
Copyright © 1997 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

Center for
Reliable
Computing

TECHNICAL
REPORT

An Output Encoding Problem And A Solution Technique

Subhasish Mitra, LaNae J. Avra and Edward J. McCluskey

97-1 Center for Reliable Computing
Gates Building 2A, Room 236
Computer Systems Laboratory

(CSL TR # 98-761) Dept. of Electrical Engineering and Computer Science
Stanford University

November, 1997 Stanford, California 94305-9020

Abstract:

We present a new output encoding problem as follows: Given a specification table, such
as a truth table or a finite state machine state table, where some of the outputs are specified in
terms of 1s, 0s and donÕt cares, and others are specified symbolically, determine a binary code
for each symbol of the symbolically specified output column such that the total number of
output functions to be implemented after encoding the symbolic outputs and compacting the
output columns is minimum. There are several applications of this output encoding problem,
one of which is to reduce the area overhead while implementing scan or pseudo-random BIST
in a circuit with one-hot signals. This algorithm can also be used as a pre-processing step
during FSM state encoding. In this report, we develop an exact algorithm to solve the above
problem, prove its correctness, analyze the worst case time complexity of the algorithm and
present experimental data to validate the claim that our encoding strategy helps to reduce the
area of a synthesized circuit. In addition, we have investigated the possibility of using
elementary gates to facilitate further merging of the output functions generated by the
encoding bits with the output functions generated by the elementary gates.

Funding:

This work was supported by the Advanced Research Projects Agency under prime
contract No.ÊDABT63-94-C-0045.

Imprimatur: Nirmal Saxena and Jonathan T. Y. Chang

Copyright © 1997 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

An Output Encoding Problem And A Solution Technique

Subhasish Mitra, LaNae J. Avra and Edward J. McCluskey

CRC Technical Report No. 97-1
(CSL TR No. 98-761)

November, 1997

Center for Reliable Computing

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, California 94305

Abstract

We present a new output encoding problem as follows: Given a specification table, such

as a truth table or a finite state machine state table, where some of the outputs are specified in

terms of 1s, 0s and donÕt cares, and others are specified symbolically, determine a binary code

for each symbol of the symbolically specified output column such that the total number of

output functions to be implemented after encoding the symbolic outputs and compacting the

output columns is minimum. There are several applications of this output encoding problem,

one of which is to reduce the area overhead while implementing scan or pseudo-random BIST

in a circuit with one-hot signals. This algorithm can also be used as a pre-processing step

during FSM state encoding. In this paper, we develop an exact algorithm to solve the above

problem, prove its correctness, analyze the worst case time complexity of the algorithm and

present experimental data to validate the claim that our encoding strategy helps to reduce the

area of a synthesized circuit. In addition, we have investigated the possibility of using

elementary gates to facilitate further merging of the output functions generated by the

encoding bits with the output functions generated by the elementary gates.

TABLE OF CONTENTS

1. Introduction ...1

2. Motivation ...2

3. The Encoding Algorithm for Fully Specified Outputs ..5

4. The Encoding Algorithm for Outputs with DonÕt Cares...14

5. Experimental Results...19

6. Extension to Elementary Gates..20

7. Conclusion...22

8. Acknowledgements ...22

9. References..23

LIST OF FIGURES

Figure 1. Examples of Column Compaction...1

Figure 2(a). Conventional FSM synthesis scheme...5

Figure 2(b). FSM synthesis scheme to ensure one-hot condition during scan or BIST.....5

Figure 3. A High Level Flow of our output encoding algorithm....................................9

Figure 4. The Graph for the Maximum Flow Problem...19

LIST OF TABLES

Table 1. Partial truth table with symbolic output..3

Table 2(a). Symbol Encoding (Table 1)...3

Table 2(b). Truth Table obtained after the encoding...3

Table 3(a). Another symbol encoding..4

Table 3(b). Corresponding Truth Table...4

Table 4(a). Output part of FSM generating one-hots...5

Table 4(b). Symbolic one-hot outputs of Table 4(a)..5

Table 5(a). Output part of a specification table...6

Table 5(b). Table of 5(a) with encoded symbols...6

Table 6(a). The Consistent Output-Table..7

Table 6(b). The Reduced Consistent Bound Output Table..7

Table 7. A RCBOT to illustrate Theorem 3..8

Table 8. The Output Portion of a Specification Table..11

Table 9(a). The Consistent Output Table...11

Table 9(b). The RCOT...11

Table 9(c). The RCBOT...11

Table 10(a). Encoded Symbols of Table 8..12

Table 10(b). Column compaction on Table 10(a)...12

Table 10(c). Symbolic outputs for further minimization..13

Table 11. The Output Portion of a Specification Table...17

Table 12. The Consistent Output Table...17

Table 13(a). The Reduced Consistent Output Table...18

Table 13(b). The RCBOT of Table 12..18

Table 14(a). Encoding of the symbols..19

Table 14(b). Column compaction on Table 14(a)...19

Table 15. Experimental results...20

Table 16. Use of Elementary gates to generate extra output columns.........................21

1

1. INTRODUCTION

Column compaction plays a major role in the synthesis of digital systems [Wei

87]. In column compaction, the number of output functions for a given specification is

reduced by merging the outputs which are logically equivalent, or can be made equivalent

through assignment of donÕt cares. Output column i is logically equivalent to output

column j if and only if for all inputs, if i is 1 (0) then j is also 1 (0). Given a specification

table (a truth table for a combinational function or a state table for a sequential function),

logically equivalent outputs can be merged (compacted). Output columns i and j are said

to be compatible if and only if for all inputs either they are equal or at least one of them

has a donÕt care entry. Two compatible outputs can be merged (compacted) by

appropriately fixing the donÕt care entries to 0 or 1 so that they become logically

equivalent. Two examples of output column compaction are shown in Fig 1. Not only

logically equivalent functions can be compacted; logically complementary functions can

also be compacted. Output column i is logically complementary to output column j if and

only if for all inputs, if i is 1 (0) then j is 0 (1). When two logically complementary

outputs are merged (compacted), in the final implementation, we derive one of them from

other by using an inverter. Given a set of output columns, the problem of finding the

smallest set that can be obtained by compacting the given set can be related to the

Maximum Clique Partitioning Problem, which is an NP-Complete problem [Wei 87].

This smallest set of compacted outputs is called the minimum cardinality output column

cover. Column compaction can greatly reduce circuit area; this is true both for the PLA

implementation of the circuit [Brayton 84] and for multi-level implementation of logic

circuits.

0 0
1 1
1 1
0 0

0
1
1
0

0 -
- 1
1 1
0 -

0
1
1
0

Figure 1. Examples of column compaction

The different types of encoding problems include the finite state machine (FSM)

state encoding problem and the input and the output encoding problem. McCluskey and

Unger pointed out the symmetries among the different encodings of the states of a finite

state machine and developed a formula for the number of distinct encodings [McCluskey

59]. Techniques for FSM state encoding have been discussed in [Ashar 91] [Dolotta 64]

[De Micheli 84] [De Micheli 85] [Du 91] [Lin 90] [Villa 90] [Tumbush 74]. The input

encoding problem has been reported in [Buijs 91] and [Yang 91]. One version of the

2

output encoding problem, with a goal to reduce the number of product terms of a logic

function, has been discussed in [Devadas 91]. Another version of the output encoding

problem is discussed in [Saldanha 88]. A heuristic solution to the output encoding

problem which uses column compaction to reduce the number of outputs after the

symbols are encoded is given in [Binger 91]. However, this algorithm does not consider

any previously-encoded binary outputs when determining the encoding for the symbols of

the symbolic output column.

In this report, we propose an output encoding problem whose objective is

different from those discussed in the literature. The input to our problem is a

specification table of a combinational (or sequential) circuit in terms of a truth table (or

state table) such that some of the outputs are specified in terms of 0s, 1s and donÕt cares

while the other outputs are symbolically specified. The problem is to encode the symbols

in the symbolic output column, so that after encoding, the maximum number of newly

generated output functions become logically equivalent to, or can be made logically

equivalent to (taking the advantage of the donÕt cares), the pre-existent output functions

that had already been specified in terms of 1s, 0s and donÕt cares; in that case, the

cardinality of the output column cover computed using the principle of column

compaction will be minimum. An outline of the algorithm has been presented in [Mitra

97b]. In fact, our algorithm can be used for merging the output functions generated out

of an encoding with the inputs of the given specification. There are various applications

of this output encoding problem. Section 2 explains the motivation behind studying this

type of an output encoding problem. Section 3 presents our output encoding algorithm

for the case in which the specification table does not contain any donÕt cares in its output

part. In Sec. 4, we extend the algorithm given in Sec. 3 to handle donÕt cares in the

outputs of the specification. Experimental results are reported in Sec. 5. In Sec. 6, we

extend our algorithm, presented in Sec. 3 and 4, to handle elementary gates and achieve

further reduction of the number of output functions. Finally, we conclude in Sec. 7.

2. MOTIVATION

In this section, we explain the motivation behind studying our output encoding

problem. Consider the specification shown in Table 1. Output columns c1, c2, c3 and c4

of Table 1 are specified in terms of 1s, 0s and donÕt cares. They constitute the B-set, the

bound set. The last output column of Table 1 is symbolic Ñ it is referred to as the S-

Column, the symbolic column. For this report, we will consider specification tables

containing a single symbolic output column (S-Column) for simplicity. Multiple

3

symbolic output columns can be handled by choosing an appropriate ordering of the

symbolic outputs and repeatedly applying the algorithm reported in this report.

For Table 1, since we have seven distinct symbols in the S-column, we need at

least 3 bits to encode them. The B-set = {c1, c2, c3, c4}. Table 2(a) shows one possible

encoding of the symbols in the S-column and Table 2(b) shows the truth table for the

corresponding function to be realized. Note that in Table 2(b), c5, c6 and c7 are generated

due to the encoding of the symbols. Even if column compaction is performed on Table

2(b), the number of output columns cannot be reduced. This is because none of c5, c6 or

c7 can be made equivalent to the members of the B-set.

Table 1. Partial truth table with symbolic output

Input Bound Outputs
 c1 c2 c3 c4

Symbolic output

10101 1 0 1 0 X1
01100 0 0 1 0 X2
10001 1 0 0 1 X3
01111 - 1 - 0 X2
11110 0 - 0 - X4
01010 1 1 - 0 X5
11111 1 0 - 0 X1
1110- 0 - 1 1 X6
11011 1 0 1 1 X7
01001 0 1 0 1 X4

Table 2(a). Symbol Encoding (Table 1) Table 2(b). Truth Table obtained after the encoding
Signals Encoding Input Outputs

c1 c2 c3 c4 c5 c6 c7
X1 100 10101 1 0 1 0 1 0 0
X2 111 01100 0 0 1 0 1 1 1
X3 101 10001 1 0 0 1 1 0 1
X4 011 01111 - 1 - 0 1 1 1
X5 010 11110 0 - 0 - 0 1 1
X6 110 01010 1 1 - 0 0 1 0
X7 001 11111 1 0 - 0 1 0 0

1110- 0 - 1 1 1 1 0
11011 1 0 1 1 0 0 1
01001 0 1 0 1 0 1 1

It is possible to reduce the number of output columns after column compaction if

we encoded the symbols of Table 1 in a different way. This is shown in Table 3(a). The

corresponding truth table after column compaction is shown in Table 3(b). We find that

in Table 3(b), all the extra output columns generated due to the encoding of the symbols

4

of Table 1 have been merged with the already existent output columns and thus the

encoding of Table 3(b) gives the minimum cardinality of the output column cover. Note

that, in Table 3(b), columns c1, c3 and c4 represent the symbolic outputs.

Our aim is to encode the symbols in the S-column so that the output columns

generated by the encoding can be maximally merged with the output columns in the B-set

by column compaction. By maximal merging we mean that the cardinality of the output

column cover obtained after encoding the symbols is minimum.

 Table 3(a). Another symbol encoding Table 3(b). Corresponding Truth Table
Signals Encoding Input Output

c1 c2 c3 c4
X1 110 10101 1 0 1 0
X2 010 01100 0 0 1 0
X3 101 10001 1 0 0 1
X4 001 01111 0 1 1 0
X5 100 11110 0 - 0 1
X6 011 01010 1 1 0 0
X7 111 11111 1 0 1 0

1110- 0 - 1 1
11011 1 0 1 1
01001 0 1 0 1

This output encoding problem has many applications. Digital systems are often

specified in terms of a combination of binary-encoded and symbolic signals. Let us

consider a finite state machine, a subset of whose output signals are control signals for a

selector implemented using transmission gates or a set of tristate buffers connected to a

bus and hence, should be one-hot encoded. While testing the circuit using random

patterns in a scan or pseudo-random BIST environment [McCluskey 86], donÕt care

states may appear in the FSM bistables, causing the output signals to violate the one-hot

requirement. We can avoid this situation by designing the FSM such that it generates a

set of fully encoded output signals instead of the one-hot output signals and consequently

pass these encoded signals through a decoder to generate the one-hot signals. This will

ensure that the one-hot signals remain one-hot even if the bistables reach an invalid state

during testing. This scheme is illustrated in Fig 2. Table 4(a) shows the output part of

the state table of such an FSM. Outputs c5, c6, c7 and c8 are one-hot output signals. We

specify the four one-hot signals symbolically, and the corresponding specification table is

shown in Table 4(b). Next, we can apply our output encoding algorithm to minimize the

number of output columns in the resulting FSM. Depending on the encoding performed,

we specify the truth table of the decoder to decode these encoded signals and generate the

four one-hot signals. This scheme has been described in details in [Mitra 97a]. However,

5

our algorithm is not restricted to this application only Ñ it is applicable to any

specification table that has some output columns specified using 1s, 0s and donÕt cares

and other output columns with symbolically specified entries. The algorithm is useful for

encoding the mnemonic output fields of the micro-codes in order to reduce the width of

the micro-control memories. This algorithm can also be used as a pre-processing step

during FSM state encoding.

FF

decoded
 one-hot

 non
one-hot

 FSM
 Synthesis

FSM with decoded
one-hot outputs

FF

 non
one-hot

Decode

decoded
 one-hot

FSM
Synthesis

 Add
 Decoder

FSM with encoded
 one-hot outputs

(a)

(b)

Figure 2(a). Conventional FSM synthesis scheme Figure 2(b). FSM synthesis scheme to ensure one-hot
condition on control signals during scan or BIST

Table 4(a). Output part of FSM generating one-hots Table 4(b). Symbolic one-hot outputs of Table 4(a)
FSM Outputs

c1 c2 c3 c4 c5 c6 c7 c8

Outputs
c1 c2 c3 c4

Symbolic
Output

 - 0 1 - 1 0 0 0 - 0 1 - X1
 - 0 1 0 0 1 0 0 - 0 1 0 X2
 0 1 - 1 0 0 0 1 0 1 - 1 X4
 1 - - 1 0 1 0 0 1 - - 1 X2
 1 - - 1 0 0 1 0 1 - - 1 X3
 0 0 1 0 1 0 0 0 0 0 1 0 X1
 - 1 0 - 0 0 1 0 - 1 0 - X3
 1 1 - - 0 0 0 1 1 1 - - X4

3. THE ENCODING ALGORITHM FOR FULLY SPECIFIED OUTPUTS

In this section, for simplicity, we present our output encoding algorithm with the

assumption that the output columns belonging to the B-set are fully specified with 1s and

6

0s. In Sec. 4, we will extend the algorithm to consider the case where the elements of the

B-set may contain donÕt cares. A set of theorems, described below, forms the basis of

our algorithm.

The first step of the algorithm filters out a few of the elements of the B-set by

making a consistency check. The consistency criterion is given by the Theorem 1.

Theorem 1 : Consistency Check

If there exist two rows, p and q, in the given specification table for which the S-column

has the same value Xj and ci Î B-set has different values, then ci cannot contribute to

reducing the number of output columns after encoding the S-column. In this case, ci is

said to be inconsistent with respect to Xj.

Proof : Without loss of generality, let us assume that ci has a Ô1Õ in the row p and a Ô0Õ

in the row q and the S-column contains Xj in both of these rows. For any encoding of the

S-column, all columns generated by this encoding will have equal values (both Ô0Õ or

both Ô1Õ) in the entries corresponding to row p and row q (since S-column has the same

value in row p and row q of the specified table). Thus, column ci can never match any

column generated by any encoding of the S-column. Hence, ci cannot help in reducing

the output column cover after encoding the S-column. Q.E.D.

We illustrate the application of Theorem 1 using the example in Table 5(a). As

specified in Table 5(a), rows 2 and 4 have the same value of the symbolic output (X2) (S-

column). However, rows 2 and 4 have Ô0Õ and Ô1Õ, respectively, in column c1. For any

encoding of X2 , say 01, the newly-generated columns have the same value in the rows 2

and 4 and hence can never be merged with column c1 (Table 5(b)).

Table 5(a). Output part of a specification table Table 5(b). Table of 5(a) with encoded symbols
c1 c2 c3 Symbolic c1 c2 c3 Encoded
1 0 1 X1 1 0 1 00
0 0 1 X2 0 0 1 01
1 1 0 X3 1 1 0 10
1 0 1 X2 1 0 1 01
0 1 0 X4 0 1 0 11

We apply Theorem 1 to each ci in an effort to reduce the subset of the elements of

the B-set considered when encoding the symbols in the S-column. The reduced subset,

called the reduced B-set, contains no inconsistent columns.

7

Now, we consider the output portion of the specified table consisting of the

columns which are the elements of reduced B-set and the S-Column. Let us call this table

the consistent output table (COT). An example of such a table is shown in Table 6(a).

We can perform row merging on this consistent output table to obtain a reduced

consistent output table (RCOT) using Theorem 2.

Theorem 2 : Row Merging

In the consistent output table, all rows having the same values for the S-Column are

equivalent and hence, can be merged.

Proof : The proof is straightforward. Consider any two rows p and q of COT having the

same value in the S-Column. Since any column (except the S-column) of COT is a

member of reduced B-set, by Theorem 1, any other column of COT will also have the

same value in the entries corresponding to rows p and q. Hence, in the COT, rows p and

q are equivalent and can be merged without losing any information. Q.E.D.

By applying Theorem 2 to the COT for each value of the symbol in the S-column,

we obtain the RCOT from the COT. Let the number of rows in RCOT be n. This means

that there are n distinct symbols in S-Column which can be encoded using m = élog2(n)ù

bits. Next, we remove the S-Column from RCOT to obtain the Reduced Consistent-

Bound Output Table (RCBOT) as shown in Table 6(b). Once we obtain the RCBOT, we

attempt to reduce the number of columns in the RCBOT using Theorem 3.

Table 6(a). The Consistent Output-Table Table 6(b). The Reduced Consistent Bound Output Table
c2 c3 Symbolic c2 c3
0 1 X1 0 1
0 1 X2 0 1
1 0 X3 1 0
0 1 X2 1 0
1 0 X4

8

Theorem 3 : Single Column Counting Check

Any column of RCBOT having more than 2m-1 1s (0s) cannot contribute to reducing the

size of the output column cover after encoding the symbols, where m is the number of

bits used to encode the symbols in the S-column. For encoding using the minimum

number of bits, m = élog2nù , where n is the number of symbols to be encoded (equal to

the number of rows in the RCBOT).

Proof : The proof is straightforward. For any encoding of the n symbols using m bits, m

columns e1, e2,, em corresponding to the encoding bits are generated in the RCOT. It

is obvious that the number of 1s (or 0s) in each ei column (1 ² i ² m) is less than or equal

to 2m-1 because otherwise we will end up having the same binary code assigned to two

distinct symbolic outputs. Hence, any column of RCOT which is a member of reduced

B-Set (and hence a column of RCBOT) having the number of 1s (or 0s) exceeding 2m-1

cannot be merged with any of the ei (1 ² i ² m) and hence cannot help in reducing the

size of the output column cover. Q.E.D.

Theorem 3 is illustrated in Table 7. The RCBOT corresponding to Table 7 has

four distinct rows. If we use the minimum number of bits to encode the symbolic

outputs, then m = 2. Columns c1 and c2 do not satisfy the upper bound on the number of

1s and 0s, respectively. Hence, they cannot help in reducing cardinality of the output

column cover after the encoding of the four symbols has been performed. We call the set

of columns satisfying Theorem 3, the Column-Count-Set-1 (CCS-1). The CCS-1 for the

example in Table 7 is {{c3}, {c4}}. Using the CCS-1, we construct a family of sets CCS-i

using Theorem 4, which is a generalized version of Theorem 3. In general, each member

of CCS-i is a set of i columns which satisfies i-Column-Counting-Check (Theorem 4).

Table 7. A RCBOT to illustrate Theorem 3
c1 c2 c3 c4
1 1 0 1
0 0 0 1
1 0 1 0
1 0 1 0

Theorem 4 : i - Column Counting Check

Any set of i columns of RCBOT having any of the 2i possible binary combinations

appearing more than 2m-i times in the rows of the RCBOT cannot help to reduce the size

of the output column cover by i after encoding the symbols. Here m is the number of bits

used to encode the symbols. For encoding using the minimum number of bits, m =

9

élog2nù , where n is the number of symbols in the S-column, to be encoded (number of

rows of RCBOT).

Proof : The proof is straightforward and follows from the proof of Theorem 3. The key

point of the proof is that in any set of n distinct binary strings of length m, any binary

string of length i (² m) can occur atmost 2m-i times under a specified set of i columns.

All the sets of i columns that satisfy the i-Column Counting check form elements

of CCS-i. It can be shown, that for any set of columns of RCBOT which is an element of

CCS-(i+1), all its subsets of cardinality i are members of CCS-i (i ³ 1). Hence, a

candidate for CCS-(i+1) is generated by taking the union of an element of CCS-i and an

element of CCS-1 such that the resulting set has cardinality equal to (i + 1). We apply

Theorem 4 iteratively for increasing i until either CCS-i is empty or i is equal to the

number of encoding bits. In either case, we choose a member of CCS-j, j being the

largest integer such that CCS-j is not empty, and encode the first j bits of the symbol

under the S-column in row k of the RCOT with the binary values from row k of the

RCOT that correspond to the binary-encoded columns that are members of CCS-j. The

encodings of the first j bits are not necessarily unique over all the symbols. We encode

the remaining (m-j) bits of the symbols in such a way that the m bit encoding of each

symbol is unique.

Figure 3 illustrates the high-level flow of our algorithm (Algorithm 1), showing

how Theorems 1 to 4 are applied to a specification table. First, Theorem 1 is applied to

the input specification table to obtain the Consistent Output Table (COT). Next,

Theorem 2 is applied to the COT to merge equivalent rows and generate the Reduced

Consistent Output table (RCOT) and the Reduced Consistent Bound Output Table

(RCBOT). Theorem 3 is applied on RCBOT to obtain CCS-1. Next, additional CCS-iÕs

are calculated from the RCBOT using Theorem 4.

Theorem 1 Theorem 2 Theorem 3

Input Table

Theorem 4

Consistent
Output
Table

(COT)

Reduced
Consistent
Output Table

(RCOT)
and

(RCBOT)

CCS-1

Column
Count Set 1

CCS-i

Encode using
 CCS-i

Figure 3. A High Level Flow of our output encoding algorithm (Algorithm 1)

10

ALGORITHM 1: Encode Symbols

Input : The output portion of the given specification table; one column is for symbolic output and the other
columns are fully specified binary outputs.

Output : An encoding of the symbols in the symbolic output column such that the cardinality of the output
column cover computed after encoding the symbols is minimum.

Steps :

1. Apply Theorem 1
 for each column ck Î B-set

Check if ci is an inconsistent column
2. Form the Consistent Output Table (COT) consisting of the consistent columns and the S-Column.
3. Apply Theorem 2
 Merge equal rows of the COT and obtain Reduced Consistent Output Table (RCOT) and the Reduced
 Consistent Bound Output Table (RCBOT)
4. Let m = élog2nù , where n is the number of rows of RCOT.
5. Apply Theorem 3
 CCS-1 = NULL;
 for each column ci of RCBOT

if ((0s count in column ci ² 2m / 2) AND (1s count in column ci ² 2m / 2))
CCS-1 = CCS-1 È {ci }

6. Apply Theorem 4
 j = 1
 while ((j < m) AND (CCS-j is not NULL))

CCS-(j+1) = NULL;
for each Xk Î CCS-j
 for each cl Î CCS-1

candidate = Xk È {cl }
if |candidate| = j+1

Apply (j+1)-Column Counting Check on candidate
If the check is satisfied, CCS-(j+1) = CCS-(j + 1) È candidate

j = j+1
7. Suppose that the loop of Step 6 terminated at j = k.
 Choose A Î CCS-k
 For each row l of RCOT

Let B is the entry in the S-column and row l
First k bits in encoding of B = entries in row l and columnsÎ A

8. Find set of symbols with the same encoding of the first k bits.
 Assign a distinct combination of (m - k) bits to members of the same set to complete the encoding.
9. end

Now, we illustrate Algorithm 1 with an example. We first apply Theorem 1

(Consistency Check) to the specification in Table 8. The symbolic output column (S-

column) has the same value (X2) in rows 2 and 4. But output column c1 has a 1 in row 2

and a 0 in row 4. Thus, c1 is inconsistent and need not be considered when determining

the encoding of the symbols. Similarly, the symbolic output column has the same value

(X3) in rows 3 and 7 but output column c3 has a 0 in row 3 and 1 in row 7. Hence, c3 is

also inconsistent. Thus we obtain the Consistent Output Table (COT) shown in Table 9(a)

to which we apply Theorem 2 to obtain Reduced Consistent Output Table (RCOT) (Table

9(b)) and the Reduced Consistent Bound Output Table (RCBOT) (Table 9(c)).

11

Table 8. The Output Portion of a Specification Table Table 9(a). The Consistent Output Table
c1 c2 c3 c4 c5 c6 Symbolic c2 c4 c5 c6 Symbolic
0 0 1 1 1 0 X1 0 1 1 0 X1
1 0 0 1 0 1 X2 0 1 0 1 X2
1 0 0 1 1 1 X3 0 1 1 1 X3
0 0 0 1 0 1 X2 0 1 0 1 X2
0 1 1 1 0 0 X4 1 1 0 0 X4
0 1 0 1 1 0 X5 1 1 1 0 X5
1 0 1 1 1 1 X3 0 1 1 1 X3
1 1 0 0 0 0 X6 1 0 0 0 X6
1 0 1 1 1 1 X3 0 1 1 1 X3
1 0 0 1 0 1 X2 0 1 0 1 X2

Table 9(b). The RCOT Table 9(c). The RCBOT
c2 c4 c5 c6 Symbolic c2 c4 c5 c6
0 1 1 0 X1 0 1 1 0
0 1 0 1 X2 0 1 0 1
0 1 1 1 X3 0 1 1 1
1 1 0 0 X4 1 1 0 0
1 1 1 0 X5 1 1 1 0
1 0 0 0 X6 1 0 0 0

Now we apply Theorem 3 (Single Column Counting Check) to the columns of

Table 10(b). Since there are six distinct symbols, n = 6 and m = 3 (because we are

encoding using the minimum number of bits). Thus, the count of 1s (and 0s) in each

column of Table 10(b) that pass the Single Column Counting check must not be more

than 4. We find that columns c2, c5 and c6 pass the Single Column Counting Check and

hence the Column-Count-Set-1 (CCS-1) is {{c2}, {c5}, {c6}}. Now we apply the 2-

Column-Counting-Check (Theorem 4) to form CCS-2, the candidates being {c2, c5}, {c2,

c6} and {c5, c6}. Two of them satisfy the 2-Column Counting Check and hence the set

CCS-2 is {{c2, c5}, {c5, c6}}. Next, we determine the candidates for CCS-3 by

combining the members of CCS-2 and CCS-1. The only candidate for CCS-3 is {c2, c5,

c6}. But {c2, c5, c6} does not satisfy the 3-Column Counting Check (Theorem 4, i = 3)

because 100 appears twice. Hence, CCS-3 is a null set, and for the given specification we

can encode the symbols using three bits in such a way that two newly generated columns

can be merged with the existing output columns when the output column cover is

calculated. To determine the actual encoding of the symbols, we choose any member of

CCS-2, say, {c2, c5}. The first two bits in the encoding of a particular symbol will have

the same pattern as the one present under the columns c2 and c5 in the row corresponding

to that symbol in the RCOT. The first two bits of all the symbols will not be distinct.

Hence, we determine the third bit in such a way that the codes assigned to the symbols

12

are distinct. Thus, referring to Table 9(a), X1 will be encoded as 010, X2 as 000, X3 as

011, X4 as 100, X5 as 110 and X6 as 101. Tables 10(a) and 10(b) show the final table

(after encoding) before and after computing the output column cover.

Table 10(a). Encoded Symbols of Table 8 Table 10(b). Column compaction on Table 10 (a)
c1 c2 c3 c4 c5 c6 Encoding c1 c2 c3 c4 c5 c6 c7
0 0 1 1 1 0 010 0 0 1 1 1 0 0
1 0 0 1 0 1 000 1 0 0 1 0 1 0
1 0 0 1 1 1 011 1 0 0 1 1 1 1
0 0 0 1 0 1 000 0 0 0 1 0 1 0
0 1 1 1 0 0 100 0 1 1 1 0 0 0
0 1 0 1 1 0 110 0 1 0 1 1 0 0
1 0 1 1 1 1 011 1 0 1 1 1 1 1
1 1 0 0 0 0 101 1 1 0 0 0 0 1
1 0 1 1 1 1 011 1 0 1 1 1 1 1
1 0 0 1 0 1 000 1 0 0 1 0 1 0

The optimality of our algorithm can be proved very easily. As a contradiction, let

us suppose that our algorithm does not produce the optimal encoding in terms of the

cardinality of the cover of the output columns computed after encoding the symbols of

the S-column. Specifically, let us suppose that our algorithm tells us that a maximum of

m bits of the encoding can be merged with the elements of the B-set. But let us suppose

that there exists an encoding E2 such that (m+1) encoding bits can be merged with the

elements of the B-set. Let us call this subset of the B-set S. The size of S is (m+1).

Then, S must satisfy CCS-(m+1). But our algorithm reported CCS-(m+1) to be null.

This means that either at least one element of S does not satisfy Theorem 3 or there exists

a subset of size m of S which is not a member of CCS-m. In either case, these columns

cannot be members of CCS-(m+1) because any subset of size i of an element of CCS-

(i+1) should be a member of CCS-i (i ³ 1).

A rough estimate of the time complexity of Algorithm 1 is described next. The

complexity of step 1 is rlog2r + rc, where r is the number of rows in the given

specification table and c is the cardinality of the B-set. The complexity of Step 3 is r.

The complexity of step 5 is kn where k is the cardinality of the reduced B-set and n is the

number of symbolic outputs. Computation of CCS-i has a worst case complexity of
k

i
i n i

æ

è
ç

ö

ø
÷ . . .2 . Thus, the net complexity of steps 5 and 6 is : k

i
i n i

i

m æ
è
ç

ö
ø
÷

=
å
1

2. . . , where m is the

number of bits used to encode the symbolic outputs. Step 7 has a worst case complexity

of nlog2n + n.

For the example of Table 10(a), to determine the third bit in the encoding of the

symbolic outputs, a conventional output encoding algorithm (described in [Devadas 91])

could be used. For the above example, the first two bits of X1 and X3 are equal. Hence,

13

we specify an output encoding problem using two symbolic outputs (and hence one-bit

encoding) so that these two outputs are distinguished. Similar case holds for X4 and X6 as

follows :

Table 10(c). Symbolic outputs for further minimization
c1 c2 c3 c4 c5 c6 Symbol
0 0 1 1 1 0 s1
1 0 0 1 0 1 s1
1 0 0 1 1 1 s2
0 0 0 1 0 1 s1
0 1 1 1 0 0 s1
0 1 0 1 1 0 Ñ
1 0 1 1 1 1 s2
1 1 0 0 0 0 s2
1 0 1 1 1 1 s2
1 0 0 1 0 1 s1

In Table 10(c), we distinguish between X1 and X3 by assigning s1 to the rows

corresponding to X1 and s2 to the rows corresponding to X3. Similarly, s1 has been

assigned to the rows corresponding to X4 and s2 to the rows corresponding to X6. In

order to ensure that X2 has a single code assigned to it, we have assigned s1 to each row

corresponding to X2. Since, there is a single entry in the table corresponding to X5, we

have left in the entry corresponding to X5 as donÕt care in the above table. However,

further improvements can be done on this basic scheme as follows:

(a) If we assign 00- to X2, then we could can allow donÕt care entries in the rows

of Table 10(c), corresponding to X2. This allows for additional optimization.

(b) Note that in Table 10(c), we could also serve our purpose by assigning s2 to

the rows corresponding to X4 and s1 to the rows corresponding to X6. The complexity of

the resulting logic will vary according to the order of this assignment. An interesting

problem is to determine the order of this assignment so that the resulting logic is minimal.

However, we do not address this problem in this report.

For Table 8, if we relaxed the constraint of encoding the symbolic outputs using

the minimum number of bits (3 bits) and use 4 encoding bits, all the outputs

corresponding to the encoding bits can be merged with the elements of the reduced B-set.

In that case, X1 will be encoded as 0110, X2 as 0101, X3 as 0111, X4 as 1100, X5 as 1110

and X6 as 1000. Algorithm 1 can be extended to take care of this case, and is shown as

Algorithm 1.A.

14

ALGORITHM 1.A

Steps :

1. Apply Steps 1 through 4 of Algorithm 1.
for (i = élog2(symbolic output count)ù; i ² min(symbolic output count, |reduced B-set|); i = i + 1) {
 Apply steps 5 and 6 of algorithm 1 using m = i.
 Find the largest j, CCS-j ­ NULL.
 For each i, extrai = i - j.
 If (j equals i)
 break; /*** We can encode using i bits so that all the outputs corresponding to the encoding bits can

 be merged with the existing outputs ***/
 }
Choose the number of bits (p) for encoding the symbolic outputs such that extrap is minimum.

In the next section, we extend our encoding algorithm to consider the case where

the given specification may have donÕt cares in the columns of the B-set.

4. THE ENCODING ALGORITHM FOR OUTPUTS WITH DONÕT-CARES

In this section, we extend the encoding algorithm described in Sec. 3 to support

donÕt cares in the output portion of the specification table. The basic steps of the

algorithm are the same as is described in Sec. 3. However, we make some extensions to

Theorems 1, 2, and 4 (calling them Theorems 1-DC, 2-DC, and 4-DC, respectively) in

order to consider donÕt cares.

Theorem 1-DC : Check Consistency with DonÕt-Cares

If there exist two rows p and q in the truth table (or the state table) for which the S-

column is specified and has the same value and ci Î B-set has specified but different

values (i.e., ci does not have a donÕt care in row p or q), then ci cannot contribute to

reducing the cardinality of the output column cover after encoding the S-column.

Proof : The proof of Theorem-1-DC is exactly the same as that of Theorem 1.

Applying Theorem 1-DC, we can obtain the reduced B-set and the consistent

output table (COT). Next, we apply Theorem 2-DC to obtain the reduced consistent

output table (RCOT).

Theorem 2-DC : Compatible Row Merging

In the consistent output table, any two rows having the same values for the S-column are

compatible and can be merged. While merging compatible rows, donÕt cares should be

fixed to 0s or 1s whenever necessary.

Proof : The proof is straightforward and follows the proof of Theorem 2. However,

special care must be taken while merging compatible rows. For example, if row p is

15

merged with row q and column x in the COT has a 1(0) in row p and a - (donÕt care) in

row q, the merged row must have a 1(0) in column x. Since the columns of the COT

satisfy the Consistency Check (Theorem 1-DC), no case can arise for which it is required

to change the same donÕt care to 0 for one particular compatible row and to a 1 for

another compatible row. Q.E.D.

By repeated application of Theorem 2-DC for each symbol of the symbolic output

column, we form the RCOT and the RCBOT as described in the Sec. 3. However, the

RCOT and the RCBOT may contain donÕt cares in this case.

The Single Column Counting Check (Theorem 3) holds for the RCBOT with

donÕt cares ; this is because, once the number of 1s and 0s in a particular column is

within the specified upper limit, there always exists a satisfying assignment of 1s and 0s

to the donÕt cares in that column so that the upper limit on the count of 0s and 1s is

maintained. However, there is a minor modification in the i-Column Counting Check

(Theorem 4) which we present below as Theorem 4-DC.

Theorem 4-DC : i - Column Counting check with DonÕt Cares

Any set of i columns of RCBOT having any of the 2i possible binary combinations

formed by the entries under those columns in each row of RCBOT which are fully

specified (i.e., there is no donÕt care in that row under those i columns), appearing more

than 2m-i times cannot help to reduce the size of the output column cover by i after

encoding the symbols. Here m is the number of bits used to encode the symbols and to

encode using the minimum number of bits, m = élog2nù , where n is the number of

symbols to be encoded (number of rows of RCBOT).

Proof: The proof of Theorem 4-DC is the same as the proof of Theorem 4.

As mentioned previously, we must consider the count of those strings under the i

columns which are fully specified. This is because if the fully specified strings satisfy the

upper bound, there always exists a satisfying assignment of 1s and 0s to the donÕt cares

so that the upper bound is not violated. As described in the Sec. 3, we construct a family

of sets CCS-i starting from i equal to 1 and stopping when either CCS-i is empty or i is

greater than the number of bits required to encode the symbols in the S-column.

Let us suppose that the computation of the CCSs terminates with CCS-j. For the

incompletely specified case, we select any member of CCS-j, and for each row of the

RCBOT, we determine a satisfying assignment of 0s and 1s to the donÕt care entries in

the selected j columns so that after the assignment, the condition in Theorem 4 (j-Column

16

Counting Check) is not violated. We solve this problem by modeling it as a maximum

network flow problem and solving it by using the Ford-Fulkerson method [Cormen 89].

A bipartite graph is a graph G = (V, E) in which the vertex set V can be

partitioned into two non-trivial disjoint subsets V1 and V2 such that (u, v) Î E implies

that u Î V1 and v Î V2 or u Î V2 and v Î V1. [Cormen 89]. For our purpose, each

member of V1 represents a symbol and has a label which the string present in the selected

j columns in the row corresponding to that symbol in the S-column of RCOT. The set V2

contains 2j elements, each element representing a distinct binary pattern of length j. For

each u Î V1 and v Î V2 we have an edge (u, v) if and only if u covers v. u is said to

cover v if:

(i) u and v are bitwise equal or

(ii) v has 1 (0) in all bit positions in which u has 1 (0). (e.g., 0-11-10 covers 011110,

0011010, 0011110 and 0111010).

For each edge, we add another attribute called the weight of the edge. All these

edges have a weight of 1. We introduce two more vertices, source and sink, to the above

graph and add edges from the source to all members of V1, each with weight 1, and to

the sink from all members of V2, each with weight 2m-j. Note that, here m is the number

of bits used to encode the symbolic outputs and j corresponds to the CCS-j under

consideration. We solve the maximum network flow problem for the resulting network

(the edge weights indicate the corresponding capacities) using Ford-FulkersonÕs method

[Ford 62][Cormen 89]. Since the weight (capacity) of each edge from source to an

element of V1 is 1 and the weight (capacity) of each edge between V1 and V2 is 1, we

ensure that each node of V1 gets mapped to one and only one node of V2. Moreover,

since the weight of an edge between an element of V2 and sink is 2m-j, a maximum of 2m-

j elements of V1 can be mapped to a particular node in V2 thereby satisfying the

constraints imposed by Theorem 4. In the maximum network flow problem, given a

graph (network) with the edge weights representing the capacities of the links between

two nodes, we determine the maximum flow that can be achieved between the source and

the sink node. It can be easily proved that the problem of mapping an element of V1 to

one and only one element of V2 can be modeled as a network flow problem. The proof

closely follows the proof of computing Maximum Bipartite Matching given in [Cormen

89]. After solving the maximum flow problem, let us consider the set S of edges between

V1 and V2 in the graph with non-zero flow. For any edge (u, v) Î S, u Î V1 and v Î V2,

we can map u to v without violating the condition given by j-Column Counting check

(Theorem 4). The subsequent encoding of the remaining (m-j) bits is the same as in

Algorithm 1.

17

Now, we report our algorithm and illustrate the entire procedure with the help of

an example.
ALGORITHM 2: Encode Symbols for an Output Table With DonÕt Cares

Input : The output portion of the given specification table; one column is for symbolic output and the other
columns are contain 1s, 0s and donÕt cares.

Output : An encoding of the symbols so that the cardinality of the output column cover computed after
encoding the symbols is minimum.

Steps :
1. Apply Theorem 1-DC similar to Algorithm 1
2. Form the Consistent Output Table (COT) consisting of the consistent columns and the S-Column.
3. Apply Theorem 2-DC similar to Algorithm 1
4. Calculate the number of rows of RCOT. Let it be n. Let m = élog2nù .
5. Apply Theorem 3 similar to Algorithm 1
6. Apply Theorem 4-DC similar to Step 6 of Algorithm 1
7. Suppose that the loop of Step 6 terminated at j = k.
 Choose a member of CCS-k, say, A
 Create a bipartite graph G as follows :

(a) SetV1 consists of vertices corresponding to each row of the RCOT.
 The label of each such vertex is the string formed by the entries in that row
 corresponding to the columns which are elements of A
(b) Set V2 consists of 2k vertices each representing a binary combination of k bits.
 Add edge (u, v) of weight 1, u Î V1 and v Î V2 , if and only if the label of u covers the
 binary combination that v represents.

 Create a node SOURCE and add edges of weight 1 from SOURCE to each element of V1.
 Create a node SINK and add edges of weight 2(m-k) from each element of V2 to SINK.
8. Solve the maximum flow problem for G using Ford-FulkersonÕs method.
9. Find out edges (u, v) in G, u Î V1 and v Î V2 , with flow(u, v) ¹ 0
 Encode first k bits of symbol u same as the vector represented by v.
10. Find out sets of symbols with the same encoding of the first k bits.
 Assign a distinct combination of (m - k) bits for members of the same set.
11. end

Table 11. The Output Portion of a Specification Table Table 12. The Consistent Output Table
c1 c2 c3 c4 c5 c6 Symbolic c2 c3 c4 c5 c6 Symbolic
0 Ñ 1 0 Ñ 0 X1 Ñ 1 0 Ñ 0 X1
1 0 Ñ Ñ Ñ Ñ X2 0 Ñ Ñ Ñ Ñ X2
1 Ñ Ñ Ñ 1 Ñ X3 Ñ Ñ Ñ 1 Ñ X3
0 Ñ Ñ Ñ Ñ 1 X2 Ñ Ñ Ñ Ñ 1 X2
0 1 0 0 0 0 X4 1 0 0 0 0 X4
0 1 1 0 Ñ Ñ X5 1 1 0 Ñ Ñ X5
Ñ Ñ 1 1 Ñ Ñ X3 Ñ 1 1 Ñ Ñ X3
1 1 1 0 0 0 X6 1 1 0 0 0 X6
Ñ Ñ Ñ 1 1 Ñ X3 Ñ Ñ 1 1 Ñ X3
Ñ Ñ 1 0 Ñ Ñ X2 Ñ 1 0 Ñ Ñ X2

To illustrate our algorithm, let us consider the output portion of an example

specification, shown in Table 11. Applying Theorem 1-DC to Table 11, we find that the

output column c1 does not satisfy the consistency check with donÕt cares because the

column has a 1 in row 2 and a 0 in row 4, whereas the symbol corresponding to row 2 and

row 4 is X2. However, the other output columns satisfy the consistency constraint

18

mentioned in Theorem 1-DC. Table 12 is the Consistent Output Table (COT) obtained

after applying Theorem 1-DC to Table 11. We apply the reduction procedure in Theorem

2-DC to obtain the RCOT and the RCBOT shown in Tables 13(a) and 13(b) respectively.

Table 13(a). The Reduced Consistent Output Table Table 13(b). The RCBOT of Table 12
c2 c3 c4 c5 c6 Symbolic c2 c3 c4 c5 c6
Ñ 1 0 Ñ 0 X1 Ñ 1 0 Ñ 0
0 1 0 Ñ 1 X2 0 1 0 Ñ 1
Ñ 1 1 1 Ñ X3 Ñ 1 1 1 Ñ
1 0 0 0 0 X4 1 0 0 0 0
1 1 0 Ñ Ñ X5 1 1 0 Ñ Ñ
1 1 0 0 0 X6 1 1 0 0 0

Now we apply the Single Column Counting Check, as per Theorem 3, to the

columns of the RCBOT of Table 13(b). Since the number of distinct symbols (number of

rows of RCBOT) is six, m, the number of bits required to encode the symbols, is 3. We

find that column c3 has more than four 1s while column c4 has more than four 0s. Hence,

the CCS-1 set is {{c2}, {c5}, {c6}}. Now we apply 2-Column Counting Check according

to Theorem 4-DC to the possible candidates of CCS-2 viz. {c2, c5}, {c2, c6} and {c5, c6}.

We find that all of them satisfy the counting check. Finally, we try the 3-Column

Counting Check (Theorem 4-DC, i = 3) on {c2, c5, c6}. We find that 100 appears twice

in row 4 and row 6 of Table 13(b) and hence violates Theorem 4-DC for i = 3. Hence,

CCS-3 is a null set and we choose {c2, c5}, a member of CCS-2, for providing the first

two bits in the encoding of the symbols using 3 bits.

Next, we form the graph described previously to model the problem of finding a

satisfying assignment of 0s and 1s to the donÕt cares of the columns c2 and c5 so that the

constraint imposed by Theorem 4 for i = 2 is satisfied. The set V1 contains six nodes

representing the six symbols X1, X2, X3, X4, X5 and X6 with labels --, 0-, -1, 10, 1- and 10,

respectively. The set V2 contains four elements 00, 01, 10 and 11. The graph along with

the source and the sink nodes and the edge weights is shown in Fig. 4. We solve the

maximum network flow problem on the graph of Fig. 4, and the solid edges show the

final mapping (edges corresponding to the non-zero flow). Thus, the first two bits in the

encoding of X1, X2, X3, X4, X5 and X6 are 00, 01, 01, 10, 11 and 10, respectively. Hence,

the encodings of X1, X2, X3, X4, X5 and X6 are 001, 010, 011, 100, 111 and 101,

respectively. As shown in Fig. 4, there is more than one possible mapping Ñ hence,

there can be multiple encodings of the symbols. Our algorithm can be further refined by

selecting a mapping based on some heuristic developed on the basis of observations in

[Devadas 91] and [Saldanha 88]. Table 14(a) shows the table obtained after encoding

and Table 14(b) shows the table obtained after applying output column compaction to

Table 14(a).

19

X1
Ñ Ñ

X2
0 Ñ

X3

X4

X5

X6

Ñ 1

1 0

1 Ñ

1 0

Source
Sink

0 0

0 1

1 0

1 1

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
1

Figure 4. The Graph for the Maximum Flow Problem

Table 14(a). Encoding of the symbols Table 14(b). Column compaction on Table 14(a)
c1 c2 c3 c4 c5 c6 Encoding c1 c2 c3 c4 c5 c6 c7
0 0 1 0 0 0 001 0 0 1 0 0 0 1
1 0 Ñ Ñ 1 Ñ 010 1 0 Ñ Ñ 1 Ñ 0
1 0 Ñ Ñ 1 Ñ 011 1 0 Ñ Ñ 1 Ñ 1
0 0 Ñ Ñ 1 1 010 0 0 Ñ Ñ 1 1 0
0 1 0 0 0 0 100 0 1 0 0 0 0 0
0 1 1 0 1 Ñ 111 0 1 1 0 1 Ñ 1
Ñ 0 1 1 1 Ñ 011 Ñ 0 1 1 1 Ñ 1
1 1 1 0 1 0 111 1 1 1 0 1 0 1
Ñ 0 Ñ 1 1 Ñ 011 Ñ 0 Ñ 1 1 Ñ 1
Ñ 0 1 0 1 Ñ 010 Ñ 0 1 0 1 Ñ 0

5. EXPERIMENTAL RESULTS

In this section, we present some experimental results. We added a symbolic

output column to the MCNC FSM benchmarks and varied the number of symbols in the

symbolic output column; depending on the symbol count, the number of encoding bits

required were 3 and 4. We entered symbolic values in the S-column to ensure that there

exists an output encoding for which all the columns generated due to the encoding of the

symbols could be merged with the members of the B-set, assuming that the number of

encoding bits did not exceed the number of existing non-symbolic (binary) output

columns. We applied our output encoding algorithm to encode the symbolic output

columns, then compacted the outputs using column compaction. We then optimized

these specifications using sis [Sentovich 92]. For comparison purposes, we then encoded

the symbolic outputs such that none of the outputs corresponding to the encoding bits

20

could be merged by column compaction with the pre-existent outputs (members of the B-

set). This is the worst-case encoding. The results are shown in Table 15. Although our

scheme works for both combinational and sequential logic specifications, we used FSM

benchmarks because we are investigating FSM synthesis techniques for one-hot signals,

as mentioned in Sec. 2 [Mitra 97a]. For both cases, we used NOVA [Villa 90] to encode

the FSM states and used the recommended rugged script to perform multi-level logic

optimization. Finally, we used the LSI Logic g10p library [LSI 96] for technology

mapping. Table 15 shows the area values (in terms of LSI Logic g10p cell units) obtained

using our output encoding algorithm and the worst-case output encoding where none of

the encoding bits could be merged with the output columns of the B-set by compaction.

Table 15. Experimental results : Area comparisons using our output encoding algorithm (best case) with
the output encoding algorithm which never merges any output column (Worst Case)

FSM 3 bits for encoding 4 bits for encoding
Name Our algo. Worst Case Our algo. Worst Case
bbara *205 225 *285 346
bbsse 316 364 316 378
bbtas *98 99 *103 147
dk14 223 266 223 294
dk15 206 208 206 257
dk17 *182 191 *231 304
ex1 721 750 721 781
ex6 254 312 254 405
mc 93 96 93 96

opus 235 260 235 356
tav 73 143 73 188
tma 444 543 444 548

* : These are the cases where all the output columns could not be merged in the best case because the
cardinality of the B-set is less than the number of bits needed to encode the symbols.

6. EXTENSION TO ELEMENTARY GATES

The scheme for performing output encoding, described in sections 3 and 4 can be

extended in the following way. Let us define S as a set of elementary gates. S may

consist of two or three input AND and OR gates. Note that the inverter need not be

considered in S because it has already been considered implicitly in Sec. 3 and 4. For the

purpose of a simple example, let us consider that S consists of a two-input AND gate. If

the number of elements of the B-set is n, we generate n(n-1)/2 extra output columns each

of which is the result of AND-ing a pair of elements of the B-set. For two output

columns i and j belonging to the B-set, we generate the output column ANDi, j in the

following way:

21

For each row of the given table, if the entry in column i or j is 0, then the

corresponding entry in column ANDi, j is 0; if both the entries in columns i and j are 1,

then the entry in column ANDi, j is 1; otherwise, the entry in column ANDi, j is a donÕt

care. In general, if one of the entries in column i or j determines the output of the gate

under consideration (controlling value), then the entry in the new column is the resulting

controlled value (output of the gate); if the entries in columns i and j are fully specified

then the entry in the new column is the result of applying the values to the gate under

consideration; otherwise, the entry in the newly generated column is a donÕt care. We

call these newly generated output columns derived output columns. All derived output

columns together with the original set of output columns, form the Extended-Bound Set

(EB-Set). The necessity of the EB-Set is explained with the help of the following

example.

Table 16. Use of Elementary gates to generate extra output columns
c1 c2 Symbol AND1, 2
0 0 s1 0
1 0 s1 0
1 1 s2 1
0 0 s1 0
0 1 s1 0
1 1 s2 1
1 1 s2 1
1 1 s2 1
1 0 s1 0

Let us consider the output part of a very simple specification, shown in Table 16,

that has a single symbolic output column and two elements in the B-Set, c1 and c2. The

symbolic output has two values, s1 and s2, and hence, a single bit is sufficient to encode

the symbolic output. Neither c1 nor c2 are consistent because c1 has a 0 in row 1 and a 1

in row 2 while the symbolic column has s1 in both of these two rows; column c2 has a 0

in row 1 and a 1 in row 5 while both of these two rows have s1 under the symbolic output

column. However, if we considered the output column AND1, 2 obtained by AND-ing

the output columns c1 and c2, then we find that AND1, 2 is a consistent column and can

be used to encode s1 and s2. In this case, we encode s1 as 0 and s2 as 1. The general

framework that we developed in Sections 3 and 4 can now be used to solve the problem.

However, we have an additional optimization step. In the final set of columns (which are

elements of the EB-Set), we want to maximize the number of the originally present

output columns (the members of the B-Set) and minimize the number of derived output

columns. This can be done in the following way: when we calculate the CCS-i sets and

reach a point when CCS-j is NULL, our algorithm in Sec. 3 and 4 picked up any element

22

of CCS-(j-1) for performing the actual encoding; instead of that, now we choose the

element of the CCS-(j-1) set which has the minimum number of derived columns.

7. CONCLUSION

In this report, we have presented a new output encoding algorithm whose

objective is to encode the symbols in the symbolic output column of the specification

table in such a way that the number of output functions, after performing the encoding

and subsequent output column compaction, is minimum. An application of this algorithm

is to generate a low-area circuit that always maintains a one-hot encoding on certain

signals, even during scan or BIST operations, as discussed in [Mitra 97a]. This algorithm

can also be used as a pre-processing step for FSM state encoding. We have proved the

correctness of the algorithm and analyzed the worst case time complexity of the

algorithm. Although the algorithm produces a minimum solution and the worst case

running time is exponential in the number of bits used to encode the symbolic outputs,

our algorithm achieves significant speedup through iterative refinement by removing

from consideration inconsistent output columns or sets of output columns that do not

satisfy the conditions in Theorems 1 (DC), 3 and 4 (DC). Experimental results show that

the circuits generated using our output encoding algorithm have significantly less area

(0.9 % to 49 % for 3 bits, 8 % to 61 % for 4 bits for the example circuits we considered)

than worst-case circuits generated without considering output column compaction during

the encoding of the symbols. In this report, we have considered specifications with a

single symbolic output column. We also considered the extension of our algorithm for

functions realizable using elementary gates. For multiple symbolic output columns, we

can integrate our technique with the output encoding algorithm reported in [Buijs 91] to

achieve a minimum number of output columns in the final table.

8. ACKNOWLEDGEMENTS

The authors wish to thank Nirmal Saxena, Robert Norwood and Jonathan Chang

for their comments and suggestions. This work was supported by the Advanced Research

Projects Agency under prime contract No.ÊDABT63-94-C-0045.

9. REFERENCES

[Ashar 91] Ashar, P., S. Devadas and A. R. Newton, Sequential Logic Synthesis, Kluwer
Academic Publishers, USA, 1991.

[Binger 91] Binger, D. and D. W. Knapp, ÒEncoding Multiple Outputs for Improved
Column Compaction,Ó Proc. ICCAD-91, pp. 230-233, 1991.

23

[Brayton 84] Brayton, R. K., G. D. Hachtel, C. T. McMullen and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, 1984.

[Buijs 91] Buijs, F. and T. Lengauer, ÒSynthesis of Multi-Level Logic with one symbolic
input,Ó EDAC-91, pp. 60-64, 1991.

[Cormen 89] Cormen, T. H., C. E. Leiserson and R. L. Rivest, Introduction to
Algorithms, The MIT Press and McGraw-Hill Book Company, 1989.

[De Micheli 84] De Micheli, G., R. Brayton and A. Sangiovanni-Vincentelli, ÒKISS: A
Program for Optimal State Assignment of Finite State Machines,Ó Proc. ICCAD,
pp. 209-211, 1984.

[De Micheli 85] De Micheli, G., R. Brayton and A. Sangiovanni-Vincentelli, ÒOptimal
State Assignment for Finite State Machines,Ó IEEE Trans. on CAD., CAD-4(3),
269-285, July 1985.

[Devadas 91] Devadas, S. and A. R. Newton, ÒExact Algorithms for Output Encoding,
State Assignment and Four Level boolean Minimization,Ó IEEE Trans. on CAD,
10(1), pp. 13-27, Jan. 1991.

[Dolotta 64] Dolotta, T. A., and E. J. McCluskey, ÒThe Coding of Internal States of
Sequential Circuits,Ó IEEE Trans. Comput., EC-13, pp. 549-562, Oct. 1964.

[Du 91] Du, X., G. Hachtel, B. Lin and A. R. Newton, ÒMUSE: A MUltilevel Symbolic
Encoding Algorithm for State Assignment,Ó IEEE Trans. on CAD, 10(1), pp. 28-
38, January 1991.

[Ford 62] Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton University
Press, 1962.

[Lin 90] Lin, B. and A. R. Newton, ÒSynthesis of Multiple Level Logic from Symbolic
High-Level Description Languages,Ó VLSI 89, pp. 187-196, Elsevier Science
Publishers, 1990.

[LSI 96] G10-p Cell-Based ASIC Products Databook, LSI Logic, May 1996.

[McCluskey 59] McCluskey, E. J. and S. H. Unger, ÒA Note on the Number of Internal
Variable Assignments for Sequential Switching Circuits,Ó IRE Trans. Electron.
Comput. , EC-8, pp. 439-440, Dec. 1959.

[McCluskey 86] McCluskey, E. J., Logic Design Principles with Emphasis on Testable
Semicustom circuits, Prentice-Hall, Eaglewood Cliffs, NJ, USA, 1986.

[Mitra 97a] Mitra, S., L. J. Avra and E. J. McCluskey, ÒScan Synthesis for One-hot
SignalsÓ, Proc. International Test Conference, pp. 714-722, 1997.

[Mitra 97b] Mitra, S., L. J. Avra and E. J. McCluskey, ÒAn Output Encoding Problem
and a Solution TechniqueÓ, Proc. ICCAD-97, pp. 304-307, 1997.

[Saldanha 88] Saldanha, A. and R. H. Katz, ÒPLA Optimization Using Output Encoding,Ó
Proc. ICCAD-88, pp. 478-481, 1988.

24

[Sentovich 92] Sentovich, E., et. al., ÒSIS: A System for Sequential Circuit SynthesisÓ,
Electronics Research Laboratory Memo. No. UCB/ERL M92/41, Department of
Electrical Engineering and Computer Science, University of California, Berkeley,
CA 94720.

[Tumbush 74] Tumbush, G. L. and J. E. Brandeberry, ÒA State Assignment Technique
for Sequential Machines using J-K Flip-Flops,Ó IEEE Trans. Comput., pp. 85-86,
Jan. 1974.

[Villa 90] Villa, T. and A. Sangiovanni-Vincentelli, ÒNOVA: State Assignment of Finite
State Machines for Optimal Two-Level Logic ImplementationÓ, IEEE Trans. on
CAD, 9(9), pp. 905-924, Sept. 1990.

[Wei 87] Wei, R. and C Tseng, ÒColumn Compaction and Its Application to The Control
Path Synthesis,Ó Proc. ICCAD-87, pp. 320-323, 1987.

[Yang 91] Yang, S. and M. J. Ciesielski, ÒOptimum and Suboptimum Algorithms for
Input Encoding and Its Relation to Logic Minimization,Ó IEEE Trans. on CAD,
10(1), pp. 4-12, Jan. 1991.

