
Stanford CSL-TR-98-758 1

Matching Output Queueing with a Combined Input Output
Queued Switch

Shang-Tse Chuang
Ashish Goel

Nick McKeown

Balaji Prabhakar 1

Stanford CSL-TR-98-758

Abstract —

The Internet is facing two problems simultaneously: we need a faster switching/routing

infrastructure, and we need to introduce guaranteed qualities of service (QoS). As a

community, we have solutions to each: we can make the routers faster by using input-

queued crossbars, instead of shared memory systems; and we can introduce QoS using

WFQ-based packet scheduling. But we don’t know how to do both at the same time. Until

now, the two solutions have been mutually exclusive — all of the work on WFQ-based

scheduling algorithms has required that switches/routers use output-queueing, or

centralized shared memory. We demonstrate that a Combined Input Output Queueing

(CIOQ) switch running twice as fast as an input-queued switch can provide precise

emulation of a broad class of packet scheduling algorithms, including WFQ and strict

priorities. More precisely, we show that a “speedup” of is both necessary and

sufficient for this precise emulation. We introduce a variety of algorithms that configure

the crossbar so that emulation is achieved with a speedup of two, and consider their

running time and implementation complexity. We believe that, in the future, these results

will make possible the support of QoS in very high bandwidth routers.

1. Balaji Prabhakar is with MIT LIDS.

2 1 N⁄–

Stanford CSL-TR-98-758 2

1 Introduction

Many commercial switches and routers today employ output-queueing.1 When a

packet arrives at an output-queued (OQ) switch, it is immediately placed in a queue that is

dedicated to its outgoing line, where it will wait until departing from the switch. This

approach is known to maximize the throughput of the switch: so long as no input or output

is oversubscribed, the switch is able to support the traffic and the occupancies of queues

remain bounded.

Perhaps more importantly, the use of a separate queue for each output means that flows

of packets for different outputs are kept separate, and cannot interfere with each other. By

carefully scheduling the time that a packet is placed onto the outgoing line,2 a switch or

router can control the packet’s latency, and hence provide quality-of-service (QoS) guar-

antees. But output queueing is impractical for switches with high line rates, or with a large

number of ports: the fabric and memory of an switch must run times as fast as

the line rate. Unfortunately, at the highest line rates, memories with sufficient bandwidth

are simply not available. For example, consider a OQ switch operating at a line

rate of 10Gbit/s. If we use a 512-bit memory datapath, we require memory devices that

can perform both a writeand a read operation every 1.6ns.

On the other hand, the fabric and the memory of an input queued (IQ) switch need

only run as fast as the line rate. This makes input queueing very appealing for switches

with fast line rates, or with a large number of ports. That is, for a given speed of memory it

is possible to build a faster switch; or for a given speed switch it is possible to use slower,

lower-cost memory devices. For example, consider again the switch operating at

a line rate of 10Gbit/s. If the switch uses input-queueing instead of output-queueing, we

can use memory devices that perform a write and a read operation every 51.2ns. This is

1. When we refer to output-queueing in this paper, we include designs that employ centralized shared mem-
ory.

2. By using schemes as proposed in [1], [2], for example.

N N× N

32 32×

32 32×

Stanford CSL-TR-98-758 3

readily achievable with commercially available memories. For this reason, the highest

performance switches and routers use input-queued crossbar switches [3][4].

But IQ switches can suffer from head-of-line (HOL) blocking, which can have a

severe effect on throughput. It is well-known that if each input maintains a single FIFO,

then HOL blocking can limit the throughput to just 58.6% [5].

One method that has been proposed to reduce HOL blocking is to increase the

“speedup’’ of a switch. A switch with a speedup of can remove up to packets from

each input and deliver up to packets to each output within a time slot, where a time slot

is the time between packet arrivals at input ports. Hence, an OQ switch has a speedup of

 while an IQ switch has a speedup of one. For values of between 1 and packets

need to be buffered at the inputs before switching as well as at the outputs after switching.

We call this architecture a combined input and output queued (CIOQ) switch.

Both analytical and simulation studies of a CIOQ switch which maintains a single

FIFO at each input have been conducted for various values of speedup [6][7][8][9]. A

common conclusion of these studies is that with or 5 one can achieve about 99%

throughput when arrivals are independent and identically distributed at each input, and the

distribution of packet destinations is uniform across the outputs.

But it has been shown that a throughput of 100% can be achieved with a speedup of

just one, if we arrange the input queues differently. That is, HOL blocking can be elimi-

nated entirely using a scheme known asvirtual output queueing in which each input main-

tains a separate queue for each output. It has been shown that for independent arrivals, the

throughput of an IQ switch can be increased to 100% [10]. We may draw the conclusion:

Speedup is not necessary to eliminate the effect of HOL blocking.

In practice, we are not only interested in the throughput of a switch, but also in the

latency of individual packets. This is particularly important if a switch or router is to offer

QoS guarantees. Packets in an IQ switch not only contend for an output, they also contend

S S

S

N S N

S 4=

Stanford CSL-TR-98-758 4

for entry into the switch fabric with packets that are destined for other outputs. We call this

phenomenoninput contention. Each input can deliver only one packet into the fabric at a

time; if it has packets for several free outputs, it must choose just one packet to deliver,

holding other packets back. This places a packet at the mercy of other packets destined for

other outputs. This is in stark contrast with output-queueing, where a packet is unaffected

by packets destined for other outputs. We may draw the conclusion:To control delay, we

need a mechanism to eliminate input contention.

Previous studies of CIOQ switches make no guarantees about the delay of an individ-

ual packet; instead they consider only average delay and throughput. While these results

are academically interesting, they do not give us the principal benefit of output queueing:

the ability to control the delay of individual packets. We believe that a well-designed net-

work switch should perform predictably in the face ofall types of arrival process, allow-

ing the delay of individual packets to be controlled. Hence our approach is quite different,

and our result subsumes previous work. Rather than find values of speedup that work well

on average, or with simplistic and unrealistic traffic models, we find the minimum

speedup such that a CIOQ switch behavesidentically to an OQ switch forall types of traf-

fic. Here, “behave identically’’ means that when the same inputs are applied to both the

OQ switch and to the CIOQ switch, the corresponding output processes from the two

switches are completely indistinguishable. Further, we place no restrictions on arrivals;

our results apply equally for any type of traffic, even if it saturates the switch.

The need for a switch that can deliver a certain grade of service,irrespective of the

applied traffic is particularly important given the number of recent studies that show how

little we understand network traffic processes [11]. Indeed, a sobering conclusion of these

studies is that it is not yet possible to accurately model or simulate a trace of actual net-

work traffic. Furthermore, new applications, protocols or data-coding mechanisms may

bring new traffic types in future years.

Stanford CSL-TR-98-758 5

In this respect the formulation presented here is both novel and powerful: It allows us

to obtain an algorithm that enables a CIOQ switch to perform exactly the same as an OQ

switch, using memory devices operating more slowly, for arbitrary switch sizes, and for

arbitrary input traffic patterns.

2 Background

Consider the single stage, switch shown in Figure 1. Throughout the paper we

assume that packets begin to arrive at the switch from time , the switch having been

empty before that time. Although packets arriving to the switch or router may have vari-

able length, we will assume that they are treated internally as fixed length “cells.’’ This is

common practice in high performance LAN switches and routers; variable length packets

are segmented into cells as they arrive, carried across the switch as cells, and reassembled

back into packets again before they depart [4][3]. We take the arrival time between cells as

the basic time unit and refer to it as atime slot. The switch is said to have aspeedup of ,

for if it can remove up to cells from each input and transfer at most

 cells to each output in a time slot. A speedup of requires the switch fabric to run

times as fast as the input or output line rate. As mentioned in the introduction, the extreme

values of and give a purely input-queued (IQ) and a purely output-queued

(OQ) switch respectively. For buffering is required both at the inputs and at the

outputs, and leads to a combined input and output queued (CIOQ) architecture. The fol-

lowing is the problem we wish to solve.

The speedup problem:Determine the smallest value of and an appropriate cell sched-

uling algorithm that

1. allows a CIOQ switch to exactly mimic the performance of an output-queued
switch (in a sense that will be made precise),

2. achieves this for anyarbitrary input traffic pattern,

N N×

t 1=

S

S 1 2 … N, , ,{ }∈ S

S S S

S 1= S N=

1 S N< <

S

π

Stanford CSL-TR-98-758 6

3. is independent of switch size.

Figure 1: General Combined Input and Output Queued (CIOQ) switch.

 In an OQ switch, arriving cells are immediately forwarded to their corresponding out-

puts. This (a) ensures that the switch iswork-conserving, i.e. an output never idles so long

as there is a cell destined for it in the system, and (b) allows the departure of cells to be

scheduled to meet latency constraints.1 We will require that any solution of the speedup

problem possess these two desirable features; that is, a CIOQ switch must have the identi-

cal behavior of an OQ switch in the following sense:

Identical Behavior: A CIOQ switch is said tobehave identicallyto an OQ switch if,

under identical inputs, the departure time of every cell from both switches is identical.

As a benchmark with which to compare our CIOQ switch, we will assume there exists

a shadow OQ switch that is fed the same input traffic pattern as our CIOQ switch.

As we will see later, the key to solving the speedup problem is a scheduling algorithm that

keeps track of the cells in the CIOQ switch. The scheduling algorithms decides the order

in which cells at the input are transferred across the switch fabric to the output in such a

1. For ease of exposition, we will at times assume that the output uses a FIFO queueing discipline, i.e. cells
depart from the output in the same order that they arrived to the inputs of the switch. However, we are
interested in a broader class of queueing disciplines: ones that allow cells to depart in time to meet partic-
ular bandwidth and delay guarantees.

Output 1Input 1

Input N Output N

N N×

Stanford CSL-TR-98-758 7

way that the cells may depart from the switch at the same time as they do in the shadow

OQ switch. Each time cells are to be transferred, the scheduling algorithm selects a match-

ing between inputs and outputs so that each non-empty input is matched with at most one

output and, conversely, each output is matched with at most one input. The matching is

used to configure the switch before cells are transferred from the input side to the output

side. A CIOQ switch with a speedup of is able to make such transfers during each

time slot.

2.1 Push-in Queues

Throughout this paper, we will make repeated use of what we will call apush-in

queue. Similar to a discrete-event queue, a push-in queue is one in which arriving custom-

ers are added to an arbitray location in the queue based on some metric. For example, each

customer may carry with them a departure time, and is placed in the queue ahead of all

customers with a later departure time, yet behind customers with an earlier departure time.

The only property that defines a push-in queue is that once placed in the queue, customers

may not switch places with other customers. In other words, their relative ordering

remains unchanged. In general, we distinguish two types of push-in queues: (1) “Push-In

First-Out” (PIFO) queues, in which arriving customers are placed at an arbitrary location,

and the customer at the head of the queue is always the next to depart. PIFO queues are

quite general — for example, of a WFQ scheduling discipline operating at an output

queued switch is a special case of a PIFO queue. (2) “Push-In Random-Out” (PIRO)

queues, in which customers are removed from the queue in an arbitrary order. i.e. it is not

necessarily the case that the next customer to depart is the one currently at the head of the

queue. Later, we will use PIRO queues as a buffering mechanism at the input of a CIOQ

switch.

 We will assume that each input of the CIOQ switch maintains an input queue: an

ordered set of cells waiting at the input port. In general, the CIOQ switches that we con-

S S

Stanford CSL-TR-98-758 8

sider, can all be described using PIRO input queues.1 Many orderings of the cells are pos-

sible — in fact, we will see that the exact nature of the ordering leads to a variety of

interesting switch scheduling algorithms. The scheduling algorithms described in this

paper differ only in the ordering of their input queues. So later, we will discuss different

orderings in detail.

Similarly, each output maintains an output queue of the cells waiting to depart; we say

that these cells form part of the output buffer. In addition, each output maintains anoutput

priority list: an ordered list of cells at the inputs waiting to be transferred to this particular

output. The output priority list is always arranged in the order in which the cells would

depart from the shadow OQ switch. This priority list will depend on the queueing policy

followed by the OQ switch (FIFO, WFQ, strict priorities etc.).

2.2 Definitions

The following definitions are crucial to the rest of the paper.

Definition 1: Time to Leave — TL(c) is the time slot in which cellc would leave the

shadow OQ switch. Of course, TL(c) is also the time slot in which it must leave from our

CIOQ switch for the identical behavior to be achieved.

Definition 2: Output Cushion — OC(c) is the number of cells waiting in the output buffer

at cellc’s output port which have a lower time to leave value than cellc.

Notice that if a cell has a small (or zero) output cushion, then the scheduling algorithm

must urgently deliver the cell to its output so that it may depart when its time to leave is

reached. Conversely, if a cell has a large output cushion, the scheduling algorithm may

temporarily set the cell aside while more urgent cells are delivered to their outputs. Note

that because the switch is work-conserving, a cell’s output cushion is decremented during

1. In practice, we need not necessarily use a PIRO queue to implement these techniques. But we will use the
PIRO queue as a general way of describing the input queueing mechanism.

Stanford CSL-TR-98-758 9

every time slot. A cell’s output cushion can only be increased by newly arriving cells that

are destined to the same output and have a more urgent time to leave.

Definition 3: Input Thread — IT(c) is the number of cells ahead of cellc in its input pri-

ority list.

In other words,IT(c) represents the number of cells currently at the input that need to

be transferred to their outputs more urgently than cellc. A cell’s input thread is decre-

mented only when a cell ahead of it is transferred from the input, and is possibly incre-

mented by newly arriving cells. Notice that it would be undesirable for a cell to

simultaneously have a large input thread and a small output cushion — the cells ahead of

it at the input may prevent it from reaching its output before its time to leave. This moti-

vates our definition ofslackness.

Definition 4: Slackness — L(c) equals the output cushion of cellc minus its input thread

i.e. .

Slackness is a measure of how large a cell’s output cushion is with respect to its input

thread. If a cell’s slackness is small, then it urgency needs to be transferred to its output.

Conversely, if a cell has a large slackness, then it may languish at the input without fear of

missing its time to leave.

Figure 2: A snapshot of a our CIOQ switch

L c() OC c() IT c()–=

A

B

C

B,1

B,3A,7

A,1A,2A,4

B,2

C,2

X

Y

Z

A,3A,5

A,6C,3

C,1

Output QueuesInput Queues

Stanford CSL-TR-98-758 10

To illustrate our definitions, Figure 2 shows a snapshot of our CIOQ switch with a

number of cells waiting at its inputs and outputs. For notational convenience, we define

the time of the snapshot to be time slot 1. We use the notation to represent a cell

that, in the shadow switch, will depart from output port at time , its time to leave. Con-

sider, for example, the cellc denoted in the figure by . For the CIOQ switch to

mimic the shadow OQ switch, the cell must depart from portA at time 3. Its input thread is

, since is the only cell ahead ofc in the input priority list. Its output

cushion is , since out of the three cells queued atA’s output buffer, only two

cells and will depart before it. Further, the slackness of cellc is given by

.

2.3 The general structure of our CIOQ scheduling algorithms:

For most of this paper we are going to concern ourselves with CIOQ switches that

have a speedup of two. Hence, we will break each time slot into four phases:

1. The Arrival Phase
All arrivals of new cells to the input ports take place during this phase.

2. The First Scheduling Phase
The scheduling algorithm selects cells to transfer from inputs to outputs.

3. The Departure Phase
All departures of cells from the output ports take place during this phase.

4. The Second Scheduling Phase
Again, the scheduling algorithm selects cells to transfer from inputs to outputs.

During each scheduling phase the scheduler finds astable matching between the input

ports and the output ports.

Definition 5: Stable Matching — A matching of input ports to output ports is said to be

stable if for each cellc waiting in an input queue, one of the following holds:

1. c is part of the matching, i.e.c will be transferred from the input side to the output
side during this phase.

P t,()

P t

A 3,()

IT c() 1= B 1,()

OC c() 2=

A 1,() A 2,()

L c() OC c() IT c()– 1= =

Stanford CSL-TR-98-758 11

2. A cell that is ahead ofc in its input priority list is part of the matching.

3. A cell that is ahead ofc in its output priority list is part of the matching.

Notice that conditions 2 and 3 above may be simultaneously satisfied, but condition 1

excludes the other two. The conditions for a stable matching can be achieved using the so-

calledstable marriage problem. Solutions to the stable marriage problem are called stable

matchings and were first studied by Gale and Shapely [12]— they gave an algorithm that

finds a stable matching in at most iterations, where is the sum of the lengths of all

the input priority lists.

Our specification of the scheduling algorithm for a CIOQ switch is almost complete:

the only thing that remains is to specify how the input queues are maintained. Different

ways of maintaining the input queues result in different scheduling algorithms. In fact, the

various scheduling algorithms presented later differonly in the ordering of their input

queues. For reasons that will become apparent, we will restrict ourselves to a particular

class of orderings, which is defined as follows.

Definition 6: Input Queue Ordering is PIRO: When a cell arrives, it is given a priority

number which dictates its position in the queue. i.e. a cell with priority number X is placed

at location (X+1) from the head of the list. a cell is placed in an input priority list accord-

ing to the following rules:

1. Arriving cells are placed at (or, “push-in” to) an arbitrary location in the queue,

2. The relative ordering of cells in the queue does not change once customers are in
the queue, i.e. customers in the queue cannot switch places, and

3. Customers may be selected to depart from the queue from any location. of the
cells in the the relative ordering of cells waiting in the queue does not change over
time.

Thus, to complete our description of the scheduling algorithms, we need only specify

an insertion policy which determines where an arriving cell gets placed in its input queue.

M M

Stanford CSL-TR-98-758 12

At the output side, the CIOQ switch keeps track of the time to leave of each waiting

cell. During each time slot the cell that departs from an output and is placed onto the out-

going line is the one with the smallest time to leave. For our CIOQ switch to successfully

mimic the shadow OQ switch, we must ensure that each cell crosses over to the output

side before it is time for the cell to leave.

3 Necessity and Sufficiency of a Speedup of 2-1/N

Having defined speedup, we now address the next natural question: what is the mini-

mum possible speedup, , of a CIOQ switch that emulates an OQ switch. We answer this

question with the following theorem.

Theorem 1: (Necessity). A CIOQ switch needs a speedup of at least to

exactly emulate a FIFO OQ switch.

Proof: The proof is by counterexample — see Appendix A.❚

Remark: Since FIFO is a special case of a variety of output queueing disciplines

(Weighted Fair Queueing, Strict Priorities etc.), the lower bound applies to these queueing

disciplines as well.

Theorem 2:(Sufficiency). A CIOQ switch with a speedup of can exactly

emulate a FIFO OQ switch.

Proof: The proof is based on the insertion policy Last In Highest Priority (LIHP) as

described in Appendix B.❚

4 A Simple Input Queue Insertion Policy for a Speedup of 2

Our proof of Theorem 2 uses a simple input queue insertion policy (LIHP), but unfor-

tunately the proof is complex and, in our opinion, couterintuitive. Further, LIHP is quite

inefficient. In an attempt to provide a more intuitive understanding of the speedup prob-

S

N N× 2 1
N
----–

N N×

N N× 2 1
N
----–

N N×

Stanford CSL-TR-98-758 13

lem, we present a simple and more efficient insertion policy that mimics an OQ switch

with a FIFO queueing discipline with a speedup of two. We call this insertion policy Crit-

ical Cells First (CCF).

Recall that to specify a scheduling algorithm for a CIOQ switch, we just need to give

an insertion policy for the input queues. Critical Cells First (CCF) inserts an arriving cell

as far from the head of its input queue as possible, such that the input thread of the cell is

not larger than its output cushion. Since this decision is crucial, we restate CCF more for-

mally.

CCF:. Suppose cell C arrives at input port P. Let be the output cushion of C. Insert cell

C into the th position from the front of the input queue at P. Hence, upon arrival

cell C has a slackness of zero. If the size of this list is less than cells, then place C at the

end of the input priority list at P. Hence, in this case, C has a positive slackness. Note that

upon arrival, C’s slackness is non-negative.

The intuition behind this insertion policy is that a cell with a small output cushion is

approaching its time to leave (i.e. it becomes “more critical”), and needs to be delivered to

its output sooner than a cell with a larger output cushion. In other words, a cell with a large

output cushion need not be so close to the head of its input queue. Informally, our proof

will proceed as follows. We first show an important property of the CCF algorithm: that a

cell never has a negative slackness, i.e. a cell’s input thread never exceeds its output cush-

ion. We then proceed to show how this ensures that a cell always reaches the output side in

time to leave.

Lemma 1: The slackness, , of a cell C is non-decreasing from time slot to time slot.

Proof: Let the slackness of C be at the beginning of a time slot. During the arrival

phase, the input thread of C can increase by at most one because an arriving cell might be

inserted ahead of C in its input priority list. During the departure phase, the output cushion

of C decreases by one. If C is scheduled in any one of the scheduling phases, then it is

X

X 1+()

X

L

L

Stanford CSL-TR-98-758 14

delivered to its output and we need no longer concern ourselves with C. Otherwise, during

each of the two scheduling phases, either the input thread of C decreases by one, or the

output cushion of C increases by one (by the property of stable matchings — see Defini-

tion 5). Therefore the slackness of C increases by at least one during each scheduling

phase. Counting the changes in each of the four phases, we can conclude that the slackness

of a cell can not decrease from time slot to time slot.❚

Remark: Because the slackness of an arriving cell is non-negative, it follows from

Lemma 1 that the slackness of a cell isalways non-negative.

Theorem 3:Regardless of the incoming traffic pattern, a CIOQ switch that uses CCF

with a speedup of 2 exactly mimics a FIFO OQ switch.

Proof: Suppose that the CIOQ switch has successfully mimicked the OQ switch up

until time slot , and consider the beginning (first phase) of time slot . We must show

that any cell reaching its time to leave is either: (1) already at the output side of the switch,

or (2) will be transferred to the output during time slott. From Lemma 1, we know that a

cell always has a non-negative slackness. Therefore, when a cell reaches its time to leave

(i.e. its output cushion has reached zero), the cell’s input thread must also equal zero. This

means either: (1) that the cell is a already at its output, and may depart on time, or (2) that

the cell is simultaneously at the head of its input priority list (because its input thread is

zero), and at the head of its output priority list (because it has reached its time to leave). In

this case, the stable matching algorithm is guaranteed to transfer it to its output during the

time slot, and therefore the cell can depart on time.❚

5 Providing QoS guarantees

As pointed out in the introduction, the goal of our work is to control the delay of cells

in a CIOQ switch in the same way that is possible in an OQ switch. But until now, we have

considered only the emulation of an OQ switch in which cells depart in FIFO order. We

now show that, with a speedup of two, CCF can be used to emulate an OQ switch that uses

t 1– t

Stanford CSL-TR-98-758 15

the broad class of queueing policies called PIFO (Push-In First-Out); a class that includes

the widely-used queueing policies such as WFQ and Strict Priority queueing.

Thus an OQ switch that follows a PIFO queueing policy can insert a cell anywhere in its

output queue but it can not change the relative ordering of cells that are already waiting in

the queue. Notice that with an arbitrary PIFO policy, the TL of a cell never decreases, but

may increase as a result of arrival of higher priority cells.

We can use CCF to mimic not just a FIFO OQ switch but any OQ switch that follows a

PIFO queueing policy. The description of CCF remains unchanged; however the output

cushion and the output priority lists are calculated using the OQ switch that we are trying

to emulate.

Theorem 4:Regardless of the incoming traffic pattern, a CIOQ switch that uses CCF

with a speedup of 2 exactly mimics an OQ switch that adheres to a PIFO queueing policy.

The proof of Theorem 4 is almost identical to that of Theorem 3, and is omitted.❚

5.1 Network Stability

Theorem 4 also has interesting implications for network stability, as defined in [13]. It

is known that several commonly used queueing disciplines, FIFO being the most notable

example, can result in global instability in the network [13]. Further, such instability can

occur at relatively low congestion and in very simple networks [15]. It is also known that

LIS (Longest In System), a queueing policy that gives preference to cells that have been in

the network the longest, results in global stability even at high congestion [13]. Since LIS

is also a PIFO queueing policy, we can use CCF to ensure global stability in a network

comprised of CIOQ switches operating at a speedup of 2.

Stanford CSL-TR-98-758 16

6 Towards making CCF practical

CCF as presented above suffers from two main disadvantages. First, the stable match-

ing that we need to find in each scheduling phase can take as many as iterations.1 Fur-

ther, the stable matching algorithm must consider all of the cells present in the input

queue. We remove both disadvantages in Section 6, where we show how to do stable

matchings in iterations, and how an algorithm can use VOQs to consider many fewer

cells in the input queues.

The Just In Time (JIT) strategy reduces the number of iterations needed to compute a

stable matching to (from). The Group By Virtual Output Queue (GBVOQ) algo-

rithm ensures that the number of input cells considered by the stable matching algorithm is

equal to the number of active virtual output queues rather than the total number of cells.

These two schemes, when combined, are designed to allow an implementation of a CIOQ

switch that mimics an OQ switch with PIFO output scheduling.

6.1 The Just In Time (JIT) strategy:

Before we describe the JIT strategy, we explain the efficiency bottleneck that JIT is

trying to remove. At any time instant, we define the dependency graph to be a directed

graph with a vertex corresponding to each active cell that is waiting on the input side of

the CIOQ switch. Let and be two cells waiting at the input side. There is a directed

edge from to if and only if cell is ahead of either in an input queue or in an out-

put priority list. Clearly two cells have to share either the same input port or the same out-

put port if there is to be an edge between them. If we use CCF as defined above, there may

be cycles in this dependency graph. These cycles are the main cause of inefficiency in

finding stable matchings, and the Just in Time strategy is aimed at getting rid of these

cycles.

1. It is not immediately obvious that iterations suffice. The reason for this is that if two cells at the same
input port are destined to the same output port, the one with the lower TL occurs ahead of the other in the
input priority list.

N
2

N
2

N

N N
2

G

A B

A B A B

Stanford CSL-TR-98-758 17

The Just In Time strategy is simple:During each scheduling phase, mark as active all

cells with a slackness of zero, and mark all other cells inactive. The stable matching algo-

rithm considers only active cells. Since the slackness of a cell can never become nega-

tive1, CCF combined with JIT strategy can emulate any OQ switch that follows a PIFO

queueing policy. The dependency graph is now limited to only the active cells.

Lemma 2: If JIT is used in conjunction with CCF, the resulting dependency graph

is acyclic.

We omit the proof of Lemma 2, and instead focus on its implications. Since there are

no cycles, there has to be at least one sink (i.e. a vertex with no outgoing edges) in . Let

 be the cell corresponding to the sink. Since there are no active cells ahead of in either

its input queue or its output priority list, cell has to be part of any stable matching of

active cells. Having matched cell , we remove from the graph all cells which have the

same input or output port as . The resulting graph is again acyclic, and we can repeat the

above procedure more times to obtain a stable matching. Notice that each iteration

of the above iteration algorithm is quite straightforward. An algorithm to find a stable

matching in O() parallel iterations was given in [14]; however their algorithm is quite

complicated and not efficient for realistic values of .

We now address the second disadvantage of CCF, i.e. many cells must be considered

by the stable matching algorithm.

6.2 The Group By Virtual Output Queue (GBVOQ) algorithm:

With CCF, the stable matching algorithm may need to consider as many cells as are

contained in the input queues. However, we can simply group incoming cells into Virtual

Output Queues to obtain an upper bound of on the number of cells that need to be con-

1. As soon as the slackness becomes zero, the cell would be marked active and the slackness would

increase by one during the current scheduling phase.

G

G

X X

X

X

X

N 1–

N

N

N

N

Stanford CSL-TR-98-758 18

sidered at any input port. The algorithm, GBVOQ, which achieves this bound is described

below.

We explain here how GBVOQ can be used to emulate a FIFO OQ switch. This tech-

nique can, in general, be extended to a system with PIFO departure order. GBVOQ main-

tains a VOQ for each input-output port pair. When a new cell arrives at an input port,

GBVOQ checks to see if the corresponding VOQ is empty. If it is, then the incoming cell

is also placed at the head of the input queue. If, on the other hand, the VOQ corresponding

to the new arrival is non-empty, the new cell is placed at the tail of its VOQ: i.e. it is

inserted in the input priority list just behind the last cell which belongs to the same VOQ.

It is easy to see that all cells that are in the same VOQ occupy contiguous positions in the

input queue. Therefore it is sufficient to just keep track of the relative priority ordering of

VOQs. Since there are at most VOQs in a FIFO switch, we get the requisite bound on

the size of the input priority list. Since GBVOQ does not assign a negative slackness to an

incoming cell, a CIOQ switch that uses GBVOQ with a speedup of two successfully emu-

lates a FIFO OQ switch.

Apart from small priority lists, GBVOQ also has several other desirable properties.

First, the decision of where an incoming cell needs to be inserted is much simpler for

GBVOQ than CCF. Like CCF, GBVOQ too can be used in conjunction with the JIT strat-

egy to reduce the number of iterations needed to compute a stable matching. In fact, JIT is

made much simpler when used in conjunction with GBVOQ because of the following

property: if the cell at the head of a VOQ is marked inactive during a scheduling phase,

the entire VOQ can be marked inactive, reducing the number of cells that need to be

marked active/inactive.

7 References
[1] A. Demers, S. Keshav; S. Shenker, “Analysis and Simulation of a Fair Queueing

Algorithm,” J. of Internetworking : Research and Experience, pp.3-26, 1990.
[2] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for Packet Switching

Networks,” ACM Transactions on Computer Systems, vol.9 no.2, pp.101-124, 1990.

N

Stanford CSL-TR-98-758 19

[3] Partridge, C., et al. “A fifty gigabit per second IP router,” To appear inIEEE/ACM
Transactions on Networking.

[4] McKeown, N.; Izzard, M.; Mekkittikul, A.; Ellersick, W.; and Horowitz, M.; “The
Tiny Tera: A Packet Switch Core” Hot Interconnects V, Stanford University,August
1996.

[5] M. Karol; M. Hluchyj; S. Morgan, “Input versus output queueing on a space-divi-
sion switch,” IEEE Transactions on Communications, vol. 35, pp. 1347-1356, Dec
1987.

[6] I. Iliadis and W.E. Denzel, “Performance of packet switches with input and output
queueing,” in Proc. ICC ‘90, Atlanta, GA, Apr. 1990. p.747-53.

[7] A.L. Gupta and N.D. Georganas, “Analysis of a packet switch with input and output
buffers and speed constraints,” in Proc. InfoCom ‘91, Bal Harbour, FL, Apr. 1991,
p.694-700.

[8] Y. Oie; M. Murata, K. Kubota, and H. Miyahara, “Effect of speedup in nonblocking
packet switch,” in Proc. ICC ‘89, Boston, MA, Jun. 1989, p. 410-14.

[9] J.S.-C. Chen and T.E. Stern, “Throughput analysis, optimal buffer allocation, and
traffic imbalance study of a generic nonblocking packet switch,” IEEE J. Select.
Areas Commun., Apr. 1991, vol. 9, no. 3, p. 439-49.

[10] N. McKeown; V. Anantharam; J. Walrand, “Achieving 100% Throughput in an
input-queued switch,” Infocom ‘96.

[11] W.E. Leland, W. Willinger, M. Taqqu, D. Wilson, “On the self-similar nature of
Ethernet traffic”, Proc. of Sigcomm, San Francisco, pp.183-193. Sept 1993.

[12] D. Gale, L.S. Shapley, “College Admissions and the stability of marriage”,Ameri-
can Mathematical Monthly, vol.69, pp.9-15, 1962.

[13] Andrews, A. and Awerbuch, B. and Fernandez, A. and Kleinberg, J. andLeighton,T.
and Liu,Z. “Universal stability results for greedy contention-resolution protocols.”
37th IEEE symposium on Foundations of Computer Science, pp. 380-389 (1996).

[14] Feder,T. and Megiddo,N. and Plotkin,S. “A sublinear parallel algorithm for stable
matching.”Fifth ACM-SIAM Symposium on Discrete Algorithms, p. 632-637 (1994).

[15] Goel,A. “Stability of Networks and Protocols in the Adversarial Queueing Model
for Packet Routing.” Stanford University Technical Note STAN-CS-97-59.

Appendix A: The Necessity of a Speedup of 2-1/N

With a speedup of two, the above algorithms (CCF and GBVOQ) exactly mimic an

arbitrary size OQ switch. The next natural question to ask is whether it is possible to emu-

late output queueing using a CIOQ switch with a speedup less than 2. In this section we

show a lower bound of on the speedup of any CIOQ switch that emulates OQ

switching, even when the OQ switch uses FIFO. Hence the algorithms that we have pre-

sented in this paper are almost optimal. In fact, the difference of can be ignored for all

practical purposes.

2 1
N
----–

1
N

Stanford CSL-TR-98-758 20

Since a speedup between 1 and 2 represents a non-integral distribution of phases, we

first describe how scheduling phases are distributed. A speedup of corresponds to

having atruncated time slot out of every time slots; the truncated time slot has just one

scheduling phase, whereas the other time slots have two scheduling phases each. In

Figure 3, we show the difference between one-phased and two-phased time slots. For the

purposes of our lower bound, we need to assume that the scheduling algorithm does not

know in advance whether a time slot is truncated.

Figure 3: One scheduling phase and two scheduling phase time slots

Recall from Section 2.1 that a cell is represented as P-TL, where P represents which

output port the cell is destined to, and TL represents the time to leave for the cell. For

example, the cell C-7 must be scheduled for port C before the end of time slot 7.

The input traffic pattern that provides the lower bound for a CIOQ switch is

given below. The traffic pattern spans time slots, the last of which is truncated.

1. In the first time slot, all input ports receive cells destined for the same output port,
.

1. In the second time slot, the input port that had the lowest time to leave in the pre-
vious time slot does not receive any more cells. In addition, the rest of the input
ports receive cells destined for the same output port, .

2 1
N
----–

N

N 1–

Time Slot

Arrival
Phase

Scheduling
Phase 1

Departure
Phase

Arrival
Phase

Scheduling
Phase 1

Departure
Phase

Scheduling
Phase 2

One Scheduling Phase Time Slot

Two Scheduling Phases Time Slot

N N×

N

P1

P2

Stanford CSL-TR-98-758 21

1. In the th time slot, the input ports that had the lowest time to leave in each of the
 previous time slots do not receive any more cells. In addition, the rest of the

input ports must receive cells destined for the same output port, .

We can repeat the above traffic pattern as many time as required to create arbitrarily

long traffic patterns. In Figure 4, we show the above sequence of cells for a switch.

The departure events from the OQ switch are depicted on the right, and the arrival events

are on the left. For simplicity, we present the proof of our lower bound on this

switch instead of a general switch.

Figure 4: Lower Bound Input Traffic Pattern for a 4x4 switch

Figure 5 shows the only possible schedule for transferring these cells across in seven

phases. Of the four time slots, the last one is truncated, giving a total of seven phases. Cell

A-1 must leave the input side during the first phase, since the CIOQ switch does not know

whether the first time slot is truncated. Similarly, cells B-2, C-3, and D-4 must leave dur-

ing the third, fifth, and seventh phases, respectively (see Figure 5(a)). Cell A-2 must leave

the input side by the end of the third phase. But it cannot leave during the first or the third

phase because of contention. Therefore, it must depart during the second phase. Similarly,

cells B-3 and C-4 must depart during the fourth and sixth phases, respectively (see Figure

5(b)). Continuing this elimination process (Figure 5(c), (d)), there is only one possible

i
i 1–

Pi

4 4×

4 4×

N N×

OQ Switch
A

B

C

A-1

A-3B-3C-3

A-2A-3A-4

Time Slot Time Slot
23 1 34 2

A
rr

iv
al

s

X

Y

Z

A-2B-2

A-4B-4C-4D-4

4

B-3B-4

C-4

D-4

A-1

1

C-2

C-3

D

W

D
epartures

Stanford CSL-TR-98-758 22

scheduling order. For this input traffic pattern, the switch needs all seven phases in four

time slots which corresponds to a minimum speedup of (or).

Figure 5: Scheduling Order for the lower bound input traffic pattern in Figure 4

Theorem 5: A minimum speedup of is necessary for a CIOQ switch

operating underany algorithm which is not allowed to consider the number of scheduling

phases in a time slot.

The proof of Theorem 5 is a straight-forward extension of the CIOQ switch

example.

7
4
--- 2 1

4
---–

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

A-2

B-3

C-4

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

A-2

B-3

C-4

 (a) (b)

A-3

B-4

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

A-2

B-3

C-4

A-3

B-4

A-4

 (c) (d)

2 1
N
----– N N×

4 4×

Stanford CSL-TR-98-758 23

Appendix B: The Sufficiency of a Speedup of 2-1/N to Mimic a
FIFO Output Queued Switch

We now show that it is possible to emulate a FIFO OQ switch using a speedup of

. Specifically, we show that this emulation can be achieved by a CIOQ switch which

follows the general framework described in Section 2, using a scheme that we call “Last

In Highest Priority” (LIHP) to determine input priorities for incoming cells. As the name

suggests, LIHP places a newly arriving cell right at thefront of the input priority list. The

analysis in this section borrows heavily from ideas described in Section 4.

In this section we use a slightly different time slot structure. A “normal” time slot has

an arrival phase followed by two scheduling phases and then a departure phase, whereas a

“truncated” time slot has an arrival phase, a scheduling phase, and then a departure phase.

Since the speedup is , we assume that there are at least normal phases

between two truncated phases. The CIOQ switch does not need to know which phases are

truncated.

At any time instant, and for any cell , let denote the number of truncated

time slots between now and the time when this cell leaves the OQ switch, inclusive. Recall

from Section 2 that is the slackness of cell , where

and refer to the output cushion and input thread of the cell, respectively.

Lemma 3: If the OQ switch being emulated is FIFO, then after the

first scheduling phase and just before the arrival phase, for all cells waiting on the

input side of a CIOQ switch that uses LIHP and a speedup of , .

The following theorem is a consequence of Lemma 3 — we defer the proof of the lemma

itself to the end of this section.

Theorem 6:A speedup of suffices for a CIOQ switch that uses LIHP to emulate

a FIFO OQ switch.

2 1
N
----–

2 1
N
----– N 1–

X NTS X()

L X() OC X() IT X()–= X OC X()

IT X()

L X() NTS X()≥

X

2 1
N
----–

2 1
N
----–

Stanford CSL-TR-98-758 24

Proof: Suppose it is time for cell to leave the OQ switch, and suppose that the

CIOQ switch has successfully mimicked a FIFO OQ switch so far. Clearly, must

be zero. If has already crossed over to the output side then we are done. So suppose

is still queued at its input port. If the current time slot were truncated then would be

at least one (Lemma 3). But then the input thread would be negative, which is not possi-

ble. Therefore, the current time slot has two scheduling phases. Invoking Lemma 3 again,

 must be at least zero after the first scheduling phase. Since is zero, the

input thread of must be zero too. Cell , therefore, is at the front of both its input and

its output priority lists, and will cross the switch in the second scheduling phase, just

before the departure phase. This completes the proof of the theorem.❚

 Proof of Lemma 3:Suppose the lemma has been true till the beginning of time slot

. We prove that the lemma holds at the end of the first scheduling phase and at the

end of the departure phase in time slot .

We first consider the end of the first scheduling phase. Cells which were already present

on the input side at the beginning of time satisfy , as does not change (a

property of FIFO -- the departure time of a cell from the OQ switch gets fixed upon

arrival, and does not change), and can only go up (see Lemma 1 for an explanation of

why can not decrease) during the arrival and the scheduling phases. Now consider a cell

 which arrives during time slot . Let . Since the slackness of a cell is at

least zero upon arrival (remember that the input thread of an arriving cell is zero in LIHP),

the slackness at the end of the first scheduling phase must be at least one. Therefore

trivially satisfies the lemma if . Suppose . At most cells could have arrived

during the current time slot, and therefore, there must have been a cell in the system

with a of , and the same output port as , at thebeginningof time (this is

where we use the fact that the truncated time slots are spaced at least apart). If is

waiting on the input side, then . Since the OQ switch is FIFO,

. But the input thread of the arriving cell must be zero. Hence, the

slackness of is at least after the arrival phase, and consequently, at least after

X

OC X()

X X

L X()

L X() OC X()

X X

t 1–

t

t L NTS≥ NTS

L

L

X t k NTS X()=

X

k 1≤ k 1> N

Y

NTS k 1– X t

N Y

OC Y() L Y() k 1–≥ ≥

OC X() OC Y()≥ X

X k 1– k

Stanford CSL-TR-98-758 25

the first scheduling phase. The case where is waiting at the output side is similar, and

we omit the details.

Now concentrate on the end of time slot . If this time slot turns out to be normal, then the

slackness of any cell does not decrease during the second scheduling phase and the depar-

ture phase. Else, the slackness of any cell can go down by at most one. But the value

goes down by one forall cells in the system, and the lemma continues to hold.

Y

t

NTS

