and continuesto do
so until timets. During thistime, the pixel intensity will not vary as theillumination moves. (c) As
the left edge of the illumination crosses into the neighborhood near the range point (shown here at
timet,), then only the the pointsmostly to theright of the range point will affect the pixel intensity.
Thus, we expect the speckle hoisein (a) and (c) to be uncorrel ated.

Theimpact of laser speckle on traditional triangulation isnot surprising, given the obvi-
ous corruption of the imaged illuminant. The effect of speckle on spacetime triangul ation,
however, isharder to visualize. To gainamoreintuitive grasp, consider the examplein Fig-
ure 3.6, whichillustratesthe didactic exampl e of astationary object and sensor and amoving
illuminant with squareirradiance profile. A single pixel on the sensor mapsto asingle point
on the surface, but dueto diffraction at the aperture, neighboring pointson the surface influ-
ence theintensity measured at this pixel. When the sensor approaches the range point from
the left, then surface pointsto the left of the range point affect the pixel intensity. When the
illumination is completely covering the neighborhood of the range point, then trandations
of theilluminant do not affect the measured intensity. As the illumination passes the range
point to the right, the surface pointsto the right of the range point affect the pixel intensity.
Thus, when the illuminant is mostly to the left or right of the range point, the pixel intensity
is determined by different points on the surface.
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Figure 3.7: Spacetime speckle error for a coherent illuminant with square cross-section. (a) Asthe
sensor and illuminant sweep over the surface, the sensor images noisy square waves. For regions
near the center of the square wave, the speckle behaves as though it adheres to the surface as the
scanning progresses. Near the edges, however, the speckle influence reveals itself. For the range
point being tracked, the amplitude in the first image depends on the properties of the left portion of
the surface, while the amplitudein the last image depends on the right portion of the surface. In (b)
we see the resulting spacetime image of the range point. The central regions of the pulse are very
flat, unlike the individual images of the square pulse at each time step in (a). However, the speckle
influences the edges of the pulse, resulting in uncertainty about the mean of the pulse.

Figure 3.7 illustrates how this distinction leads to errorsin spacetime triangulation, this
timeincluding themotion of the sensor along with theilluminant. Asthecenter of thesquare
illuminant moves over the object, the speckled image of the surface does indeed movewith
the surface, because the illuminant isfairly constant near the center. This explains why the
spacetime pulseisvery flat inthe center (Figure 3.7b). However, near the edges of the pul se,
theilluminationisnot at all constant, and speckle noise appears. Theresult isan uncertainty
in determining the location of these edges. The noise at the edges has different properties
for the left edge versus the right edge as described above, meaning that the uncertainty in
determining the position of the two edges isfairly uncorrelated. Since resolving the edges
isthe only way of determining the center of the spacetime pulse, spacetime triangulationis
limited in accuracy by laser speckle.
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3.5 A Signal Processing Per spective

Withinsights provided by the previous section, we can now study optical rangetriangulation
inasignal processing context. Thissignal processing point of view aidsin visualizing how
the ideal spacetime image is formed and how it is modified during acquisition and recon-
struction. Further, analysis of the Fourier spectrum of the spacetime image leadsto insights
about how we might improve range extraction.

3.5.1 Ideal triangulation impulse response

In examining the response of ascanner to adifferential element in Section 3.2, we havedis-
covered theimpul seresponse of atrand ating triangul ation scanner with Gaussian illuminant
and orthographic sensor. The key isto re-write Equation 3.5, as a convolution:

Es(x,z) = f(x,z) * hgp(x,2) (3.11)

where h s iSthe spacetime impul se response,

hsr(x,z) = I exp [_jf ] d(zsinf — x cos h) (3.12)
and f(x, z) isapoint in space,
[ 2) = prs(eo)d(e — )8z - =) (313

In general, f(x,z) describes the piecewise continuous set of points on the surface of the
object that are visible to both the laser and the CCD. This set of points can be represented
asafunction, z = r(x), with corresponding reflectance variations p.s = prs(z), o that
we arrive at:

F,2) = prs(@)d(z = r(2)) (3.14)

Figure 3.8 illustrates how the spacetime image is derived from atwo dimensiona scene.
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Figure 3.8: Formation of the spacetimeimage. The scenein (a) is being scanned horizontally. First
we determine the portions of the surface visibleto the laser (b) and to the sensor (¢). The laser and
sensor linesof sight that clip the surface are shown dashed, whiletheremoved portionsof the surface
are shown dotted. The resulting surface (d) is convolved with the spacetime Gaussian (€) to create
the spacetime image (f). For the purposes of thisillustration, the contribution of p;¢(z) has been
omitted. Theresult of pzs(x) would be to modulate the amplitude of the spacetime Gaussian as it
is being convolved across the surface.
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3.5.2 Filtering, noise, sampling, and reconstruction

Thefunction Es(x, =) representsthe ideal spacetime image, and if we could acquireit per-
fectly, then we would be able to compute the exact shape of the object. In the real world,
however, thisimage is filtered, corrupted by noise, sampled, and ultimately reconstructed
before being analyzed for shape extraction.

The filtering can be decomposed into two components. spatial and temporal. Spatial
blurring occurs at the sensor due to the imaging optics and the fact that each sensor cell
has afinite area over which it gathers photons and accumulates a charge. We call thisfilter
h,i: (z), because it spans sensor pixels. The other filtering component operates temporally;
asthe object movesrelative to the scanner, the sensor captures photons over afixed interval
of time beforesampling theresult and starting over. Themotioniseffectively blurred during
thisinterval. We call thistemporal filter /.. (), where“frame” refersto thetimeinterval
and x isthe representative of the time component (remember, « = vt).

Several noise sources also affect the spacetimeimage. Asdescribed in the previous sec-
tion, coherent illumination leads to speckle noise that corrupts the spacetime Gaussian. In
addition, the sensor will have some inherent noisiness caused by a variety of factors (see,
e.g., [Janesick et al. 1987]). Finally, during the sampling step, the pixel valueswill be quan-
tized for representation in the computer, introducing quantization noise. We will represent
all of these noise sources with one function, ().

Putting the filtering and noise sources together, we arrive at an expression for the space-
time image prior to sampling and reconstruction:

B§" (2, 2) = n[Es(@, 2) * hpio(2) * hgrame (2)] (3.15)

Thisimageisthen sampled according to the spatial resolution of the sensor and theframe
rate. Werepresent this sampling processasanimpulsetrain, i( £, =), wherer. isthe sensor
pixel separation projected aong the laser sheet and 7. is the distance the object movesrel-
ative to the scanner between frames. Once we have the sampled, filtered spacetime image,
we can employ areconstruction filter, /,..(x, z), to obtain an approximation to the original

continuousimage. Thisfinal imageis then:
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B, 2) = [Eg“(x,z) ¥ (ii)] ¥ e, 2) (3.16)

Te Tz

One of the first observations that arises from these equations is the fact that the recon-
structed spacetime imageisacontinuousfunction. Thus, thisreconstructionyieldsa (piece-
wise) continuous surface, rather than a set of range samples. In the next chapter, we exploit
this observation to extract as much range data as possible.

3.5.3 The spacetime spectrum

Taking the Fourier transforms of Equations 3.11 - 3.16 will provide several insights. For
simplicity, we omit the influence of noise and arrive at the following relations:

F(ES) = F(vasz)HST(Sxasz) (317)
F(EE) = F(Es)Hyio(5:) Hpame (52)] (3.18)
F(Es) = [F(BY) % 11.i(7080, 7282) | Hyee (52, 52) (3.19)

where F () isthe Fourier transform operator, s, and s. are the spatial frequenciesin x and
z,and F', Hgr, H,iwy, Hipame, and H,.. are the Fourier transforms of f, hsr, hyiv, Rprame,
and h,.., respectively. Figure 3.9 shows the steps in creating, filtering, and sampling the
spacetime image.

Several observations arise from thinking about the Fourier spectrum of the spacetime
image. The least surprising is the fact that higher sampling rates permit (and are usually
accompanied by) wider H,;. and Hy...... filters, alowing for the acquisition of more of the
Spacetime spectrum, i.e., higher frequencies. In other words, a higher sampling rate leads
to more captured detail.
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Figure3.9: The spacetimespectrum: avisualizationfor Equations3.17 - 3.19. TheFourier transform
of the shape function (a) is multiplied by the spectrum of the spacetime Gaussian (b) to give the
spectrum of theideal spacetime image (c). Before sampling, this spectrumis multiplied by the pixel
and frame filters (shown as idealized low-passfiltersin (d)) to givethe filtered spacetime spectrum
without noise (€). The sampling process creates replicas of thisfiltered spectrum (f) spaced 1 /7, and
1/7. apartin s, and s, respectively. The reconstruction step entails extracting the central replicaof
the spectrum after multiplying by H .. (not shown).
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3.54 Wideningthe laser sheet

The Fourier spectrum aso tells us that the spacetime Gaussian acts like abandlimiting filter
that runs along the sensor lines of sight, as indicated in Figure 3.9c. Note that this “filter”
does not remove detail, asin the case of the pixel and framefilters. The resulting spacetime
image is still ideal and contains all the information required to extract the original surface
geometry precisely. Thus, by narrowing the spectrum of the spacetime Gaussian, we can re-
strict the spectrum of the spacetimeimage without |oss of detail. The surprising conclusion:
widening the illuminant can improve results.

Consider scanning aline (aplanein 3D), asdepicted in Figure 3.10. The Fourier trans-
form of thislineisanother line, perpendicular to thefirst. After superimposing the spectrum
of the spacetime Gaussian, we arrive at the ideal spacetime spectrum, which isbasicaly a
line segment in the Fourier plane. The length of thisline segment corresponds to the max-
imum frequency content of the spectrum and thus determines the sampling rate needed to
acquirethe surface. The parametersthat determinethelength of the Fourier line segment are
the orientation of the original line, the width of the laser sheet, and the triangulation angle.
For a fixed laser width and triangulation angle, the spectra line segment grows in length
asthelineisrotated to be at more of a grazing angle to the sensor. At a critical angle, the
pixel and framefiltersbegin to clip the spectral line segment and degrade the quality of the
reconstruction; worse, if thefilters are not ideal (and, generaly, they are not), aliasing will
occur. By widening the laser sheet, however, this critical angle can be extended closer to
the triangulation angle.

This notion of widening the laser sheet runs counter to the intuition that a narrower il-
luminant gives better |ocalization of the point on the surface being acquired. Thisintuition,
however, stems from thinking of triangulation in the traditional context. In the spacetime
context, the wider beam does not degrade resolution by “blurring” neighboring points to-
gether. It isinteresting to note that while the accuracy of the traditional method improves
withanarrower laser sheet in principle, in practice thelaser must have aminimum thickness
to avoid range errorsdue to aliasing. For a surface of fixed orientation, narrowing the | aser
sheet aso narrows the imaged Gaussian on the sensor, until eventualy it is narrower than
apixel cell. At thispoint, the accuracy islimited by the width of apixel projected onto the
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Figure 3.10: Spacetime spectrum for aline. (a) A line at angle « to the laser is scanned. (b) The
function to be convolved with the spacetime Gaussian is a deltafunction line. (c) Its Fourier trans-
form is another delta function line oriented perpendicular to the original. (d) After “filtering” with
the spacetime Gaussi an, the spacetime spectrum is essentially a line segment in the Fourier plane.

laser sheet, not the width of the laser.

In practice, the laser sheet cannot be widened arbitrarily. The primary limitation is the
depth of field of the sensor. As the laser is widened, the sensor must record more of the
object that is out of the plane of focus. The out of focus points will be blurred, and the
improvement fromthe laser sheet will be countered. One solution might beto use abrighter
beam and then stop down the sensor’s aperture to increase the depth of field. However, for
coherent illumination, the narrowed apertureleadsto i ncreased speckle noisewhich can a so
defeat theimproved accuracy. Even incoherent imaging systemswill approach adiffraction
limit as the aperture is narrowed. In addition, as the laser sheet widens, then the effects of
using a sensor with perspective projection become more prevalent, as noted in Section 3.3.
Further, speckle analysis indicates that widening the laser sheet increases the influence due
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to speckle noise. Nevertheless, by balancing these trade-offs, it should be possibletorealize
a system with improved accuracy. Thisremains an areafor future work.

3.55 Improving resolution

Fourier analysis of the spacetime image aso reminds us of the importance of using good
bandlimiting filters, H,;, and Hy,...., to avoid aliasing artifacts. However, we do not have
much control over these filters. The pixd filter is essentialy the convolution of the blur-
ring due to finite pixel cell size with any optical blurring that may occur. When the laser
sheet isin focus, then the sensor’s pixel response is the primary filter, which in turn is set
by the design of the sensor. The frame filter is essentially a rectangle function in x with
width proportional to the exposuretime. In addition, sensors generally have atimeinterval
when they stop capturing light while shifting out the recorded signals. The spectral band-
width of the temporal filter is thus wider than the distance between samples. In both the
spatial and temporal cases, some aiasing artifacts are bound to occur. This aliasing gen-
erally leads to reduction in image quality; however, it also means that multiple spacetime
images may be combined to improvethe accuracy of therange data. Techniquessuch asthe
onedescribedin [Irani & Peleg 1991] could be used to combine these spacetime images. In
order for such an approach to work, a sequence of spacetime images must be acquired after
tranglating the object (or scanner) between scans. Rotating the object (or scanner) between
scans generates an entirely new spacetime image that may not be combined with prior ac-
quisitions. Increased resol ution through combination of multiple spacetime imagesremains
an areafor future work.
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Chapter 4

Spacetime analysis. implementation and
results

The previous chapter provides a theoretical foundation for accurate optical triangulation
through spacetime analysis. In this chapter, we demonstrate that the method can be adapted
to work with an existing commercial laser triangulation scanner (Section 4.1). We develop
an efficient algorithm for performing the spacetime analysis and show how increased res-
olution can be obtained by interpolating the imaged light reflections (Section 4.2). Finally,
we show the results of applying the spacetime analysis to some real objects (Section 4.3).

4.1 Hardware

We have implemented the spacetime anal ysis presented in the previous chapter using acom-
mercial laser triangulation scanner and areal-time digital video recorder. The optical trian-
gulation system we use is a Cyberware MS 3030 platform scanner (shown in Figure 1.5).
This scanner collects range data by casting a laser stripe onto the object and by observing
reflectionswith a CCD camera positioned at an angle of 30° with respect to the plane of the
laser. The platform can either trandate or rotate an object through the field of view of the
triangulation optics. Figure 1.2b illustrates the principle of operation. The laser width (the
distance between the beam center and the ¢ =2 point) variesfrom 0.8 mmto 1.0 mm over the
field of view which is approximately 30 cm in depth and 30 cm in height. Each CCD pixel

60
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Figure4.1: From rangevideotorangeimage. To perform the spacetime analysis, wedigitizethe Cy-
berware video with an Abekas digitizer. We can then either storethe digitized video to disk and copy
it to the host computer, or perform a real-time JPEG compression and fast decompression through
an SGI Cosmo board. The JPEG compression approach has proven to be more time efficient, but the
resultsin this chapter were originally obtained with the video disk option. In either case, the frames
are run-length encoded and then converted to a range image through the spacetime analysis.
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images a portion of the laser plane about 0.5 mm square. Although the Cyberware scanner
performs a form of peak detection in real time, we require the actual video frames of the
camerafor our analysis. Figure 4.1 illustrates the possible routes for processing the range
video. We can digitize these frames with an Abekas A20 video digitizer, which can acquire
486 by 720 pixel frames at 30 Hz. The captured frames have approximately the same res-
olution as the Cyberware CCD camera, though the scanlines are first converted to analog
video before being resampled and digitized. The digitized frames can then be stored in real
time with an Abekas A60 digital video disk. Alternatively, we can run the digitized signal
through acommercially available JPEG compression board. Because each frameisan im-
age of the narrow laser sheet intersecting the surface, it is mostly blank. As aresult, we
can JPEG compress the frame with a high quality factor, but still obtain high compression.
The JPEG compressi on efficiently encodesthe blocks of empty space without sacrificing the
quality of the imaged light reflections. The key advantage of this approach isthat the range
video compresses well enough to be stored on the host computer’s main memory, as op-
posed to avideo disk which limitsthe speed of recovery of the recorded frames. The results
in this chapter were obtained with the Abekas digital video disk, but the results described
in Chapter 8 are based on range data acquired with the help of JPEG compression.

4.2 The spacetimealgorithm

Using the principles of the previous chapter, we can devise a procedurefor extracting range
data from spacetime images:

1. Perform the range scan and capture the spacetime images.
2. Rotate the spacetime images by 6.
3. Find the statistics of the Gaussians in the rotated coordinates.

4. Rotate the means back to the original coordinates.

Figure 4.2 illustrates this new method graphically. In order to implement step 1 of this
algorithm, we require a sequence of CCD images. Most commercial optical triangulation
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Figure4.2: Methodfor optical triangul ationrangeimaging with spacetimeanaysis. (a) Theorigina
geometry. (b) Theresulting spacetimeimage when scanning withtheilluminantinthe +z direction.
(c) Rotation of the spacetime image followed by eva uation of Gaussian statistics. (d) The means of
the Gaussians. (€) Rotation back to world coordinates.

systems discard each CCD image after using it (e.g. to compute a stripe of the range map).
As described in the previous section, we have assembled the necessary hardware to record
the CCD frames. In the previous chapter, we discussed a one dimensional sensor scenario
and indicated that perspective imaging could be treated as locally orthographic. For atwo
dimensional sensor, we can imagine the horizontal scanlines as separate one dimensional
sensors with varying vertical (y) offsets. Each scanline generates a spacetime image, and
by stacking the spacetime images one atop another, we define a spacetime volume. Compli-
cations arise when we have perspective projection inthe vertical direction, astheimageof a
point sweeping through the Gaussian illuminant can cross scanlines (i.e., apoint isnot con-
strained to liein asingle spacetime image plane). We have not yet implemented the general
spacetime ranging method that accounts for this effect, so we restrict most of our analysis
to the spacetime volume near the vertical centerline of the CCD where range pointswill not
cross scanlines while passing through the illuminant (i.e., we can visualize the spacetime
volume as a stack of spacetime images). Nevertheless, toward the end of this chapter, we
demonstrate some results for larger objects that show improvement even though they are
not restricted to the center of thefield of view in the vertical direction. Thisimprovementis
probably due to the fact that even at the extreme positions of the field of view a point does
not traverse more than half a scanline while passing through the illuminant.

In step 2, we rotate the spacetime images so that Gaussians are vertically aligned. In a
practical system with different sampling ratesin = and z, the correct rotation angle can be
computed as:
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tan 0gp = " tan 6 4.0

T

where 657 isthe new rotation angle, 7. and 7. are the sample spacings in x and = respec-
tively, and 4 isthe triangulation angle. In order to determine the rotation angle, 057, for a
given scanning rate and region of the field of view of our Cyberware scanner, we first de-
termined the local triangulation angle and the sample spacings in depth, =, and lateral posi-
tion, x. Equation 4.1 then yields the desired angle. When performing the rotation, we avoid
aliasing artifacts which would lead to range errors by employing high-quality filters. For
this purpose, we use a bicubic interpolant.

After performing the rotation of each spacetime image, we compute the statistics of the
Gaussians along each rotated spacetimeimage raster!. Our method of choice for computing
these statisticsis aleast squaresfit of aparabolato thelog of the data; i.e, given a Gaussian
of the form:

e -]

w2

6(a) = aexo |-

where « isthe amplitude and b is the desired center, we can take the log of the Gaussian:

2 2
log[G(x)] = log[a] — 2(:110;26) = (—%) z? + (i—g) T+ (log[a] — %)
and fit a parabolato the result. The linear coefficient contains the center, b.

We have also experimented with fitting the data directly to Gaussians using the
Levenberg-Marquardt non-linear least squares algorithm [Press et a. 1986], but the results
have been substantially the same as the log-parabol afits.

The Gauss an statistics consist of amean, which correspondsto arange point, aswell as
awidth and a peak amplitude, both of which indicate thereliability of the data. Widthsthat
are far from the expected width and peak amplitudes near the noise floor of the sensor im-
ply unreliable datawhich may be down-weighted or discarded during later processing (e.g.,

LActually, we do not expect to find perfect Gaussians on the rotated image rasters. The filtering and sam-
pling processes described in Section 3.5 alter theideal spacetimeimage. Nevertheless, fitting Gaussiansis a
reasonabl e approximation that has yielded excellent resultsin practice
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Figure 4.3: Run-length encoded spacetime scanline. Each scanline is composed of runs of zeroes
and runs of varying intensity data.

when combining multiple range meshes). For the purposes of this thesis, we discard unre-
liable data and rely on future scansto fill in reliable data used in the surface reconstruction
process.

Finally, in step 4, we rotate the range points back into the global coordinate system.

4.2.1 Fadst rotation of the spacetimeimage

In order to process the spacetime images, wefirst compress the framesinto arun length en-
coded (RLE) representation as shown in Figure4.3. Thetime evolution of asingle scanline
isthusarun length encoded spacetime image which we must rotate in order to extract range
data. The naive approach to rotating each image would be to expand it into uncompressed
form, and then visit the pixels of the target image while walking through the rotated source
dice, i.e., while “gathering” data from the source dice. Alternatively, we can process the
source image's runs, and only “send” data to the source image in the regions of runs with
varying data [Lacroute 1995]. Figure 4.4 illustrates this principle.

Note that when performing the traditional gather approach, we step through the target
image and resampl e the source image using areconstruction filter. As aresult, aneighbor-
hood of source pixelswill influence the value of each target pixel, as shown in Figure 4.5c.
We can aso look at thisin another way: each source pixel will influence a neighborhood of
target pixels. Thus, when performing the send operation, each pixel adds weighted copies
of itself to a neighborhood of pixelsin the target image. This send operation isillustrated
in Figure 4.5d.

The RLE send method we have described so far will significantly reduce the computa-
tional expense, because it visits only the interesting pixelsin the source image. Neverthe-
less, it still creates an uncompressed target image whose pixels must al be visited in the
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Figure 4.4: Fast RLE rotation. The naive approach to rotating an image would be to expand the
RLE sourceimage, and then traverse all of the pixelsof thetarget image while*gathering” datafrom
(resampling) the source image. A much more efficient approach isto traverse the RLE structurein
the sourceimage and “send” only non-zero data to the target image.
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Figure4.5: Reconstruction: sendvs. gather. (a) Thetarget imageisrotated with respect to the source
image. (b) We can find the values at the target pixels by interpolating among the source pixels. (c)
“Gather” interpolationfor asingletarget image pixel, A. (d) “Send” interpolationfor asinglesource
pixel. Theexampleinthisfigureillustratesthe case for abilinear filter with a2x2 support; extension

to filters with larger supportsis straightforward.
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next step of the spacetime algorithm. Ideally, we would like to create an RLE target image
directly. We can achieve this goal with the following procedure:

1. Allocate space for each scanline in the target image.

2. Stream through each source scanline, ignoring runs of zeroes. When sending varying
data:

e If the data being sent is not within the current target run being constructed:

— Mark the current target run as finished.
— Declarearun of zeroes between thefinished run and the new target position.

— Start anew run of varying pixels.
o Else

— Deposit the pixel valueinto theexisting run, increasing itslength as needed.
3. Mark thelast run on each scanline as being arun of zeroes.

Figure 4.6 shows a scanline asit is being constructed.

This RLE rotation algorithm delivers a dramatic performanceimprovement. If we con-
sider a spacetime volume of n voxels on aside, then the brute force rotation would execute
in time proportional to the size of thevolume, i.e., O(r*). On the other hand, the fast algo-
rithm described hererequirestime proportional to the part of the volumewith non-zero data.
The sensor samples the surface onto a grid of size roughly » X n, which is then “blurred”
into the spacetime volume by the spacetime impulse response (Equation 3.11). The width
of this impulse response function is constant, so the overall size of the spacetime surface
embedded in the volume is O(n?). Thus, the fast rotation agorithm runs in O(r?*) time,
substantially faster then the brute force method. In practice, we observe atypical speed-up
of 50:1 over the brute force approach.
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Figure 4.6: Building a rotated RLE scanline. (a) The source image is traversed in scanline order
(dotted white lines) from top to bottom (solid black arrow to the left), and the nhon-zero values are
deposited in thetarget image. (b) The scanlineindicated by the solid white arrow in the target image
isconstructedinsteps. “T” isthedatatype, and “L” istherunlength. In A, Thescanlineisinitialized
to have no data or length. In B, when the first source scanline intersects the target scanline, the first
run is declared to be zeroes (T = Zero or “Z”) and its length is computed. In addition, a varying run
(T = Varying or “V") is begun. As successive source scanlines intersect the target scanline, more
varying data is added to the current run, which grows as needed. At C, more varying dataislaid
down, but it is offset from thefirst varying run. Thus, anew run of zeroesisdeclared withitslength,
and anew varying run is begun. Eventually, the source scanline sweep finishes, and the remainder
of the scanlineis declared to be zeroes, as shownin D.
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Figure 4.7: Interpolation of spacetime image data. (&) Extraction of range data from a spacetime
image followed by linear interpol ation of the range points. (b) Same as (a) but more interpolationin
the spacetime image rather than the among the range points.

4.2.2 Interpolating the spacetime volume

Traditionally, researchers have extracted range data at sampling rates corresponding to one
range point per sensor scanline per unit time. Interpolation of shape between range points
has consisted of fitting primitives(e.g., linear interpolantslike triangles) to therange points.
Instead, we can regard the spacetime volume as the primary source of information we have
about an object. After performingascan, we have asampled representation of the spacetime
volume, which we can then reconstruct to generate a continuous function. In the previous
chapter, we described thisreconstruction for a spacetime image; for the spacetime volume,
we have added avertical dimension, but the principleremainsthe same. This reconstructed
function then acts as our range “oracle,” which we can query for range data at a resampling
rateof our choosing. Figure4.7 illustratesthisideafor asingle spacetimeimage. Inpractice,
we can magnify the sampled spacetime volume prior to applying the range imaging steps
described above. The result is arange grid with a higher sampling density directly derived
from the imaged light reflections.
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Figure4.8: Measured error dueto reflectance step. (a) Printed cards with reflectance discontinuities
were carefully taped to amachined planar surface. Theblack dotswere used to distinguishthe taped
boundary from the target surface. (b) A plot of range errors showsthat the spacetime method yields
a 60-80% reduction in range error for stepsvarying from 1:1 to 12:1.

4.3 Results

We have performed avariety of teststo evaluate the performanceof traditional triangulation
and spacetime analysis. These testsinclude experiments with reflectance variations, smple
shape variations, errors due to speckle, and scanning complex objects.

4.3.1 Reflectancecorrection

To evaluate the tolerance of the spacetime method to changesin reflectance, we performed
two experiments, one quantitative and the other qualitative. For thefirst experiment, we pro-
duced reflectance steps by printing alternating whiteand gray stripeswith acolor printer. By
varying the reflectances of the solid gray stripes, we obtained reflectanceratios (white:gray)
of about 1:1to 10:1. We scanned them at an angle of 30° (roughly facing the sensor) and ex-
tracted range data using both the traditional method and the spacetime method. To measure
deviations from planarity, we first computed the parameters of the plane by deleting those
range pointslying in the neighborhood of thereflectance discontinuity. This step avoids per-
mitting erroneous data to influence the estimated orientation of the plane. When comput-
ing range errors, we used all range data, including points near the reflectance discontinuity.
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Figure 4.9: Reflectance card. (a) Photograph of a planar card with the word “ Reflectance” printed
onit. (b) and (c) Shaded renderings of the range data generated by traditional mean analysis and
spacetime analysis, respectively. With traditional mean analysis, the planar card appears embossed
with the lettering, indicating a confusion between reflectance and shape. The spacetime analysis
yieldsanearly planar surface, showing a disambiguation of reflectance and shape.

Figure 4.8 shows aplot of maximum deviationsfrom planarity. The spacetime method has
clearly improved over the old method. The reduction in range errorsvaries from 65% for a
reflectance change of 2:1 up to 85% for areflectance change of 12:1.

For qualitative comparison, we produced a planar sheet with the word “Reflectance”
printed onit. Figure4.9 showstheresults. The old method yields asurface with the charac-
ters well-embossed into the geometry, whereas the spacetime method yields a much more
planar surface indicating successful decoupling of geometry and reflectance.

4.3.2 Shape correction

We conducted several experiments to evaluate the effects of shape variation on range ac-
quisition. In the first experiment, we generated corners of varying angles by abutting sharp
edges of machined aluminum wedges which were painted white. Figure 4.10 shows the
range errorsthat result for traditional and spacetime methods. Again, we see anincreasein
accuracy, though not as great as in the refl ectance case.

We a so scanned two 4 mm strips of paper at an angle of 30° (roughly facing the sensor)
to examinethe effects of depth discontinuities. Figure4.11b showsthe* edge curl” observed
with the old method, while the spacetime method in Figure4.11c shows asignificant reduc-
tion of thisartifact under spacetime analysis. We have found that the spacetime method re-
ducesthe length of the edge curl from an average of 1.1 mm to an average of approximately
0.35 mm.
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Figure4.10: Measured error dueto corner. (&) Two machined wedgeswith razor sharp cornerswere
placed at varying angles to each other to study the effect of corner angle on range accuracy. (b) A
plot of range errors shows that the spacetime method yields a 35-50% reduction in range error for
corners of angles varying from 110° to 150°.
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Figure4.11: Depth discontinuitiesand edge curl. (a) Photograph of two strips of paper. (b) and (c)
Shaded renderings of the range data generated by traditional mean analysis and spacetime analysis,
respectively. With traditional mean analysis, the edges of the strips exhibit large edge curl artifacts
(1.1 mm between the hash marksin (b)). The curl is nearly eliminated when using the spacetime
analysis.

Finally, weimpressed theword “ SHAPE” onto aplastic ribbon usingacommonly avail-
able label maker. In Figure 4.9, we wanted the word “ Reflectance” to disappear because it
represented changesin reflectancerather thanin geometry. InFigure4.12, wewant theword
“SHAPE” to stay because it representsreal geometry. Furthermore, we wishto resolveit as
highly as possible. Figure 4.12 showsthe result. Using traditional mean analysis, the word
isbarely visible. Using spacetime analysis, the word becomes legible.
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Figure4.12: Shaperibbon. (a) Photograph of a surface with raised |ettering (letters are approx. 0.3
mm high). (b) and (c) Shaded renderings of the range data generated by traditional mean analysis
and spacetime analysis, respectively. Using mean pulse anaysis, the lettering is hardly discernible,
while the spacetime analysisyields alegible copy of the origina shape.

4.3.3 Speckle

To evaluate the influence of laser speckle, we scanned planar surfaces of varying roughness
under coherent and incoherent light. First, we verified the existence of the laser speckle.
Recording the light reflections from the surfaces under incoherent (single filament, non-
diffuse) illumination showed negligible variation (< 5%) in image intensity, while the im-
ages of laser reflections showed significant variations (> 20%) in peak intensity. These
facts, coupled with the observation that surfaces with roughness finer than the resolution
of the pixelsyielded variations at a scale larger than a pixel, lead us to believe that we are
observing laser speckle.

Next, we performed range scans on the planar surfaces and generated range points using
the traditional and spacetime methods. After fitting planes to range points, we found that
both methods resulted in range errors with a standard deviation of about 0.06 mm and a
distribution that is very nearly Gaussian (see Figure 4.13). As expected, both traditional
and spacetime triangulation are susceptible to errors due to laser speckle. In Section 2.2.4,
we computed the range error for a perfectly rough surfaceto be 0.25 mm. Sincethe surface
being measured isunlikely to be perfectly rough, it is not surprising that the measured error
isless.

4.3.4 Complex objects

To show how the spacetime analysi sperformswith more compl ex objectsoccupying alarger
portion of the field of view, we scanned two models. Figure 4.14 shows the results for a
model tractor. Figure 4.14b is arendering of the data generated by the Cyberware scanner



74 CHAPTER 4. SPACETIME ANALY SIS: IMPLEMENTATION AND RESULTS

120 T

100+ Bars = range data 7Z K

Line = Gaussian fit
80
60 \K

40

Number of points

‘ ‘ HwS

O 1
-0.15 -0.1 -0.05 0 0.05 0.1 0.15
Distance from surface (mm)

Figure 4.13: Distribution of range errors over a planar target. We extracted the range data using
spacetime analysis and fit a plane through the resulting data. The bar graph represents a histogram
of distancesfrom the planar fit, while the curve corresponds to a Gaussian approximation to the his-
togram.

hardware and is particularly noisy. This added noisiness results from the method of pulse
analysis performed by the hardware, a method similar to peak detection. Peak detection is
especially susceptible to speckle noise, because it extracts arange point based on asingle
value or small neighborhood of values on anoisy curve. Mean analysistendsto average out
the speckle noise, resulting in smoother range data as shown in Figure 4.14c. Figure4.14d
shows our spacetime results and Figure 4.14e shows the spacetime results with 3X interpo-
lation and resampling of the spacetime volume as described in Section 4.2. Note the sharper
definition of features on the body of the tractor.

Figure 4.15 shows theresult for amodel of an alien creature. Aswith the tractor image,
the Cyberware output is noisier than the traditional mean analysis results. Note, however,
that the traditional mean analysis appears to smooth the geometric detail more than the Cy-
berware method. Both the Cyberware and the mean analysis suffer from edge curl. By con-
trast, the spacetime method reduces edge curl, exhibits less noise, and attains comparable
or greater detail than either of the other methods.
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Figure 4.14: Model tractor. (@) Photograph of original model and shaded renderings of range data
generated by (b) the Cyberware scanner hardware, (¢) mean pulse anaysis, (d) our spacetime anal-
ysis, and (e) the spacetime analysiswith 3X interpolation of the spacetime volume before fitting the
Gaussians. Below each of therenderingsisablow-up of one section of thetractor body (indicated by
rectangle on rendering) with aplot of onerow of pixel intensities. Because of the scanner hardware's
peak detection method, it isthe most susceptibleto specklenociseasisevidentintherenderingandin
the “bumpy” intensity plot. Mean analysisyields a decrease in noise and spacetime analysisyields
even less noise and more detail. The 3X interpolated spacetime analysis reveals the most detail of
al.



76

CHAPTER 4. SPACETIME ANALY SIS: IMPLEMENTATION AND RESULTS

Figure 4.15: Model aien. (a) Photograph of original model and shaded renderings of range data

generated by (b) the Cyberware scanner hardware, (¢) mean pulse analysis, and (d) our spacetime
analysis. The highlighted box in (c) and (d) shows the reduction of edge curl aong the depth dis-
continuity at thealien’storsowherethe CCD lineof sight was occluded. Notethat only the spacetime

method resolvestheridgesin theright leg.
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4.3.5 Remaining sourcesof error

Theresultswe presented in this section clearly show that the spacetime analysisyields more
accurate range data, but the results are imperfect due to system limitations. These limita-
tionsinclude:

e CCD noise

Finite sensor resolution

Optical blurring and electronic filtering

Quantization errors

Cdlibration errors

e Surface-surfaceinter-reflections

In addition, we observed some e ectronic artifacts in our Cyberware scanner that influ-
enced our results. We expect, however, that any measures taken to reduce the effects of
the limiting factors described above will lead to higher accuracy. By contrast, if one uses
traditional methods of range extraction, then increasing sensor resolution and reducing the
effects of filtering alone will not significantly increase tolerance to reflectance and shape
changes when applying the traditional methods of range extraction.



Chapter 5
Surface estimation from range images

The second part of thisthesis is concerned with building computer models from range im-
ages such as might be generated using the method described in thefirst part of the thesis.

As stated in Chapter 1, the problem of reconstructing a surface from range images can
be stated as follows:

Given aset of p aigned, noisy rangeimages, /1, - - -, f,, find the 2D manifold
that most closely approximates the points contained in the range images.

where each function, f; is asampling of the actual surface f, and each sample, f(j, k) is
the observed distance to the surface as seen along the line of sight indexed by (5, k). The
problem of finding this manifold hinges on defining how well any manifold approximates
the range images, and then solving for the “best” manifold. In this chapter, we begin with a
discussion of prior work inreconstructing surfacesfromrangedata. Next, we describerange
imaging in more detail and then construct a probabilistic model relating possible manifolds
to range image samples. In Section 5.4, we define the best surface as the Maximum Like-
lihood surface, and we define the integral that this surface must minimize. In Section 5.5,
we show how to bring the integral under a unified domain using a vector field analogy for
range image sampling. In Section 5.6, we derive some results from the calculus of varia-
tions needed for the solution of this minimization problem. Finaly, in Section 5.7, we solve
the minimization equation for surface reconstruction from range images. Asaspecia case,

78
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werelate the least squares minimization (corresponding to Gaussian statistics) to the search
for azero crossing of weighted sums of signed distance functions.

5.1 Prior work in surfacereconstruction from range data

Surface reconstruction from dense range data has been an active area of research for severad
decades. The strategies have proceeded along two basic directions: reconstruction from un-
organized points, and reconstruction that preserves the underlying structure of the acquired
data. These two strategies can be further subdivided according to whether they operate by
reconstructing polygonal surfaces or by reconstructing an implicit function.

5.1.1 Unorganized points. polygonal methods

A major advantage of theunorganized pointsalgorithmsisthefact that they do not make any
prior assumptions about connectivity of points. In the absence of range images or contours
to provide connectivity cues, these algorithms are the only recourse. Among the polygonal
surface approaches, Boissonnat [1984] describes a method for Delaunay triangulation of a
set of pointsin 3-space. Edelsbrunner & Miicke [1992] generalize the notion of a convex
hull to create surfaces called al pha-shapes.

5.1.2 Unorganized points: implicit methods

Examples of implicit surface reconstruction include the method of Hoppe et al. [1992] for
generating a signed distance function followed by an isosurface extraction. More recently,
Bajg et al. [1995] used alpha-shapes to construct a signed distance function to which they
fit implicit polynomials.

Although unorganized points algorithms are widely applicable, they discard useful in-
formation such as surface normal and reliability estimates. Asaresult, these algorithmsare
well-behaved in smooth regions of surfaces, but they are not always robust in regions of
high curvature and in the presence of systematic range distortions and outliers.
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5.1.3 Structured data: polygonal methods

Among the structured data algorithms, several polygonal approaches have been proposed.
Soucy & Laurendeau [ 1992] describe amethod using Venn diagramsto identify overlapping
dataregions, followed by re-parameterizationand merging of regions. Turk & Levoy [1994]
employ an incremental algorithm that updates a reconstruction by eroding redundant geom-
etry, followed by zippering aong the remaining boundaries, and finally a“consensus’ step
that reintroducesthe original geometry to establish final vertex positions. Rutishauser et al.
[1994] use errors along the sensor’s lines of sight to establish consensus surface positions
followed by a re-tessellation that incorporates redundant data. These algorithms typically
perform better than unorganized point algorithms, but they can till fail catastrophically in
areas of high curvature.

5.1.4 Structured data: implicit methods

Several agorithms have been proposed for integrating structured data to generate implicit
functions. These algorithms can be classified as to whether voxels are assigned one of two
(or three) states or are samples of a continuous function.

Discrete-state voxels

Among the discrete-state volumetric agorithms, Connolly [1984] casts rays from a range
image accessed as a quad-treeinto avoxel grid stored as an octree, and generates resultsfor
synthetic data. Chien et al. [1988] efficiently generate octree models under the severe as-
sumption that all views are taken from the directions corresponding to the 6 faces of acube.
Li & Crebbin [1994] and Tarbox & Gottschlich [1994] also describe methods for generat-
ing binary voxel grids from range images. None of these methods has been used to gener-
ate surfaces. Further, without an underlying continuousfunction, thereis no mechanism for
representing range uncertainty in the volumes.
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Continuous-valued voxels

The last category of our taxonomy is implicit function methods that use samples of a con-
tinuous function to combine structured data. Our method fallsinto this category. Previous
effortsin this areainclude the work of Grosso et al. [1988], who generate depth maps from
stereo and average them into avolumewith occupancy ramps of varying slopes correspond-
ing to uncertainty measures; they do not, however, perform afinal surface extraction. Succi
et al. [1990] create depth mapsfrom stereo and optical flow and merge them volumetrically
using astraight average of estimated voxel occupancies. Thereconstructionisan isosurface
extracted at an arbitrary threshold. In both the Grosso and Succi papers, the range maps are
sparse, the directions of range uncertainty are not characterized, they use no time or space
optimizations, and thefinal modelsare of low resolution. Recently, Hilton et a. [1996] have
developed a method similar to oursin that it uses weighted signed distance functions for
merging range images, but it does not address directions of sensor uncertainty, incremental
updating, space efficiency, and characterization of the whole space for potential holefilling,
all of which we believe are crucial for the success of this approach.

5.1.5 Other related work

Other relevant work includes the method of probabilistic occupancy grids developed by
Elfes & Matthies [1987]. Their volumetric space is a scalar probability field which they
update using a Bayesian formulation. The results have been used for robot navigation, but
not for surface extraction. A difficulty with thistechnique is the fact that the best descrip-
tion of the surface lies at the peak or ridge of the probability function, and ridgefinding is
not a problem with robust solutions [Eberly et al. 1994].

The discrete-state implicit function algorithms described above also have much in com-
mon with the methods of extracting volumes from silhouettes [Connolly 1974] [Martin &
Aggarwal 1983] [Hong & Shneier 1985] [Potmesil 1987] [ Szeliski 1993]. Theideaof using
backdrops to help carve out the emptiness of space is one we demonstrate in Chapter 6.
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Figure 5.1: From range image to range surface. The rangeimage, (i, j) in (a) isaset of pointsin
3D acquired on aregular sampling lattice. (b) showsthe reconstruction of arange surface, f(z,y),
using triangular elements. (c) is a shaded rendering of the range surface.

5.2 Rangeimages, range surfaces, and uncertainty

In theremainder of this chapter, we focus on the problem of reconstructing a surface exclu-
sively from range images. We begin by describing range imaging in more detail.

Numerous range scanning technologies acquire the shape of an object by generating
range images. A range image is a 2D lattice of range samples, where each sample corre-
sponds to a distance from the sensor along asingle line of sight. A range surface, f, isa
piecewise continuous function reconstructed from arange image. Figure 5.1 showsarange
surface reconstructed using triangular elements to connect nearest neighbors in the range
image. Such arange surface is a piecewise linear reconstruction, and corresponds to a par-
tial estimate of the shape and topology of the object. To avoid making topological errors
such as bridging depth discontinuities, researchers typically set an edge length or surface
orientation threshold when establishing connectivity of samples.

Rangefinders might have lines of sight distributed across arange image in any one of a
number of different configurations. Figure 5.2 depicts several range scanning geometries
and their corresponding viewing frustums. An orthographic imaging frustum may arise
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from a 2-axis trandational scanning configuration as depicted in Figures 5.2a and 5.2b,
though no such commercial system exists to our knowledge. Figure 5.2c shows a time of
flight scanner with two rotating mirrors; the linesof sight for such aconfiguration are nearly
perspective, assuming the separation between the mirrorsissmall. Rangefindersarein gen-
era neither precisely orthographic nor precisely perspective. Optical distortions in real
rangeimaging systemstypically lead to violations of paraxial assumptions about the imag-
ing optics. In addition, some scanners deviate significantly from orthographic or perspec-
tive. For instance, some light stripe triangulation scanners sampl e an object with a perspec-
tive projection within the plane of light, but trandate horizontally to fill out the rangeimage.
Such aprojectionisacylindrical or “line perspective” projection; i.e., it isorthographicin
the direction of scanning, and perspective within the scanning plane. Thislast scanning ge-
ometry correspondsto the Cyberware scanner used for thisthesis (see Figures5.2e and 5.2f).
When applying traditional methods of optical triangulation, sampleslie along raysthat cor-
respond to the proj ection of each CCD scanline onto thelaser sheet. These sampling lines of
sight need not coincidewith thelinesof sight of thelaser (though they do happen to coincide
in the Cyberware scanner). Figure 5.3 illustrates this point. When applying the spacetime
analysis for triangulation, however, the sampling lines of sight follow the lines of sight of
the CCD.

While their range imaging frustums are diverse, most rangefinders do have in common
that thelines of sight of the sensor arewel| calibrated and the range uncertainty lies predom-
inantly in determining depth along these lines of sight. For atime of flight rangefinder, for
example, the primary source of uncertainty is in determining the time of arrival of alight
pulserelativetoitstime of emission, resulting in depth errorsalong the direction of the emit-
ted pulse. In optical triangulation, traditional analysis of imaged laser reflections leads to
uncertaintiesin depth along the laser beam or within the laser sheet, as shownin Figure2.6.
Using the spacetime analysis for optical triangulation, the errors in determining the loca-
tion of a peak in time, lead to range errors along the camera’s lines of sight, as shown in
Figure 3.5. Other researchers have also characterized range errorsfor optical triangulation,
and have found the error to be ellipsoidal, i.e., non-isotropic, about the range points [Hebert
et al. 1993] [Rutishauser et al. 1994].
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Figure 5.2: Range imaging frustums. (&) An orthographic triangulation scanner using a beam of
light and alinear array sensor and (b) its orthographic viewing frustum. The sensor and light move
together, stepping in fixed increments horizontally and vertically to traverse itsfield of view. (c) A
time-of-flight scanner with rotating mirrors to scan the beam and sensor line of sight over the object
and (d) its approximately perspective viewing frustum (for small mirror separation, d). (€) A trans-
lating laser stripetriangulation scanner with an area sensor and (f) itscylindrical projection viewing
frustum when using traditional (not spacetime) triangulation anaysis.
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Figure 5.3: Range errors for traditional triangulation with two-dimensional imaging. A typical op-
tical triangulation system uses alaser beam spread into a diverging sheet of light with acylindrical
lensand a CCD that images reflections from within thissheet. Range isusually determined by com-
puting the centers of the imaged laser reflections on each scanline. Thus, the errors in determining
the centers correspond to errors in range that vary along the projections of the scanlines onto the
laser sheet. Noticethat the divergence of the laser sheet need not coincide with the divergence of the
projected scanlines.

5.3 A probabilistic model

Before applying a statistical method to estimate the best manifold corresponding to a set of
range images, we first need to define a probabilistic model that describes the likelihood of
any possible manifold. To this end, we seek the probability distribution function (pdf):

pdf(f | flv"'vfp)

where f is a possible manifold approximating the range images { f;}. In order to make the
analysis feasible, we make some assumptions about the nature of this pdf. At the end of
this chapter, we will discuss the validity of these assumptions. First, we assume that the
uncertainties in the range images are independent of one ancther, giving us:
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pdf(f | fi,-o-, fy) = [T pdf(f | fi) (5.1)

Next, we assume that sample errorswithin arangeimage are independently distributed:
pdf(f ] fi) = HH £ | fild, k)

where the range images are of dimension m x m. This independence assumption also re-
quires that the registration of the range imagesis very accurate. Further, if we consider the
sampling errorsto be distributed along the lines of sight of the sensor, then:

paf( | =TT T pat(sitsob) | isoh) 52)

where f;(j, k) is the reparameterization of f over the domain of the :’th range image, re-
sampled along the sensor direction at (7, k). Combining Equations 5.1 and 5.2, we have:

paf(7 | fioeee. gy = LT TLTTpafCAG0) | (G0 53

Choosing a single function that “best” approximates the range surfaces takes us from
the realm of probability into the realm of statistics.

54 Maximum likelihood estimation

One of the most common statistical methods for estimating parameters is the method of
Maximum Likelihood (ML), which chooses the parameter values that maximize a pdf
[Papoulis 1991]. In our case, we seek the surface function, f, that maximizes the pdf
described in Equation 5.3. Note that maximizing the pdf is equivalent to minimizing
— log(pdf), due to the strictly monotonic nature of the logarithm function. Thus, we can
transform our problem to solving for the f that minimizes:

=33 S oa [pdf(£ B) | G, )

=1 j5=1k=1
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Figure 5.4: Two range surfaces, f; and f,, are tessellated range images acquired from directions
vy and vy. In the case of Gaussian statistics, the possible range surface, = = f(z,y), is evaluated
in terms of the weighted squared distances to points on the range surfaces taken along the lines of
sight to the sensor. A point, (z, y, z), is shown here being evaluated to find its corresponding signed
distances, d; and d,, and weights, wy and w-.

A difficulty with thisformulation, however, isthe fact that thefunction f need only min-
imize the function £( f) for the points that project onto the surface for each sampled range
image. In between these points, the surface need not even be continuous. In fact, the ML
estimate of f would smply be the original pointsin the range images. Even if we required
continuity, the function f could ssimply interpolate the points in the range images and be
almost arbitrarily ill-behaved between points. To remedy this problem, we could impose
some continuity and smoothness constraints on the function f. Alternatively, we can inter-
pret the range images as range surfaces; i.e., by suitable interpolation of the range images,
we can generate projected surface estimates of f. Figure 5.4 illustrates this principle. In
this case, the function to minimize becomes:

BUN =3 [ otfitu,) it o))dud 54

where f; istheinterpolated range surface corresponding to fi,wehave replaced — log[pdf()]
with ¢(), and we have taken the limit of the summation to be an integral. Further, the (w, v)
notation is a parameterization of the sensor’s sampling rays. This parameterization could
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pertain to, for example, an (x, y) parameterization in the orthographic case or a (¢, ¢) pa
rameterization in the perspective case.

One familiar pdf to choose is the Gaussian (normal) distribution:

_}(ﬁ@ﬂﬁ-ﬁ@u@)j

pdf(fi(u,v) | ﬁ(u, v)) = ci(u,v) exp ) oi(u,v)

where ¢; isthe normalization factor and o; is the standard deviation. The numerator in the
squared term is ssmply the distance between reconstructed range surface points and points
on the candidate surface, where the distance is taken along the sensing direction:

di(u, v, fi) = filu,v) = fi(u,v)

Substituting and evaluating — log(pdf), we obtain:

i) ) = S, o)y, £)° o, 0)

where we have set w;(u,v) = 1/0;(u,v)?. Neglecting the additive term that does not de-
pend on f (and thus has no bearing on the minimization of £( f) withrespect to f), theerror
equation becomes:

E(f)= %ZZ;//Az w;(u, v)d;(u, v, f;) dudv

Thus, the assumption of Gaussian statistics leads to aweighted least squares minimiza-
tion, where distances are taken between range surfaces and the minimizing function along
range image viewing directions.

Note that the domain of integration in the previous equations depends on the viewpoint
and ray distribution of the sensor. By choosing a common domain of integration, we can
bring the summation under theintegral and attempt to minimize £( f) by applying the cal-
culus of variations.
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5.5 Unifying the domain of integration

In order to solve for the optimal surface, we would like to put the total error (Equation 5.4)
in aform that resembles:

B = [, 3 ey fydody

where we have chosen the domain of integration to bethe = — y plane over which our candi-
date surface, f(x,y), isafunction. Thefunction e;(x, y, f) isthe error associated with the
point, (x,y, f), on the surface as measured with respect to the .’ th range image.

To help see the connections we need to make, we can rewrite Equation 5.4 as:

E(f) = Zp;//A gi(w, v, fi)dudv

where we define ¢; to be:

gi(uvvvfi) = g(fi(uvv)vfi(uvv))

Our goal thenistofind arelationship between e; and ¢; throughtheir respectivedomains:
ei(x,y, f)dedy LI gi(u, v, fi)dudv

In fact, part of the connection is already made, because ¢; and ¢; are sSmply reparam-
eterizations of one another; ¢, isthe error at apoint, (x,y, f), on the surface, and ¢; isthe
error a the same point, expressed in the coordinates of the sensor, (u, v, f;).

The differentials dxdy and dudv are generaly related to one another through the Ja-
cobian. However, rather than compute the Jacobian directly, we prefer to derive the re-
lationship between the differentials explicitly using geometric arguments. The intuitions
gained help in generalizing from the ssimplest case, orthographic projection, to more arbi-
trary viewing frustums such as line perspective. Thus, we will first consider the case of an
orthographic sensor.
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Figure 5.5: Differential area relations for reparameterization. Orthographic range images are ac-
quired from different viewpoints, yielding surface parameterizations over domains such as (z;, y;)
and (z;,y;). Instead, we want to estimate a surface over a canonical domain (z, y). When inte-
grating over this canonical domain, we must relate differential areas in this domain to areas in the
domains of the original range images.

For an orthographic sensor, we must project the area dA = dxdy onto the function
f(z,y), and thenre-project it onto the " th rangeimage’sviewing plane, asindicated in Fig-
ure5.5. We use Cartesian («;, y;, z;) coordinates to represent (u, v, f;). First, we note that
moving a unit distancein the x-direction in the (x, y) domain corresponds to moving along
the vector b, on the surface f, where:

0z
bx - (1, 0, 6_;1;)

Similarly, moving in the y-direction corresponds to moving aong b, on the surface:

0z
e 002
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If we define the vector, a, as:

a = by x by
(o ie
 \ 9z’ dy’

then the projected area, d A, on the surface is:

dA; = |a|dA
and the normal, n to the surfacel is;
a
n= =
|a

The projected area, dA; = dx;dy; on the ’th range image plane is then:

dAZ = (—H'Vi)dAf

= — (i : Vi) la|dA
al

= —(a-vj)dA

This leads usto areformulation of the equation to be minimized:

E(f) = //Aﬁ:ei(xvyvz) [(_g_;v_g_;vl) 'Vi] dl’dy (55)

wherewe havereplaced f(x, y) with z ontheright hand side. Thisequationisnow ready for
minimization under the calculus of variations, but it applies only to orthographic equations
in thisform.

How does this equation change when we handle more complex projections, such as per-
spective or line perspective? In these cases, wewould find that the direction of projectionis

1See [Horn 1986] for asimilar derivation of the normal to a surface.
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not constant as in the orthographic case, but varies over space. Further, the contribution of
a surface element varies not only with the orientation of the element, but also with distance
from the center of projection. For example, as an element moves away from the center of
projection for the perspective case, its apparent size falls off with 1/r?, where r isthe dis-
tance from the center.

One approach to the problem might be to define a suitable projection surface that cap-
turesthe variation in orientation of projection rays and onto which we can project a surface
element to compute its contribution to the error integral. For example, we could define a
unit sphere about the center of projection for the perspective case. The directionsof projec-
tion would run radialy, normal to the surface of the sphere, and we could project a surface
element d A onto the sphere and use this area as the measure of the contribution of the ele-
ment. This definition leads to the measurement d A ; in terms of the solid angle it subtends.
This is exactly what we would expect, and it will yield the desired 1/r? fall-off. For the
line perspective, the projection surface would be a cylinder of unit radius, yielding projec-
tion raysthat emanateradially from the center line, and the contribution of asurface element
would fal off as1/r, where r is the distance from the center line.

While the use of these projection surfaces will work in a number of cases, it istoo re-
strictive a definition and will not work in all cases. Instead, we propose an aternative and
more general way of looking at these projections. Consider the two-dimensional case of a
perspective projection as shown in Figure 5.6. The projection rays radiate from the center
of projection. For every point in space (except the center of projection), asingle ray passes
through that point in a particular direction. The directions evaluated throughout space de-
fine a vector field as shown in Figure 5.6b. We could then compute the projected length of
aunit line element by dotting the normal of the el ement with the projection direction at the
center of the element.

The direction field alone, however, does not tell us the contribution the element would
have to an integral over all directionsin the projection. This contribution should be a mea-
sure of how many rays cross the a unit line segment in the direction of projection. In our
example, this“ray density” should fall of with the inverse distance from the center of pro-
jection. By weighting our direction field by the “ray density” measure, we arrive at a new
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Figure 5.6: Ray density and vector fieldsin 2D. (a) For a perspective projectionin 2D, the sensor is
effectively apoint source casting rays to sample space. (b) We can view thisset of raysas defining a
vector field, where each point in space has an associated ray direction. The contribution of elements
in the field for the purposes of integration is defined by how many rays pass through the elements;
element /., receives more rays than element L., because it is closer to the sensor. It aso receives
moreraysthan L3, becauseit ismore normal to theray direction. (c) To encodethe variationsin ray
density, we multiply the direction field in (b) by the ray density. Now the contribution of an element
is|Lin-v(z,y).
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vector field, depicted in Figure 5.6¢. For aunit line segment, dotting the normal of the seg-
ment with the strength of this vector field will yield the total contribution of the element.

This“ray density” field hasafamiliar physical interpretation. If wethink of the center of
projection as being a point source sending equal amounts of particlesin al directions, then
the “ray density” field is the vector flow field describing the direction and rate of particle
flow across unit projected lengths. If we think of these particles as photons, we arrive at a
description of the light field about the point source, and we can measure the contribution of
asurface as the amount of light that flows through the element. We assume the projections
are one-to-one, so the light fields will have asingle flow direction at every point.

One of the most important elements of this physical analogy, is the fact that the pro-
jection rays emanate from the sensor, but they flow forever without being extinguished or
created anew in space. In other words, this flow field is conservative at all points outside
of theregionswheretheraysoriginate. Further, the projection rays are fixed for each range
scan; i.e, the flow field is static. These conservative and static properties will prove very
useful in the next section.

In general, any range imaging frustum will define a vector field whose directions are
consi stent with the projection rays and whose magnitudeis equal to theflux of rayscrossing
aunit projected area. For the case of an orthographic projection, thisvector field issmply
aunit vector in the direction of projection:

viz,y,z) =V

A perspective projection yields aradial field with 1/r* fall-off:

iy
2

v(r,0,o)

- r
wheret = r/|r|.

The line perspective resultsin acylindricaly radial field with 1 /r fall-off:

v(r,0,z) =

= | =
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In the latter two cases, we have expressed the vector fields in spherical and cylindrical
coordinates, but they are all equivalently expressible in Cartesian coordinates.

With thisnew vector flow field anal ogy, we can now express the relation between dA =
dxdy and theray differential dA; = du;dv; as:

dz 0z
dAz = (_a_xv_a_yvl) ’ Vi(l’,y,Z)dA

Similarly, the error equation becomes:

E(f)= //Aéei(x,y,z) l(—g—;, —g—;, 1) -Vi(x,y,z)] dxdy (5.6)

Thisequation isalmost identical to Equation 5.5, except that the constant vector v; hasbeen
replaced with avector field vi(x, y, ). For the special case of Gaussian statistics, thisinte-
gra becomes:

. 0z 0z
B = [f S ke itens | (=55 =501) vite ) dots - 62)

Note how the integration over a common domain brings the summation under the in-
tegral. This new formulation allows us to apply the calculus of variationsto find the = =
f(z,y) that minimizestheintegral.

5.6 Calculusof variations

One of the primary objectives of the calculus of variationsisto take an integral of theform:

I = ///h (x,y,z,%,g—;) dxdydz

and compute the function:

Z:f(l',y)
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that minimizestheintegral. A central result of the calculus of variations states that the mini-
mizing functionmust obey apartial differential equation known asthe Euler-L agrange equa-
tion [Weinstock 1974]:

oh 0  Oh o  0Oh

92 " 900(0-)02) 9y 0(0=j0y)

We can easily extend thisresult to the case of minimizingintegrals of sumsof functions:

I = ///;:hz (x,y,z,g—;,g—;) dxdydz

Substituting into the Euler-Lagrange equation, we get:

O hi 00 hy 00X h

0 020(02)0x) Dy o(0=/dy) "

and from the linearity of partial differentiation, we arrive at the result:

Zp: Oh; 0 Ohy 9 Ol
— | 0z  0x0(0z/dx) OJyd(0z/dy)

=1

=0

In order to solve an equation such as Equation 5.6 described in the previous section, we
must first propose the following theorem.

Theorem 5.1 Giventheintegral:

I = ///h (x,y,z,%,g—;) dxdydz

where:

and the function £ is of the form:

0z 0z dz 0z
h (xvyvzva_xva_y) - e(:z;,y,z) [(_a_xv_a_yvl) 'V(w,y,Z)]
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the function = that minimizes the integral satisfies the relation:

v-Ve4+eV-v=0 (5.8

See Appendix A for the proof. Under the conditions that v(zx,y, z) corresponds to a
static, conservative flow field, then the following corollary obtains:

Corollary 5.1 Giventheintegral:

I = ///h (x,y,z,%,g—;) dxdydz

where:

and the function £ is of the form:

0z 0z dz 0z
h (xvyvzva_xva_y) - e(:z;,y,z) [(_a_xv_a_yvl) 'V(w,y,Z)]

wherev(zx,y, z) corresponds to a conservative and static vector flow field, then the function
z that minimizes the integral satisfies the relation:

v-Ve=10 (5.9)

The proof is straightforward: the divergence of a conservative vector flow field (V - v)
must be exactly zero if thefield isnot changing with time[Schey 1992]. Thus, the result of
Theorem 5.1 is simplified by removing the divergence term.

Corollary 5.1 has an intuitive interpretation. Consider minimizing the sameintegral for
aconstant vector field (corresponding to an orthographic projection) oriented in the += di-
rection. The integrand would become /» = e(x, y, z) and would not depend on any partias
of z. Inthis case, the obvious solution would be to minimize with respect to = only; i.e,,
compute:
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de
5. =0
The only reason i becomes dependent on partiasin the theorem, is so that we can solve
the problem over a new domain, rotated with respect to the original domain (for the ortho-
graphic case). The solution in this new domain is actually the same; we take the derivative
along the direction in which the function can vary. We can see this by noting that the dot
product in Equation 5.9 isequivalent to adirectional derivativetaken along theline of sight
for the original domain.
In order to solve the minimization equation posed in the previous section (Equation 5.6),
we need to extend Theorem 5.1 to minimization over sums of functions. This leads to the
following corollary:

Corollary 5.2 Giventheintegral:

I = ///h (x,y,z,%,g—;) dxdydz

where:

and the function £ is of the form:

0z 0z " dz 0z
h (xvyvzva_xva_y) - Zei(x,y,z) [(_a_xv_a_yvl) 'Vi(xvyvz)]

=1

wherethev;i(x, y, z) correspond to conservative and static vector flow fields, then the func-
tion z that minimizes the integral satisfies the relation:

P
ZVi . Vei =0
=1

The proof isastraightforward application of thelinearity of the Euler-Lagrange equation
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in combination with Corollary 5.1.

5.7 A minimization solution

We can now derive an equation for the function = = f(x, y) that minimizes Equation 5.6.
Namely, = must satisfy therelation:

p

Zvi(xvyvz) : Vei(:zi,y,z) =0

=1

Noting that a unit vector dotted with the gradient of afunction isthe same astaking the
derivative in the direction of that vector, we can re-write the equation as.

p

Z |vi| Dy, [e;] = 0

=1

where D;, represents the derivative in the direction of the sensor line of sight, v;, and we
have dropped the («, y, z) notation.

Consider the case where ¢; correspondsto the — log(pdf) with Gaussian statistics. The
solution equation is then:

P
> il Do [wid?] = 0

=1

To simplify this relation, we note that the weighting function varies across the range
image, but not along the sensor lines of sight. Accordingly:

D\A'i [wzdf] = 2widiD\7i [dz]

Next, we note that the distance from the range surface is a linear function of constant
dope along the viewing direction:

Df’i [dl] =1



100 CHAPTER 5. SURFACE ESTIMATION FROM RANGE IMAGES

Putting these results together, we obtain:

P
Z |Vi|widi =0 (510)
=1

Thus, we arrive at a surprisingly simple result: the weighted |least squares surface is deter-
mined by the zero-isosurface of the sums of the weighted signed distance functions.

In the orthographic case, thevalue of |v;| isunity, so the minimization equation reduces
to:

while for the perspective case, we arrive at:

w;d;
2

1

=0

p

K3

where the center of projection of the:’th rangeimageisat (x5, y{, =), and:

ro= e =2 (g =y (2 - )2

Note the distinction here between d; and r;: d; isthe distance from a point in 3-space to the
1th range image a ong the sensor’sline of sight, while r; isthe distance from the same point
to the center of projection of the sensor.

5.8 Discussion

We have shown that, under a set of assumptions, the surface of Maximum Likelihood de-
rived from a set of rangeimages can befound asazero isosurface of afunction over 3-space.
The function defined in this domain is a sum of functions generated by each range image,
and thus may be updated one rangeimage at atime. For the case of aweighted least squares
minimization, the optimal surfaceis the zero isosurface of the sum of the weighted signed
distances along the lines of sight of the range images. Here we review the assumptions and
evaluate the validity of each.
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All rangeimage samplesare statistically independent. Each rangeimageislikely to
have little dependence on the other range images, since they are taken as separate events.
However, whether or not samples within a range image exhibit independence depends on
the range scanning device. Consider a scanner that projects an illuminant on one part of the
surface, records the range, and moves the illuminant to the next sample position. If theil-
luminant projected onto the surface does not overlap with adjacent samples, then we would
expect there to be no statistical correlation among samples. On the other hand, if the illu-
minant does overlap at different positions, then we might expect some correlations. For a
well designed scanner, theilluminant isusually quite narrow, and/or the sensor linesof sight
have little overlap (held tightly in focus), so that any dependence among samplesis highly
local, restricted to nearby samples. In this case, we can regard the assumption of statistical
independence as an approximation to the more exact solution that accounts for local sam-
ple interdependence. Still, scanners are likely to have some element of uncertainty that is
independent among samples. Thermal noise in electronic circuitry, for example, will exist
regardless of the proximity of samples, leading to some independent range errors.

Rangeuncertaintiesarepurely directional and arealigned alongthelinesof sight of
thesensor which areknown to high accuracy. To someextent, thisstatement may seemto
be atautology; we have defined arange imaging sensor asadevicethat returnsdepth values
along specified lines of sight. When the sensor errs, it returns an erroneous depth, which
must be along the line of sight of the sensor. In the previous chapters, we discussed the
errorsin optical triangulation, and these errors manifested themsel ves a ong either the lines
of sight of theilluminant or theimaging device, depending what kind of analysiswasusedin
determining depth. However, a sensor may aso have some uncertainty in itslines of sight.
For example, when performing traditional optical triangulation, if asweeping illuminant has
some “wobble’ in its path, then itslines of sight may not be consistent. Thisinconsistency
would lead to errorsin depth along the line of sight, aswell as errorsthat vary sideto side,
perpendicular to the line of sight. The error might then take an elliptical form, rather than a
purely directional form. Nonetheless, the devices that control motion can be very precise,
and sensors such as CCD’s have been shown to exhibit excellent geometric stability. As
aresult, range imaging sensors can be designed to have excellent accuracy in the lines of
sight, leaving depth uncertainty as the dominant error in the system.
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Errorsin alignment are much smaller than errorsin range samples. The problem
of aligning range images has received a fair amount of attention, and the results indicate
that a number of algorithms can achieve accurate alignment among pairs of range images
[Gagnon et al. 1994] [Turk & Levoy 1994]. Figure 5.7 shows the results of performing
alignment with one of these pairwise methods. The problem of aligning a set of range im-
ages simultaneoudly, however, requires new alignment algorithms. Consider a set of range
images taken from 8 points on the compass around an object. By aligning the range im-
ages in a pairwise fashion, we can walk around the object. But by the time we have come
full circle, we find that the alignment errors have accumulated, and the first and last range
images are now significantly misaligned. A better approach is to define an error function
that relates all range images to one another, and then minimize this function al at once.
Only recently are solutionsto thistotal alignment problem emerging [Bergevin et a. 1996]
[Stoddart & Hilton 1996]. Nonetheless, through a combination of good initial alignment
and some heuristics for choosing how to perform the pairwise alignments, researchers have
demonstrated that it is still possibleto obtain reasonably accurateresults. Our results, which
we discuss in Chapter 8, show that the average distance between range samples and their
proj ections onto the reconstructed surface are roughly the same asthe uncertainty inthein-
dividual samples. This fact indicates that range errors dominate the alignment errors.

Therange images yield viable range surfaces. While many range scanners generate
a dense grid of depth samples, the analysis in this chapter requires the use of (piecewise)
continuous surfaces. As described earlier, we can use the depth samples to reconstruct the
desired range surfaces. Inthe case of the spacetime analysis described in the previous chap-
ters, continuous reconstruction of the spacetime volume can indeed lead directly to range
surfaces®. If the surface being sampled is smooth relative to the sampling rate, then the
resulting range surface will be a reasonable estimate of the object’s shape. However, the
apparent smoothness of a surface, changes with viewing direction. A surface viewed at a
grazing angle will be sampled far less than a surface that is facing the sensor. The grazing
angle surface may even be undersampled, yielding a questionable, possibly aliased recon-
struction. To ameliorate this problem, researchers avoid reconstructing the range surface

2In practice, we perform the reconstruction at a fixed resolution, leading to range images that still must be
converted to range surfaces.
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Figure 5.7: Aligned range images. Two range images were taken 30 degrees apart with an optical
triangulation scanner. (a) and (b) show the corresponding range surfaces. (c) showsa rendering of
the two range surfaces after alignment; the surface from (b) is rendered with a darker (red) color.
(d) shows a*“blow-up” of the head of the model. Note that the range surfaces are so close asto be
inter-penetrating across the surface. The RMS error in distances between nearest points on the two
surfaces is on the order of the error in individua range samples, indicating that the majority of the
uncertainty remains in sampling error rather than alignment. Note that in some areas of overlap in
(c) and (d), one surface isin front of the other in large regions, suggesting correlated range errors.
However, these regions are significantly larger than the neighborhoods spanned by the illumination
of therange scanner, making it unlikely that correlationin rangeerrorsisthe cause. We suspect these
coherent overlap areas result from small miscalibrationsin the range scanner.
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in areas that are known to be at sufficiently grazing angles and downweight contributions
from surfacesthat are at moderately grazing angles. For example, when using the Gaussian
model with weighted signed distances, we can lower the weightsin accordance with the ori-
entation of the surface with respect to the sensor. While thisisnot strictly consistent with
the notion of variancein Gaussian statistics, it yields excellent resultsin practice, aswewill
show in the following chapters.

In addition, points on the range surface that do not coincide with range samples will not
appear to be statistically independent, even if the range samples are. Consider a 2D world
whereour sensor has acquired two neighboring range samples. We can reconstruct therange
surface by linearly interpolating between the two samples, i.e., by connecting them with a
line segment. We may regard the two samples as statistically independent, but the points
on the line segment adjoining them clearly depends on the original samples. While thisis
not consistent with the assumption that points on the range surfaces are statistically inde-
pendent, the results do indicate that regarding them as independent is a reasonable approx-
imation.

Therangeimages are functionsover the domain where a surfaceis sought. When
computing the ML optimal surface, we assume that each range image is sampling the same
surface from different points of view. However, an object is generaly not a single-valued
function with respect to any single point of view. If we trace aray from the sensor and
intersect it with the object, we will see the nearest point on the “front” side of the object,
but if we imagine continuing the ray beyond thefirst intersection, it will eventually intersect
the “back” side of the object. Two different range images will sample the front and back
sides of the object, and clearly they are not seeing the same points. Care must be taken so
that when determining the optimal surface, we do not presume that these two range images
are measuring the same surface. In the next chapter, we discuss efforts to make sure that
opposing surfaces are not treated as the same surface.

In thecase of theleast squaresfor mulation, therange uncertaintiesobey Gaussian
statistics. The development in the previous sectionsis suited to any statistical model for di-
rectional range uncertainty. Nonetheless, Gaussian statistics are appealing because of their
smplicity; in our case, they lead to signed distance functionals. When might this apply? In
some scanners, individual samples are too noisy, so the sampling isrepeated along asingle
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line of sight, and the results are averaged. Almost regardless of the statistics of theerrorsin
theindividual samples, averaging them together tends to make the statistics take on a Gaus-
sian character. Indeed, the central limit theorem tells us that the distribution does indeed
become “more Gaussian” with each additional sampleincluded in the average. Inaddition,
our studies of errorsdue to laser specklein optical triangulation indicate that the error dis-
tributions actually do have a Gaussian appearance, as indicated by Figure 4.13.



Chapter 6
A New Volumetric Approach

The discussion in the previous chapter provides a mathematical framework for merging
range images. In this chapter, we begin with a description of how we can implement this
framework on avolumetric grid (Section 6.1). Then, we extend the framework to represent
knowledge about the emptiness of space around an object (Section 6.2). This additional
knowledge leads to a simple agorithm for filling gaps in the reconstruction where no sur-
faces have been observed. 1n Section 6.3, we analyze sampling and filtering issues that arise
from working with a sampled representation. Finally, we discuss the limitations of the vol-
umetric method described in this chapter and offer some possible solutions (Section 6.4).

6.1 Merging observed surfaces

Our agorithm employs a continuous implicit function, D(x), represented by samples. The
function we represent is the weighted signed distance of each point x to the nearest range
surface along theline of sight to the sensor. We construct thisfunction by combining signed
distance functions d, (x), dz(x), ... d,(x) and weight functions w; (x), wy(x), ... w,(x) ob-
tained from rangeimages 1 ... n. Our combining rules give usfor each voxel a cumulative
signed distance function, D(x), and a cumulative weight 1V (x). We represent these func-
tions on a discrete voxel grid and extract an isosurface corresponding to D(x) = 0. As
shown in the previous chapter, thisisosurface is optimal in the least squares sense.

Figure 6.1 illustrates the principle of combining unweighted signed distances for the

106
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Figure 6.1: Unweighted signed distance functionsin 3D. (&) A range sensor looking down the x-
axis observes a range image, shown here as a reconstructed range surface. Following one line of
sight down the x-axis, we can generate a signed distance function as shown. The zero crossing of
thisfunctionisapoint on therange surface. (b) Therange sensor repeats the measurement, but noise
intherange sensing processresultsinasglightly different range surface. Ingeneral, the second surface
would interpenetrate thefirst, but we have shownit as an offset from the first surface for purposes of
illustration. Following the same line of sight as before, we obtain another signed distance function.
By summing these functions, we arrive at acumulative function with anew zero crossing positioned
midway between the original range measurements.
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Figure 6.2: Signed distance and weight functions in one dimension. (&) The sensor |ooks down
the x-axis and takes two measurements, r; and r,. d;(x) and dy(z) arethe signed distance profiles,
and wy (2) and wq () are the weight functions. In 1D, we might expect two sensor measurements
to have the same weight magnitudes, but we have shown them to be of different magnitude here to
illustrate how the profiles combinein the general case. (b) D(z) isaweighted combination of d; ()
and dy(z), and W (z) isthe sum of the weight functions. Given thisformulation, the zero-crossing,
R, becomes the weighted combination of r; and r» and represents our best guess of the location
of the surface. In practice, we truncate the distance ramps and weights to the vicinity of the range
points.

simple case of two range surfaces sampled from the same direction. Note that the result-
ing isosurface would be the surface created by averaging the two range surfaces along the
sensor’s lines of sight. In general, however, weights will vary across the range surfaces.

6.1.1 A one-dimensional Example

Figure6.2 illustrates the construction and usage of the signed distance and weight functions
inonedimension. In Figure 6.2a, the sensor is positioned at the origin looking down the +x
axis and has taken two measurements, r; and r». The signed distance profiles, d; (=) and
d2(x) may extendindefinitely in either direction, but theweight functions, w, () and ws (),
taper off behind the range points for reasons discussed below.

Figure 6.2b is the weighted combination of the two profiles. The combination rules are
straightforward:

_ sz(X)dz(X)

D) ==

(6.1)
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W(x) = Yw;(x) (6.2

where, d;(x) and w;(x) are the signed distance and weight functions from the ;th rangeim-
age. Notethat setting D(x) = 0 and solving for x is equivalent to the least squares solution
described inthe previouschapter. Equation 6.1 differsfrom Equation 5.10 in that theformer
isnormalized by the sum of theweights. Sincethe sum of theweightsisawayspositive, the
equations yield the same isosurface. In practice, we have observed that the normalization
serves to equalize the gradient of the sampled field, D(x), and thereby reduces artifactsin
theisosurface algorithms, which are sensitive to sudden changesin the gradient. We discuss
the benefits of using weighted averages in greater detail in Section 6.3.2.

Expressed as an incremental calculation, the signed distance and weight combination
rulesare:

Wi(x) Di(x) + wigs (x)diga (%)

Di-l—l (X) = m(x) Wit (X) (63)

Witi(x) = Wi(x) + wiga (x) (6.4)

where D;(x) and W;(x) are the cumulative signed distance and weight functions after inte-
grating the ;th range image.

In the special case of one dimension, the zero-crossing of the cumulative function is at
arange, R given by:

Zwﬂ“i
ft= Zwi
i.e., aweighted combination of the acquired range values, which iswhat one would expect

(6.5)

for aleast squares minimization.
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6.1.2 Restriction to vicinity of surface

In principle, the distance and weighting functions should extend indefinitely in either di-
rection. However, to prevent surfaces on opposite sides of the object from interfering with
each other, we force the weighting function to taper off behind the surface. Thereisatrade-
off involved in choosing where the weight function tapers off. It should persist far enough
behind the surface to ensure that all distance rampswill contributein the vicinity of the fi-
nal zero crossing, but, it should also be as narrow as possible to avoid influencing surfaces
on the other side. To meet these requirements, we force the weightsto fall off at adistance
equal to half the maximum uncertainty interval of the range measurements. Similarly, the
signed distance and weight functions need not extend far in front of the surface. Restricting
the functions to the vicinity of the surface also yields a more compact representation and
reduces the computational expense of updating the volume. In Section 6.4.1, we discuss
problems of interfering signed distance ramps in greater detail.
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Figure 6.3: Combination of signed distance and weight functionsin two dimensions. (a) and (d) are
the signed distance and weight functions, respectively, generated for arange image viewed from the
sensor line of sight shown in (d). The signed distance functions are chosen to vary between D,,,;,,
and D, .., asshownin (a). Theweighting falls off with increasing obliquity to the sensor and at the
boundaries of the meshes asindicated by the darker regionsin (€). The normals, n; and ny shown
in (e), are oriented at a grazing angle and facing the sensor, respectively. Note how theweightingis
lower (darker) for the grazing normal. (b) and (e) are the signed distance and weight functionsfor a
rangeimage of the same object taken at a60 degreerotation. (c) isthesigned distancefunction D(x)
corresponding to the per voxel weighted combination of (a) and (b) constructed using Equations 6.3
and 6.4. (f) isthe sum of the weights at each voxel, W (x). The dotted green curvein (c) isthe
isosurface that represents our current estimate of the shape of the abject.

6.1.3 Two and threedimensions

In two and three dimensions, the range measurements correspond to curves or surfaceswith
weight functions, and the signed distance ramps have directions that are consistent with the
primary directions of sensor uncertainty. Figure 6.3 illustratesthe two-dimensional casefor
arange curve derived from asingle scan containing arow of range samples. In practice, we
use a fixed point representation for the signed distance function, which bounds the values
to lie between D,,,;, and D,,.. asshownin thefigure. The valuesof D,,;, and D,,,, must
be negative and positive, respectively, as they are on opposite sides of a signed distance
Zero-crossing.

For three dimensions, we can summarize the whole algorithm as shown in Figure 6.4.
First, we set al voxel weightsto zero, so that new datawill overwritetheinitial grid values.
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/* Initialization */
For each voxel {
Set weight =0

[* Merging range images */
For each range image {

/* Prepare range image */
Tesselate range image
Compute vertex weights

/* Update voxels */

For each voxel near the range surface {
Find point on range surface
Compute signed distance to point
Interpolate weight from neighboring vertices
Update the voxel's signed distance and weight

}

}

/* Surface extraction */
Extract an isosurface at the zero crossing

Figure6.4: Pseudocode for the method of volumetric integration.

Next, we tessellate each range image by constructing triangles from nearest neighbors on
the sampled lattice. We avoid tessellating over step discontinuities (cliffsin the range map)
by discarding triangles with edge lengths that exceed a threshold. We must also compute a
weight at each vertex as described below.

Once arange image has been converted to atriangle mesh with aweight at each vertex,
we can update the voxel grid. The signed distance contribution iscomputed by casting aray
from the sensor through each voxel near the range surface and then intersecting it with the
triangle mesh, as shown in figure 6.5. The weight is computed by linearly interpolating the
weights stored at the intersection triangle svertices. Having determined the signed distance
and weight we can apply the update formulae described in Equations 6.3 and 6.4.

At any point during the merging of the range images, we can extract the zero-crossing
isosurface from the volumetric grid. Isosurface extraction algorithms have been well-
explored, and a number of approaches have been demonstrated to produce tessellations
without consistency artifacts [Ning & Bloomenthal 1993]. These algorithmstypically de-
compose the volume into cubes or tetrahedrawith sample values stored at the vertices, fol-
lowed by interpolation of these samplesto estimate |ocations of zero-crossings, asshownin
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Figure 6.5: Sampling the range surface to update the volume. We computethe weight, w, and signed
distance, d, needed to update the voxel by casting aray from the sensor, through the voxel onto the
range surface. We obtain theweight, w, by linearly interpolating the weights(w,, ws, and w,) stored
at neighboring range vertices. Note that for a trandating sensor (like our Cyberware scanner), the
sensor point is different for each column of range points.

@

Figure 6.6: Discrete isosurface extraction. (@) In two dimensions, a typical isocontour extraction
algorithm interpolates grid val ues to estimate isoval ue crossings along lattice lines. By connecting
the crossings with line segments, an isocontour is obtained. (b) In three dimensions, the crossings
are connected with triangles. This method corresponds to the marching cubes algorithm described
in[Lorensen & Cline 1987] with correctionsin [Montani et al. 1994].
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Figure 6.6. The gradients at the extracted zero-crossings provide an estimate of the surface
normalst. We restrict the extraction procedure to skip samples with zero weight, generat-
ing triangles only in the regions of observed data. We will relax this restriction in the next
section.

6.1.4 Choosing surfaceweights

The choice of weightsis theoretically a function of the uncertainties in the range data, but
they can also serve the purpose of manipulating the way range surfaces are merged. As
described in the previous chapter, the use of weighted signed distances corresponds to the
assumption of independent Gaussian statistics along the sensor’slines of sight. The weight
then is the inverse of the squared variance of the pdf at each point on the surface. In this
sense, the weight representsthe degree of confidencein the data; alarger weight meansthat
the dataismore likely to be accurate.

The manner in which weights vary over a surface depend on the scanning technology.
For example, in an optical triangulation system, low intensity images of the laser reflection
imply alower signal to noise ratio at the sensor, and thus lower confidence in shape esti-
mates. [Soucy & Laurendeau 1995] and [Turk & Levoy 1994] have used this argument to
justify forcing weights to depend on the dot product between the range surface normal and
the laser direction, because the reflected radiance from a diffuse Lambertian surface varies
with this dot product. When applying the spacetime analysis, the “goodness of fit” to the
ideal spacetime Gaussian is also a confidence indicator. If the width of the Gaussian fit to
the data deviates from the ideal width, then the data is accordingly downweighted, or even
discarded. Additionaly, at a step discontinuity, range data may be lessreliable. The false
edge extensions associated with traditional triangulation illustrate this point. Even in the
case of spacetime analysis, the quality of edges is suspect due to filtering and resolution
l[imitations.

LIf the points x, comprise theimplicit surface defined by F'(x) = const, then the gradient of F'(x) at the
surface, V F'(xs), corresponds exactly to the normals over the surface [Edwards & Penney 1982].
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Figure6.7: Dependence of surface sampling rate on view direction. When asurface isviewed “head
on” asin (a), the sampling rate is on average significantly higher than when the surface is viewed
fromagrazing angle, asin (b). Notethe greater detail in the estimated range surfaces, (€) versus (d).

The variationsin weights can a so be chosen for very practical considerations. If a sur-
face is roughly planar with some moderate surface detail, then we would expect that a di-
rect view of this surface in line with the predominant surface normal would give a higher
quality range surface than a grazing angle view of the same surface. Figure 6.7 illustrates
thisidea. In general, separation between samples on the surface gives an indication of the
comparative sampling rates among different range images. This sample separation is well
approximated by 1/ cos v where ~ isthe angle between the surface normal and the viewing
direction. Thus, by setting the weights to be proportional to cos v or even a higher power
(e.g., cos? 7), the contributionsfrom the range surfaces can be biased in favor of rangeviews
with higher surface sampling rates.

Reducing weights near surface boundaries serves a practical purpose as well: smooth
blending of range surfaces. Consider the example in Figure 6.8. If the vertex weights are
not tapered near the boundary of arange surface, then when it is merged with another range
surface, there will be an abrupt jump from the average of two surfaces to a single surface.
By tapering the vertex weightsto zero inthe vicinity of the boundary of arange surface, this
surface will blend smoothly with other range surfaces.
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@ (b) ©

Figure 6.8: Tapering vertex weightsfor surface blending. (a) Two surfaces overlap, but one surface
(shown dotted) has aboundary. (b) If the surface weights are not tapered near the boundary, then an
abrupt transition appears when merging the surfaces, asindicated by the merged surface (solid line).
(c) By tapering the surface weights near the boundary, the surfaces blend smoothly together.

6.2 Hoalefilling

The algorithm described in the previous section is designed to reconstruct the observed por-
tionsof thesurface. Unseen portionsof thesurfacewill appear asholesin thereconstruction.
Whilethisresultisan accurate representation of theknown surface, theholesareesthetically
unsatisfying and can present astumbling block to follow-on al gorithmsthat expect continu-
ousmeshes. In[Krishnamurthy & Levoy 1996], for example, the authors describe amethod
for parameterizing patchesthat entailsgenerating evenly spaced grid linesby walking across
the edges of a mesh. Gaps in the mesh prevent the algorithm from creating afair parame-
terization. As another example, rapid prototyping technologies such as stereolithography
typically require a“watertight” model in order to construct a solid replica [Dolenc 1993].
One option for filling holes is to operate on the reconstructed mesh. If the regions of
the mesh near each hole are very nearly planar, then this approach works well. However,
holes in the meshes can be (and frequently are) highly non-planar and may even require
connections between unconnected components. Instead, we offer a hole filling approach
that operates on our volume, which contains more information than the reconstructed mesh.

6.2.1 A hole-fillingalgorithm

The key to our algorithm liesin classifying all pointsin the volume as being in one of three
states: unseen, empty, or near the surface. Holesin the surface areindicated by frontiersbe-
tween unseen regions and empty regions (see Figure 6.9). Surfacesplaced at thesefrontiers
offer a plausible way to plug these holes (dotted in Figure 6.9). Obtaining this classifica-
tion and generating these hole fillers leads to a straightforward extension of the algorithm
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Figure6.9: Volumetric grid with space carving and holefilling. (a) Theregionsinfront of the surface
are seen asempty, regionsin thevicinity of the surface ramp through the zero-crossing, whileregions
behind remain unseen. The green (dashed) segments are theisosurfaces generated near the observed
surface, while the red (dotted) segments are holefillers, generated by tessellating over the transition
from empty to unseen. In (b), we identify the three extremal voxel states with their corresponding
function values.

described in the previous section:

1. Initialize the voxel space to the “unseen” state.

2. Update the voxels near the surface as described in the previous section. As before,
these voxels take on continuous signed distance and weight values.

3. Follow the lines of sight back from the observed surface and mark the corresponding
voxels as “empty”. We refer to this step as space carving.

4. Perform anisosurface extraction at the zero-crossing of the signed distance function.
Additionally, extract a surface between regions seen to be empty and regions that re-
main unseen.

In practice, werepresent the unseen and empty states using thefunctionand weight fields
stored on the voxel lattice. We represent the unseen state with the function values D(x) =
D4, W(x) = 0 and the empty state with the function values D(x) = D,;,,, W(x) = 0,
as shown in Figure 6.9b. The key advantage of this representation is that we can use the
same isosurface extraction algorithm we used in the previous section this time lifting the
prohibition on interpolating voxels of zero weight. This extraction finds both the signed
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distance and holefill isosurfaces and connects them naturally where they mest, i.e., at the
cornersin Figure 6.9a where the dotted red line meets the dashed green line. Note that the
triangles that arise from interpolations across voxels of zero weight are distinct from the
others: they are holefillers. We take advantage of this distinction when smoothing surfaces
as described below.

Figure6.9illustratesthe method for asinglerangeimage, and providesadiagram for the
three-state classification scheme. Figure6.10 illustrates how the holefiller surfaces connect
to the observed surfaces. The hole filler isosurfaces are “false” in that they are not repre-
sentative of the observed surface, but they do derive from observed data. I1n particular, they
correspond to a boundary that confines where the surface could plausibly exist. Thus, the
combination of theobserved surfacesand the holefill surfacesrepresentsthe object of maxi-
mum volume which isconsistent with all of the observations. In practice, wefind that many
of the hole fill surfaces are generated in crevicesthat are hard for the sensor to reach.

6.2.2 Carvingfrom backdrops

We havejust seen how “space carving” isauseful operation: it tellsusmuch about the struc-
ture of free space, allowing us to fill holes in an intelligent way. However, our algorithm
only carves back from observed surfaces. There are numerous situations where more carv-
ing would be useful. For example, the interior walls of ahollow cylinder may elude digiti-
zation, but by seeing through the hollow portion of the cylinder to a surface placed behind
it, we can better approximate its geometry. We can extend the carving paradigm to cover
these situations by placing such a backdrop behind the surfaces being scanned. By placing
the backdrop outside of the voxel grid, we utilize it purely for carving space without intro-
ducing its geometry into the model. Figure6.11 illustratesthe utility of space-carving with
backdrops.
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Figure 6.10: A holefilling visualization. The images represent a slice through the volumetric grid
depicted in Figure 6.9. The height of the ramps correspond to the signed distance field, D(z, y),
and the shading corresponds to the weight, W (z, y). Theisosurfaceis extracted at the level shown,
where the dotted green lines correspond to observed surfaces and the dashed red lines correspond
to hole-fill surfaces. Note how the observed and hole-fill surfaces connect seamlessly, with only a

change in weights (going to zero at the hole-fill regions) to indicate the transitions.
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Figure 6.11: Carving from backdrops. (a) An orthographic sensor captures a range image of two
cylinders. (b) A dlice through the volumetric grid after laying down signed distance ramps near the
observed surface and carving out the empty regionsin front of the surfaces. It will be difficult to scan
the portions of the cylinders that are close together. (c) The same scene as in (a) with the addition
of a backdrop. (b) The volumetric slice after scanning the cylinders with a backdrop placed behind
them. Much more of the space is carved as empty, and the cylinders are clearly segregated by the
empty region between them.
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6.3 Sampling, conditioning, and filtering

Operating in asampled domain requires attention to several details. In this section, we be-
gin by developing criteriafor choosing the voxel resolution. Next, we show how the gradi-
ent variations can introduce artifacts when extracting an isosurface from a sampled volume,
and we develop the notion of a conditioning function to address the problem. Finally, we
describe methods for coping with the aliasing artifacts that arise when extracting hole fill
surfaces.

6.3.1 Voxed resolution and tessellation criteria

Choosing the appropriate voxel resolutionis crucial to avoiding aliasing artifactsin the sur-
face recongtruction. Intuitively, the voxel resolution should be sufficient to samplethe dis-
tance ramp and should be chosen to match the level of detail of the range surface.

To deriveacriterionfor the voxel resolution, we examinethe problemfromasignal pro-
cessing point of view. Combining multiplerange surfaceswith weighted averages|eadsto a
complicated analysisthat doesnot offer many insights. Accordingly, werestrict theanalysis
to the case of determining the volumetric sampling rate required to represent a single range
surface as a signed distance function. We will consider therole of weightsin the context of
isosurfaces in the next section.

In order to estimate the required voxel resolution, we must determine the bandwidth of
the signed distance representation for arange surface. We definethe symbolss,, s, and s,
to correspond to the spatial frequenciesin x, y, and z. Theradial spatial frequency isthen:

— /a2 2 2
prSySZ - Sx —I_ Sy —I_ SZ

and we hope to derive an expression for:

e, ST Gy (2

where p7** istheradia bandlimit.

SxSySZ

Consider the case of an orthographic sensor looking down the z-axis having acquired a
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range surface, f(x,y). For thissingle scan, the volume will store:

Dia,y,2) = d(z — f(x.))

where d(z) isthe signed distance function centered at = = 0. Taking the Fourier transform:

F{D} = /// d(z — f(x,y)) exp[—i2m(spx + s,y + s.2)]dedrdz

Regrouping the terms, we obtain:

F{D} = // exp|—12m(szx + syy)] {/ d(z — f(x,y))exp[—iZwszz]dz} dxdy

= // exp|—12m(szx + syy)|F.{d(z)} exp|—i2ms, f(x,y)]dxdy
= FAd(z)} Foy{exp[—i2ms.f(z,y)]}

This equation reveals that the Fourier transform of the signed distance is partially sepa-
rable; i.e., aproduct of the Fourier transformin = and thetransformin zy. The z transform
pertains to a known function, the signed distance ramp, and is thus easily computed. The
xy transform has a significantly more complicated argument that includesthe = component
of frequency, s.. Ultimately, we would like to derive the bandwidth of F{D} to help de-
cide the necessary sampling rate for accurate shape capture without aliasing. To do so, we
need to relate some property of the function f(z, y) to the frequency content of the the xy
transform.

Onerevealing measure that corresponds to bandwidth is the 2D variance of the squared
magnitude of the s, s, spectrum of afunction p(x,y) [Bracewell 1986],

/ + 52| P(s2,5) P dsyds,
Apsxs )2 =
! //|P ey 8y)|*dspds,

where P(s,, s,) isthe Fourier transform of p(z,y), and we have assumed the first central

(6.6)
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moment to be zero. A more convenient definition of thisvariance arises after the application
of several relations. Thefirst is Rayleigh’s theorem:

/ IG(Smsy)lzdedSyZ/ lg(x, y)|*dzdy (6.7)

where ¢(s,, s, ) isthe Fourier transform of afunction ¢(z, y). The second two relationsare
therules of Fourier transformsand partial differentiation:

85 G (85, 8y) = ga—xg(x, Y) (6.8
—i 0
SyG(vasy) = %a_y (l',y) (69)

(6.10)

After re-writing Equation 6.6 as

//|3P51,, |d5dsy—l—//|5P$I7 WPds,ds,
= (6.11)
/ |P (84, 8,)|*ds,ds,

(Apsxsy

then we can combine Equations 6.7-6.11 to obtain the following relation:

0 > 19
N )Z_L//‘a—xp(xay) + a—yp(xay)
Co [ [ 1ptar.) Py

2

dxdy

Now we can make the substitution:

p(x,y) = exp[—i27s. f(z,y)]

which leads to the following expression:
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2] {‘%f(w,y) |2 st

2} dxdy
/ /A Lndy (6.12)

where A isthe areaover which the range surface isdefined. At the bandlimit, s, obtainsits
maximum value s7"** as set by the signed distance function. We can approximate the square
of the overal bandwidth to be:

(Apsxsy )2 =

(p;r;’izs,z)z ~ (S;nal,)z —I_ (Apsxsy)z (613)

After noting that [f, dxdy = A, we substitute Equation 6.12 into Equation 6.13 to obtain:

N G el +12
(s~ O //A{H‘axf(x,y)‘ | t)

} dxdy (6.14)

We can make thisrelation easier to understand if we define;

(o)) = 5 [[ otz u)dedy (615

to be the area average of ¢(x,y), and we observe that the normal to the surface in the =
direction is (see Section 5.5):

-1

no(z,y) =
\Il—l—‘gf(x,y) +‘gf(x,y)

(6.16)

2 2

oz dy

Combining Equations 6.14-6.16, we arriveat thefollowing relation for the bandwidth of the
surface convolved with the signed distance function:

max max 1
psxs sz S,
v J<|nz(w,y)|2>

In other words, the bandwidth is set by the average square value of the reciprocal of the
component of the surface normal along theviewingdirection. Itisthereforevery sensitiveto
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surfaces at grazing anglesto the sensor; i.e., asn ., approaches zero, the bandwidth becomes
very large, requiring high sampling rates.

We can derive asimplerule of thumb for the sampling rateif we consider asingle planar
surface. In this case, the bandwidth expression smplifiesto:

mar
S

mazx ~ “z
pSg;SySZ ~
ny

To make thisrelation useful, we need to know the value of s7***. We can model the signed
distance function, clipped to have a width of twice the maximum uncertainty interval with
the function:

d(z) = z - rect (%)

where b iswidth of the distance ramp. The Fourier transform of thisfunctionis:

ib d(sinc(bs.))

Fldi = o ds

where sinc(z) = sin(ra)/mz. We can define the first zero crossing of this function to be
the bandwidth of the signed distance function. This zero crossing occurs at s7*** = 1/b,
leading to the relation:

mar .,
psmsysz ~ b
1

Thus, the spacing between voxels (A) should be small enough that the sampling fre-
quency (1/A) exceeds the Nyquist sampling rate:

bn.

A<

(6.17)

Thisrelationship providesseveral insights. First, thevoxel spacing must besmall enoughto
sample the distance ramp adequately, as indicated by the proportionality to the ramp width
b. Less noisy range data requires a narrower distance ramp and asmaller voxel spacing. In
addition, the dependence on n., isclosely related to range imagetessellation. When arange



126 CHAPTER 6. A NEW VOLUMETRIC APPROACH

image is converted to arange surface, a tessellation criterion determines whether neighbor-
ing range samples should be connected. This criterion typically takes the form of a mini-
mum threshold normal component in the direction of the sensor or a maximum permissible
edge length. The edge length criterion is very similar to the normal component criterion.
Thus, the range surface tessellation criterion enforces a bound on the maximum voxel spac-
ing.

Equation 6.17 can also be seen as a guideline for modifying the distance ramps and tes-
sellation criteriato satisfy a desired sampling rate. In other words, the distance ramp can
be seen as a bandlimiting filter; widening the ramp decreases the required sampling rate.
Applying amore restrictive tessellation criterion has a similar effect.

While Equation 6.17 is based on the unweighted signed distance for a single range im-
age, our experience has shown that it serves as an excellent guide for avoiding aliasing ar-
tifacts even when using weighted averages of signed distances for multiple range images.

6.3.2 Conditioning the implicit function

The agorithm described in this chapter uses a weighted average of the signed distances,
yet in the previous chapter we showed that a smple weighted sum would suffice. In this
section, we show why dividing by the sum of the weights is advantageous.

As shown in the previous chapter, the governing equation for finding a least squares
solutioniis:

P
Z |Vi(:1;,y,Z)|w¢(:1;,y,z)di(:z;,y,z) =0

=1

Without altering the position of the least squares isosurface, we can multiply this equation
by a strictly positive conditioning function, «(x, y, z):

P
k(x,y,2) > |vilz,y, 2)|wi(x, y, 2)di(w,y,2) = 0
=1

One such conditioning function is the reciprocal of the sum of the weights:
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Figure 6.12: Tessdllation artifacts near a planar edge. (@) A range sensor scans a planar surface up
to an edge. (b) The product of the signed distance and the weights are laid down into the volume.
The weightstaper near an edge causing the value-weight product to shrink. The square markers are
voxels, the dotted line is the actual surface, and the solid line is the extracted isosurface. Note the
tessellation artifacts that result from the variations in weight.

1

= Swed) (6.19)

k(x,y,2)

which corresponds to computing a weighted average of the signed distances at each voxel.

But what isthe utility of aconditioning function? To answer this question, we consider
the impact of tapering weights near mesh boundaries. Figure 6.12 depicts a planar surface
with aboundary edge after being merged into the volumetric grid. Tapering theweightsnear
the boundary isintended to make for a smoother blend when merging overlapping surfaces,
but the decreasing weights, when multiplied by the signed distance, ater the gradient of
theimplicit function. I sosurface extraction methods such as the Marching Cubes algorithm
are very senditive to variations in the gradient, and the resulting isosurface has artifacts as
depicted in the figure. On the other hand, after dividing by the sum of the weights (for a
single scan, this amounts to unweighted signed distance), the gradient is constant and no
artifacts appear.

Figure 6.13 shows the effect of using sums of weighted distances versus the use of
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weighted averages of signed distances when merging range images. Clearly, the weighted
average conditioning smooths the gradient and avoids artifacts associated with the uncon-
ditioned isosurface.

The examplesin Figure 6.13 show how the sum of weights conditioning function (Equa-
tion 6.18) can help reduce variations in the gradient to produce better isosurfaces. To see
how we might design different conditioning functions, we can derive an expression for the
gradient magnitude of the conditioned signed distance function:

P
VD| = ‘V [KJZ|Vi|widi]
=1

n p
= ‘V/i Z |Vi|widi + &V Z |Vi|widi

=1 =1

Since we are only interested in the gradient in the immediate vicinity of the isosurface, the
first term on the right hand side of the last equation vanishesto give:

VD, =

150

KV Z |vi|w;d;

p

Z (Jvilwid;)

where |V D], isthe gradient magnitude at the isosurface. Thus, we can ensure a uniform
gradient magnitude in the vicinity of the isosurface by setting the conditioning function to
be:

1

Z V (|V1|w2d2)

=1

This observation leads to a uniform gradient algorithm. At each voxel we would store a
scalar and a vector. The scalar would be the cumulative weighted signed distance, and the
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Figure 6.13: Isosurface artifacts and conditioning functions. Noiseless synthetic range images were
constructed from a perfect sphere scanned orthographically from two directions spaced 45 degrees
apart. The scanswere merged using two techniques, one with and one without a conditioning func-
tion. (a) and (c) are faceted renderings of theresulting isosurfaces, lit to emphasize artifacts. (b) and
(d) are the gradient magnitudes across the isosurface. Red areas have small gradients while white
areas have large gradients. In (a) and (b), no conditioning function is used, and “ripples’ appear in
the rendering (@) due to variationsin the gradient evident in (b). In (c) and (d), aweighted average
conditioning function is used, and the result is a smooth surface (c) with little variation in the gra-
dient (b). The hole at the tops and the jagged boundaries of the reconstructions are artifacts of the
marching cubes algorithm operating on the discrete voxel grid used in thisillustration.
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vector would be the sum of the gradients computed at each voxel for each scan. After merg-
ing aset of scans, wewould dividethe scalar by the magnitude of the vector at each voxel to
yield avolume with gradients normalized in the vicinity of the isosurface. While we have
yet to implement such an algorithm, it holds promisefor minimizing isosurface artifactsdue
to gradient magnitude variations.

6.3.3 Meshfilteringvs. anti-aliasing in holefill regions

Artifacts in the isosurface also arise when applying the method of hole filling by carving
space. Because the transition between unseen and empty is discontinuous and hole fill tri-
angles are generated as an i sosurface between these binary states, with no smooth transition,
we generally observe aliasing artifacts in these areas. These artifacts can be eliminated by
pre-filtering the transition region before sampling on the voxel | attice using straightforward
methods such as analytic filtering or super-sampling and averaging down. In practice, we
have obtained satisfactory results by applying another technique: post-filtering the mesh
after reconstruction using weighted averages of nearest vertex neighbors as described in
[ Taubin 1995]. The effect of thisfiltering step isto fair the holefill surface. Since we know
which triangles correspond to hole fillers, we need only concentrate the surface filtering on
these portions of the mesh. This localized filtering preserves the detail in the observed sur-
face reconstruction. To achieve a smooth blend between filtered hole fill vertices and the
neighboring “real” surface, we allow the filter weights to extend beyond and taper off into
the vicinity of the hole fill boundaries.

6.4 Limitationsof thevolumetric method

The volumetric method described in this section has severa limitations. The first two con-
cern the ability to determine accurate shape from observed surfaces, whilethethirdisalim-
itation inherent in the process of space carving.
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Figure 6.14: Limitation on thin surfaces. (a) A surface is scanned from two sides. (b) The volu-
metric grid shows that the distance ramps overlap as the opposing surfaces come close together. (c)
The resulting isosurface showsthat the interference of signed distance functionsresultsin a thicker
surface.

6.4.1 Thin surfaces

Asdescribed earlier in this chapter, the width of each signed distance ramp ismade as small
as possi ble while ensuring overlap with ramps taken from the same side of a surface. How-
ever, when opposing surfaces come within aramp width of each other, then the signed dis-
tancestaken from opposite sides of the surface beginto interfere. Figure6.14 illustratesthis
point. In effect, this limitation imposes a minimum thickness of a feature that can be seen
from two sides. Thisis also problematic for sharp corners. At the tip of a corner, the ad-
joining faces come arbitrarily close together, and opposing scans (i.e., scans that do not see
both sides of the corner) will necessarily interfere with one another in the volume, as show
in Figure 6.16a-C.

The fundamental problemistheinability of the volumetric representation to distinguish
opposing surfaces before combining their distance functions. We may address this prob-
lem in severa ways. For instance, we could begin by storing estimated surface normals
for voxels in the neighborhood of the surface. These normals might arise by blending to-
gether estimated normals from individual range scans, though the noisiness of individual
normal estimates will affect results. Alternatively, the normals may be derived from the
initial reconstruction following a recipe such as: (1) reconstruct the surface, (2) reinitial-
ize the volume, (3) deposit the surface normal of the nearest point on the surface into each
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Figure 6.15: Using the MIN() function to merge opposing distance ramps. Cumulative signed dis-
tance functions can be accumulated for differing orientations, as in the case of opposing surfaces.
Thesedistancefunctionsare shown herein onedimension. Usingthe MIN() functionto merge these
functions before extracting the isosurface will preserve the desired zero crossings.

voxel within the distance ramp of the surface. This second approach assumesthat errors as-
sociated with thin surfaces are fairly isotropic; i.e., the erroneous thickening of the surface
isroughly asimpledilation of the surface in the areas affected. Once approximate normals
are established, then we can modify the method for merging range surfacesinto the volume.
A simple approach would restrict a range surface to influence only voxels whose normals
are within some threshold of what could possibly be visible to the sensor.

These normal techniques can be extended to store more than one estimated surface nor-
mal and distance function per voxel. For example, if avoxel is between opposing surfaces,
then the algorithm could store the estimated orientations for both of the opposing surfaces
and update separate signed distances for range estimates coming from opposite sides. In
general, storage requirements for this method would vary with the geometry of the object:
in particularly complex regions, storage of multiple estimated normals may be necessary,
whereas smoother regions without opposing surfaces would require only a single normal
and signed distance. To reconstruct the final range surface, it might be possible to follow
the contours of the two signed distances separately, and then merge the resulting geome-
try. Alternatively, these distances could be blended together using a MIN() function before
reconstruction as indicated in Figure 6.15.
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Figure6.16: Limitationsdueto sharp corners. (a) A corner is scanned from two sides. (b) Thevol-
umetric grid shows the distance ramps overlapping opposite sides near the apex. (c) The isosurface
showsathickening of the corner and agap at the apex. (d) Samples on the volumetric grid show that
even ideal range data, merged into the volumein a manner avoiding surface thickening will lead to
agap in the reconstruction.

Other potential strategiesinclude modificationsto the weight functions. For example, if
the weight functions begin to taper off along the sensor’sline of sight for voxels behind the
range surface, then the interference with the opposing surface will be reduced. However,
when combining surface estimates on the same side of the surface, the tapered weights will
introduce some bias into the reconstruction. Such an approach would affect the accuracy
of the whole reconstruction, but selective application of this strategy might still be of use.
By adjusting the weight profiles for range samples near boundaries, it is possible to reduce
the surface thickening selectively in at least one of the more troublesome aress, i.e., near
corners. Early experimentsin this area have yielded promising results.

6.4.2 Bridgingsharp corners

Another limitation of the volumetric method is the difficulty in bridging sharp corners, a
problem which persists even if interference of opposing signed distances are eliminated.
Consider the scenario in Figure 6.16. Two scans of asharp corner acquire accurate descrip-
tions of the corner up to the apex. However, when merging these scans into the volumetric
grid, the restricted marching cubestessellator cannot “turn the corner” and connect the two
surfaces.

Thisdifficulty isavoidable under two circumstances. If an additional scan observesboth
sides of the corner, then the corner is bridged. Alternatively, if the scans of the corner are
observed to be occluding other geometry such as a backdrop, then the space carving step
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Figure 6.17: Intersections of viewing shaftsfor space carving. Three scans are taken from different
pointsof view. The solid green curveisthe actual surface. Dueto occlusions(not shown), the bound
onthe object is determined primarily by space carving. Noticethat in thistwo-dimensiona example,
theresultingboundary isan intersection of empty hal f-spaces and thus consistsof large line segments
with sizes that do not depend on the voxel resol ution.

will declare the region near the apex to be empty. In this case, the hole filling algorithm
will bridge the gap.

In the absence of an additional scan or the use of space carving, however, bridging the
gap isstill desirable. The range samples acquired at the apex from two viewpoints may be
arbitrarily close together — even more closely spaced than the samples in individual range
images — so the reconstruction algorithm ought to be able to bridge the gap. One possible
solution would be a modified marching cubes algorithm that assumes regions of the vol-
ume near the surface are empty and performsalocal hole-filling only to bridge small gaps.
Alternatively, adifferent hole-filling a gorithm could be applied as a post-process, directly
filling small gaps in the polygonal reconstruction.

6.4.3 Space carving

In many cases, the space carving algorithm described in Section 6.2 can attain areasonably
tight bound on the object and lead to a plausible hole-free surface. In some cases, however,
the hole-fill regions have undesirable properties. They represent intersections of viewing
“shafts’ that may in fact not achieve atight bound on the surface and may appear as protru-
sionsfromthe object, or, worse, they may change thetopol ogical genus of thereconstruction
by introducing “handles’. Figures6.17, 6.18 and 6.19 illustrate these possibilities.
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Figure 6.18: Protrusion generated during space carving. (a) Four slices through a volumetric grid
show the signed distanceramps dueto visiblesurfacesaswell astheresultant space carving. (b) Tak-
ing an isosurface that includes hole-filling yields a surface with a protrusion. (c) Red surfaces indi-
cate the holefill regions of theisosurface.
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Figure 6.19: Errorsin topological type due to space carving. (&) Five slices through a volumetric
grid show the signed distance ramps due to visible surfaces as well as the resultant space carving.
(b) The resulting isosurface has a “handle’. (¢) Red surfaces indicate the hole fill regions of the
isosurface.
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Figure 6.20: Aggressive strategies for space carving with arange sensor using asingleline of sight
per pixel. (a) A surface is scanned with a range sensor that has a single line of sight per sample.
Thereisagap in the recorded range data, which could correspond to the dotted surface. (b) A con-
servative strategy would carve space only from the observed surfaces. (c) A very aggressive strategy
would incorporate the notion that missing dataimplies no surface a ong the sensor’slineof sight. In
this case, the carving extendsto the limit of the sensor’sfield of view. (d) Dueto sensitivity limita-
tions, surfaces at grazing anglesto the sensor may not be detected. This placesalimit on how much
space may be declared empty and still be consistent with a surface that just evades detection due to
oblique orientation. (e) A still less aggressive strategy would simply fill the gap by bounding the
emptiness at the line segment connecting the edges of the missing data. Such a strategy might lead
to less objectionable holefill regions such as would be generated by the indentation shown in (d).

These undesirable hole fillers might be removed at the volumetric level or by operating
on the reconstructed surface. One volumetric approach might be to apply image process-
ing operations such as erosions and dilations to modify the hole fill regions and possibly
collapse thin unknown regions that lead to “handles’ such as the one shown in Figure 6.19
[Jain 1989]. In addition, more aggressive space carving strategies could be employed to
empty out more of space as illustrated in Figure 6.20. Consider a very simple range sen-
sor with asingle line of sight. If such a sensor were to return no measurement, we would
normally draw no conclusions. In fact, barring a surface that is “invisible” to the sensor,
one can argue that there is no surface along the sensor’sline of sight, or else it would have
been detected. The space must thereforebe empty inthisdirection. For afull rangeimaging
sensor, we could follow al lines of sight that returned no range data and declare all these
regions of the volume to be empty. In practice, this approach could not be applied indis-
criminately. For instance, no datais returned from very dark regions of a surface or shiny
portions that deflect the line of sight. Even if the surface were known to have a uniform
diffuse reflectance, regions that are oblique to the sensor may not return enough light to be
detected. In this case, there would be alimit to how far the space carving would proceed
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while being consistent with the possibility that the surfaceisreceding with steep slope. Fig-
ure 6.20 shows how this more aggressive space carving might proceed.

In the case of atriangulation scanner, space carving is complicated by the requirement
that each point must have a clear line of sight to both the laser and the camera. The con-
servative approach consists of following the lines of sight from the surface to both the laser
and the camera and declaring the voxels to be empty as shown in Figure 6.21. For the case
of aggressive space carving, we refer to Figure 6.22. 1f we hypothesize that point A in Fig-
ure6.22aisnot empty, then there must be a surfacethat occludesthe line of sight of thelaser
or the sensor, e.g., point B. But in order for point B to be an occluder, then there must be yet
another surfacethat blocksitsvisibility. Following thisline of reasoning, we eventually de-
terminethat a surface must exist in the region of space aready conservatively declared to be
empty in order to prevent the detection of point A. Thiscontradictionleadsto the conclusion
that point A must be empty. By induction, we can then argue that all points that are acces-
sible to both the laser and the sensor must be empty [Freyburger 1994]. Aswith thesingle
line of sight rangefinder, less aggressive strategies are also possible (Figure 6.22e and f).

Another approach to improving the holefill regions would be to operate directly on the
polygonal reconstruction. For example, the tangent planes to the surface at the boundary
between the hole fill and the observed surface could be used to coerce the holefill to relax
into aless protruding configuration. Ideally, such arelaxation procedure could be extended
to modify the topology and collapse undesirable handles in the holefill regions.
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Figure6.21: Conservative strategy for space carving with atriangulation range sensor. (a) A surface
isscanned with atriangul ation range sensor that has two lines of sight per sample. For the purpose of
illustration, the camerais assumed orthographic and the scanning sweep to belinear. (b) Theregion
of spacethat must be empty from the point of view of thelaser. (c) The region of space that must be
empty from the point of view of the camera. (d) The union of the empty spacesyieldsaconservative
estimate of the emptiness of space around the observed surfaces.
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Figure 6.22: Aggressive strategies for space carving with a triangul ation range sensor. The sensor
geometry is assumed the same asin Figure 6.21a. (a) Magnified view of the hole fill region estab-
lished by conservative space carving in Figure 6.21d. Followingthe argumentsin thetext, al points
that could be visibleto both the laser and the sensor must be empty. (b) The region of space that
could be empty from the point of view of thelaser. (c) Theregion of space that could be empty from
the point of view of the camera. (d) The intersection of the empty regionsin (b) and (c) yields an
aggressive estimate about the emptiness of space around the observed surface. (€) Surfaces at graz-
ing angle to the laser or camera might not be detected, so a less aggressive strategy would taper the
boundaries of the space carving region. (f) Asin Figure 6.20, aless aggressive strategy would sim-
ply fill the gap by bounding the emptiness at the line segment connecting the edges of the missing
data.



Chapter 7

Fast algorithmsfor the volumetric
method

The creation of detailed, complex modelsrequiresalarge amount of input datato be merged
into high resolution voxel grids. The examplesin the next chapter include model sgenerated
from as many as 70 scans containing up to 12 million input vertices with volumetric grids
ranging in size up to 160 million voxels. Clearly, time and space optimizations are critical
for merging this data and managing these grids. In this chapter, we begin by describing a
run-length encoding schemefor efficient storage of the volumetric data (Section 7.1). Next,
we develop a number of optimizations designed to improve execution time when merging
range data into the volume (Section 7.2). In Section 7.3, we summarize an efficient i sosur-
face extraction method. Finally, we show that the storage and execution optimizationslead
to significant improvements in asymptotic complexity (Section 7.4).

7.1 Run-length encoding

The core data structure is arun-length encoded (RLE) volume with three run types. empty,
unseen, and varying. The varying fields are stored as an explicit stream data, rather than
runs of constant value. Typical memory savings vary from 10:1 to 20:1. In fact, the space
required to represent one of these voxel gridsis usually less than the memory required to
represent the final mesh asalist of vertices and triangle indices.

139
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Figure 7.1: Overview of range image resampling and scanline order voxel updates. (a) Casting rays
from the pixelson the range image means cutting across scanlines of the voxel grid, resulting in poor
memory performance. (b) Instead, we run along scanlines of voxel's, mapping them to the correct po-
sitionson the resampl ed rangeimage. () Range image scanlinesare not in general oriented to allow
for coherently streaming through voxel and range scanlines. (d) By resampling the range image, we
can obtain the desired range scanline orientation.

7.2 Fast volumeupdating

Updating the volume from a range image may be likened to inverse volume rendering: in-
stead of reading from a volume and writing to an image, we read from a range image and
write to avolume. Research in volume rendering has shown that the manner of traversing
thevolumeand imageiscritical to the efficiency of thealgorithm [Lacroute & Levoy 1994].
In particular, streaming through the image and following each line of sight through the vol -
ume leads to poor performance, because it requires random access to voxels that are not
adjacent in memory, as shown in Figure 7.1a. We can instead step through the volume in
scanline order, but thisrequiresrandom access of theimage pixels, leading to asimilar mem-
ory access inefficiency, as shown in Figure 7.1c. The solutionisto pre-warp theimagein a
manner that forces voxel and image scanlines to map onto each other.

In this section, we devel op the geometric intuition for how the range image plane must
be oriented to ensure ideal scanline alignment for both the orthographic and the perspec-
tivecase. Next wedescribe methods of performing the resampling and subsequent updating
of the volume. Obeying the more restrictive image plane requirement imposed by the per-
spective case, we show how we can devel op a shear-warp method for resampling the range
image and updating the volume. This shear-warp method leadsto afast algorithm using bi-
nary depth treesto update only relevant portions of the volume. Finally, we describe afast
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Figure 7.2: Orthographic range image resampling. Asshown in (a), the voxel scanlinesrun in the
direction v,ox. The projectionsof these scanlinesonto the rangeimage planerun along thedirection
Vproj,» While the range image scanlines run in the direction vi,. By rotating the range image plane
asshownin (b), we can align the directions of the projected voxel scanlinesand theimage scanlines.
This affords coherent memory access when streaming through the voxel grid and the range image.

transpose method for ensuring that voxel scanlines run parallel to image scanlines.

7.2.1 Scanlinealignment

The type of viewing frustum for a rangefinder imposes constraints on how to choose the
range image resampling that guarantees volume and image scanline alignment. For an or-
thographic frustum, the desired alignment can be attained by ssmply rotating theimage plane
about the axis defined by the viewing direction. The amount of rotation can be determined
by projecting the direction of the voxel scanlines onto the image plane, followed by rotat-
ing the image plane until the image scanlines align with the projected viewing directions
(see Figure 7.2). Because the orthographic projection of the voxel scanlinesis a set of par-
allel lines, it isalways possible to rotate the range image about the view direction to assure
mutual alignment of image and voxel scanlines.

Perspective viewing frustums impose additional constraints. The first requires that the
new image plane be parallel to the voxel scanlines. Figure 7.3 shows how this constraint
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Figure 7.3: Perspective range image resampling. The notation followsthat of Figure 7.2. In (a), the
range image planeis at an angle to the front face of the voxel grid. Asaresult, the projected voxe
scanlinesare not parallel. By rotating theimage plane so that theimage planeis paralld to the voxel

scanlines (b), we force the projected voxe scanlinesto be paralel. Asin the orthographic case, we
must additionally rotate the image plane about the viewing axis to complete the mutual alignment.

applies. When coupled with rotating the image about the viewing axis, the resulting im-
age scanlines, viewed as lines segments in three dimensions, now run exactly parallel to
the voxel scanlines. An additional restriction appliesto the direction of the voxel scanlines.
Consider the case shown in Figure 7.4. As we follow the voxel scanlines away from the
viewpoint, the projections of these scanlines progresstoward the center of theimage. Thus,
no rotation of the image plane is suitable to align voxel and image scanlines. On the other
hand, by reorganizing the voxel scanlines so that they run parallel to the image plane (i.e.,
by transposing the data structure), we obtain the desired alignment.

More complex viewing frustums can make it impossible to assure precise alignment of
voxel and image scanlines, asisthe case with the line perspective of the Cyberware scanner
for traditional triangulation. Inthis case, we can choose an image orientation that isaligned
with scanlines for one voxel dice, but the scanlines at different diceswill project to curves
that cross image scanlines. Nevertheless, if the projection is nearly orthographic, i.e., the
rays are not severely divergent, then an image orientation can be chosen to minimize the
amount that projected scanlines cross range image scanlines. If rays are highly divergent,
then other methods, such as partitioning the range image resamplings into manageabl e sec-
tions may be applicable.
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Figure 7.4: Transposing the volume for scanlineaignment. The notation followsthat of Figure 7.2.
The projected voxel scanlinesin (a) convergeto the perspective vanishing point on the image plane.
In this case, it is not possible to rotate the image plane to align with projected voxel scanlines. By
transposing the volume (b), we see that the projected scanlines are now paralldl.

7.2.2 Resampling therangeimage

To resampl e the range image using the newly oriented image plane, we first reconstruct the
range surface. Next, we can cast a set of rays from the sensor through the image pixelsand
intersect them with the range surface. The distances along these raysarethe range valuesto
be stored in the new range image. By interpolating the weights at the vertices on the range
surface, we can associate a new weight with each sample.

Alternatively, we can resample the range image using an incremental scan-conversion
algorithm, a method know to be very efficient. In this case, we first transform the vertices
of the range surface using the viewing transformation specific to the lines of sight of the
range sensor and the image plane. The weights are then assigned as vertex “colors’ to be
linearly interpolated during the rendering step, an approach equivalent to Gouraud shading
of triangle colors [Foley et al. 1992]. This resampling can be performed with a traditional
z-buffered rendering algorithm, though no depth comparisons are necessary when entering
valuesinto the z-buffer (i.e., there must be exactly one depth per line of sight if the viewing
rays are properly calibrated).
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7.2.3 Updating thevolume

To merge the range data into the voxel grid, we stream through the voxel scanlines in order
while stepping through the corresponding scanlines in the resampled range image. We map
each voxel scanline to the correct portion of the range scanline as depicted in Figure 7.1b,
and we resamplethe range datato yield adistance from the range surface. Using the combi-
nation rulesgiven by Equations 6.3 and 6.4, we update the run-length encoded structure. To
preserve the linear memory structure of the RLE volume (and thus avoid using linked lists
of runs scattered through the memory space), we read the voxel scanlines from the current
volume and write the updated scanlinesto asecond RLE volume; i.e., we double-buffer the
voxel grid.

7.2.4 A shear-warp factorization

In Section 7.2.1, we showed that forcing the range image scanlines to run parallel to the
voxel scanlinesis necessary for achieving good memory performance for perspective pro-
jections. If werequirethat thisrestriction holdsin all cases (including orthography), then we
can develop a shear-warp factorization of the viewing transformation, similar to the one de-
scribed for volumerendering in [Lacroute & Levoy 1994]. The resulting algorithm utilizes
a z-buffered scan-conversion agorithm and allows for computation of signed distances by
comparing a scanline's constant = value against the resampled = values from the range im-
age. Thismethod of establishing signed distance will be exploited for more efficient voxel
traversal using the binary depth trees described in the next section.

Figure 7.5 illustrates the shear warp procedure for an orthographic projectionin two di-
mensions. We first transpose the voxel data structure so that the scanlines run as close to
perpendicular to the viewing direction as possible. Then we shear both the range surfaceand
voxel grid so that the viewing raysrun perpendicular to the voxel dices. Note that shearing
the voxel grid ssmply amounts to changing the origins of the voxel dices, no resampling of
thevoxelsisever performed. Next, we resamplethe range surface with respect to an image
plane parallel to the voxel dices. Asbefore, we stream through voxel scanlines and resam-
ple depths stored in the resampl ed range image. The difference between the z-depth of each
voxel (constant within ascanline) and the resampled range depth corresponds to the signed
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Figure 7.5: A shear warp method for parallel projection. (@) The range image and sensor lines of
sight are not initially aligned with the voxel grid. (b) By shearing the grid and range image, we
“straighten” the sensor rays with respect to the voxel grid. This shear performs the same function
astherotation in Figure 7.3. By resampling the range image, we aign its pixelswith voxels on the
sheared grid. We then lay down the signed distance and weight functions. (c) After updating the
grid, we shear it back to the original space. Note that shearing the voxel grid is simply a matter of
offsetting the origin of each slice; no voxel resampling is performed.
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Figure 7.6: Correction factor for sheared distances. Thesigned distance (d = Ar) toavoxe should
be taken along the line of sight from the sensor as shown in (a). After shearing the voxd grid and
range image, the signed distance corresponds to the differences in z-depth for the voxel and range
sample as shown in (b). The error may be corrected by a constant factor. In two dimensions, (¢)
indicates the correction factor would be Ar = Az/sin 3, where /3 isthe angle between the original
view direction and the sheared view direction.
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Figure7.7: Shear-warp for perspectiveprojection. (a) The range surface and sensor linesof sight are
not initially aligned with the voxel grid. By shearing the voxel grid and range surface (b), followed
by a depth dependent scale (c), we “straighten” the sensor rays with respect to the voxel grid. (d)
After updating the grid, we “unscale” and “unshear” it back to the original space.

distance between the voxel and the range surface. Due to the shear, this distance must be
corrected by a multiplicative factor as depicted in Figure 7.6.

Shear warp factorizations may be adapted to other rangeimaging frustumsaswell. Fig-
ure 7.7 shows how a perspective transformation can be decomposed into ashear and ascale.
Again, the voxel lattice is never resampled; the shear and scale only serves to indicate how
voxels map onto the resampled range image plane. The differences between voxel depths
and resampled range depths again correspond to signed distances between the voxel and
therange surface. Aswith the orthographic case, a correction factor is necessary dueto the
differences between the projection direction and viewing rays. This correction factor is not
constant over al viewingrays, butitisconstant along each viewingray. Thus, the correction
factor may be stored at each resampled range image pixel.

More complex imaging frustums such asthe line perspective of Figure5.2f will require
more complex transformations, but the principle of doing modified = comparisons is still
valid and leads to an efficient algorithm with the help of the binary depth tree described in
the next section.
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Figure7.8: Binary depthtree. Each pair of resampled rangeimage scanlinesis entered into a binary
depthtree. (a) Level 0: abound is set on the whole range surface. Scanline A iswell in front of the
boundsand is not processed. Scanline B intersects and forces further traversal of thetree. (b) Level
1: thesurfaceissplitintwo and yieldstighter bounds. Still, both sidesmust be traversed further. (c)
Level 2: the surface is quartered and scanline B isfound to intersect thefirst and third quarters.

7.25 Binary depth trees

We can take advantage of the fact that ~ values are constant at each voxel scanlinein order
to process the voxelsefficiently. In the case of merging range dataonly in thevicinity of the
surface, wetry to avoid processing voxelsdistant fromthe surface. Tothat end, we construct
abinary tree of minimum and maximum depths for every adjacent pair of resampled range
image scanlines. The trees must span pairs of range scanlines, because voxel scanlines may
fall between range scanlines, and linear interpolation requires simultaneously processing
two neighboring scanlines. Figure 7.8 illustrates the binary tree for three levelsin two di-
mensions. Before processing each voxel scanline, we query the binary tree to decide which
voxels, if any, are near the range surface. In figure 7.8a, scanline A lies completely outside
of the range tree and thus requires no processing. Scanline B on the other hand does inter-
sect the tree, so we proceed down the levels of the tree until we establish which portions of
the scanline need to be updated. In a similar fashion, the depth tree can be traversed in a
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manner that rapidly indicates what sections of ascanline are likely to be empty. The result-
ing speed-ups from the binary tree are typically afactor of 15 without carving, and afactor
of 5with carving.

When using the more complex viewing frustums such as line perspective, the voxel
scanlines may map onto more than two range image scanlines. In this case, the domain of
the binary treeis widened to span as many scanlines as necessary.

7.2.6 Efficient RLE transposes

Asdescribed in Figure 7.4, if the scanlines of the volume are badly aligned with the range
image scanlines, it may be necessary to transpose the direction of the scanlines. Without op-
timizations, this transpose would require O(r*) operationsfor avolumer. voxelson aside.
To avoidthisO(n?) cost, the solutionis to work primarily on the varying voxels and to cre-
atethetransposed volumedirectly in RLE formwithout ever expanding it in anintermediate
step. Thisobjectiveisvery similar to the one for rotation of the RLE spacetime images de-
scribed in Chapter 4. Indeed, the transpose is very much like arotation by 90 degrees. The
key differencesare: (1) no reconstruction and resampling isrequired, and (2) there are two
values for constant runs (unseen and empty) instead of one (zeroes). The first difference
smplifies the task, while the second complicatesit. In the RLE rotation agorithm, when a
run of varying type began where there had been none before on a target scanline, then the
prior run on the target scanline was deduced to be aconstant run of zeroes, and could be up-
dated accordingly. Asaresult, we could stream through only the varying runsin the source
image, and ignore the constant runs. However, when more than one constant run type is
possible, then the constant runs require further attention.

Fortunately, by tracking two source scanlines simultaneously, we can overcomethisdif-
ficulty. Asbefore, we construct the target scanlines as we stream through the source scan-
lines. Thistime, however, each target scanline must keep track of values (empty or unseen)
when building constant runs. As long as the runsin the source scanline are the same asthe
current runs in the target scanlines, we would like to skip to the interesting voxels. When
the type of run in the source scanline does differ from the type in the target scanline, then
the target needs to be updated and a new run begun. By simultaneously streaming through
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Figure 7.9: Fast transpose of a multi-valued RLE image. The source scanline direction runs hori-
zontally and the target direction runsvertically. We stream through the current and previous source
scanlines simultaneously. We can skip over intervalswhere scanlines have constant runs of the same
value, asindicated with thefirst “empty” run. When the runs differ, then the target scanline must be
finished with its run, so we compute the length of the concluded run, and begin a new one. When
the runs are both of varying type, then the varying voxels are simply copied into the target runs.

the current and the previous source scanline, we can deduce when the source is different
from the target, requiring some work to be done. Figure 7.9 illustrates the fast transpose
algorithm.

7.3 Fast surfaceextraction

To generate our final surfaces, we employ a Marching Cubes agorithm [Lorensen & Cline
1987] with alookup table that resolves ambiguous cases [Montani et al. 1994]. To reduce
computational costs, we only process voxels that have varying data or are at the boundary
between empty and unseen. A practical consequence of using the hole filling approach is
the generation of spurious components where the lines of sight carved around unknown re-
gionsthat are not connected to the observed surface. Itisastraightforward matter to remove
these components. In practice, we typically work with modelsthat consist of asingle, large
connected component. In thiscase, it suffices to extract the largest connected component.
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Number of samples on aside for arange image (m?* samples)
Number of range images

Number of voxels on a side for a cube shaped volume (n> voxels)
Voxel resolution in meters

Width of the signed distance ramp in meters

Width of the signed distance ramp in voxels (b/ A voxels)
Surface area of the visible portions of the object in square meters

LSRRI

Table7.1: Symbol definitionsfor complexity analysis.

7.4 Asymptotic Complexity

The optimizations described in this chapter serve the purpose of improving memory per-
formance, but they also significantly reduce the asymptotic complexity of both storage and
computation. Before studying the algorithm’s complexity, we need to define afew symbols
asshownin Table7.1. Intheremainder of this section, we assume that the voxel resolution,
A, and ramp widths, b and b, arefixed, and that » growsonly in proportion to the size of the
object being reconstructed.

For comparison purposes, we first consider a non-incremental algorithm without op-
timizations. The non-incremental aspect means that all of the range images need to be
processed at the same time. Since each range image contains m? samples and yields no
more than 2m? triangles after tessellation to create the range surface, the overall storageis
O(pm?) for therangedata. Without compression, another O(r?) storageisrequired to rep-
resent the volume, giving an overal storage cost of O(pm? + n*). Asfor computational
complexity, a brute force algorithm without any spatial data structure for visiting relevant
voxels would execute in time proportional to the number of voxels for each range image
plus the number of samplesin each rangeimage, i.e., O(m?* + n?), leading to atotal time
complexity of O(pm?* + pn?).

In the remainder of this section, we show that the fast algorithm does significantly bet-
ter than the brute force approach. We begin with the storage complexity of the algorithm
followed by an analysis of the computational complexity.
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74.1 Storage

To anayze storage complexity, we first consider the costs of storing the original range im-
agesaswell theresampled range imagesand their depth tree data structures. Next we exam-
ine the storage requirements for the RLE volume with and without space carving. Finaly,
we compute the storage costs of the reconstructed surface and compare it to the volumetric
storage costs.

As described above, each range image contains m?* samples resulting in no more than
2m? triangles after tessellation. Because the volumetric algorithm isincremental, we need
not hold all rangeimagesin memory at once, so the storage cost for manipulating the range
imagesis O(m?*). Beforemerging therange surfaceinto thevolume, it isresampled at voxel
resolution. Thisresampled rangeimagerequiresO(n?) storage. In addition, abinary treeis
associated with each scanline of the resampled rangeimage. After summing over the nodes
of onetree, wefind that it holds no more than 2» nodes, leading to atotal of 2n* nodes over
the whol e resampled rangeimage. Thus, the storage cost for the resampled rangeimage and
its binary treesis O(n?).

When reconstructing the observed portions of the surface without space carving, the sur-
faceiseffectively “blurred” into the volume by the signed distance ramps. Thisblurred sur-
face occupies a volume of roughly V' = bA, which translates to bA/A® or bA/A? voxels
that must be stored. The RLE representation requires additional storage for the run lengths.
If the average number of intersections of the surface with each voxel scanlineis ¢, then
(1 + 2¢5")n? run lengths are necessary. The overall storage cost for the volumetric data
structure is then O(bA/A? + (1 + 25 )n?). For objects that do not have an unusually
high surface area to volume ratio (i.e., objects without many folds or spiny projections),
then A/A? ~ n2 and the number of voxels required is proportional to bn2. Thus, for non-
pathological surfaces, the storage cost for regions near the observed surfaceis O(n?).

The addition of space carvingto the algorithm hasthe potential of greatly increased stor-
age costs. When a sequence of voxelsare al labeled empty, they are compactly stored asa
singlerun of empty voxels, however, the examplesin Figure 7.10 illustrate some pathol ogi-
cal casesthat defy efficient storage. The objectsinthisfigurehave highly complex geometry
(7.10a) or extreme variations in surface reflectance (7.10b) that can lead to the creation of
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Figure 7.10: Carving from “difficult” surfaces. (a) The scene contains multiple objects shown in
gray. Black regions are seen to be empty. After scanning from two viewpoints, many unseen “is-
lands” form. (b) The same as (&), but now there is a single object with regions of negligible re-
flectance, shown in dark gray. The sensor cannot digitize these dark portions of the surface, and
space carving from observed surfaces again leads to afragmented volume.

many thin shafts of emptiness when carving away from the observed surface. The inter-
sections of these shafts can lead to many separate unknown regions. This high degree of
inhomogeneity leads to a worst case storage requirement of O(rn?).

Nevertheless, many objects of interest do not exhibit such complexity in geometry or
variations in surface reflectance. More “accessible” objects, i.e., objects having large con-
nected visible portions, lead to a much more efficient representation. In practice, experi-
ments with several objects of moderate complexity show that the storage requirements do
not rise appreciably when including the space carving.

Notethat the use of abackdrop can have an appreciable effect on the storage compl exity.
Consider theexamplein Figure7.11a. Even though the scene being scanned isfairly smple,
the number of unseen “islands’ can increase rapidly with the number of scans. However,
by performing only two scans with a backdrop, as shown in Figure 7.11b, these islands do
not appear.

In the last step of the algorithm, we perform an isosurface extraction using an efficient
Marching Cubes algorithm. By processing the run length encoded data structure without
expanding it into thefull volume, the cost of storing the volume remainsthe same as above.
The resulting isosurface will have roughly A/A? vertices and 2A/A? faces. In practice,
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Figure 7.11: Storage complexity with and without backdropsin 2D. Three circles are being scanned
indicated asthe gray regions. (a) After taking 8 scans without a backdrop, alarge number of unseen
islands appear. These will result in high storage costs. In fact, more scans can actualy increase
the fragmentation. (b) Using a backdrop, only two scans are necessary to declare most of the space
around the object to be empty.

we have found that the storage required for the RLE volume is comparable to the storage
required for the extracted isosurface.

In summary, for non-pathological cases, the storage requirementsfor the fast volumetric
agorithmare O(m? + n?). This complexity is clearly superior to the storage requirement
of O(pm?* + n*) for anon-incremental, uncompressed algorithm.

7.4.2 Computation

The key operations that influence the computational complexity of the volumetric method
are:

¢ tessdllating and resampling the range images
¢ building the binary depth trees
e performing volume transposes

e finding relevant voxelsto update
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e merging runs of voxels

e extracting theisosurface.

We address each of these in order.

In converting from arange image to arange surface, each sampleis considered for cre-
ating triangles with its nearest neighbors. Thus, the tessellation requires time proportional
to the number of samples, O(m?). Each range surface isresampled at the resolution of the
voxel grid before merging into the volume. Thisstep requiresO(m? + n?) timeto prepare
the triangles for rasterization and O(m? + n?) to resample and the range image. Overall,
the computational complexity isO(m? + n?) to tessellate and resample the range image.

After resampling therangeimage, we construct binary depthtreesat each scanline. Con-
structing each depth tree requires work proportional to the number of nodesin thetree, i.e.,
O(n). For n scanlines, the time complexity is O(n?).

When the voxel scanlines are not oriented in a direction that is desirable for efficient
memory traversal, it is necessary to transpose the volume. The fast transpose algorithm
performswork in traversing the RLE data structures in both the current and the transposed
directions, in addition to the work of copying over voxels. Managing the data structures
takes O(2(1 + ¢ )n?) time, while copying over the voxelsrequires O(hA/A2) time. The
overall transposetime complexity isthen O(2(1 + ¢ )n? +bA/A?). For non-pathological
cases, the complexity of the transpose operationis O(n?).

Once the volumeistransposed for optimal scanline traversal, we query the binary depth
trees to decide which voxels require updating. In the case of reconstructing the observed
portions of the surface, thisamountsto deciding which voxelsare near the range surface be-
ing merged. We can think of the surface as being sampled at voxel resolution and “blurred”
along the sensor lines of sight by the signed distance ramps. Thus, as many as bn? voxels
may require updating. The cost of finding that asingle voxel requiresupdatingislog n, i.e.,
the cost of traversing the binary tree down to asingle leaf node. For arun of voxels span-
ning an interval of leaf nodes in the tree, the cost of finding the consecutive leaf nodesis
amortized over the interval, since the tree is not re-traversed for each new voxel. Still, in
the worst case, each voxel near the range surface requires log n time to be found, yielding
an overall complexity of O(n?logn).
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When performing space carving, the cost of locating which voxels should be marked
as empty is afunction of the complexity of the emptiness shafts. We define ¢ to be the
average number of shaft intersections per scanline per range image. The cost of finding

theinterval of emptiness per scanlineisthen O(¢" log n), leading to an overall complex-

ity of O(c2"n2logn). The constant, ¢, can actually be quite large as shown in Fig-
ure 7.10, but as indicated in the previous section, the shafts are usually small in number
leading to small values of 2" for non-pathol ogical objects and an effective complexity of
O(n*logn).

Once the relevant voxels have been identified with the binary depth tree, the runs of
signed distances and emptiness must be merged with the existing runsin the volume. The
work required for this step is proportional to the number of runs and the number of non-
constant voxels that are already in the volume plus the number that require updating. If
the average number of intersections of arange surface with each scanlineisc,™’*, thenthe
amount of work required to mergeruns near the observed surfaceis O(b A/ A2+ (2422 +
2¢" )n? + bn?). Note that because we are using a double-buffered volume, i.e., we copy
over all untouched voxels to maintain memory locality, the merge step always requires at
least O(bA/A?) timeto execute. For anon-pathological surface, the overall time complex-

ity for merging runs near the observed surfaceis O(n?).

When merging the runs of emptinessinto the volume, the argument still holds that the
work required is proportional to the number of runs and the number of non-constant vox-
els aready in the volume and about to be merged. We define ¢%**“" (1) to be the average
number of intersections of unseen regions with each scanline after merging : scans. Merg-
ing the runs of emptiness derived from the 7th range scan will then require O((2¢2"" (1) +
2¢ (1) 4+ 1)n? + bA/A?) for each rangeimage. If we let copre = MAX(2¢8m557 (i) 4
Qcﬁf“ﬁ(i) + 1), then the total complexity of merging the empty regions is no worse than
O(Coarven® + bA/A?). Asindicated in the previous section, c..,.. can bevery large, but for
non-pathological objects and suitable use of backdrops, c..... istypicaly small, leading to
anoveral timecomplexity of O(r?) for non-pathol ogical objectswhen merging runsduring
the carving step.

All of the discussion of time complexity up to this point has been based on merging a
singlerange imageinto the volume. For p rangeimages, each of the complexities should be
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multiplied by p, except for the number of transposes which depends on the order of merging
scans. If the object is scanned from all sides, then by selecting the order of merging the
scans, the number of transposes need not exceed two: one transpose from the first scanline
directionto the second plus onetranspose fromthe second direction tothethird. Intheworst
case, atranspose is required for every range image, which is still no more than p. Thus,
the overall complexity for merging range images into the volumeis O(pm?* + pn®log n +
pA/A?). For non-pathological objects, this becomes O(pm? + pn? log n).

The final step of the surface reconstruction algorithm is to extract an isosurface from
the volume. By visiting only the voxelsthat are near the surface, this algorithm operatesin
O(bA/A?) time or O(n?) for the non-pathological case.

In summary, for non-pathological objects the overall time complexity for merging the
observed portions of the surface is O(pm? + pn®logn). In practice, we have determined
that the logarithmic term istypically overwhelmed by other factors, leading to an observed
complexity of O(pm?* + pn?). This complexity is asignificant improvement over the worst
case complexity of O(pm?* + pr?) for the brute force algorithm. At the time of publication
of thisthesis, the computational optimizationsfor the space carving agorithm have not yet
been implemented. However, as long as the volume does not become heavily fragmented,
the optimized approach is expected to behave asymptotically as well as the algorithm that
does not employ space carving.



Chapter 8
Results of the volumetric method

In this chapter, we describe the hardware used to acquire the range data and how we treat
the range scanner’s lines of sight (Section 8.1). In Section 8.2, we explain our method for
addressing the problem of aligning rangeimages. Finally, we demonstrate the effectiveness
of the volumetric method on several models (Section 8.3).

8.1 Hardwarelmplementation

The data used in this chapter was acquired using the Cyberware 3030 M S laser stripe opti-
cal triangulation scanner, as described in Chapter 4. We collected data both using the Cy-
berware'straditional triangulation method and using the spacetime analysis (by way of the
JPEG compressor board as shown in Figure 4.1).

When using traditional triangulation analysis implemented in hardware in our Cyber-
ware scanner, the uncertainty in triangulation for our system follows the lines of sight of
the expanding laser beam as described in Section 5.2. When using the spacetime analysis,
however, the uncertainty roughly follows the lines of sight of the CCD camera. For each
method of triangulation analysis, we adhere to the appropriate lines of sight when laying
down signed distance and weight functions. The space carving, however, only followsthe
linesof sight of thelaser. Owing to the geometry of the Cyberware scanner, thelines of sight
of the laser are significantly simpler to follow than those of the CCD camera. The decision
to carvefrom the point of view of the laser isnot afundamental limitation of the algorithm,

157
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merely a matter a convenience for the implementation. To maximize the amount of possi-
ble space carving, it remains an areafor future work to follow the lines of sight of the CCD
camera

8.2 Aligningrangeimages

As described in Chapter 5, proceeding with pairwise alignment while walking around an
object may yield good results at each stage, but the errors will accumulate. The general
solution is to minimize the alignment errorsamong all of the range images simultaneoudly.
Only recently are solutionsto thistotal alignment problem emerging [Bergevin et a. 1996]
[Stoddart & Hilton 1996].

For the results obtained in this chapter, we devised and implemented a practical solution
that utilizesinformation from the scanner’smotion control system. The Cyberware scanner
described in the previous section has arotational degree of freedom about the vertical axis.
By calibrating the position and orientation of this rotational axis, we can perform a set of
scans, with a specified rotation between each scan, and begin with good alignment infor-
mation for thisset of scans. After merging these scans, the resulting isosurface will usually
have good coverage of the object so that it may be used as an anchor for future alignments
(using the method of [Turk & Levoy 1994]). As scans are aligned and merged, new iso-
surfaces can be extracted to serve as better anchors - better in the sense of more surface
coverage and in the sense of improved surface estimation. Usually, two or more additional
scans areimmediately required after theinitial set of rotationsto capture the top and bottom
of the object. If these scans are well chosen, they will overlap the existing isosurface well
enough to perform pairwise alignment while providing enough new datato offer an anchor
for future alignments against the top and bottom of the object.

We do not claim that this practical procedureisoptimal. In fact, the alignment results
will depend on the order in which scans are merged. Nevertheless, the measurable quality
of the results indicate that the procedure is viable and accurate for our scanning system.
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Figure 8.1: Noise reduction by merging multiple scans. A planar target was scanned 6 times with
a 15° rotation of the viewpoint after each scan. Standard deviation from planarity for the recon-
struction was determined after merging each scan volumetrically. Note how each scan improvesthe
estimate of the shape of the target.

8.3 Resaults

We show results for anumber of objects designed to explore noise reduction, robustness of
our algorithm, its ability to fill gapsin the reconstruction, and its attainable level of detail.

To explore the noise reduction properties of our algorithm, we scanned a planar target
from 6 different viewpoints. After merging each scan into the volume, we extracted an iso-
surface, fit a plane through this surface, and computed the standard deviation of the recon-
structed verticesfrom the planar fit. Figure 8.1 shows the results of thisprocedure. Clearly,
after each scan is merged, the planar fit improves, indicating a reduction in noise.

To explore robustness, we scanned athin drill bit (about the thickness of the laser sheet)
from 12 orientations at 30 degree spacings using the traditional method of optical triangu-
lation. Due to the false edge extensions inherent in data from triangul ation scanners using
traditional analysis (see Figure 4.11b), this particular object poses a formidable challenge.
Therendering of thedrill bit reconstructed by zippering rangeimages|[Turk & Levoy 1994]
showsthe catastrophic outcometypical of using apolygon-based approach. The model gen-
erated by the volumetric method, on the other hand, iswithout holes and preserves some of
the helical structure of the original object, even though this structure is near the resolution
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[imit of the scanner.

To demonstrate the effectiveness of carving space for hole filling, we show the stages
of our agorithm when reconstructing the dragon model in Figures 8.3 and 8.4. In thefirst
stage, we confine the signed distance ramps and weight functions to the vicinity of the ob-
served surface. The result isareconstruction with holes where we failed to see the surface.
In the second stage, we follow the laser lines of sight away from the observed surface and
“empty out” much of the space around the dragon. The resulting isosurface indicates some
successinfilling holes, but anumber of undesirable protrusionshave been generated. These
excess surfaces are the result of insufficient carving of space. In the third stage, we follow
up with some additional scans using abackdrop to carvethrough sectionsof themodel. This
resultsin the removal of the extraneousregions, but the holefill regions are still jagged due
to aliasing in the transitions between unseen and empty. Inthefina stage, wefilter the mesh
to smooth the holefill regions. Thisfiltering appliesonly to the holefill regions while pre-
serving the detail in the observed portions of the surface.

The“Happy Buddha” in Figures8.5 and 8.6 showsthat our method can be used to gener-
ate very detailed, hole-freemodels. From a set of 48 rangeimages, we generated the model
shown in Figure 8.6a. This model has gaps which we were able to fill with space carving
and an additional 10 scans against a backdrop. The final model contains over 2.5 million
triangles, which we decimate to 800,000 triangles without appreciable loss of detail using
the method of [Schroeder & Lorensen 1992]. The rendering in Figure 8.6b, made using
RenderMan and the decimated mesh, incorporatesanumber of rendering algorithmsinclud-
ing accessibility shading and simple simulation of layered surface scattering. Because the
computer model is free of holes and self-intersecting surfaces, we successfully manufac-
tured a hardcopy using stereolithography (Figure 8.6¢). For amore detailed description of
the stereolithography process, refer to Appendix B. Figure 8.7 shows both wireframe and
shaded renderings of a single range surface, the reconstructed surface, and the decimated
mesh. The reconstruction from multiple range surfacesisless noisy and more detailed than
asinglerange surface. The number of triangles generated, however, ismorethan necessary.
In the figure, a3:1 decimation approximates the reconstruction without appreciable |oss of
detail.
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Figure8.2: Merging rangeimages of adrill bit. We scanned a1.6 mm drill bit from 12 orientationsat
a 30 degree spacing using traditional optical triangul ation methods. Illustrations(a) - (d) each show
aplan (top) view of aslice taken through the range data and two reconstructions. (a) Therange data
shown as unorganized points: algorithms that operate on this form of data would likely have dif-
ficulty deriving the correct surface. (b) The range data shown as a set of wire frame tessellations
of therange data: the false edge extensions pose a challenge to both polygon and volumetric meth-
ods. (c) A slice through the reconstructed surface generated by a polygon method: the zippering
algorithm of [Turk & Levoy 1994]. (d) A dlice through the reconstructed surface generated by the
volumetric method described in thisthesis. (€) A rendering of the zippered surface. (f) A render-
ing of thevolumetrically generated surface. Note the catastrophicfailure of the zippering a gorithm.
The volumetric method, however, produces a watertight model. (g) A photograph of the origina
drill bit. Thedrill bit was painted white for scanning.
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Figure 8.3: Reconstruction of adragon — Part | of Il. Illustrations (&) and (d) are full views of the
dragon. Illustrations(b) and (€) are magnified viewsof thesection highlightedby thegreenbox in (a).
Regions shownin red correspond to holefill triangles. Illustrations(c) and (f) are slices through the
corresponding volumetric grids at thelevel indicated by the green linein (b). (8)-(c) Reconstruction
from 61 range images without space carving and hole filling. The magnified rendering highlights
the holesin the belly. The dlice through the volumetric grid shows how the signed distance ramps
are maintained close to the surface. The gap in the ramps leads to a hole in the reconstruction. (d)-
(f) Reconstruction with space carving and hole filling using the same data as in (a). While some
holes are filled in a reasonable manner, some large regions of space are left untouched and create
extraneous tessellations. The slice through the volumetric grid reveal s that the isosurface between
the unseen (brown) and empty (black) regionswill be connected to theisosurface extracted from the
distance ramps, making it part of the connected component of the dragon body and leaving us with
a substantial number of false surfaces.
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Figure 8.4: Reconstruction of adragon—Part 11 of 11. Following Figure 8.3, (a) and (d) arefull views
of the dragon, (b) and (e) are magnified views of the belly, and () is a slice through the volumet-
ric grid. (a)-(c) Reconstruction with 10 additional range images using “backdrop” surfaces to ef-
fect more carving. Notice how the extraneous holefill triangles nearly vanish. The volumetric slice
shows how we have managed to empty out the space near the belly. The bumpiness along the hole
fill regions of the belly in (b) correspondsto aiasing artifacts from tessellating over the discontinu-
ous transition between unseen and empty regions. (d) and (€) Reconstruction asin (a) and (b) with
filtering of the holefill portionsof the mesh. Thefiltering operation blursout the aiasing artifactsin
the holefill regions while preserving the detail in the rest of the model. Careful examination of (e)
revealsafaint ridgeinthe vicinity of the smoothed holefill. Thisridgeisactua geometry presentin
all of the shaded renderings, in thisand the previous. The final model contains 1.8 million polygons
and is watertight.



164 CHAPTER 8. RESULTS OF THE VOLUMETRIC METHOD

@ (b) (©)

Figure8.5: From theoriginal to a3D hardcopy of the*Happy Buddha’ —Part | of 11. (a) Theoriginal
isaplastic and rosewood statuette that stands 20 cm tall. (b) Photograph of the origina after spray
painting it matte gray to simplify scanning. (c) Gouraud-shaded rendering of one rangeimage of the
statuette. Scans were acquired using a Cyberware scanner, modified to permit spacetime triangula-

tion. Thisfigureillustratesthe limited and fragmentary nature of the information available from a
single range image.
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Figure 8.6: From the original to a 3D hardcopy of the “Happy Buddha’ — Part 11 of 1. (a) Gouraud-
shaded rendering of the 2.4 million polygon mesh after merging 48 scans, but before hole-filling.
Notice that the reconstructed mesh has at |east as much detail as the single range image, but is less
noisy; thisismost apparent around the belly. Theholeinthe baseof themaodel correspondsto regions
that were not observed directly by the range sensor. (b) RenderMan rendering of an 800,000 polygon
decimated version of the hole-filled and filtered mesh built from 58 scans. By placing a backdrop
behind the model and taking 10 additional scans, we were able to see through the space between the
base and the Buddha s garments, allowing usto carve space and fill the holesin the base. (c) Photo-
graph of a hardcopy of the 3D model, manufactured by 3D Systems, Inc., using stereolithography.
The computer model was sliced into 500 layers, 150 microns apart, and the hardcopy was built up
layer by layer by selectively hardening aliquid resin. The processtook about 10 hours. Afterwards,
the model was sanded and bead-blasted to remove the stair-step artifacts that arise during layered
manufacturing.
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(@) (b)

Figure 8.7: Wireframe and shaded renderings of the Happy Buddha model. (a) and (b) Wireframe
and shaded rendering of a singlerange surface. (¢) and (d) Wireframe and shaded rendering of the
2.6 milliontriangle reconstruction. The contoursin the wireframe correspond to small trianglescre-
ated when the isosurface clips the edges and corners of voxel cubes. The shaded rendering demon-
strates noise reduction and increased detail after multiple scans are combined. (€) and (f) Wire-
frame and shaded rendering of the 800,000 triangle decimated mesh. The decimation process effec-
tively collapses nearly coplanar trianglesinto larger trianglesfoll owing the method of [ Schroeder &

Lorensen 1992].
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Voxel Exec.
Input Size Volume time | Output
Model Scans | triangles | (mm) | dimensions | (min.) | triangles | Holes
Dragon 61 15M 0.35 | 712x501x322 | 56 17M 324

Dragon + fill 71 24 M 0.35 | 712x501x322 | 257 1.8M 0
Buddha 48 5M 0.25 | 407x957x407 | 47 24 M 670
Buddha +fill | 58 9M 0.25 | 407x957x407 | 197 26 M 0

Table8.1: Statisticsfor the reconstruction of the dragon and Buddhamodel's, with and without space
carving.

Statistics for the reconstruction of the dragon and Buddha models appear in Table 8.1.
With the optimizations described in the previous section, we were able to reconstruct the
observed portions of the surfaces in under an hour on a250 MHz MIPS R4400 processor.
The space carving and holefilling algorithmis not completely optimized, but the execution
times are till in the range of 3-5 hours, less than the time spent acquiring and registering
the range images. For both models, the RM S distance between pointsin the original range
images and points on the reconstructed surfaces is approximately 0.1 mm. This figureis
roughly the same asthe accuracy of the scanning technol ogy, indicating excellent alignment
and a nearly optimal surface reconstruction.



Chapter 9
Conclusion

In this thes's, we have worked from the most basic issues of a prevalent range scanning
technology and progressed to amethod that reconstructs complex model sfromvast amounts
of range data. We review these contributions in Sections 9.1 and 9.2. In Section 9.3, we
describe severa areas for future work.

9.1 Improved triangulation

Optical triangulation has been used for decades, yet the traditional methods are fundamen-
tally limited in the amount of accuracy they can deliver. Variationsin reflectance and shape
induce errors on the order of the width of theilluminant, regardless of sensor resolution. In
addition, when using coherent illumination, laser speckle corrupts the imaged light reflec-
tions and contribute range error, again independent of sensor resolution. Except for very
simple surfaces, the errors due to reflectance and shape variations typically dominate; at a
minimum, these errors are objectionabl e because they are coherent.

Many optical triangulation systems sweep the illuminant across an object, leading to
consecutive sensor images that record light reflecting from individual points on the object.
We have shown that by analyzing the time evolution of these imaged reflections, distor-
tions induced by shape and reflectance changes can be corrected. In theory, for an ideal
orthographic sensor with infinite resolution, these errors can be eliminated completely. In
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practice, we have demonstrated that we can significantly reduce range distortions with ex-
isting hardware that uses a perspective sensor of finite resolution. Although our implemen-
tation of the spacetime method does not completely eliminate range artifacts, it has proven
to reducethe artifactsin all shape and reflectance experiments we have conducted. Further,
increases in sensor resolution and reduction of filtering artifactswill undoubtedly improve
the accuracy for spacetime analysis, while the same cannot be said for traditional optical
triangulation methods. The influence of laser speckle, however, continues to limit triangu-
lation accuracy.

9.2 Volumetrically combining range images

Optical triangulation scanning is one of a variety of rangefinder technologies that acquire
sets of dense samplings known as range images. Numerous researchers have attacked the
problem of reconstructing a single surface from these rangeimages. In thisthess, we have
developed a new algorithm for volumetric integration of range images, leading to asurface
reconstruction without holes. The algorithm has a number of desirable properties, includ-
ing the representation of directional sensor uncertainty, incremental and order independent
updating, robustness in the presence of sensor errors, and the ability to fill gapsin the re-
construction by carving space. Our use of arun-length encoded representation of the voxel
grid and a shear-warp factorization for the scan-conversion of range images makes the al-
gorithm efficient. Thisin turn alows us to acquire and integrate a large number of range
images. In particular, we demonstrate the ability to integrate up to 70 scansinto a high res-
olution voxel grid to generate million polygon modelsin afew hours. These modelsarefree
of holes, making them suitable for surface fitting, rapid prototyping, and rendering.

9.3 Futurework

In this section, we describe some directions for improving both optical through spacetime
analysis and the volumetric method for surface reconstruction. We conclude with a discus-
sion of some open problemsin the acquisition of the shape and appearance of objects.
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9.3.1 Optimal triangulation

The accuracy of the spacetime analysis hinges on reliably capturing the spacetime images.
Accordingly, al efforts to enhance the quality of these images are of benefit. In terms of
the sensor, higher pixel densities mean more samplesin = in the spacetime images (as well
as more y samples for the spacetime volume). These improved pixel densities should be
accompanied by either slower scanning or higher frame rates for increased resolution in
x. In addition, greater dynamic range at the sensor will alow for acquisition of surfaces
with widely varying reflectances even when oriented at grazing angles to the illumination.
Video digitizers with more bits per pixel will also lead to more precise representations of
the spacetime images. Experimenting with different illuminants can aso lead to greater ac-
curacy. In Chapter 3, we argue that widening the laser sheet may improve results, because
the spacetime impul se response acts as a bandlimiting filter. Further, the limitations due to
laser speckle can be reduced with partially coherent, perhaps even incoherent illumination.
In the presence of spatiotemporal aliasing, methods for registering and deblurring multiple
spacetime images should aso lead to improved resolution.

When asurfaceisvery bright or shiny, surfaceinterreflectionswill corrupt the spacetime
image. Under these circumstances, recovering accurate range islikely to be very challeng-
ing. Research in shape from shading which accounts for surface interreflections may offer
some promising avenues toward a solution [Nayar et a. 1990] [Wada et a. 1995]. In the
case of shiny surfaces, the errorswill depend heavily on the orientation of the surface with
respect to theillumination. Acquiring multiplerangeimages can help identify some of these
errors as outliers, because they will not be corroborated by the other range images. I1n ad-
dition, the interreflections will tend to distort the shape of the spacetime Gaussians so that
they will not behave ideally; this deviation fromideal will be detected, and the sampleswill
be discarded or downweighted in favor of data taken from adifferent orientation that yields
better spacetime Gauss ans.

The method of acquiring and analyzing the spacetime images in Chapter 4 requires all
framesto be captured and then post-processed. Ideally, wewould like to perform the space-
time analysis in hardware, in realtime. Such a system could be implemented as a ring of
framebuffersthat storethe most recent N frames, where NV isdetermined by thetimeit takes
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for the illuminant to traverse a point on the surface. To reduce storage costs and improve
performance, the frames could be run-length encoded, and the spacetime rotation could be
implemented as a shear. In the case of a scanning laser beam with alinear array sensor, the
frame buffer would be small — a single array of pixels — and a hardware implementation
using a high speed digital signal processing chip could be quite practical.

9.3.2 Improvementsfor volumetric surfacereconstruction

The volumetric method described in Chapters 5-8 leads to a variety of directionsfor future
work. Someof theissuesthat deserve attention are discussed in Sections 6.3 and 6.4. These
include choosing better conditioning functionsto minimize isosurface artifacts, modifying
the algorithm to cope with thin surfaces and sharp corners, and exploring strategiesfor more
aggressive space carving.

Space carving can aso beimproved to help remove outliers. Currently, the space carv-
ing algorithmis conservative in that only unseen regions may be reclassified as empty; any
voxels containing a signed distance remain untouched. However, if avoxel is observed to
be empty from several points of view, then it is highly unlikely to contain a surface. Rec-
ognizing such a circumstance could lead to an algorithm that is more capable of removing
falserange data, i.e., outliers.

We can also hope to improve the space carving method through the more traditional
methods of carving from image silhouettes [Szeliski 1993]. Using geometric backdrops
achieves the effect of using image silhouettes, but it has drawbacks. A range scanner can
usually digitize large objects that do not fit into the field of view by moving the scanner or
the object as needed. Requiring that the scanner always see a backdrop at the back of the
field of view, however, makes it more difficult to scan these larger objects. In the case of
optical triangulation, the backdrop must be visible to both the laser and the sensor. This
means that the backdrop typically has to be positioned far enough away so that the triangu-
lation scanner can see around the object. But requiring that the backdrop be far away, yet
till visible to the sensor, means wasting valuable resolution, as the pixels must map to a
larger field of view. The use of a separate color camerawith colored or light-emitting back-
drops solves these problems. As long as the backdrop is clearly distinguishable from the
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object being scanned, then the distance to the backdrop isimmaterial, and it can be placed
conveniently outside of the working volume of the range scanner.

The hole filling algorithm can be improved by making the surface properties of filler
polygons more consistent with the remainder of the surface. When scanning a surface that
has a discernable texture (such as the scales of alizard), there will be a distinct difference
between the smoothed holefill regions and the remainder of the surface. Ideally, we would
like these holefill regions to adapt to the surrounding texture, either automatically or with
some user guidance. Recent work on analyzing and synthesizing image textures suggests
one approach for propagating surface properties[Heeger & Bergen 1995]. If color informa
tion werealso availablein regionsaround the holefillers, then color texture could be grafted
aswell.

Asrange scanners becomefaster, some approaching realtime, areconstructionalgorithm
that isfast enough to keep pace also becomes very attractive. One can imagine amotorized
acquisition gantry or a hand-held scanner with orientation and position sensors delivering
registered range images to a system that could create a detailed model in avery short pe-
riod of time. Though we have developed a number of optimizations for the volumetric al-
gorithm to ensure good performance, we have yet to explore an increasingly important di-
rection: paralelization. [Lacroute 1996] has parallelized the shear warp volume rendering
algorithm and obtained excellent results on a shared memory multiprocessor architecture.
We would expect to attain similar improvementswith the fast volumetric method described
in Chapter 7. Onefactor that should make implementation easier isthe lack of front to back
ordering that volume rendering requires. In the case of volumetric surface reconstruction,
the voxels are updated in a manner that is completely independent of order.

9.3.3 Open problemsin surfacedigitization

A number of important problemsremain on theway to automated and hi-fidelity acquisition
of the shape and appearance of the surface of an object. Among the most challenging are
solving for the next best view and capturing surface reflectance properties.

The “next best view” problem may be stated as follows: given a set of range views of
an object, determine the next position and orientation of the object or sensor that islikely to
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maximize the knowledge about the object and the space around it. Of course, without know-
ing the shape of the object apriori, it isimpossible to determine the next best view in terms
of maximizing the visible surface area of the object. Alternative measures are necessary,
and one promising measure is the surface area of the boundary surrounding the unknown
regions of the space in and around the object. This areaisin fact defined by the hole fill
polygons computed in the volumetric algorithm described in this thesis. Initial resultsin
solving for next best view are promising [Pito 1996], but more research is warranted.

For faithful reproduction of the appearance of objects, the surface reflectance proper-
ties must be acquired. A simple strategy would be to reconstruct the shape of an object,
take afew color images, and then “paste” the color onto the object by following the lines of
sight from the color camera. For overlapping views, the colors could ssmply be averaged
together. This strategy is flawed, however, because the results are dependent on the light-
ing and the viewpoint. What we really want are the underlying reflectance properties over
the surface of the object so that we can render the computer model under arbitrary light-
ing and viewing conditions. These reflectance properties can be very complex. For general
anisotropic surfaces, the bi-directional reflectance distribution function (BRDF) at apointis
fivedimensional: 2 dimensionsfor each of the incoming and outgoing light directions, and
one dimension for wavelength (two dimensionsfor wavelength if fluorescenceis possible).
Accounting for variations over the surface of the object, the space is seven (possibly eight)
dimensional. With controlled lighting and many color images of the object, we can begin
to fill thislarge space with data. The problem is further complicated, however, by the fact
that light reflecting from the surface toward the sensor arrives at the surface not only from
the light source, but from other points on the surface. Accounting for the effects of these
interreflectionsis crucial to accurately measuring surface BRDF, which in turn requires a
very accurate description of the shape of the object. Some results have been obtained for
simplified BRDF's and moderate variations across the surface [Nayar et al. 1990] [Sato &
Ikeuchi 1996], but the general problem remains open.
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Appendix A
Proof of Theorem 5.1

Theorem 5.1
Given theintegral:

Jz 0z
I = ///h (x,y,z,a—x,a—y) dxdydz
where:
7= f(x,y)

and the function £ is of the form:

0z 0z dz 0z
h (xvyvzva_xva_y) - e(:z;,y,z) [(_a_xv_a_yvl) 'V(w,y,Z)]

the function = that minimizes the integral satisfies the relation:
v-Ve+eV-v=10

Proof:

The solution liesin applying the cal culus of variations, which hasthe fundamental result
known as the Euler-Lagrange equation:
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oh 0  Oh o  0Oh

92 " 900(0-)02) 9y 0(0=j0y) A-D

We begin with thefirst term, 0k /0=. We can rewrite & as:

0z 0z
= eEm)

N o
= e %8:1; Uyay v,

where we have dropped the explicit dependencieson (., y, z) and where the components of
v are (v, vy, v.). Then we can compute:

oh o[ 0x 0e T [ 0noe owox o]
9: 92| oL dy T T 92 02 02 dy 0z '
Next, we compute the intermediate partias:
_oh
9(0z/0x) "
and:
o
9(0=/0y)
The remaining partials are then:
g oh B _a(evx) B %8(6%)
Ox 0(02/0x) Ox dr 0z
Je Jdv, 0z Je v,
R T T [a— ‘ azl (A-3)

and:
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dy dy 0z
Oe dv, 0z | de  0Ov,
Uyay — € ay — a_y [Uya —|— €$‘| (A4)

Substituting Equations A.2, A.3, and A.4 into the Euler-Lagrange equation (Equation A.1),

we arrive a:

de v,
v,.— + e

0z 0z

Rearranging:

ge , Oc
Uy Uyay

ox

In “del” notation, this becomes:

—I_Ux_‘l'e

de = Ouy N de N dv,
oz gz Y dy dy

% N avx_l_%_l_ Jv, _0
e oz e@y “9: ) =

v-Ve+eV-v=10



Appendix B
Stereolithography

Thefield of rapid prototyping, aso known as agile manufacturing, isgrowing quickly tofill
the need for visualizing and testing complex solid parts without the use of time consuming
milling processes. Theserapid prototyping technol ogiestypically use alayered manufactur-
ing strategy, where the object isbuilt in horizontal sections, one atop another. This strategy
allowsfor complex parts to be built without restrictions on internal cavities and accessibil-
ity issues that confront conventional milling methods. [ Dolenc 1993] gives an overview of
some of the rapid prototyping methods in use today.

One of the more successful layered manufacturing strategies has been the method of
stereolithography, the method used for constructing the “hardcopy” of the Happy Buddha
model described in Chapter 8. Figure B.1 shows how the process works. The computer
model isfirst sliced horizontally, yielding a stack of polygonal outlines — well-defined re-
gions the separate the inside of the model from the outside. Next, a support platform is
raised to the surface in avat containing a liquid photopolymer that hardens when exposed
to ultraviolet light. A sweeper spreads athin layer of the photopolymer over the surface of
the platform, and an overhead UV laser scans and hardenstheinterior of the polygonsin the
first dice. The platform then lowers one dlice thickness, the sweeper distributesanew layer
of photopolymer, and the process repeats for the next dice. In thisway, the object is con-
structed dlice by dice. The process for building the Happy Buddha model required about
10 hours. Note how important it is that the model have no holes— such holes would lead to
open polygons in the dicing step, and the definition of inside and outside the object would
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UV Laser
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(UV sensitive)

@
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(b)

FigureB.1: The stereolithography process. (a) First the computer model iscut into horizontal slices.
(b) The interior of each dliceis hardened by a laser scanning over a photopolymer. The sweeper
delivers even layers across the surface, while the platform lowers after each dliceis hardened.

no longer be meaningful. Thus, the contribution of being able to make “watertight” models
as described in this thesis is essential to the manufacture of three dimensional replicas of
the original model using stereolithography.

When the layering process is finished, the solid object sits immersed in the vat of lig-
uid. The object isthen lifted out of the vat, and excess liquid isremoved. To save time, the
laser may only sweep theinterior of the object enough to makeit structurally stable, but not
completely hard. In this case, the object is “baked” in an ultraviolet oven to complete the
hardening process.

The thickness of the stereolithography dices in the Happy Buddha model is about 150
microns. This may seem very accurate, but it still leaves noticeable contouring artifacts
between dlices. Figure B.2 shows some of these contours. To remove the contours, a post-
processing step of bead-blasting and manual sanding istypically required.

Onedifficulty in constructing model swith stereolithography isthe problem of overhang-
ing surfaces. If aportion of the surface is not supported from below or from the side, then,
whenitishardened, it will sink into thevat of liquid. Asaresult, asupport must beinserted
into the computer model before dlicing and manufacture. This support istypically very nar-
row so that it requireslittle time to create as the model is being built. Further, it comesto a
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(b)
@)

Figure B.2: Contouring dueto layered manufacture. () The Happy Buddhastereolithography hard-
copy. The green rectangle is viewed from a different angle and magnified in (b). Notice the con-
touring due to thelayered manufacturing method. These contours are typically smoothed out with a
post-process of bead blasting and hand sanding.

sharp point so that it may be removed easily after the model is finished. In general, a com-
plex model will require anetwork of supports as shown in Figure B.3.
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(b)

Figure B.3: Supportsfor stereolithography manufacturing. (a) Shaded rendering of the Happy Bud-
dhamodel and the supports(show in green) that were needed to handle overhanging surfaces. These
supports come to narrow points and break off easily after the model constructionisfinished. (b) A

plan view of the supports by themselves.
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