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A sufficient condition forC1-continuity of subdivision surfaces was proposed by Reif [17] and

extended to a more general setting in [22]. In both cases, the analysis ofC1-continuity is reduced to
establishing injectivity and regularity of a characteristic map. In all known proofs ofC1-continuity,
explicit representation of the limit surface on an annular region was used to establish regularity,
and a variety of relatively complex techniques were used to establish injectivity. We propose a
new approach to this problem: we show that for a general class of subdivision schemes, regularity
can be inferred from the properties of a sufficiently close linear approximation, and injectivity can
be verified by computing the index of a curve. An additional advantage of our approach is that
it allows us to proveC1-continuity for all valences of vertices, rather than for an arbitrarily large,
but finite number of valences. As an application, we use our method to analyzeC1-continuity of
most stationary subdivision schemes known to us, including interpolating Butterfly and Modified
Butterfly schemes, as well as the Kobbelt’s interpolating scheme for quadrilateral meshes.
Keywords and phrases:Subdivision surfaces, arbitrary meshes, interval arithmetics.
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1 Introduction

Subdivision is becoming increasingly popular as a surface representation in computer graphics applications. To ensure
that a subdivision algorithm has the desired behavior for almost all input data, a theoretical analysis of the surface
has to be performed. For subdivision on arbitrary meshes, even the analysis of the basic property of the surfaces,
C1-continuity, poses a considerable challenge; [18, 9, 14, 15, 19]. In this paper we describe a set of theoretical results
and algorithms that make it possible to perform theC1-continuity tests automatically.

The principal result allowing one to analyzeC1-continuity of most subdivision schemes, is the sufficient condition
of Reif [17]. This condition reduces the analysis of stationary subdivision to the analysis of a single map, called the
characteristic map, for each valence of vertices in the mesh. The analysis ofC1-continuity is performed in three steps
for each valence:

1. compute the control net of the characteristic map;

2. prove that the characteristic map is regular;

3. prove that the characteristic map is injective.

This map can be expressed in a closed form for spline-based subdivision schemes, such as Loop, Catmull-Clark
and Doo-Sabin. For these schemes, proving regularity of the characteristic map is tedious but straightforward, as
the Jacobian of the map can be expressed in terms of piecewise polynomial basis functions. Proving injectivity is
somewhat more difficult. [18, 14].

Our goal is to verify regularity and injectivity automatically for arbitrary (not necessarily spline-based) subdivision
schemes, once the control net for the characteristic map is known. Our approach has two additional benefits:

• With some mild assumptions on the dependence of the coefficients of the characteristic scheme on the valence,
we are able to analyzeC1-continuity forall valences.

• Stability ofC1-continuity with respect to perturbations of coefficients can be estimated.

Our method is based on two results, discussed in Sections 3 and 4. The estimates of Section 3 allow us to infer
regularity from the properties of the linear approximations to the limit map, which can be computed explicitly. In
Section 4 we show that a regular characteristic map can be proved to be injective simply by verifying that the index
of the restriction of the map to the boundary of its domain is 1. The latter result follows from self-similarity of the
characteristic map: in general, it is not true that a map is injective if it is regular on its domain even if the domain is
the plane and the map is polynomial1. Computing the index of a curve is a simple procedure that can be implemented
robustly.

A crucial element of our technique is the interval computation: although in many cases all required calculations
can be performed symbolically, it is much more efficient and, in fact, simpler, to obtain guaranteed bounds on the
quantities of interest using interval arithmetics. As an additional benefit, we are able to prove facts not about single
characteristic maps defined by exact values of the control points, but about families of maps, corresponding to the
control points with interval components.

Using our method, we analyze interpolating triangular and quadrilateral subdivision schemes – the Butterfly [6], the
Modified Butterfly [21] and the Kobbelt schemes [12]. We also repeat the analysis for two schemes that were analyzed
previously by other authors: the Loop [18] scheme and the Catmull-Clark scheme [14]. For the latter schemes we
extend the analysis to all valences. It is important to emphasize that once the control points for the characteristic maps
are computed, the same code is used to analyze all these schemes.

Related work. This work further extends the results presented in [19]. To the best of our knowledge, all schemes
that were analyzed by other authors admitted closed-form expressions for the characteristic maps; our method for
establishing regularity radically differs from symbolic methods used in [18, 9, 14]. Initial Discrete Fourier Transform
(DFT) analysis that we use to find the control points for the characteristic map follows the well-established pattern
used in [1, 9, 18, 20, 14]. Methods for proving injectivity of the characteristic map for spline-based invariant schemes
were proposed in [18] and [14].

1This statement is known as the Jacobian conjecture for dimension 2, and a counterexample was found by S. Pinchuk in [16].
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Our estimates of the errors of linear approximations rely on the work of Cavaretta, Dahmen and Micchelli [2], and
on the work of Cohen, Dyn and Levin [3] on matrix subdivision.

Finally, we extensively use interval arithmetics (see, for example, [13]).

Overview. In Section 2, we describe the notation for subdivision on complexes and state relevant results from [22]
and [19]. In Section 3, we discuss the basic properties of the matrix subdivision schemes, and derive estimates for
the convergence rates of linear and piecewise constant approximations to the limit functions generated by subdivision.
These estimates apply to the surfaces as well as the directional derivatives of the coordinate functions.

In Section 4, we prove that the index of a curve can be used to test injectivity of the characteristic map. Section 5
provides a brief description of algorithms for verification ofC1-continuity based on the results of Sections 3 and 4.

Section 6 describes the DFT analysis specific to invariant schemes.C1-continuity of the Butterfly and the Modified
Butterfly schemes is analyzed in Section 7; the Kobbelt interpolating scheme for quadrilateral meshes is considered in
Section 8.

In Section 9 we briefly discuss the applications of our method to other schemes.

2 Subdivision Schemes

In this section we summarize the main definitions and facts about subdivision on complexes that we use. The main
result is the generalization of Reif’s sufficient condition (Theorem 2.1. More details can be found in [22, 19].

2.1 Subdivision on Complexes

Simplicial complexes. Subdivision surfaces are naturally defined as functions on two-dimensional simplicial com-
plexes. Recall that a simplicial complexK is a set of vertices, edges and triangles inRN, such that for any triangle
all its edges are inK, and for any edge its vertices are inK. We assume that there are no isolated vertices or edges.
|K| denotes the union of triangles of the complex regarded as a subset ofRN with induced metric. We say that two
complexesK1 andK2 areisomorphicif there is a homeomorphism between|K1| and|K2| that maps vertices to vertices,
edges to edges and triangles to triangles.

A subcomplexof a complexK is a subset ofK that is a complex. A 1-neighborhoodN1(v,K) of a vertexv in a
complexK is the subcomplex formed by all triangles that havev as a vertex. Them-neighborhood of a vertexv is
defined recursively as a union of all 1-neighborhoods of vertices in the(m−1)-neighborhood ofv. We omitK in the
notation for neighborhoods when it is clear what complex we refer to.

Recall that alink of a vertex is the set of edges ofN1(v,K) that do not containv. We consider only complexes with
all vertices having links that are connected simple polygonal lines, open or closed. If the link of a vertex is an open
polygonal line, this vertex is a boundary vertex, otherwise it is an internal vertex.

Most of our constructions use two special types of complexes —k-regular complexesRk and theregular complex
R. Each complex is simply a triangulation of the plane consisting of identical triangles. In the regular complex each
vertex has exactly 6 neighbors. In ak-regular complex all vertices have 6 neighbors, except one vertexC, which hask
neighbors. We callC the central vertex of ak-regular complex and identify it with zero in the plane.

Subdivision of simplicial complexes. We can construct a new complexD(K) from a complexK by subdivision,
adding a new vertex for each edge of the complex and replacing each old triangle with four new triangles. Note that
k-regular complexes are self-similar, that is,D(Rk) andRk are isomorphic.

We use notationK j for j times subdivided complexDj(K) andV j for the set of vertices ofK j . Note that the sets
of vertices are nested:V0⊂V1 ⊂ . . . .

Subdivision schemes. Next, we attach values to the vertices of the complex; in other words, we consider the space
of functionsV → B, whereB is a vector space overR. The rangeB is typically Rl or Cl for somel . We denote this
spaceP(V,B), orP(V), if the choice ofB is not important.

A subdivision schemefor any functionpj(v) on verticesV j of the complexK j computes a functionpj+1(v) on the
vertices of the subdivided complexD(K) = K1. More formally, a subdivision scheme is a collection of operatorsS[K]
defined for every complexK, mappingP(K) to P(K1). We consider only subdivision schemes that are linear, that is,
the operatorsS[K] are linear functions onP(K). In this case the subdivision operators are defined by equations
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p1(v) = ∑
w∈V

avwp0(w)

for all v∈V1. The coefficientsavw may depend onK.
We restrict our attention to subdivision schemes which are finitely supported, locally invariant with respect to a set

of isomorphisms of complexes and affinely invariant.
A subdivision scheme isfinitely supportedif there is an integerM such thatavw 6= 0 only if w∈ NM(v,K) for any

complexK (note that the neighborhood is taken in the complexK j+1). We call the minimal possibleM thesupport
sizeof the scheme.

We assume our schemes to belocally definedandinvariant with respect to isomorphisms of complexes2.
Together these two requirements can be defined as follows: there is a constantL such that if for two complexesK1

andK2 and two verticesv1 ∈V1 andv2 ∈V2 there is an isomorphismρ : NL(v1,K1)→NL(v2,K2), such thatρ(v1) = v2,
thenav1w = av2ρ(w). In most cases, thelocalization size L= M.

The final requirement that we impose on subdivision schemes isaffine invariance: if T is a linear transformation
B→ B, then for anyv T pj+1(v) = ∑avwT pj(v). This is equivalent to requiring that all coefficientsavw for a fixedv
sum up to 1.

Limit functions. For each vertexv∈ ∪∞
j=0V

j there is a sequence of valuespi(v), pi+1(v), . . . wherei is the minimal
number such thatVi containsv.

Definition 2.1. A subdivision scheme is called convergent on a complex K, if for any function p∈ P(K,B) there is a
continuous function f defined on|K| with values in B, such that

lim
j→∞

sup
v∈V j

∥∥pj(v)− f (v)
∥∥

2→ 0

The function f is called the limit function of subdivision.

Notation: f [p] is the limit function generated by subdivision from the initial valuesp∈ P(K).
It is easy to show that if a limit function exists, it is unique. Asubdivision surfaceis the limit function of subdivision

on a complexK with values inR3. In this case we call the initial valuesp0(v) thecontrol pointsof the surface.
Locally any surface generated by a subdivision scheme on an arbitrary complex can be thought of as a part of a

subdivision surface defined on ak-regular complex. Note that this fact alone does not guarantee that it is sufficient
to study subdivision schemes only onk-regular complexes (see [22]). If the number of control points of the initial
complex for ak-gonal patch is less than the number of control points of the centralk-gonal patch in thek-regular
complex, then only a proper subspace of all possible configurations of control points on the subdivided complexes can
be realized. Although it is unlikely, it is possible that for such complexes almost all configurations of control points
will lead to non-smooth surfaces, while the scheme is smooth on thek-regular complexes.

Subdivision matrices. Consider the part of a subdivision surfacef [y] with y ∈ U j
1 = |N1(0,R j

k)|, defined on the

k-gon formed by triangles of the subdivided complexR j
k adjacent to the central vertex. It is straightforward to show

that the values at all dyadic points in thisk-gon can be computed given the initial valuespj(v) for v ∈ NL(0,R j
k).

In particular, the control pointspj+1(v) for v ∈ NL(0,Rj+1
k ) can be computed using only control pointspj(w) for

w∈ NL(0,R j
k). Let p̄j be the vector of control pointspj(v) for v∈ NL(0,R j

k). Let p+ 1 be the number of vertices in
NL(0,Rk).

As the subdivision operators are linear, ¯pj+1 can be computed from ¯pj using a(p+1)× (p+1) matrixSj : p̄j+1 =
Sj p̄j

If for somem and for all j > m, Sj = Sm = S, we say that the subdivision scheme isstationary on the k-regular
complex, or simply stationary, and callS the subdivision matrixof the scheme. Note that our definition in the case
k = 6 is weaker than the standard definition of stationary schemes on regular complexes [2].
As we will see, eigenvalues and eigenvectors of the matrix have fundamental importance for smoothness of subdivi-
sion.

2In fact, we only need invariance with respect to sufficiently large set of isomorphisms of complexes; this allows us to include schemes defined
on tagged complexes; see [22, 19].
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Eigenbasis functions. let λ0 = 1,λi , . . .λJ be different eigenvalues of the subdivision matrix in nonincreasing order,
the conditionλ0 > λ1 is necessary for convergence.

For anyλi let Ji
j , j = 1. . . be the complex cyclic subspaces corresponding to this eigenvalue.

Let ni
j be theordersof these cyclic subspaces; the order of a cyclic subspace is equal to its dimension minus one.

Let bi
jr , r = 0. . .ni

j be the complex generalized eigenvectors corresponding to the cyclic subspaceJi
j . The vectors

bi
jr satisfy

Sbi
jr = λib

i
jr + bi

j r−1 if r > 0, Sbi
j0 = λib

i
j0 (2.1)

The complexeigenbasis functionsare the limit functions defined byf i
jr = f [bi

jr ] : U1→ C
Any subdivision surfacef [p] : U1→R3 can be represented as

f [p](y) = ∑
i, j ,r

βi
jr f i

jr (y) (2.2)

whereβi
jr ∈ C3, and ifbi

jr = bk
lt , βi

jr = βk
lt , where the bar denotes complex conjugation.

One can show using the definition of limit functions of subdivision and (2.1) that the eigenbasis functions satisfy
the following set ofscaling relations:

f i
jr (y/2) = λi f

i
jr (y)+ f i

j r−1(y) if r > 0, f i
j0(y/2) = λi f

i
j0(y) (2.3)

C1-continuity of surfaces. By C1-continuous surfaces we mean two-dimensional manifolds immersed (not neces-
sarily embedded) inR3 (see [22] for more detailed discussion). It can be easily shown that no scheme can generate
C1-continuous surfaces for any configuration of control points. Hence, we only require that subdivision generates
C1-continuous surfaces for any choice of control points on a complexK, except a nowhere dense set of configurations.
In almost all cases, for local schemesC1-continuity for arbitrary complexes follows fromC1-continuity onk-regular
complexes. A subtle problem may occur, however, forconstrainedcomplexes (see [22] for further details).

Characteristic maps.

Definition 2.2. Thecharacteristic mapΦ : U1→R2 is defined for a pair of cyclic subspaces Ja
b, Jc

d of the subdivision
matrix as( fa0, fa1) if Ja

b = Jc
d, λa is real,( fa0, fc0) if Ja

b 6= Jc
d, λa,λc are real, and(ℜ fa0,ℑ fa0) if λa = λ̄c, b= d.

Three types of characteristic maps are shown in Figure 1.

a b c

Figure 1: Three types of characteristic maps: control points after 4 subdivision steps are shown. a. Two real eigenval-
ues. b. A pair of complex-conjugate eigenvalues. c. single eigenvalue with Jordan block of size 2.

The domain of a characteristic map is thek-gon U1, consisting ofk triangles of the regular complex; we call
these trianglessegments. We assume that the subdivision scheme generatesC1-continuous limit functions the regular
complexes, and the characteristic map isC1-continuous inside each segment and has continuous one-sided derivatives
on the boundary.
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Sufficient condition for C1-continuity. The following sufficient condition is a special case of the condition that was
proved in [22]. Although all our constructions apply in the more general case, we state the only a simplified version of
the criterion to simplify the presentation. This form captures the main idea of the sufficient condition. This condition
generalizes Reif’s condition [17].

Define for any two cyclic subspaces ord
(

Ji
j ,J

k
l

)
to beni

j + nk
l , if Ji

j 6= Jk
l ; let ord

(
Ji

j ,J
i
j

)
= 2ni

j − 2; note that

for ni
j = 0, this is a negative number, and it is less than ord for any other pair. This number allows us to determine

which components of the limit surface contribute to the limit normal (see [22, 19] for details). We say that a pair of
cyclic subspacesJa

b,J
c
d is dominantif for any other pairJi

j ,J
k
l we have either|λaλc| > |λiλk|, or |λaλc| = |λiλk| and

ord
(
Ja

b,J
c
d

)
> ord

(
Ji

j ,J
k
l

)
. Note that the blocks of the dominant pair may coincide.

Theorem 2.1. Let bi
jr be a basis in which a subdivision matrix S has Jordan normal form. Suppose that there is a

dominant pair of Jab, Jc
d. If λaλc positive real, and the Jacobian of the characteristic map of Ja

b, Jc
d has constant sign

everywhere on U1 except zero, then the subdivision scheme is tangent plane continuous on the k-regular complex.
If the characteristic map is injective, the subdivision scheme is C1-continuous.

In the special case when all Jordan blocks are trivial, this condition reduces to an analog of the Reif’s condition.
To apply Theorem 2.1, we use self-similarity of the characteristic map: for anyt ∈U1, the JacobianJ[Φ](t/2) =

4λaλb[Φ](t). It is immediately clear that to prove regularity of the characteristic map it is sufficient to consider the
Jacobian on a single annular portion ofU1 as shown in Figure 2. To prove injectivity, we use the criterion described in
Section 4.

Figure 2: Thek-gon without originU1 {0} can be decomposed into similar rings, each two times smaller than the
previous ring. The size of the ring is chosen in such a way that the control set of any ring does not contain the
extraordinary vertex. In this figure the control set is assumed to consist out of the vertices of the triangles of the ring
itself, and of a single layer of vertices outside the ring.

Our goal is to develop an efficient general method that would allow us to apply this condition to arbitrary subdivi-
sion schemes. In the next two sections we develop theoretical foundation for application of this criterion. In Section 3,
we prove that regularity of the characteristic map can be verified using linear approximations to the map. This is
sufficient to analyze tangent plane continuity. In Section 4, we show that injectivity of the characteristic map can be
verified by computing the index of a curve.

3 Approximation Errors of Stationary Subdivision

We have observed that regularity of the characteristic map can be established, if it is known that the scheme is regular
on an annular region (ring) shown in Figure 2. All control vertices for a layer are regular, and the subdivision rules that
are used to compute the limit surface on the ring are the rules used for the regular complex. Clearly, the ring cannot be
identified with a subset of a regular complex. However, such identification can be done for each of thek segments of
the ring together with its control points. Therefore, if we can prove regularity of a limit map on the regular complex,
we can apply the same algorithm to prove regularity of the characteristic map for each segment.

Our method is based on the observation that we can define a a subdivision scheme for the vector of differences. The
limit function of this scheme is the vector of partial derivatives of the characteristic map. We estimate the error of the
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piecewise-linear approximations produced by this scheme. From linear approximations and errors we compute upper
and lower bounds for the Jacobian of the characteristic map. If these bounds have the same sign, we can conclude that
the map is regular.

Our derivations are similar to the derivations in Chapters 2 and 3 of Cavaretta, Dahmen and Micchelli [2], and
those found in Dyn,Levin and Micchelli [7]. We have to consider convergence not only of the scheme, but also of the
corresponding scheme for differences, which in general is amatrix subdivision scheme. For this reason, some of the
theorems in [2] have to be generalized to the matrix case. Cohen, Dyn and Levin have developed the basic theory of
univariate matrix schemes in [3]. We usemultivariate matrix subdivision schemes, that is, we need a synthesis of the
theories presented in [2] and [3]. The theory of matrix subdivision differs from the theory of scalar subdivision in a
non-trivial way, when the components of the limit functions generated by the scheme are interdependent [3]. However,
this case is of little interest to us: if the components of the difference scheme are interdependent, the limit surfaces
are degenerate. Hence we can assume independence of components. With this assumption, the results in [2] can be
readily extended to the matrix case.

Definitions. For a regular complex, the vertices can be identified with the integer points in the plane. In general,
we can consider functions on the integer latticeZ2 in R2. Most of the discussion applies to integer latticesZs of
arbitrary dimension with minor changes. We perform the derivations for the cases= 2 to simplify the presentation.
We use Greek letters to denote multiindices corresponding to the points of the lattice:α = (α1,α2). A stationary
matrix subdivision scheme on a regular complex is defined by the equation

(Sp)(vα) = ∑
β

Aα−2βp(vβ)

whereAα aren× n matrices, andpα are in
(
`∞

2

)n =
(
`∞(Z2)× . . . `∞(Z2)

)
, the space of 2-dimensional sequences

of n-dimensional vectors with bounded norm. As we are interested in schemes with finite support, all results can
be extended to arbitrary vectorspα in a straightforward manner (see [2]). We are primarily interested in the cases
n = 1,2,4, corresponding to scalar subdivision, difference schemes and second difference schemes respectively.

If a subdivision scheme converges on the regular complex, there is a matrix functionΦ : Rn×Rn→ R, such that
any limit function f [p] generated from the initial valuesp∈

(
`∞

2

)n
, can be written asf [p](t) = ∑α Φ(t−α)pα, where

t ∈ R2. The matrix refinable functionΦ satisfies the refinement relation

Φ(t) = Φ(2t−α)Aα

The functionΦ can be obtained as a limit of subdivision applied to initial matrix data∆ with ∆α = 0 if α 6= 0, and∆0

is n×n identity matrix.
We say that a matrix scheme isnondegenerateif the vectorsf [p](t), t ∈ R2, for all t for somep∈

(
`∞

2

)n
span the

whole spaceRn. It is straightforward to show, following the derivation in [2], Proposition 2.1, that for a nondegenerate
matrix scheme to be convergent the following condition is necessary:

Theorem 3.1. For a nondegenerate matrix scheme S to be convergent it is necessary that for any e= (e1,e2) , ei ∈
{0,1}

∑
α

Ae−2α = I (3.1)

where I is the identity matrix.

A matrix subdivision scheme isstable(or, more precisely,L∞-stable) [3] if the matrix refinable functionΦ corre-
sponding to the scheme satisfies the inequalities

c1sup
α

∥∥p
∥∥

∞ ≤ sup
t∈R2

∥∥∑
α

Φ(t−α)p
∥∥

∞ ≤ c2sup
α

∥∥p
∥∥

∞ (3.2)

for some positive constantsc1, c2 and anyp∈
(
`∞

2

)n
.
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Convergence condition. To analyze convergence of matrix subdivision schemes, we use thecontraction functions.
Let D(p) be a real-valued nonnegative function defined on

(
`∞

2

)n
. A subdivision schemeS is contractiverelative toD

if there is an integerN and a positive constantγN < 1, for which we have

D(SNp)≤ γND(p) for anyp∈
(
`∞

2

)n

A typical contraction function has the form
∥∥∇p

∥∥
∞, where∇p denotes the vector of directional differences.

The following theorem is a direct generalization of of Theorem 3.1 [2], with the proof extended without any
changes from the scalar case.

Theorem 3.2. Let S be a matrix subdivision scheme, and D a contraction function. Suppose that for some scheme B,
which we call acomparisonscheme,∥∥Sp−Bp

∥∥
∞ ≤ cD(p) for any p∈

(
`∞

2

)n

where c is a constant.
If the comparison scheme is stable and converges, then S also converges.

We use three types of comparison schemes in our analysis: schemes that produce piecewise constant, piecewise
linear, and piecewise bilinear limit functions.

Error estimates. Using Theorem 3.2, we can derive error estimates for the piecewise-linear, bilinear or constant
approximations of the limit function of subdivision. LetLm be the limit function obtained by applying the comparison
schemeB to the control valuespm. This is our approximation. The choice ofB guarantees that the limit functions of
B can be computed trivially. Then we have∥∥Lm+1−Lm

∥∥
∞ =

∥∥(S−B)pm
∥∥

∞ < cD(pm)

Suppose thatm= kN+ q; thenD(pm)< γkD(pq) and

∥∥L∞−Lm
∥∥

∞ ≤
∞

∑
j=0

∥∥Lm+ j+1−Lm+ j
∥∥

∞ =

=
∞

∑
j=0

∥∥(S−B)pj+m
∥∥

∞ ≤ c
∞

∑
j=0

D
(
pm+ j)=

= c
∞

∑
i=1

N

∑
q=1

D
(
pm+iN−q)= c

∞

∑
i=1

(
N−1

∑
q=1

D
(
pm+iN−q)+ D

(
pm+(i−1)N

))

If m≥ N,

∥∥L∞−Lm
∥∥

∞ ≤
c

1− γ

(
γ

N−1

∑
q=1

D
(
pm−q)+ D(pm)

)
(3.3)

Estimating c and γ. To use the estimates (3.3), we need to compute the constantsγN andc. These constants clearly
depend on the choice of the contraction function and on the choice of the comparison scheme. We use the contraction
functions of the form

∥∥∇p
∥∥

∞, where∇ :
(
`∞

2

)n→
(
`∞

2

)2n
is a difference operator, which assigns to each vectorp

of lengthn the vector of differences in 2 independent directions of length 2n. Specific choice of∇ can be adapted
to the scheme; the simplest choice is

[(
∇p2m+i

)
α
]m =

[
pα+ei

]m− [pα
]m = ∆ei

[
pα
]
, whereei , i = 0,1, is one of the

multiindices(0,1) and(1,0). The superscriptm of p denotes the component ofp, m= 1. . .n. Other possible choices
include replacing vectorsei by displacements in other directions. Specific choices are discussed in Sections 7-9.
Whenever for a schemeS there is a difference schemeS′ satisfying the commutation formula

∇Sp= S′∇p (3.4)
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for anyp. If
∥∥S
′N
∥∥

∞< 1 for someN, we can use
∥∥∇p

∥∥
∞ as a contraction function, because

∥∥∇SNp
∥∥

∞≤
∥∥S′N∥∥∞

∥∥∇p
∥∥

∞.
While in most cases the simplest choice of∇ is theoretically possible, in practice the constantN can be quite large. In
certain cases, such as the Butterfly scheme, different contraction functions yield better results.

For contraction functions of the type described above computation ofγN and is reduced to computing the (matrix)
difference schemeS′ and its sup norm. Lemma 2.3 from [2], which directly generalizes to the matrix case, yields an
algorithm for computing the matrix Laurent polynomial of the difference scheme.

Formulas for γ. We describe the algorithm for computing the difference scheme in the bivariate case, for the simplest
comparison functionD(p) =

∥∥∇p
∥∥

∞, p∈
(
`∞

2

)n
, with ∇p described above. In a more explicit form,

D(p) = sup
α

max
m

([
∆(1,0)pα

]m
,
[
∆(0,1)pα

]m)
Let A(z) be the Laurent polynomial with matrix coefficients of a matrix schemeS, with z= (z1,z2). The commu-

tation formula in thez-domain can be written as

(
(z1−1)A(z)p(z)
(z2−1)A(z)p(z)

)
= A′(z)

(
z2
1−1

z2
2−1

)
=
(

T11(z)(z2
1−1)+ T12(z)(z2

2−1)
T21(z)(z2

1−1)+ T22(z)(z2
2−1)

)
(3.5)

for any p. The matrix Laurent polynomialA′ with the coefficients of size 2n× 2n is the Laurent polynomial of the
difference schemeS′. Each coefficient ofA′ is composed out of the coefficients ofn×n blocksTi j (z). The blocksTi j

are not defined uniquely, and can be computed in a variety of ways. A method suggested by Lemma 2.3 of [2], yields
the following formulas for a decompositionR(z) = (z2

1−1)T1(z)+ (z2
2−1)T2(z)

T1(z) =
(1−z2)R(z1,−1)+ (1+ z2)R(z1,1)

2(z2
1−1)

T2(z) =
2R(z)− (1−z2)R(z2,−1)− (1+ z2)R(z1,1)

2(z2
2−1)

(3.6)

Whenever a scheme with the Laurent polynomialA satisfies Theorem 3.1, it follows thatA(−1,−1) = A(1,−1) =
A(−1,1) = 0. ThenT1(z) andT2(z) are guaranteed to be matrix Laurent polynomials, rather than rational functions,
for R(z) = (zi −1)A(z), i = 1,2.

These formulas can be used to compute the blocks for each line in (3.5). Note that the formulas are asymmetric,
and care mast be taken to choose the order of variablesz1 andz2 to obtain better estimates. The rule of thumb is
that the norm of the off-diagonal blocks should be small; then for schemes with factorizable Laurent polynomials the
2n×2n difference scheme can be decomposed into twon×n schemes.

The same method can be used to compute difference schemes for other choices of∇ that we use. OnceS′ is known,
we computeγN as

∥∥S
′N
∥∥

∞ =
∥∥A(z)A(z2) . . .A(z2N

)
∥∥

∞ using the formula for the sup-norm of a bivariate polynomial with
n×n matrix coefficientsAi j = [alm]i j :

∥∥C(z)
∥∥

∞ = max
e1,e2∈{0,1},m=1..n

∑
l=1...n

∑
i j

∣∣∣clm
2i+e1 2 j+e2

∣∣∣ (3.7)

Computing c. To computec, it is sufficient to observe that if the comparison schemeB is nondegenerate and conver-
gent, thenB(z)−A(z) can be always decomposed in a way similar toR(z) in (3.6). This means that we can represent
B−SasS̃∇, for some 2n×2n matrix schemẽS, which leads to the estimate ofc as

∥∥S̃
∥∥

∞.

Summary of the estimates. We have obtained the following estimates for the constantsγN,c, γD
N,cD, characterizing

approximation errors for the approximations of the limit functions and its derivatives respectively. LetSis a convergent
scalar subdivision scheme, satisfying commutation formula∇Sp= S′∇p, wherep∈ `∞

2 , andS′ is a 2×2 matrix scheme.
Let B be a scalar comparison scheme, and(B−S)p = S̃∇p. Then we can takeγN =

∥∥S
′N
∥∥

∞, andc =
∥∥S̃
∥∥

∞. If the
difference scheme 2S′ converges and satisfies the commutation formula∇2S′p = S′′∇p, whereS′′ is a 4× 4 matrix
subdivision scheme,γD

N =
∥∥S′′
∥∥

∞, If the difference scheme 2B′ corresponding to a comparison schemeB is also a
comparison scheme, and(2S′ −2B′)p = S̃′∇p, thencD =

∥∥S̃′
∥∥

∞.
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Limitations of the method. While for anyC1-continuous subdivision scheme and for all operators∇ that we use
the difference schemesS′ andS′′ are defined, it is not guaranteed that for anyN

∥∥S
′N
∥∥

∞ < 1 or
∥∥S
′′N
∥∥

∞ < 1. This
is the main limitation on the applicability of our method. Even for a convergent scheme it might be possible thatN∥∥S
′N
∥∥

∞ > 1 for all N. However, note that a sharper estimate can be made forγ: we are interested in the action of

the difference scheme not on arbitrary elements of
(
`∞

2

)2n, but only on the elements that are have the form∇p for

somep∈
(
`∞

2

)n
. Therefore, we can use

∥∥S
′N
∣∣
∇

∥∥
∞ instead of

∥∥S
′N
∥∥

∞, where|∇ denotes restriction to the subspace of
differences. If we use this norm, than the following theorem holds:

Theorem 3.3. A matrix subdivision scheme S is nondegenerate, convergent and stable, if and only if the there is a
difference scheme S′ satisfying the commutation formula 3.4 and such thatlimN→∞

∥∥S
′N
∣∣
∇

∥∥
∞ = 0.

The proof of the theorem is identical to the proof of Theorem 2.3, [2]. The additional condition – stability of the
scheme – is quite weak, and in all cases of interest is likely to be satisfied.

Computing the norm
∥∥·∣∣∇∥∥∞ is possible for schemes with finite support, but is substantially more complicated than

computing the sup norm. For schemes with factorizable Laurent polynomials for suitable choices of∇,
∥∥·∣∣∇∥∥∞ is often

equal to
∥∥·∥∥∞ (for example, this is true for tensor product schemes). However, for certain schemes with nonfactorizable

polynomials computing
∥∥·∣∣∇∥∥∞ may be the only option.

4 Injectivity of the Characteristic Map

In general, it is difficult to establish injectivity of a map defined as a limit of a subdivision process. Even if the
Jacobian of a map is nonzero everywhere, only local injectivity is guaranteed. However, the special structure of the
characteristic maps allows one to reduce the injectivity test to computing the index of a curve, a relatively simple and
fast operation: for example, the index can be computed counting the number of intersections of the curve with a line.

A step in this direction was made by Peters and Reif [14]. However, their method still required closed-form
expression for the derivative of the characteristic map along a line, and was formulated only for schemes invariant
with respect rotations ofk-regular complexes (see Section 6).

The characteristic map can be extended using scaling relations to the whole plane. In the following theorem we
assume that the characteristic map is defined onR2.

Theorem 4.1. Suppose a characteristic mapΦ = ( fa, fc) satisfies the following conditions:

1. the preimageΦ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points where it is defined.

Then the extension of the characteristic map is surjective and is a covering away from 0. In particular, if the winding
number of the imageΦ(γ) of a curve is 1, the characteristic map is injective and the scheme is C1-continuous.

Proof. Three cases are possible: the characteristic map is defined by a pair of real eigenvectors, by two generalized
eigenvectors from the same Jordan block corresponding to a real eigenvector, or the real and imaginary parts of an
eigenvector corresponding to a complex eigenvalue.

A pair of real eigenvectors. In the first case the components of the characteristic map satisfy the scaling relations
of the simplest formfa(y/2) = λa fa(y), fc(y/2) = λc fc(y).

First, we establish the following important fact: if a characteristic map satisfies the first two conditions of the
lemma, then the map is continuous at infinity.

Consider two circles of radiir and 2r centered at 0 in the domain ofΦ. The imageΦ(R) of the ringRbounded by
the two circles is compact, and does not contain 0. Thus, there is a constantM > 0 such that for any pointp in the ring
‖Φ(p)‖ ≥M.

Consider any pointp in the domain ofΦ. There is a numberk∈ Z such that 2kp is contained in the ringR. Thus,
by scaling relations,‖Φ(p)‖>min(|λa|, |λc|)kM. Clearly, as‖p‖→ ∞, k→ ∞, and for anyC there isC′ such that if
‖p‖>C′, ‖Φ(p)‖>C.

Consider the stereographic mapP from the plane into the sphere without one point. The mapΦ corresponds to
a map on the sphere:ΦS = PΦP−1 : S2 \ {N} → S2, whereN is the center of projection. From the continuity of
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Φ at infinity it follows that if we extend the mapping by settingΦS(N) = N, we get a continuous mapping. As we
have assumed that the Jacobian of the characteristic map has constant sign where it is defined, the mapping is also a
local homeomorphism away from 0. The sphere is compact, thus its image is compact, hence closed, i.e., contains its
boundary. But under local homeomorphism the points on the boundary of the image can be images only of the points
of the boundary of the domain. Therefore, the only points that can be contained in the boundary of the image are 0
andN. We conclude that the image has no boundary, i.e., the mapping is surjective.

Finally, for anyp setΦ−1
S (p) is finite: if it were not finite, it would have a limit point (S2 is compact). AsΦ−1

S (p)
is a discrete set for any local homeomorphism, the only limit points that it may have are 0 andN. But Φ(0) = 0 and
Φ(N) = N, so this is impossible. We conclude that for any pointp the setΦ−1

S (p) is finite. As any pointy∈Φ−1
S (p),

p 6= 0,N has a neighborhoodU(y) such thatΦS|U(y) is a homeomorphism, then the intersection of all neighborhoods
V = ΦS(U(y)) has inverse image consisting of disjoint homeomorphic images ofV. This proves thatΦS is a covering
away from 0.

Two generalized eigenvectors. The case of the characteristic map generated by imaginary and real part of a complex
eigenvector corresponding to a complex eigenvalue is similar to the case of two real eigenvectors; we proceed directly
to the proof for the case of two generalized eigenvectors from a single Jordan blockΦ = ( f0, f1), satisfying f0( y

2) =
λ f0(y) and f1( y

2) = λ f1(y)+ f0(y).
From these equations we immediately obtain

Φ(2py) =
1

λp

(
1 0
1 −p/λ

)
Φ(y) =

1
λpTΦ(y) (4.1)

Consider the image of a circleγ of radiusr centered at 0. Let Int(γ) be the interior domain of the simple curve
γ. As Φ−1(0) by assumption is{0}, then 0 is an interior point of the image of Int(γ) and there is an open disk
centered at 0 of some radiusr ′, which is contained inΦ(Int(γ)). For anyp the image of the disk bounded by 2pγ is
determined by the equations (4.1). It can be obtained from the image of the disk bounded byγ by affine transform
1

λp T from (4.1). If a diskDr of radiusr is contained inΦ(Int(γ)), then the interior of the ellipse1λp TDr is contained
in Φ(Int

(
2pγ
)
). We can estimate the length of the minor axis of this ellipse: it can be represented parametrically as

( r
λp cos(t), r

λp (sin(t)− (p/λ)cos(t))). The square of the distance from 0 to a point on the ellipse is

r2

λ2p(cos2(t)+ (sin(t)− p
λ

cos(t))2) =
r2

λ2p(1+
p2

2λ
(cos(2t)+ 1)− p

λ
sin(2t))

This quantity can be estimated from below by
(
r2/λ2p

)(
1+ p2/λ− p/λ

)
As λ < 1, the length of the minor axis increases with p for sufficiently largep. We conclude that asp→ ∞, the

image of the exterior of 2pγ is arbitrarily far from zero, andΦ is continuous at infinity. Then the rest of the argument
that was used for the case of two eigenvectors applies.

Finally, our covering is injective, if and only if the winding number of a simple curve around zero is 1. This
fact can be seen by looking at the fundamental groups of the domain and the image. The assumptions guarantee that
both have fundamental groupZ. As for a covering the fundamental group of the covering space is a subgroup of the
fundamental group of the base space, with a monomorphism induced by the covering map. A simple curve around
zero is the generating element of the fundamental group of the domain. Thus, the mapping of fundamental groups is
an isomorphism which is necessary and sufficient for the covering mapping to be an injection, if and only if the simple
curve maps to a curve homotopic to a simple curve, i.e., one with winding number 1.

Computing the winding number. In general, we do not have a closed-form expression for any curves on the limit
surface. One way to compute the winding number of a curve is to choose a sufficiently close linear approximation
and compute the winding number of the approximation. The following Proposition can be easily proved (see [19] for
details):

Proposition 4.2. Let γ(t) is a curve in the domain ofΦ, Lm is a piecewise linear approximation toΦ. Suppose for
someε supt ‖Φ(γ(t))−Lm(γ(t))‖ ≤ ε, and inft ‖Φ(γ(t))‖ ≥ 2ε, Then the winding number of Lm(γ(t)) is equal to the
winding number ofΦ(γ(t)).
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As subdivision computes linear approximations to the surface, and the approximation estimates are known, we can
use this proposition to compute the winding number.

5 Algorithms

In this section we describe the algorithms for verification ofC1-continuity of subdivision near extraordinary points
based on the theorems presented in Sections 3 and 4. Two algorithms are used to analyzeC1-continuity of a scheme
near an extraordinary point of a fixed valence: the first one verifies regularity, the second verifies injectivity. We give
a brief description of the algorithms; more details can be found in [19]. The source code is available from the author.

We assume that the eigenvectors and eigenvalues of the subdivision matrix defining the characteristic map are
known with guaranteed precision: ifx is a component of an eigenvector or an eigenvalue, it is represented by a pair of
exactly representable numbers[xd,xu] such thatxd ≥ x≤ xu.

All calculations are performed in interval arithmetics, which makes it possible to obtain guaranteed bounds on the
computed quantities, despite using finite-precision arithmetics.

5.1 Verification of C1-continuity for a fixed valence.

We verify C1-continuity by checking regularity and injectivity of the characteristic map on a ring, as described in
Section 2.

First, we verifyregularity, computing successive linear approximations to the characteristic map and using error
estimates of Section 3 to estimate the range for the Jacobian. If the computed bounds are on the same side of zero, this
guarantees that the Jacobian has constant sign on the domain.

To guarantee that the conditionΦ−1(0) of Theorem 4.1 and the assumption of Proposition 4.2 are satisfied, it is
necessary to verify that the image of the characteristic map on the ring is sufficiently far from zero. The algorithm is
straightforward, and we omit the detailed description.

Finally, we computingthe winding numberof the curve obtained by restricting the linear approximation to the
characteristic map to the boundary of the domain. If the winding number is 1, this completes the proof that the
characteristic map is injective and regular.

In the descriptions of algorithms,̃Gi denotes the control mesh of the characteristic map afteri subdivision steps.
The components of the control points are stored in interval representation. The numbersεi , i = 1,2 are the estimates of
the errors of the linear approximation to the components of the characteristic map, andεi j , i, j = 1,2 are the estimates
of the error of the approximation by divided differences to the derivatives of the characteristic map. All errors are
computed using formulas from Section 3.

Regularity. Once we know the error in the approximation of the derivatives by the divided differences, we can
estimate the Jacobian. Observe that the jacobianJ[∂1 f1,∂2 f2,∂2 f1,∂1 f2] = ∂1 f1∂2 f2−∂2 f1∂1 f2, is a bilinear function
of the derivatives. If the intervals for the derivatives are known, the Jacobian can be regarded as a bilinear function on
a four-dimensional cube, and it attains its minimal/maximal value at a vertex of the cube. This leads to the following
algorithm:

We present a slightly simplified version of the algorithm, which does not detect the situation when the Jacobian is
guaranteed to change sign, and the test fails. A complete version can be found in [19].
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TestRegular ( G̃i , γD,CD)

Jmin := +∞, Jmax := +∞
foreach vertex∈ Int(G̃i)

d1 := G̃i(i + 1, j)− G̃i(i, j)
d2 := G̃i(i, j + 1)− G̃i(i, j)
compute 16 numbersJl , l = 1. . .16
choosing signs in(d1

1± ε11)(d2
2± ε22)(d1

2± ε12)(d2
1± ε21)

Jmin := min(Jmin,Jl , l = 1. . .16)
Jmax := max(Jmax,Jl , l = 1. . .16)

endforeach
if 0 /∈ Jmin and 0 /∈ Jmax

and Jmin and Jmax have the same sign
then return true

return undefined

Computing the winding number. While the simplest approach to this problem is to count the number of intersec-
tions with a straight line, numerically this is not the best choice when the curve is piecewise-linear. Instead, we choose
a different approach: we observe that the winding number for a piecewise-linear curve can be computed as 1/4 of
the sum of signed lengths of projections of segments onto a unit square centered at zero. As the coordinates of the
vertices are represented by intervals, the actual calculation becomes somewhat more complicated. For each interval
endpoint of the segment we determine the sides of the square on which the endpoint may be projected. We require the
calculation to be sufficiently precise (i.e. the size of the intervals for the points to be sufficiently small) for the total
number of sides intersecting the projection of the interval to be no more than two.

In the algorithm below,head andtail return the endpoints of a segment of the curve, subscripts 1 and 2 denote
the coordinates, and the functionsides( x) returns the set of sides (identified by numbers 1..4) to which a pointx
with interval coordinates is projected.

ComputeProj (G̃i)

projLength := 0
for every segementsof the curve

ns := head(s)/max( head(s)1, head(s)2)
nf := tail(s)/max( tail(s)1, tail(s)2)
if |Sides (ns)|> 2 or |Sides (nf )|> 2
then return fail

intervSides := Sides (ns)∪Sides (nf )
if |intervSides |> 2 then return undefined

if 1∈ intervSides then projLength += nf
2−ns

2

if 2∈ intervSides then projLength += ns
1−nf

1

if 3∈ intervSides then projLength += ns
2−nf

2

if 4∈ intervSides then projLength += nf
1−ns

1
endfor
return projLength

The algorithms described in this section are quite efficient – even in the case of the Butterfly scheme, which
required 6 subdivision levels to verifyC1-continuity of a single valence, the execution time per valence was about 7
sec on a 300MHz Pentium II.
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5.2 Verification of C1-continuity for all valences.

The algorithms of the previous section allow us to prove that a scheme isC1-continuous for any given valence. We
have made only weak assumptions about invariance of the schemes (rotational invariance is not required), and we
have not assume any relations between the subdivision rules used near extraordinary vertices of different valences.
Although one can verifyC1-continuity for a number of valences that is sufficiently large for all practical purposes, as
it was done, for example, in [18] and [14], it is not quite satisfying theoretically.

Our approach to analysis of subdivision for large valences applies to schemes invariant with respect to rotations
of k-regular grids around the extraordinary vertex. In this case, the segments of the characteristic map are identical,
and the analysis has to be performed for a single segment. As the valence grows, the control points of a segment
approach a degenerate configuration for which all control points are on a single line. However, by rescaling the
control points in one direction by 1/sin(2π/k), wherek is the valence, we typically remove the singularity. Because
subdivision is affine-invariant, verifying regularity and injectivity of the rescaled characteristic map is equivalent to
verifying injectivity and regularity of the original map. For all common subdivision rules, when the coefficients are
defined as functions of cos(2π/k) and sin(2π/k), ask approaches infinity, the control points of the segment approach
a nondegenerate limit configuration. More precisely, assume that the eigenvaluesλa andλb and eigenvectorsea and
eb defining the characteristic map are continuous functions ofc = cos(2π/k), that can be computed in the interval
form, that is, given an interval of values ofc, we can compute an interval of values ofλ. Recall that all algorithms
that we have described operate with interval representations. Let ˜ea and ˜eb be the vectors with interval components
obtained by evaluatingea(c) andeb(c) on the intervalc = [1− ε,1]. If we have verified that the limit map defined
by ẽa and ˜eb is injective for these interval eigenvectors, we have verified that it is injective for any valence for which
cos(2π/k)> 1−ε. Thus, we obtain a proof ofC1-continuity for all valences greater than somek0 at no additional cost
– all we have to do is to choose the value ofc to be[1− ε,1].

Finally, we observe that it is not always possible to represent an eigenvalue of the subdivision matrix as an explicit
function ofc. For example, for Kobbelt’s scheme the characteristic polynomial has degree 6 and is not factorizable.
However, the eigenvectors can always be represented as explicit functions of the eigenvalues and coefficients of the
subdivision scheme. Therefore, the problem is reduced to computing the eigenvalue as a function ofc with guaranteed
intervals. While there are always cases when this is difficult if at all possible, in most cases it appears to be an
achievable goal – see Section 8 for an example.

6 Invariant Schemes

The algorithms described in previous sections are quite general. However, specific examples of schemes considered
in this paper are invariant with respect to all isomorphisms of complexes3. The algorithms of Section 5 can be
further simplified and optimized for such schemes: due to symmetry, we need to consider only a single sector of
the characteristic map. In addition, the transformation of the subdivision matrix described below reduces analysis of
subdivision matrices to the analysis of parametric families of smaller matrices.

The constructions of this section follow the ideas of Ball and Storry [1], also used in [21] and in [14]. If a scheme
is invariant with respect to all isomorphisms of complexes, in particular, it is invariant with respect to automorphisms
of ak-regular complex. Ifρ is an automorphism of a complexK, the coefficients of subdivision satisfy

a(v,w) = a(ρ(v),ρ(w)) (6.1)

For k-regular complexes, the set of automorphisms consists of rotations around the extraordinary vertex, mirror
reflections and their combinations; we use only rotations.

Let M be the localization/control size for the subdivision scheme on ak-regular complex. In this case, the control
set ofU1 is aM-neighborhood of the extraordinary vertex. One sector of this neighborhood (center excluded) contains
M(M +1)/2 = N vertices, the total number of vertices beingNk+1. We will use notation[s j] for the vertices;s is the
number of the sectors= 0. . .k−1, j > 0 is an arbitrarily chosen numbering of vertices within a sector. We use the
numbering shown in Figure 3.

The central vertex is[00]. We assume that the numbering is chosen consistently in each sector, that is,Rm([s j]) =
[s+ mmodk j] whereRm corresponds to the rotation of the plane by 2mπ/k.

3An example of a scheme which isnot invariant with respect to some isomorphism is the piecewise-smooth scheme of Hoppe et al.[10]
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Figure 3: The numbers of the vertices in a sector of the control mesh for the characteristic map. Left: the numbering
for triangular schemes; right: the numbering for quadrilateral schemes.

With this notation, (6.1) becomesa([s′ j ′], [s j]) = a([(s′+ m) j ′], [(s+ m) j]) for anym, where the sums are modulo
k.

The coefficients are functions ofj, j ′, ands− s′ only; In the cases whenj = 0 or j ′ = 0 (one ofv, w is the
extraordinary vertex), the coefficients do not depend ons− s′. We introduce notationa([s j], [s′ j ′]) = aj j ′(s− s′),
bj = a([00], [s j]), cj = a([s j], [00]), a00 = a([00], [00]). The subdivision matrix will have a convenient block form
if we arrange the vertices “by symmetry class”:[0,0], [0,1], [1,1], [2,1] . . . [k−1,1], [0,2] . . . [k−1,N]. With this
ordering of vertices, the subdivision matrix has the form

S=


a00 bT

0 · · · bT
N−1

c0 A00 · · · A0N−1

...
...

...
...

cN−1 AN−10 · · · AN−1N−1

 (6.2)

whereAj j ′ arek×k matrices with entriesaj j ′(s), s= 0. . .k−1. Clearly, these matrices are cyclic.b j denotes the
vector[bj , . . .bj ]T of sizek with equal entries; similarly,c j is the vector[cj , . . .cj ]T .

A cyclic matrix can be reduced to a diagonal form using the DFT. LetD= diag(1, 1
kDk . . . · · · 1kDk) whereDk is the

DFT matrix of sizek. The number of DFT blocks inD is N.
Applying a the transform toS, we obtain

DSD−1 =


a00 bT

0 Dk · · · bT
N−1Dk

1
kDkc0

1
kDkA00Dk · · · 1

kDkA0N−1Dk

...
...

...
...

1
kDkcN−1

1
kDkAN−10Dk · · · 1

kDkAN−1N−1Dk


The matrices(1/k)DkADk are diagonal with entries on the diagonalDka j j ′ , wherea =

[
aj j ′(0) . . .aj j ′(k−1)

]
.

Note that vectorsDkb j andDkcn have zeros in all positions except the first:Dkb j = [kbj0. . .0]T , Dkc j = [cj0. . .0]T .
Finally, the subdivision matrix can be reduced to block diagonal form by applying a permutation. LetP be the

permutation that rearranges the entries of a vector of lengthkN+1 as follows:[0,1,2,3, . . .Nk]→ [0,1,k+1, . . .(N−
1)k+ 1,2,k+ 2, . . .(N−1)k+ 2. . .Nk] Applying this permutation we obtain

PDSD−1P−1 = diag
(

Z,B
(

e
2πi
k

)
, . . .B

(
e

2(k−1)πi
k

))
(6.3)

The matrix hask− 1 N×N blocksB(ω) whereω = e2πi/k, . . .e2(k−1)πi/k. EachB(e2πmi/k) has entries[Da j j ′ ]m,
i.e., is composed ofm-th entries of DFT transforms of all vectorsb j j ′ . For m = 0 we have to consider a larger
(N + 1)× (N + 1) matrix Z with vectorsb = [b0, · · ·bN−1]T and(1/k)c = (1/k)[c0, · · ·cN−1]T added on two sides.
Note thatB(e2mπi/k) = B(e2(k−m)πi/k) and the eigenvalues of these blocks are conjugate. If an eigenvalue happens to

14



be real, and corresponds to the blockB(e2mπi/k) with m 6= k/2, it necessarily has an eigenspace of dimension at least 2.
If x is its complex eigenvector obtained from an eigenvector ofB(e2mπi/k), a pair of real eigenvectors in this subspace
can be taken to beℜx andℑx. If an eigenvalueλ is complex, the two-dimensional real eigenspace corresponding toλ
andλ is also spanned byℜx andℑx.

Keeping in mind the support size of the scheme, it is easy to show that each blockB also has a particular structure,
for a suitable choice of numbering of vertices in each sector.

B(ω) =
(

B00(ω) 0
B10(ω) B11(ω)

)
In this way, the size of the matrices that have to be analyzed is further reduced; for example, for the Butterfly

scheme considered in Section 7B(ω) is 6×6, andB00(ω) is 3×3.

Necessary condition for tangent plane continuity of invariant schemes. Before we proceed to the analysis of
specific subdivision schemes, we formulate a necessary condition forC1-continuity. We need this condition to show
that the Butterfly scheme isnot C1-continuous for most valences.

Each eigenvalue of the subdivision matrix is an eigenvalue of a blockB(e2mπi/k),m= 1. . .k−1 or Z. Each eigen-
vector can be obtained by taking an eigenvector of one of the blocks, setting the rest of the entries to 0, and transforming
it usingDP. This means that the eigenvectors have symmetries that can be used to establish necessary conditions on
location of dominant eigenvalues of the subdivision matrix.

A condition of this type was proposed in [14] (Theorem 3.1). The theorem of Peters and Reif states that the
dominant eigenvalues for a subdivision scheme with injective characteristic map necessarily have to be the eigenvalues
of the blocksB(e2πi/k) andB(e2(k−1)πi/k). Intuitively, it appears that this is true for any “reasonable” subdivision
scheme. However, it is possible to construct examples ofC1-continuous schemes with eigenvalues corresponding to
the characteristic map being in other blocks. Typically, such schemes would have noninjective characteristic map.
Injectivity of a characteristic map is not strictly necessary forC1-continuity of the scheme, contrary to Theorem 2.2
of [14]. However, the cases when the scheme isC1-continuous and the characteristic map is not injective, are quite
degenerate and are unlikely to be practically useful.

A weaker version of the conditions of Peters and Reif under some additional assumptions is proved in [19]. We a
further simplified version of the condition, which is sufficient for our purposes.

As the subdivision matrix for an invariant scheme can be reduced to the block diagonal form, each cyclic subspace
of the matrix is also a cyclic subspace of one ofZ, B(ω), ω = e2πi/k, . . .e2(k−1)πi/k.

Lemma 6.1. Suppose that the subdivision matrix for a subdivision scheme has a pair of dominant cyclic subspaces
Ja

b, Jc
d, which either coincide and both have order 1, or are distinct and have order 0. Suppose these subspaces

correspond to the blocks B(e2πmi/k) and B(e2π(k−m)i/k), m 6= 1, and the Jacobian of the characteristic map of this pair
of cyclic subspaces is not identically zero. Letλ be an eigenvalue of the block B(e2πi/k) and x a corresponding complex
eigenvector.

Suppose that for the limit map f: U1→ R2 generated by the pairℜx, ℑx the following two conditions hold:
f−1(0) = {0}, and the winding number of the curve obtained by restricting f to the boundary of U1 is 1. Then the
scheme is not C1-continuous.

Proof. see [19] for the proof.

7 Analysis of the Butterfly and Modified Butterfly Schemes

The Butterfly subdivision scheme was proposed by Dyn, Gregory and Levin in [6]. In [7], it was proved that the
scheme producesC1-continuous limit functions for regular meshes. Here we present an analysis of the scheme near
extraordinary vertices. It turns out that for valencesk = 3 andk≥ 8 the scheme is notC1-continuous. We also show
that the Modified Butterfly scheme [21] isC1-continuous for all valences.

Definition of the schemes. The Butterfly scheme is an interpolating scheme: once a vertex is added to the complex,
the control point corresponding to the vertex does not change. In [6], the coefficients of the scheme are parameterized
by a parameterw. The scheme has maximal approximation order forw = 1/16; we analyze the scheme for this value
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of w. The mask of the subdivision rule for newly inserted vertices is shown in Figure 4 on the left. The attractive
feature of the scheme is its simplicity: the rules are the same for all vertices. However, as we will prove, the scheme
does not produceC1-continuous surfaces.

In [21] we have proposed a modification of the Butterfly scheme, which does not have this problem. The rule for the
immediate neighbors of an extraordinary vertex is modified in such a way that the spectrum of the subdivision matrix is
similar to the spectrum of the subdivision matrix for valence 6, i.e. has eigenvalues 1, 1/4 in blockB(0), 1/2 in blocks
B(e2πi/k) andB(e2(k−1)πi/k), and 1/2 in blocksB(e4πi/k) andB(e2(k−2)πi/k). The rest of eigenvalues should be less than
1/8. In order to achieve this, we use a mask with coefficientss0, . . .sk−1, as shown in Figure 4 on the right. Note that
this mask is asymmetric. For vertices on level finer than 0, this is not a problem: we are modifying coefficients of the
scheme only for neighbors of extraordinary vertices, and only one of the two neighbors can be extraordinary after one
subdivision step. On the top level both neighbors can be extraordinary. The choice that we make on the top level does
not affectC1-continuity. We make anad hocchoice to take the average of the results produced by each of the two
possible choices. ForK ≥ 5 the coefficients aresj = (1/k)(1/4+ cos(2π/k)+ 1/2cos(4π/k)), j = 0, . . . ,k−1. For
k = 3 we uses0 = 5/12,s1,2 =−1/12, and fork = 4, s0 = 3/8,s2 =−1/8,s1,3 = 0. The properties of the scheme are
discussed in greater detail in [21, 19].

Figure 4: The masks of the Butterfly and Modified Butterfly schemes.

Subdivision matrices. For the Butterfly scheme, the size of the blocksB(ω) (Section 6) is 6×6. There is no need
to consider 0th block separately, as it can be split into a trivial 1×1 block and a 6×6 block.

All blocks have eigenvalues 0 and−1/16, the eigenvalue−1/16 having multiplicity 2 for each block. The other
eigenvalues are eigenvalues of the upper left 3×3 subblockB00(ω); these subblocks have the form

B00(ω) =


1
2 + 1

4c− 1
8(2c2−1) − 1

16 ω− 1
16 0

1
2 + 1

2ω− 1
16ω− 1

16 ω2 1
8 − 1

16−
1
16 ω

1 0 0


wherec = ℜω = cos(2mπ/k). The characteristic polynomial of this matrix is

P(λ,d) = λ3 +
(
−1/4−3/2d+ d2)λ2 +

(
1
64

+
23
64

d−3/16d2
)

λ− 1
64

d

whered = c2.
For the Modified Butterfly scheme, there first row ofB00(ω) is replaced by[λ(ω),0,0], whereλ(ω) is the prescribed

largest eigenvalue for the blockB(ω). The roots of the characteristic polynomial in this case areλ(ω), 0 and 1/8.

Convergence rates. For both schemes, which coincide on the regular complexes, we use the contraction function
‖∇p‖∞, with the difference operator∇ = [∆(1,0),∆(0,1)] :

(
`∞

2

)
→
(
`∞

2

)2
(cf. [7]). For the difference scheme acting

on the vectors[∆(1,0)p,∆(0,1)p] we use the difference operator∇′ = [∆(0,1),∆(1,1),∆(1,0),∆(1,1)] :
(
`∞

2

)2→
(
`∞

2

)4
. The

convergence constants for the Butterfly scheme arec = 1/2, γ1 = 7/8, γ2 = 31/64,γ3 = 261/1024. The constants for
the difference scheme arecD = 1/2, γD

1 = 1, γD
2 = 7/8, γD

3 = 11/16.
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We have chosen to useγ for 3 levels of subdivision, as after 3 levels of subdivision the convergence factorper level

is close enough to what we would get if we were to use more levels:γ1/3
3 is close toγ1/4

4 .
These estimates indicate that the convergence for derivatives is quite poor:γ stays close to 0.9 per level. However,

this is a worst case estimate and in practice the scheme converges much faster. The reason for this is that for schemes
with negative coefficients, the “worst case” happens when the initial values have changing signs, i.e., consist primarily
out of high frequency components, which is uncommon for surfaces.

Analysis of the Butterfly scheme. The following proposition summarizes the information about the roots of the
characteristic polynomial that we need to analyze the scheme. Whenever an approximate value of a root is given,
it is implied that the precision is given by the last digit. Roots as functions ofc are shown in Figure 5. The proof
is straightforward, but tedious. An outline is presented in Appendix A.1. A detailed proof is contained in the
Appendix B.
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0.25

dmax dcr
d

|l| two complex,
one real root

two complex,
one real root

three real roots

2

2

2

3

max. eigenvalue
decreases

Figure 5: The magnitudes of the eigenvalues of the blockB00(ω) as functions ofd = cos2(ω) for the Butterfly scheme.
The vertical lines indicate the values ofd for which the matrix has a nontrivial Jordan structure. The circles indicate
eigenvalues with multiplicity greater than 1, the numbers next to the circles are multiplicities.

Proposition 7.1.

• For d ∈ (1/4,dcr), dcr ≈ 0.84868. there are three real roots. The largest root is real, and is greater than1/4;
the other roots are less than1/4.

• For d∈ (0,1/4)∪(dcr,1) there are two complex and one real root. The magnitude of the complex roots is always
less than1/4, For d∈ (dcr,1) the real root is greater than1/4, for d∈ (0,1/4), it is less than1/4.

• For d = 0, the characteristic polynomial has a double root1/8, and a single root0.
For d = 1/4, there is a double root1/4 and a single root1/16.
For d = dcr, there is a single rootλ1≈ 0.46503and a double rootλ2≈ 0.16887.
For d = 1, there is a triple root1/4.

For d ∈ (dmax,1), dmax≈ 0.67600, the largest root decreases as a function of d.

Using the information about the eigenvalues given by Proposition 7.1, we conclude that fork≥ 10, the maximum
eigenvalue of the second blockB(4π/k), is greater than the largest eigenvalue of the first blockB(2π/k). Evaluating
eigenvalues fork = 3. . .9 directly, we can see that this is also true fork = 8 andk = 9. Fork = 3, (d = 1/4), the blocks
B(2π/3), andB(4π/3), have double eigenvalues 1/4.

17



Once the eigenvalues are known, the eigenvectors corresponding to the pair of dominant eigenvalues can be found
from the complex eigenvector ofB(ω) given by

e0(ω) =
[

λ,1,
(ω + 1)((2c−9)λ + 1)

2−16λ

]
To compute the pair of eigenvectors defining the characteristic map, we first extende(ω) to an eigenvector

of a full 6× 6 block usingv(ω) = (λI −B11)B10e0. Then the complete complex eigenvectore for valencek is
[0,e(0),e(2π/k),e(4π/k), . . .e(2(k−1)π/k)]. From this vector we obtain two real vectorsℜe andℑe, defining the
characteristic map.

The algorithms that we use to check regularity of the characteristic map with minor changes can be used to verify
the assumptions of Lemma 6.1. For valencesk = 4,5,7 we use these algorithms to show injectivity and regularity of
the characteristic map.

Our findings are summarized in the following proposition:

Proposition 7.2. The Butterfly scheme is C1-continuous for valences k= 4,5,6,7; it is not C1-continuous for any
other valence, and is not tangent plane continuous for k= 3.

While the scheme is not formallyC1-continuous, the actual appearance of the surfaces generated by the scheme is
not obviously non-smooth: for valences other than 3, the scheme produces tangent plane continuous surfaces, and the
“twist” that makes the surfaces non-C1-continuous is a relatively subtle effect. For more details, see [19].

Modified Butterfly scheme. As the eigenvalues of the subdivision matrix in this case are prescribed, no eigenvalue
analysis is necessary. The eigenvectors can be determined in the same way as it was done for the Butterfly scheme.

The control mesh for the ring consists of 6 rings of vertices around the central vertex as shown in Figure 6.

Figure 6: Control nets of the characteristic maps for the Modified Butterfly scheme and the Kobbelt scheme.

The convergence rates for the Modified Butterfly scheme are exactly the same as for the Butterfly scheme, as these
schemes coincide on the regular complexes. We used our algorithms for verification of regularity and injectivity of the
characteristic map to prove that the scheme isC1-continuous for any fixed valence.

As it was discussed above, it is possible to prove convergence for all valences if suitably chosen affine transforms
of the control nets for one segment of the characteristic map converge to a limit ask→∞ and the normalized segment
in the limit is regular and injective. This is the case for the Modified Butterfly scheme; the affine transform that we
use is simply scaling along they-axis bysin(2π/k).

Normalized control nets for several valences and the limit mesh are shown in Figure 7
The algorithm of Section 5 steps through the valences, verifyingC1-continuity for each valence which has suffi-

ciently different control net. In the case of the Modified Butterfly scheme we were able to use only a relatively small
step size 2.6×10−6, with all tests passing only after 6 steps of subdivision. once for a given scheme, time becomes a
concern only for multiparameter schemes. The maximal valencek0 that had to be tested (1481) is determined by the
condition|cos(2π/k)−1|< δ, such that the tests succeed fore(λ([1−δ,1])) (recall that all quantities are represented
as intervals). For each tested valence, we increase the interval size for control points, in order to be able to analyze
many valences simultaneously for large valences. We have used the interval size 0.7×10−5 for valence greater than
6. The total number of valences that had to be analyzed separately was 406.
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limit

7 15 249

Figure 7: The convergence of the normalized control meshes of one segment of the characteristic maps for the Modified
Butterfly scheme as valence increases. Only the boundaries of the meshes are shown.
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Figure 8: The upper and lower bounds for the Jacobians; the error bars show the interval for each bound; the step
of the algorithm was chosen to be 2.6−6 so that the lower bound of the interval forJmin is close to zero. The initial
anomaly in the lower bound is due to the fact that 8 subdivision steps, rather than 6 as for all other valences, were
required to verify regularity for valence 3.

8 Analysis of Kobbelt Scheme

Kobbelt’s subdivision scheme [12], is an interpolatory scheme defined on quad meshes; in the regular case, the scheme
reduces to the tensor product of four-point schemes [5]. There are two challenges in the analysis of this scheme: first,
as for the Butterfly scheme, the limit surface can not be expressed in explicit form. In addition, the eigenvalues of the
subdivision matrix cannot be found explicitly.

Let α = (8+ w)/16 andβ =−w/16 be the coefficients of the four point scheme, wherew is a parameter. Letpj
i,l

be the control point corresponding to the vertex with numberl in sectori at subdivision levelj. Then the control points
for level j + 1 are computed from the values on levelj in two steps. First, theedge pointsare computed; all vertices
are computed in the usual manner using the four-point rule, excluding the verticespj+1

i,1 immediately adjacent to the
extraordinary vertex. These vertices are computed using the formulas

pj+1
i,1 = αc+ αpj

i,1 + βuj
i + βpj

i,3

uj
i =

4
k

k−1

∑
i=0

pj
i,1− (pj

i−1,1 + pj
i,1 + pj

i+1,1)−
β
α

(pj
i−2,2 + pj

i−1,2+ pj
i,2 + pj

i+1,2)+
4β
αk

k−1

∑
i=0

pj
i,2

(8.1)
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whereuj
i are intermediate “virtual points”.

Next, theface pointsare computed. All face points are computed in the same way: four-point coefficients are
applied to four consecutive edge points on levelj + 1, as shown in Figure 9. It is important to note that there are two
ways to choose four consecutive edge points; the coefficients for the scheme are chosen in such way that both choices
produce the same result.

Figure 9: Rules for the Kobbelt scheme. The stars indicate extraordinary vertices,α = (8+w)/16,β =−w/16. In the
masks for face control points (right) empty circles are edge vertices inserted on thesamesubdivision step. The dashed
lines show the two possible sequences of four edge points that are used to compute a face point.

We performed the analysis of the scheme forw = 1, which is the value for which the four point scheme has
maximal smoothness. After the standard operation of applying DFT to the subdivision matrix, we obtain the following
12x12 matrixB(ω):



c00 c01 β 0 0 0 0 0 0 0 0 0

c10 c11 (1+ω)αβ β2ω+αβ β2 β2ω̄+αβ 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

α α+βω̄ 0 0 0 β 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

αω α+βω 0 β 0 0 0 0 0 0 0 0

α 0 α 0 0 0 β 0 0 0 0 0

β2ω̄+α2+αβω αβω̄+α2 β2ω+α2 α2 αβ αβ(1+ω̄) αβ αβ β2 0 0 β2ω̄
βω α 0 α 0 0 0 β 0 0 0 0

(1+ω)αβ α2 (1+ω)αβ α2 α2 α2 β2(1+ω) αβ αβ β2 αβ αβ
β α 0 0 0 α 0 0 0 0 0 β

αβ+α2ω+β2ω2 α2+αβω β2+α2ω (1+ω)αβ αβ α2 αβω β2ω 0 0 β2 αβ



(8.2)

whereω = e2imπ/k, m= 1. . .k, k is the valence, and
where

c00= α + 4βδm,0−β (1+ 2c) c01=4 β2

α δm,0− β2

α
(
ω̄2 + 2c+ 1

)
c10=4βαδm,0 + α2(1+ ω)− (1+ ω)αβ c11=4β2δm,0−β2(1+ 2c)+ 2αβc+ α2

a
As it is discussed in 6, for any subdivision scheme each block can be separated into subblocks, with eigenvalues

of lower-right 6×6 block not depending on the valence and equal to−1/16,−1/32,−1/64 (double),−1/128, and
1/256.

The larger eigenvalues are always eigenvalues of the upper-left 6×6 block. The roots of the characteristic poly-
nomial of that block cannot be found explicitly. However, for fixedm andk, we can easily find the roots numerically,
with guaranteed lower and upper bounds on the roots. The characteristic polynomial has the form
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P(c,λ) = λ6 +
(
− 3

64
c− 15

16

)
λ5 +

(
297
1024

− 9
1024

c

)
λ4 +

(
− 335

8192
+

21
4096

c− 7
16384

c2
)

λ3 (8.3)

+
(

183
65536

− 9
16384

c

)
λ2 +

(
− 45

524288
+

9
524288

c

)
λ +

1
1048576

(8.4)

Numerically computed roots of this polynomial are plotted as functions ofc in Figure 10
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Figure 10: The magnitudes of the eigenvalues of the subdivision matrix for Kobbelt’s scheme as functions ofc =
cos2mπ

k . Only the eigenvalues of the upper-right 6×6 block are shown. Note that the magnitudes of the complex
conjugate eigenvalues coincide, and there are fewer than 6 distinct curves.

Analysis of the eigenvalues. From the plot it is clear that the largest eigenvalue increases as a function ofc; there-
fore, it appears that the largest eigenvalue of the subdivision matrix for any valence corresponds tom= 1. Moreover,
our calculations indicate that the largest eigenvalue is always real. Using interval methods, we prove the following
proposition:

Proposition 8.1. For any valence k, and any m= 1. . .k−1 the largest eigenvalue is real and unique, and for any
block B(2mπ/k), m 6= k− 1,1 the largest eigenvalue is less than the largest eigenvalue of the blocks B(2π/k) and
B(2π(k−1)/k). The unique largest eigenvalue is the only eigenvalue in the interval[0.5,0.613], for k> 4.

The detailed proof with all calculations, including the Maple code, be found in Appendix B.
Here we present an outline of the proof. The proof is performed in several steps:

1. We show that forc< 0, all roots of the characteristic polynomialP(c,λ) are likely to be less than 0.51 (actually,
they are less than 0.5, but due to numerical nature of our calculations, we have to relax the upper boundary).

2. We show that for anyc∈ [0. . .1], there is a unique real rootµ in the interval[0.5,0.613], and the functionµ(c)
is C1-continuous and increases.

3. We ”deflate” the characteristic polynomial (that is, divide by the monomialλ−µ), and verify that all roots of
the deflated polynomial are inside the circle of radius 0.5 forc∈ [0,1].

Marden-Jury test. On steps 1 and 3 we have to show that the roots of a polynomial are inside a circle of radiusr in
the complex plane. This task is similar to the task of establishing stability of a filter with the transfer function 1/a(z),
wherea(z) = ∑M

i=0aizi is a polynomial. The filter is stable, if all roots of the polynomiala(z) are inside the unit circle.
A variety of tests exist for this condition; for our purposes, the algebraic Marden-Jury test is convenient [11]. With
appropriate rescaling of the variable it can be used to prove that all roots of a polynomial are inside the circle of any
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given radiusr. As the test requires only a simple algebraic calculation on the coefficients of the polynomial, it can be
easily performed for symbolic and interval coefficients.

To perform the test for a real polynomial∑M
m=0 λm, a table is constructed. The first line is given byr0

i = ai,
i = 0. . .M. The rest of the table is defined recursively:

r i+1
j =

∣∣∣∣ r i
0 r i

M−i− j
r i
M−i r i

j

∣∣∣∣ , j = 0. . .M− i

Each row contains one element less than the previous row. Once the table is computed, the necessary and sufficient
condition for stability isr1

0 < 0, r i
0 > 0 for i = 1. . .M.

A more detailed discussion of the proof of Proposition 8.1 can be found in Appendix A.2.

Analysis of C1-continuity. Using Proposition 8.1, we can easily compute the largest eigenvalue with guaranteed
bounds for anyk: this will be the unique real root in the interval[0.5,0.613]. We compute roots up to a maximal
valencek0. Once the eigenvalues are known, the eigenvectors defining the characteristic map are computed, and the
tests described in Section 5 are applied to establishC1-continuity of the scheme for any fixed valence.

For this scheme we use the standard difference operator∇ defined n Section3; because this is a tensor product
scheme, the matrix difference scheme is diagonal and can be decomposed into scalar schemes. The convergence
constants arec = 13/32, γ1 = 25/32, γ2 = 105/256,γ3 = 425/2048. The convergence constants for the difference
scheme arecD = 31/64,γD

1 = 5/4, γD
2 = 15/16,γD

3 = 5/8.
To complete analysis of the scheme we need to describe the behavior ofµ(c) at infinity. Specifically, to use our

algorithm for verification of smoothness for all valences, for any interval valuec = [1− ε,1] we need to estimate the
corresponding interval valueµ(c). As µ(c) changes slowly, linear approximation is sufficient for our purposes; the
upper bound for the derivativeµ′c = 1/cµ can be easily computed. This allows us to compute the interval eigenvectors
at infinity, and verifyC1-continuity for all valences greater thank0.

The control mesh for the characteristic map of the Kobbelt scheme for valence 7 is shown in Figure 6. Figure 11
shows the dependence of the upper and lower estimates of computed Jacobians on the valence. Valences up to 812 had
to be examined; because eigenvectors for large valences were sufficiently close, it was possible to perform analysis for
a number of valences simultaneously; thus, only 193 valences had to be tested.
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Figure 11: The upper and lower bounds for the Jacobian of the characteristic maps as functions of the valence for the
Kobbelt scheme. The error bars indicate the size of the interval; the step of the algorithm was chosen to be 3×10−5;
the maximal examined valence was 818; the total number of valences for which the test was performed was 193.

We conclude thatthe Kobbelt scheme is C1-continuous for all valences.
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9 Other Schemes

C1-continuity of the Loop scheme was verified in [18] for valences up to 150. For the Catmull-Clark scheme,C1-
continuity was analyzed for valences up to 10,000 in [14]. As the subdivision matrices have relatively simple form,
and the eigenvalues and eigenvectors can be explicitly computed, our algorithms can be applied without any extra
effort to obtain a proof ofC1-continuity for all valences. Spline-based schemes have a remarkable property: the
convergence ratesγ1 andγD

1 for the scheme and the difference scheme are both 1/2; this is due to the fact that both
the scheme and the derivative scheme have only positive coefficients. In addition, replacing the coefficients of the
scheme by intervals, we establish not onlyC1-continuity of the schemes, but also stability for small perturbations of
the non-zero coefficients, as long as the perturbed coefficients lead to a convergent scheme. Due to fast convergence
and high stability, intervals of large size can be used in the analysis, and only few valences (up to 58 for the Loop, up
to 89 for Catmull-Clark) have to be analyzed. The number of subdivision iterations required to verify regularity is also
quite small: 3 iterations are sufficient in both cases.

Our techniques can be also applied in virtually unchanged form to the dual, or corner cutting, subdivision schemes.
Two schemes of this type are known to us: the Doo-Sabin subdivision scheme [4] and the Midedge subdivision scheme
[9, 15]. For these schemes,C1-continuity was already proved for all valences [14, 9, 15]. Using our method, it is
possible to perform perturbation analysis of the type that we have described above. We will discuss issues related to
stability of smoothness properties of subdivision in greater detail in a future paper.

10 Conclusions

We have presented a general method for the verification ofC1-continuity of stationary subdivision. This method allows
us to analyze schemes which are not derived from spline subdivision, and perform most of the analysis automatically.
Most of the difficulties in the analysis of the Butterfly and Kobbelt scheme can be eliminated, if the coefficients of the
scheme are constructed taking the eigenstructure of the subdivision matrix into account. While this approach might
lead to somewhat more complex expressions of coefficients, it is likely to have little if any effect on the performance,
as the example of the Modified Butterfly scheme demonstrates. In the extreme case when the coefficients are computed
from a set prescribed eigenvalues, the analysis of the eigenstructure becomes trivial.

Our method opens the way for a general characterization of invariantC1-continuous schemes with small support:
such schemes are defined by a small number of parameters, and our interval algorithms can be used to proveC1-
continuity for continuous ranges of these parameters.

Applications of our algorithms are not restricted to the invariant schemes for closed meshes: in fact, we have suc-
cessfully used them to establishC1-continuity on the boundary of several variations of common subdivision schemes.
These results are discussed in a future paper.

As it could be seen from our analysis of the Butterfly and Kobbelt subdivision schemes, the eigenstructure of a
particular scheme or family of schemes still has to be analyzed manually. This stage requires determining the Jordan
normal form of the subdivision matrix; in general, it is not always possible to do this numerically. However, we have
demonstrated, using the Kobbelt scheme as an example, that it is possible to use semi-numerical methods to obtain
all necessary information. We believe that a satisfactory solution of this problem requires methods similar to those
developed in [8]. While it might not be possible to determine the Jordan normal form exactly, one can find all possible
Jordan normal forms of matrices that are obtained from the original subdivision matrix by a small perturbation. This
approach is likely to yield an algorithm that would be capable to perform the analysisC1-continuity of a scheme given
only the coefficients of the scheme as the input.

While our method can be used to analyze parametric families of subdivision schemes, due to its semi-numeric
nature, it cannot be used for such tasks as finding precise ranges of the values of the parameters for which the scheme
remainsC1-continuous. While this is of little relevance for practical applications, it can be regarded as a theoretical
drawback.
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A Technical Proofs

In this appendix we outline the proofs of two propositions used in the analysis of the Butterfly and Kobbelt schemes.
These proofs use symbolic and numeric computations. The complete Maple code with explanation is available sepa-
rately.

A.1 Proposition 7.1

The roots of the characteristic polynomial of the Butterfly scheme can be found explicitly; depending on the value
of d = c2, there can be either 1 real and 2 complex roots, or 3 real roots. For four special values ofd the matrix
has nontrivial Jordan blocks; the special values ofd are the roots of the discriminant of the characteristic polynomial,
which is a polynomial ind. These roots are 0, 1/4, 1, anddcr ≈ 0.84868. The types of roots depend on the sign
of the discriminant of the characteristic polynomial; the discriminant is positive on(0,1/4) and(dcr,1), negative on
(1/4,dcr). On each interval, well-known formulas can be used to find the roots of the characteristic polynomial as
functions ofd explicitly. To determine the largest root for any value ofd, that is, the largest magnitude of an eigenvalue
of a subblockB00(ω) for a givenω, we consider the cases of 3 real roots and one real root separately.

Supposeλi(d), i = 1,2,3 are the three real roots ford ∈ [1/4,dcr]. As zero is a root only ford = 0, the three real
roots do not change signs ford ∈ [0,1]. It is sufficient to compute the value of roots at any point to show that all three
roots are nonegative. Therefore, the curves|λ1(d)|, |λ2(d)|, |λ3(d)| can intersect only if the roots coincide, which
means that the discriminant is zero. Thus, the curves cannot intersect on the interval(1/4,dcr). The largest root can
be determined simply by evaluating the roots with guaranteed precision at any point of the interval.

If there is only one real root, we can easily show that ford< 1/4 P(1/4,d)< 0 and ford> 1/4 P(1/4,d)> 0. We
conclude that ford > dcr, the single real root is greater than 1/4, and ford < 1/4 it is less than 1/4. The magnitude
of the complex roots also satisfies a cubic equation. Using the same method, we can show that these roots have
magnitudes less than 1/4 on(1,4) and(3/4,1).

Finally, we determine the range ofd for which the largest root decreases as a function ofd. Note thatλmax(d) is a
unique solution of the equationP(λ,d) in the domain(1/4,1)×(1/4,∞). We can determine the zeros of the derivative
λ′max(d) from the system of the equationsP(λ,d) = 0, P′d(λ,d) = 0, solving ford. Excludingλ using standard Gr¨obner
basis techniques, and solving with guaranteed precision ford, we obtain the valuedmax. As the derivative is not zero
on (dmax,1), we determine the sign simply evaluating it at a point, and conclude that it is negative.

A.2 Proposition 8.1

Here we describe how steps 1-3 of the proof of Proposition 8.1 are performed.

Step 1. We have to verify that all roots of the polynomial forc ∈ [0,1] have magnitude less than 1. We split the
interval into sufficiently small subintervals, so that we can evaluate Marden-Jury test in interval arithmetics for each
subinterval with definite results.

The following observation is crucial for steps 2 and 3. Although the characteristic polynomial has degree 6 inλ, it
is only quadratic inc, and has, two solutions,c1(λ) andc2(λ).

Step 2. Using interval evaluation of the derivative, one of the two solutions, say,c1(λ), can be shown to be increasing
for λ ∈ [0.5,0.613]. As c1(0.5) = 0, andc1(0.613)> 1, we conclude that forc∈ [0,1], there is always a real solution
in the range[0.5,0.613]. If we evaluate the second rootc2(λ) for the same interval ofλ, we can observe that the values
of c2 are outside the range[−1,1]. Therefore, forc∈ [0,1] there is a unique real solutionλ in the range[0.5,0.613].
Becausec1(λ) is C1-continuous and its derivative is positive, the inverse functionµ(c) has the same properties (we
useµ to distinguish between the real eigenvalue that we have identified from the indeterminateλ of the characteristic
polynomial).

Step 3. To show that all other roots of the characteristic polynomial forc∈ [0,1] are smaller thanµ(c), we perform
deflation symbolically, usingµ as a parameter: we divideP(c,λ) by (λ−µ) symbolically, and substitutec = c1(µ).
The coefficients of the resulting polynomial are functions ofµ. Again, we separate the range ofµ into subintervals,
small enough to be able to obtain a definite result from the Marden-Jury test. This proves that for all values ofµ in
[0.5,0.613], and, therefore, for allc∈ [0,1] µ(c) is the largest root ofP(λ,c).
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The proposition is derived from the three statements in Section 8 in the following way.
As for k> 4, cos2π

k > 0.51, the largest eigenvalue cannot possibly correspond to a blockm, for which cos2mπ
k ≤ 0.

From step 3, it follows that the largest root has to be the real rootµ(c) for somec. As for anym> 1,m< k− 1,
cos2mπ

k < cos2π
k , and we have shown on step 1 thatµ(c), increases, and for anyc µ(c) is the largest root (step 3), we

conclude that the largest eigenvalue always corresponds tom = 1, is real, and is the unique eigenvalue in the range
[0.5,0.613].
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B Source Code

In this appendix, we have collected the Maple worksheets that contain the code for computing the eigenvalues and
eigenvectors. of several subdivision schemes: Butterfly, Modified Butterfly, Kobbelt, Loop and Catmull-Clark. These
worksheets also contain the code used in the proofs of the facts about the eigenvalues that was use to analyzeC1-
continuity of these schemes. In addition, we include the worksheet with the code computing the convergence constants
c andγ (Section 3).

We do not include the C++ code that implements the algorithms of Section 5, and the part of the Maple code that
was used to generate C code. Complete sources are available from the author.

The worksheets are arranged in the following order:

• Convergence rates of matrix subdivision schemes.

• Eigenstructure of the Butterfly scheme.

• Eigenstructure of the Kobbelt scheme.

• Eigenstructure of the Loop scheme.

• Eigenstructure of the Catmull-Clark scheme.
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Convergence Rates of Matrix Subdivision Schemes

Denis Zorin, 1997-98

Introduction
The  procedures defined in this worksheet can be used to estimate the convergence rates of scalar and matrix subdivision schemes.  It is 
based on the generalization to the matrix case of  several theorems in "Stationary Subdivision" by Cavaretta, Dahmen and Micchelli 
[CDM], and to the multivariate case of  several  theorems from "Matrix subdivision" by Cohen, Dyn and Levin [CDL].  The goal  is to 
compute four constants  , , ,γ c γD cD , such that a given (possibly matrix) subdivision scheme S  and its difference scheme SD  satisfy  

  < ( )D Sn p γ ( )D p ,  < ( )D1 SD

n
p γD ( )D1 p  

for some n and  nD, and a particular choice of contraction functions ( )D p  and  ( )D1 p , and 

 <  − Sp Bp ( )cD p ,    <  − SD p BD p cD ( )D p   

where B is the comparison scheme,  BD is the comparison scheme for the difference scheme.
 
We use commutation formulas to compute  the constants (see the paper for details).
If a matrix scheme  has a stable scaling function, it is C1 if and only if the difference scheme is  C0 ([CDM, Th.  8.1,8.2], [CDL.  Th 
5.2, 5,4] combined).  Therefore, we can use  second difference  schemes in most cases to analyze C1-continuity. 
 We assume only that all schemes have constants  as invariant space C (constant vectors  for matrix schemes), that is,  = SC C, which is 
a necessary condition for convergence to nonzero functions in the scalar case [CDM, Th. 2.3]. For the matrix schemes,  it is not strictly 
necessary: it is only necessary that SC is a subset of C; however, if it is a proper subset, it means that the components of the limit 
function are dependent [CDL, Prop. 2,1].  Our matrix schemes are primarily obtained as difference schemes, and  all interesting cases 
are nondegenerate, i.e.  = SC C.  Whenever this is the case,  the code will compute an estimate. However, if the estimate for the 
convergence rate is greater than 1, this does not necessarily mean that the scheme diverges. There may be two reasons for this.  First, 

we estimate the convergence rate using the  sup norm of the difference scheme of An,  for user-specified n. For slowly converging 
schemes with some of the coefficients being negative, one may    need   arbitrarily large n, for which the norm cannot be practically 
computed. The second reason is  more fundamental. Let D be the subspace of the space of sequence on which a matrix scheme S acts, 
such that any sequence in D  can be represented as a  vector of differences of  values of some sequence p. For sufficiently large n, the 
infinity norm of  a difference scheme restricted to D,  is less than 1; however, we do not have a practical way of computing norms on 
D, and we compute the norm on the whole space; it is not necessary for this norm to be less than 1 for any n.   In some cases (most 
notably, for the Butterfly scheme)  these problems can be alleviated by choosing a suitable contraction function;  our implementation 
allows one to choose  contraction functions from a particular class (see  the definitions of   ConvergenceEstimate and 
DiffScheme). Moreover, somewhat better estimates can be obtained using a calculation specific to this type of schemes 
implemented in  FactorizableConvergenceEstimate. 
 

The main functions are ConvergenceEstimate  and  FactorizableConvergenceEstimate.   The names z1 and  z2, 
as well  as  gamma, c, gammaD, cD, are global.   Calculations for specific schemes are demonstrated in the last section. For the 
schemes listed there   FactorizableConvergenceEstimate would be sufficient;  however, in the general case we need  
ConvergenceEstimate, which  will be used for non-factorizable schemes elsewhere.

Utilities

> ;( )with linalg ( )kernelopts  = ASSERT true
Warning, ‘new definition for norm‘
Warning, ‘new definition for trace‘

IsLaurentPolynom(A) Check if  the argument is a  scalar Laurent polynomial in z1,z2 with arbitrary coefficients.

> IsLaurentPolynom := 

proc( ) end::A ( )ratpoly ,anything [ ],z1 z2 global ;,z1 z2 ( )type ,( )denom ( )factor A ( )monomial ,anything [ ],z1 z2
IsLaurentMatrix(A) Check if  the argument is a  matrix Laurent polynomial in z1,z2 with arbitrary coefficients.

> IsLaurentMatrix ::A ( )matrix ( )ratpoly ,anything [ ],z1 z2proc( ) := 

local ;,res ind
; ; := res true for in do odind ( )indices A  := res  and res ( )IsLaurentPolynom [ ]A ( )op ind res

end
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IsIntegerVector2List(W) Check if the argument is a list of vectors with integer components, each vector of length 2 each 
component in the range 0..3, and if one of the components is 0, the other is also 0. Used to check validity of arguments 
representing contraction functions.
> IsIntegerVector2List ::W ( )list ( )list integerproc( ) := 

local ;,i res
 := res true;
i ( )vectdim Wfor to do

 := res  and res ( )evalb  = ( )vectdim ( )op ,i W 2 ;
 := res  and res ( )evalb  and  ≤ 0 [ ][ ]W i 1  ≤ [ ][ ]W i 1 3 ;
 := res  and res ( )evalb  and  ≤ 0 [ ][ ]W i 2  ≤ [ ][ ]W i 2 3 ;
 := res  or  and res ( )evalb  ≠ [ ][ ]W i 1 [ ][ ]W i 2  and  = [ ][ ]W i 1 0  = [ ][ ]W i 2 0

od;
res

end

 Type definitions

>  := type/LaurentPolynom ( )eval IsLaurentPolynom

>  := type/LaurentMatrix ( )eval IsLaurentMatrix

>  := type/IntegerVector2List ( )eval IsIntegerVector2List
MakeContractionMatrix(W) Make a matrix Laurent polynomial out of a list of vectors W such that 

IsIntegerVector2List(W,1,3) is true. The matrix is defined as ( )diag  .. p1 pn  , where pi  are vectors  corresponding to 

vectors of W, obtained by  replacing 1 with  − z1

2
1,  2 with  − z2

2
1  and 3 with  − z1

2
z2

2
1. 

> MakeContractionMatrix ::W IntegerVector2Listproc( ) := 

local ;, ,p i Wmatrix
global ;,z1 z2

 := p [ ], , − z1 1  − z2 1  − ∗z1 z2 1 ;
 := Wmatrix ( )matrix , ,∗2 ( )vectdim W ( )vectdim W 0 ;

for to do odi ( )vectdim W ; := [ ]Wmatrix , − ∗2 i 1 i [ ]p [ ][ ]W i 1  := [ ]Wmatrix ,∗2 i i [ ]p [ ][ ]W i 2 ;
( )evalm Wmatrix

end
 MakePolynom(coef)  make a polynomial in z1,z2 out of  a two-dimesional array of coefficients. 

> MakePolynom ::polycoef ( )array 2proc( ) := 

local ;,ind p
global ;,z1 z2

; ; := p 0 for in do odind ( )indices polycoef  := p  + p ∗ ∗^z1 ( )op ,1 ind ^z2 ( )op ,2 ind [ ]polycoef ( )op ind ( )eval p
end

CoefList(A)  Make a 2d table of  matrix coefficients of a matrix Laurent polynomial in 2 variables.

     convert polynomials to tables of coefficient indexed by powers 
> extractCoeffs ::x LaurentPolynomproc( ) := 

local ;, , , , ,i dummy polycoeffs terms powers extrPowers
global ;,z1 z2

 := polycoeffs [ ]( )coeffs , ,( )expand ( )factor x [ ],z1 z2 ’ ’terms ;
 := extrPowers ( )unapply ,[ ],( )’ ’degree ,dummy z1 ( )’ ’degree ,dummy z2 dummy ;

 := powers ( )map ,extrPowers [ ]terms ;
( )table [ ]( )seq , = ( )op ( )op ,i powers ( )op ,i polycoeffs  = i  .. 1 ( )vectdim polycoeffs

end
given a coefficient, make a matrix
> makeCoeffMatrix , ,::A LaurentMatrix ::i integer ::j integerproc( ) := 

local ;, ,l m matrcoeff
 := matrcoeff ( )matrix , ,( )rowdim A ( )coldim A 0 ;

l ( )rowdim Afor to do
for to do odm ( )coldim A if then fi( )member ,[ ],i j { }( )indices [ ]A ,l m  := [ ]matrcoeff ,l m [ ][ ]A ,l m ,i j

od;
( )eval matrcoeff
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end
> CoeffList ::A LaurentMatrixproc( ) := 

local ;, , , , , , , , , , ,x matrcoeff n zeroMatrix ld1 ld2 ud1 ud2 l m pcoeff allpowers
global ;,extractCoeffs makeCoeffMatrix

 := pcoeff ( )map ,extractCoeffs A ;
 := allpowers ( )map ,( )unapply ,{ }( )’ ’indices x x pcoeff ;
 := allpowers [ ]( )op ( )‘union‘ ( )op ( )map ,op [ ]( )entries allpowers ;

 := ld1 ( )min ( )op ( )map ,( )unapply ,( )’ ’op ,1 x x allpowers ;
 := ld2 ( )min ( )op ( )map ,( )unapply ,( )’ ’op ,2 x x allpowers ;
 := ud1 ( )max ( )op ( )map ,( )unapply ,( )’ ’op ,1 x x allpowers ;
 := ud2 ( )max ( )op ( )map ,( )unapply ,( )’ ’op ,2 x x allpowers ;

 := matrcoeff ( )array , .. ld1 ud1  .. ld2 ud2 ;
for in do odn allpowers  := [ ]matrcoeff ( )op n ( )makeCoeffMatrix ,pcoeff ( )op n ;

 := zeroMatrix ( )matrix , ,( )rowdim A ( )coldim A 0 ;
l ld1 ud1for from to do
for from to do odm ld2 ud2 if then finot ( )member ,[ ],l m allpowers  := [ ]matrcoeff ,l m ( )evalm zeroMatrix

od;
( )eval matrcoeff

end
 

GenerateCode(OutputFile,SchemeName,Consts,Mask,ControlSize,triangular) Generate code for a 
function that  creates an instance of class RegScheme, defining a scheme. See file  regscheme.h for class definition. Consts  is a 
list of tables of convergence constants, each table generted by a call to  ConvergenceEstimates or a similar function. Mask 
is the standard coefficient mask of the scheme, 
ControlSize is the number of layers of control vertices outside a patch required to define the surface on the patch (clearly ths 
number can be computed from the mask; however,  computing the minimal number in the general  case requires some care; 
typically, in each specific case this number is obvious, and we simply specify it explicitly); triangular  indicates the 
symmetry type: if it is true, than 3-directional symmetry is assumed; otherwise 2-directional 
symmetry is assumed.
> GenerateCode proc( := 

, , , , ,::OutputFile string ::SchemeName string ::Consts ( )list table ::Mask ( )array 2 ::ControlSize integer ::triangular boolean)
local ;, , , , , , ,i g dg mask mmin1 mmin2 mmax1 mmax2
global ;S

( )assert , ≤ 0 ControlSize ‘ControlSize must be nonnegative‘ ;
( )fprintf , ,OutputFile ‘RegScheme* %s() {\n‘ SchemeName ;

 := mask ( )eval Mask ;
for in do odi ( )indices Mask if then else fi = [ ]Mask ( )op i 0  := [ ]mask ( )op i BV  := [ ]mask ( )op i [ ]Mask ( )op i ;

 := mask ( )map ,ConvertToFloat ( )eval mask ;
 := mmin1 ( )min ( )op ( )map ,( )unapply ,( )’ ’op ,1 x x [ ]( )indices Mask ;
 := mmin2 ( )min ( )op ( )map ,( )unapply ,( )’ ’op ,2 x x [ ]( )indices Mask ;
 := mmax1 ( )max ( )op ( )map ,( )unapply ,( )’ ’op ,1 x x [ ]( )indices Mask ;
 := mmax2 ( )max ( )op ( )map ,( )unapply ,( )’ ’op ,2 x x [ ]( )indices Mask ;

( )fprintf , ,OutputFile ‘ Float* g = new Float[%d];\n‘ ( )vectdim Consts ;
( )fprintf , ,OutputFile ‘ Float* dg = new Float[%d];\n‘ ( )vectdim Consts ;
( )fprintf , ,OutputFile ‘ Float** mask = new pFloat[%d];\n‘  −  + mmax1 mmin1 1 ;

fprintf OutputFile ‘ for( int i = 0; i < %d; i++)\n   mask[i] = new Float[%d];\n‘  −  + mmax1 mmin1 1, , ,(
 −  + mmax2 mmin2 1 );

 := g ( )array  .. 1 ( )vectdim Consts ;
 := dg ( )array  .. 1 ( )vectdim Consts ;

for to do odi ( )vectdim Consts ; := [ ]g i [ ][ ]Consts i γ  := [ ]dg i [ ][ ]Consts i gammaD ;
 := g ( )map ,ConvertToFloat ( )eval g ;

 := dg ( )map ,ConvertToFloat ( )eval dg ;
 := S [ ];
( )C mask ;
( )C g ;
( )C dg ;
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for to do odi ( )vectdim S ( )fprintf , ,OutputFile ‘%s‘ [ ]S i ;
fprintf OutputFile ‘return new RegScheme( %A,  %d, g, %A, dg, new Grid<Float,Float>( %d, %d, %d, %d, mask), %d\,(

,   %s); \n}\n\n‘ ( )ConvertToFloat [ ][ ]Consts 1 c ( )vectdim Consts ( )ConvertToFloat [ ][ ]Consts 1 cD mmin1, , , , ,
mmax1 mmin2 mmax2 ControlSize triangular, , , , );

NULL
end

Convergence estimates for bivariate matrix schemes
Note:  all polynomials are required to be matrix polynomials; to use the functions for scalar polynomials, convert it to a 1 by 1 matrix 
first.

Decompose a bivariate matrix Laurent polynomial 

IdealDecompose(A,i,j,symmetrize) Given a  Laurent polynomial    ( )A ,z1 z2   known to be in the ideal generated 

by  − z1

2
1 and   − z2

2
1  find polynomials TA1and TA2 such that     = A  + ( ) − z1

2
1 TA1 ( ) − z2

2
1 TA2  , or 

 = A  + ( ) − z1

2
z2

2
1 TA1 ( ) − z2

2
1 TA2  or   = A  + ( ) − z1

2
1 TA1 ( ) − z1

2
z2

2
1 TA2 ;  the expressions are derived from the 

expressions of  Lemma 2.3 [CDM] . The decomposition is not unique; the expressions are asymmetric even in the first case;  

the choice of the pair of polynomials is given by the arguments i and j; i corresponds to  − z1

2
1,  2 to  − z2

2
1  and 3 to 

 − z1

2
z2

2
1.  The order matters; the last argument is used  is used to request symmetrized decomposition with respect to   − z1

2
1,   

and  − z2

2
1 ; if  one of i,j is 3, the last argument is ignored.  The function returns a list of 2  polynomials.

> IdealDecompose , , ,::A LaurentPolynom ::i integer ::j integer ::symmetrize booleanproc( ) := 

local ;, , ,TA1 TA2 Q p
global ;,z1 z2

ASSERT  and  and  and  and  ≤ 1 i  ≤ i 3  ≤ 1 j  ≤ j 3  ≠ i j,(
‘second and third argument cannot coincide and should be in the range 1..3‘ );

ASSERT  and  = ( )simplify ( )subs ,{ }, = z1 −1  = z2 −1 A 0  = ( )simplify ( )subs ,{ }, = z1 1  = z2 −1 A 0 and (
 = ( )simplify ( )subs ,{ }, = z1 −1  = z2 1 A 0  = ( )simplify ( )subs ,{ }, = z1 1  = z2 1 A 0 and ,

‘Laurent polynomial does not have all roots [(-1)^e, (-1)^g], e,g = 0,1‘ );
 := [ ]p 1  − ^z1 2 1;
 := [ ]p 2  − ^z2 2 1;
 := [ ]p 3  − ∗^z1 2 ^z2 2 1;

 := [ ]Q ,1 2  + ∗( ) − 1 z1 ( )subs , = z1 −1 A ∗( ) + 1 z1 ( )subs , = z1 1 A ;
 := [ ]Q ,1 3  + ∗( ) − 1 z1 ( )subs ,{ }, = z2 − ∗z1 z2  = z1 −1 A ∗( ) + 1 z1 ( )subs ,{ }, = z2 ∗z1 z2  = z1 1 A ;
 := [ ]Q ,2 1  + ∗( ) − 1 z2 ( )subs , = z2 −1 A ∗( ) + 1 z2 ( )subs , = z2 1 A ;
 := [ ]Q ,2 3  + ∗( ) − 1 z2 ( )subs ,{ }, = z1 − ∗z1 z2  = z2 −1 A ∗( ) + 1 z2 ( )subs ,{ }, = z1 ∗z1 z2  = z2 1 A ;
 := [ ]Q ,3 1  + ∗( ) − 1 ∗z1 z2 ( )subs , = z2 −  / 1 z1 A ∗( ) + 1 ∗z1 z2 ( )subs , = z2  / 1 z1 A ;
 := [ ]Q ,3 2  + ∗( ) − 1 ∗z1 z2 ( )subs , = z1 −  / 1 z2 A ∗( ) + 1 ∗z1 z2 ( )subs , = z1  / 1 z2 A ;

 and  and symmetrize  = i 1  = j 2if then
 := TA1 ( )factor ∗  / 1 ( ) +  − ∗2 A [ ]Q ,2 1 [ ]Q ,1 2 ∗4 ( ) − ^z1 2 1 ;
 := TA2 ( )factor ∗  / 1 ( ) +  − ∗2 A [ ]Q ,1 2 [ ]Q ,2 1 ∗4 ( ) − ^z2 2 1

 and  and symmetrize  = i 2  = j 1elif then
 := TA2 ( )factor ∗  / 1 ( ) +  − ∗2 A [ ]Q ,2 1 [ ]Q ,1 2 ∗4 ( ) − ^z1 2 1 ;
 := TA1 ( )factor ∗  / 1 ( ) +  − ∗2 A [ ]Q ,1 2 [ ]Q ,2 1 ∗4 ( ) − ^z2 2 1

; := TA1 ( )factor  / [ ]Q ,j i ∗2 [ ]p i  := TA2 ( )factor ( ) /  − ∗2 A [ ]Q ,j i ∗2 [ ]p jelse
fi;
if then fi ≠ ( )simplify  +  − ∗[ ]p i TA1 ∗[ ]p j TA2 A 0 ( )print ‘decomposition error‘ ;
[ ],TA1 TA2

end

IdealDecomposeMatrix(A,W,symmetrize) Given a matrix Laurent polynomial    ( )A ,z1 z2   known to be in the ideal 

generated by  − z1

2
1 and   − z2

2
1  find a matrix Laurent polynomial Q such that    = A ( )QW ,z1

2
z2

2
 ;  componentwise,  

 = ( )A ,i j ,z1 z2  + ( )Q ,i  − 2 j 1 ,z1 z2 ( )W ,j 1 ,z1

2
z2

2
( )Q ,i 2 j ,z1 z2 ( )W ,i 2 ,z1

2
z2

2
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 Q is  twice as wide as A and has the same number of rows.    W is a list of pairs of integers  pi of length n equal to the width 

of A.  Each integer is one of 1,2,3 corresponding to  − z1 1,   − z2 1 and   − z1 z2 1  respectively. In each pair, the integers cannot 

coincide. The matrix Laurent polynomial  W is defined as ( )diag  .. p1 pn  . The last argument is usd for the same purpose as in 
IdealDecompose.

> IdealDecomposeMatrix , ,::A LaurentMatrix ::W IntegerVector2List ::symmetrize booleanproc( ) := 

local ;, , , , ,Q i j Wmatrix testA Qdecomp
global ;,z1 z2

ASSERT  = ( )vectdim W ( )coldim A ,(
‘the length of the 2nd argument (list) should be the same as width of the first argument (matrix)‘ );

 := Q ( )matrix ,( )rowdim A ∗2 ( )coldim A ;
i ( )rowdim A j ( )coldim Afor to dofor to do

 = modi 2 1if then
 := Qdecomp ( )IdealDecompose , , ,[ ]A ,i j [ ][ ]W j 2 [ ][ ]W j 1 symmetrize ;

 := [ ]Q ,i  − ∗2 j 1 ( )op ,2 Qdecomp ;
 := [ ]Q ,i ∗2 j ( )op ,1 Qdecomp

else
 := Qdecomp ( )IdealDecompose , , ,[ ]A ,i j [ ][ ]W j 1 [ ][ ]W j 2 symmetrize ;

ASSERT  and ( )IsLaurentPolynom ( )op ,1 Qdecomp ( )IsLaurentPolynom ( )op ,2 Qdecomp ,(
‘decomposition failed‘ );

 := [ ]Q ,i  − ∗2 j 1 ( )op ,1 Qdecomp ;
 := [ ]Q ,i ∗2 j ( )op ,2 Qdecomp

fi
od

od;
 := Wmatrix ( )MakeContractionMatrix W ;

 := testA ( )evalm  − A ( )&*Q ( )( )subs ,{ }, = z1 ^z1 2  = z2 ^z2 2 ( )evalm Wmatrix ;
( )ASSERT , = ( )norm testA 0 ‘scheme was not decomposed correctly‘ ;

( )evalm Q
end

Compute a difference scheme for a matrix scheme

DiffScheme(A,W) Compute the difference matrix scheme Q for a bivariate matrix scheme; the choice of directions for 
differences is given by W, defined as in IdealDecomposeMatrix.  We assume that  scheme  is specified by its matrix 

Laurent polynomial ( )A ,z1 z2 , and reproduces constant vectors;  the calculation solves the equation

 = ( )W ,z1 z2 ( )A ,z1 z2 ( )Q ,z1 z2 ( )W ,z1

2
z2

2
  componentwise,              

 = ( )W ,i 1 ,z1 z2 ( )A ,i j ,z1 z2  + ( )Q , − 2 i 1  − 2 j 1 ,z1 z2 ( )W ,j 1 ,z1

2
z2

2
( )Q , − 2 i 1 2 j ,z1 z2 ( )W ,i 2 ,z1

2
z2

2

 = ( )W ,i 2 ,z1 z2 ( )A ,i j ,z1 z2  + ( )Q ,2 i  − 2 j 1 ,z1 z2 ( )W ,i 1 ,z1

2
z2

2
( )Q ,2 i 2 j ,z1 z2 ( )W ,i 2 ,z1

2
z2

2

> DiffScheme ,::A LaurentMatrix ::W IntegerVector2Listproc( ) := 

local ;, , ,WA Wmatrix Q testA
global ;,z1 z2

( )ASSERT , = ( )coldim A ( )rowdim A ‘1st argument should be a square matrix‘ ;
ASSERT  = ( )vectdim W ( )coldim A ,(

‘the length of the 2nd argument (list) should be the same as either dimension of the 1st argument (matrix)‘ );
 := Wmatrix ( )MakeContractionMatrix W ;

 := WA ( )evalm &*Wmatrix A ;
 := Q ( )IdealDecomposeMatrix , ,WA W false ;

 := testA ( )evalm  − WA ( )&*Q ( )( )subs ,{ }, = z1 ^z1 2  = z2 ^z2 2 ( )evalm Wmatrix ;
( )ASSERT , = ( )norm testA 0 ‘difference scheme was not found correctly‘ ;

( )evalm Q
end

Infinity norm for matrix polynomials 
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InfNnormSums(A,n) compute the list of  4n  vectors of sums of  magnitudes of entries of matrix  coefficients  of  

 .. ( )A z ( )A z2 ( )A z4 ( )A z( )2
n

 where   = z ( ),z1 z2 ;   each component in each vector  corresponds to a row in the  matrix 

coefficients sums[i,j]  includes all matrix coefficients of monomials z1l z2k  such that   = modl 2n  − i 1  and  = modk 2n  − j 1
 
> InfNnormSums ,::A LaurentMatrix ::n integerproc( ) := 

local ;, , , , , , , , , , , , , ,x pn cfs i j k l m coeffsums ld1 ud1 ld2 ud2 ind1 ind2
global ;,z1 z2

( )ASSERT , or  = n 1  = ( )rowdim A ( )coldim A ‘the matrix should be square if n > 1‘ ;
 := pn A;

for to do odi  − n 1  := pn ( )evalm &*pn ( )( )subs ,{ }, = z1 ^z1 ( )^2 i  = z2 ^z2 ( )^2 i ( )evalm A ;
 := pn ( )map ,expand ( )evalm pn ;
 := cfs ( )CoeffList pn ;

 := coeffsums ( )array , .. 0  − ^2 n 1  .. 0  − ^2 n 1 ;
for from to do odi 0  − ^2 n 1 for from to do odj 0  − ^2 n 1  := [ ]coeffsums ,i j ( )vector ,( )rowdim A 0 ;

 := ind1 ( )map ,( )unapply ,( )’ ’op ,1 x x [ ]( )indices cfs ;
 := ind2 ( )map ,( )unapply ,( )’ ’op ,2 x x [ ]( )indices cfs ;

 := ld1 ( )min ( )op ind1 ;
 := ud1 ( )max ( )op ind1 ;
 := ld2 ( )min ( )op ind2 ;
 := ud2 ( )max ( )op ind2 ;
l ld1 ud1 k ld2 ud2 m ( )coldim A [ ]coeffsums ,modl ^2 n modk ^2 n  := for to dofor from to dofor from to do

( )evalm  + [ ]coeffsums ,modl ^2 n modk ^2 n ( )map ,abs ( )col ,[ ]cfs ,l k m
od

od
od;

( )eval coeffsums
end

InfNnormV(A,n)  get the vector of componentwise inf norms of  .. ( )A z ( )A z2 ( )A z4 ( )A z( )2
n

 where   = z ( ),z1 z2 ,  as the 
componentwise maximum of  the  vector sums computed by InfNnormSums
> InfNnormV ,::A LaurentMatrix ::n integerproc( ) := 

local ;, , , , ,x i j m sums vsumlist
for to do odi ( )rowdim A  := [ ]vsumlist i [ ] ;

 := sums ( )InfNnormSums ,A n ;
i 0  − ^2 n 1for from to do
for from to do odj 0  − ^2 n 1 for to do odm ( )rowdim A  := [ ]vsumlist m [ ],( )op [ ]vsumlist m [ ][ ]sums ,i j m

od;
( )map ,( )unapply ,( )’ ’max ( )’ ’op x x vsumlist

end
> 

InfNnorm(A,n)  get the inf norm of  .. ( )A z ( )A z2 ( )A z4 ( )A z( )2
n

 where   = z ( ),z1 z2 , as the maximum of all components of 
vector sums computed by InfNnormSums.
>  := InfNnorm proc( ) end,::A LaurentMatrix ::n integer ( )max ( )op ( )map ,op [ ]( )entries ( )InfNnormV ,A n

Convergence rate estimates for a matrix scheme and its difference scheme

 ConvergenceEstimates(A,n,nD, W, WD, B) Compute convergence constants , , ,γ c γD cD ,  described in the 

introduction. The function returns a table indexed by names.  The argument W allows one to define a contraction function  
W

∞
 , similarly, WD defines the contraction function for the difference scheme.  both W and WD are represented by lists of  

pairs of integers, as for DiffScheme.   The comparison scheme for the difference scheme is taken to be the difference 

scheme of B . This is not necessary in general, but convenient for our purposes. We assume that B  has factors  
( )w ,z1

2
z2

2

( )w ,z1 z2

,  
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where w  is any of the polynomials  , , − z1 1  − z2 1  − z1 z2 1  used in W.  

> ConvergenceEstimates proc( := 

, , , , ,::A LaurentMatrix ::n posint ::nD posint ::W IntegerVector2List ::WD IntegerVector2List ::B LaurentPolynom)
local ;, , , , , , , ,BD Q Q2 DA DQ BM i p res
global ;, , , , ,z1 z2 c cD γ gammaD

( )ASSERT , = ( )rowdim A ( )coldim A ‘1st argument should be a square matrix‘ ;
ASSERT  = ( )vectdim W ( )coldim A ,(

‘the length of the 4nd argument (list) should be the same as either dimension of the first argument (matrix)‘ );
ASSERT  = ( )vectdim WD ∗2 ( )coldim A ,(

‘the length of the 5nd argument (list) should be twice either   dimension of the first argument (matrix)‘ );
 := p [ ], , − z1 1  − z2 1  − ∗z1 z2 1 ;

 := BM ( )evalm ∗B ( )diag ( )seq ,1  = i  .. 1 ( )rowdim A ;
BD map factor diag seq op ∗ ∗  / 2 [ ]BM ,i i [ ]p [ ][ ]W i 1 ( )subs ,{ }, = z1 ^z1 2  = z2 ^z2 2 [ ]p [ ][ ]W i 1 ,[(((,( := 

∗ ∗  / 2 [ ]BM ,i i [ ]p [ ][ ]W i 2 ( )subs ,{ }, = z1 ^z1 2  = z2 ^z2 2 [ ]p [ ][ ]W i 2 ] )  = i  .. 1 ( )rowdim A, ) ) );
( )ASSERT ,( )IsLaurentMatrix BD ‘the comparison scheme does not have necessary factors‘ ;

 := Q ( )DiffScheme ,A W ;
 := Q2 ( )DiffScheme ,( )evalm ∗2 Q WD ;
 := DA ( )map ,expand ( )map ,factor ( )evalm  − A BM ;
 := DQ ( )map ,expand ( )map ,factor ( )evalm  − ∗2 Q BD ;

 := [ ]res γ ( )InfNnorm ,Q n ;
 := [ ]res c ( )InfNnorm ,( )IdealDecomposeMatrix , ,DA W true 1 ;

 := [ ]res gammaD ( )InfNnorm ,Q2 nD ;
 := [ ]res cD ( )InfNnorm ,( )IdealDecomposeMatrix , ,DQ WD true 1 ;

( )eval res
end

Estimates for schemes with a comparison factor

Another type of simplification can be made for schemes  with Laurent polynomials of the form ( )B ,z1 z2 ( )Q ,z1 z2   (see complete 

conditions below).
LinearDecompose(A,i,j) Given a  Laurent polynomial    ( )A ,z1 z2   known to be in the ideal generated by  − z1 1 and   − z2 1  

find polynomials TA1and TA2 such that     = A  + ( ) − z1 1 TA1 ( ) − z2 1 TA2  , or  = A  + ( ) − z1 z2 1 TA1 ( ) − z2 1 TA2  or  

 = A  + ( ) − z1 1 TA1 ( ) − z1 z2 1 TA2 ;  the expressions are derived from the expressions of  Lemma 2.3 [CDM] . The decomposition 

is not unique; the expressions are asymmetric even in the first case;  the choice of the pair of polynomials is given by the 
arguments i and j; i corresponds to  − z1 1,  2 to  − z2 1  and 3 to  − z1 z2 1.  The order matters;  the last argument is used to request 

symmetrized decomposition with respect to   − z1 1,   and   − z2 1 ; if one of i,j is 3, the last argument is ignored . The function 

returns a list of 2  polynomials.

> LinearDecompose , , ,::A LaurentPolynom ::i integer ::j integer ::symmetrize booleanproc( ) := 

local ;, , ,TA1 TA2 Q p
global ;,z1 z2

ASSERT  and  and  and  and  ≤ 1 i  ≤ i 3  ≤ 1 j  ≤ j 3  ≠ i j,(
‘second and third argument cannot coincide and should be in the range 1..3‘ );

( )ASSERT , = ( )simplify ( )subs ,{ }, = z1 1  = z2 1 A 0 ‘Laurent polynomial does not have root [1,1]‘ ;
 := [ ]p 1  − z1 1;
 := [ ]p 2  − z2 1;
 := [ ]p 3  − ∗z1 z2 1;

 := [ ]Q ,1 2 ( )subs , = z1 1 A ;
 := [ ]Q ,1 3 ( )subs ,{ }, = z2 ∗z1 z2  = z1 1 A ;
 := [ ]Q ,2 1 ( )subs , = z2 1 A ;
 := [ ]Q ,2 3 ( )subs ,{ }, = z1 ∗z1 z2  = z2 1 A ;
 := [ ]Q ,3 1 ( )subs , = z2  / 1 z1 A ;
 := [ ]Q ,3 2 ( )subs , = z1  / 1 z2 A ;

 and  and symmetrize  = i 1  = j 2if then
; := TA1 ( )factor ∗  / 1 ( ) +  − A [ ]Q ,2 1 [ ]Q ,1 2 ∗2 ( ) − z1 1  := TA2 ( )factor ∗  / 1 ( ) +  − A [ ]Q ,1 2 [ ]Q ,2 1 ∗2 ( ) − z2 1

 and  and symmetrize  = i 2  = j 1elif then
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; := TA2 ( )factor ∗  / 1 ( ) +  − A [ ]Q ,2 1 [ ]Q ,1 2 ∗2 ( ) − z1 1  := TA1 ( )factor ∗  / 1 ( ) +  − A [ ]Q ,1 2 [ ]Q ,2 1 ∗2 ( ) − z2 1
; := TA1 ( )factor  / [ ]Q ,j i [ ]p i  := TA2 ( )factor ( ) /  − A [ ]Q ,j i [ ]p jelse

fi;
( )ASSERT , and ( )IsLaurentPolynom TA1 ( )IsLaurentPolynom TA2 [ ],TA1 TA2 ;

if then fi ≠ ( )simplify  +  − ∗[ ]p i TA1 ∗[ ]p j TA2 A 0 ( )print ‘decomposition error‘ ;
[ ],TA1 TA2

end

 
 FactorizableConvergenceEstimates(A,n,nD,W,WD,B). Similar to ComputeEstimates  but with additional 
assumptions on A and B. A should be a Laurent polynomial (not matrix) divisible by B; W and WD should have lengths 1 and 2 
respectively, and if  Wi are the Laurent polynomials  corresponding to the components of W, and WDi are the Laurent polynomials 

of the differences  corresponding to the components of WD,  then B should be divisible by 
( )Wi ,z1

2
z2

2
( )WD ,i j ,z1

2
z2

2

( )Wi ,z1 z2 ( )WD ,i j ,z1 z2

 ; for 

example, if    = Wi  − z1 1  and   = W ,i j  − z1 z2 1, then B should be divisible by  ( ) + z1 1 ( ) + z1 z2 1 .   The estimates for γ and  γD   

calculated by this function are the same as the estimates calculated by ComputeEstimates; however, the estimates for c and 
cD tend to be better.
> FactorizableConvergenceEstimates proc( := 

, , , , ,::A LaurentPolynom ::n posint ::nD posint ::W IntegerVector2List ::WD IntegerVector2List ::B LaurentPolynom)
local ;, , , , , , , , , , , , , , , , , ,q pplus psq a1 a2 a11 a12 a21 a22 b1 b2 b11 b12 b21 b22 tq tq1 tq2 res
global ;, , , , ,z1 z2 γ gammaD c cD

( )ASSERT , = ( )vectdim W 1 ‘the length of the 4nd argument (list) should be 1‘ ;
( )ASSERT , = ( )vectdim WD 2 ‘the length of the 5nd argument (list) should be 2‘ ;

 := q ( )factor  / A B ;
( )ASSERT ,( )IsLaurentPolynom q ‘A should be divisible by B‘ ;

 := pplus [ ], , + z1 1  + z2 1  + ∗z1 z2 1 ;
 := psq [ ], , − ^z1 2 1  − ^z2 2 1  − ∗^z1 2 ^z2 2 1 ;

 := b1 ( )factor  / B [ ]pplus [ ][ ]W 1 1 ;
 := b2 ( )factor  / B [ ]pplus [ ][ ]W 1 2 ;

 := b11 ( )factor  / b1 [ ]pplus [ ][ ]WD 1 1 ;
 := b12 ( )factor  / b1 [ ]pplus [ ][ ]WD 1 2 ;
 := b21 ( )factor  / b2 [ ]pplus [ ][ ]WD 2 1 ;
 := b22 ( )factor  / b2 [ ]pplus [ ][ ]WD 2 2 ;

ASSERT(
 and  and  and ( )IsLaurentPolynom b11 ( )IsLaurentPolynom b12 ( )IsLaurentPolynom b21 ( )IsLaurentPolynom b22 ,

‘the comparson scheme Laurent polynomial is not divisible by some of the difference polynomials‘ );
 := tq ( )LinearDecompose , , , − q 1 [ ][ ]W 1 1 [ ][ ]W 1 2 true ;

 := tq1 ( )LinearDecompose , , , − q 1 [ ][ ]WD 1 1 [ ][ ]WD 1 2 true ;
 := tq2 ( )LinearDecompose , , , − q 1 [ ][ ]WD 2 1 [ ][ ]WD 2 2 true ;

 := a1 ( )factor  / A [ ]pplus [ ][ ]W 1 1 ;
 := a2 ( )factor  / A [ ]pplus [ ][ ]W 1 2 ;

 := [ ]res γ ( )max ,( )InfNnorm ,( )matrix [ ][ ]a1 n ( )InfNnorm ,( )matrix [ ][ ]a2 n ;
( )ASSERT , = ( )simplify  −  −  − A B ∗ ∗b1 [ ]tq 1 [ ]psq [ ][ ]W 1 1 ∗ ∗b2 [ ]tq 2 [ ]psq [ ][ ]W 1 2 0 ‘bad decomp‘ ;

 := [ ]res c  + ( )InfNnorm ,( )matrix [ ][ ]∗b1 [ ]tq 1 1 ( )InfNnorm ,( )matrix [ ][ ]∗b2 [ ]tq 2 1 ;
 := a11 ( )factor ∗  / 2 a1 [ ]pplus [ ][ ]WD 1 1 ;
 := a12 ( )factor ∗  / 2 a1 [ ]pplus [ ][ ]WD 1 2 ;
 := a21 ( )factor ∗  / 2 a2 [ ]pplus [ ][ ]WD 2 1 ;
 := a22 ( )factor ∗  / 2 a2 [ ]pplus [ ][ ]WD 2 2 ;

[ ]res gammaD max ( )InfNnorm ,( )matrix [ ][ ]a11 nD ( )InfNnorm ,( )matrix [ ][ ]a12 nD, ,( := 
( )InfNnorm ,( )matrix [ ][ ]a21 nD ( )InfNnorm ,( )matrix [ ][ ]a22 nD, );

[ ]res cD max  + ( )InfNnorm ,( )matrix [ ][ ]∗ ∗2 b11 [ ]tq1 1 1 ( )InfNnorm ,( )matrix [ ][ ]∗ ∗2 b12 [ ]tq1 2 1 ,( := 
 + ( )InfNnorm ,( )matrix [ ][ ]∗ ∗2 b21 [ ]tq2 1 1 ( )InfNnorm ,( )matrix [ ][ ]∗ ∗2 b22 [ ]tq2 2 1 );

( )eval res
end
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Results for specific schemes

Bilinear and Trilinear

This is just a sanity check; note that because we use difference schemes of a linear scheme as comparison scheme for 
derivatives, 
which is not continuous, we cannot infer C1-continuity from the fact that cD = 0.  In general, we assume that C1-continuity is 
known, and we  
are interested in the rate of approximation. To  establish C1-continuity, one has to look only at  γD

> Linear := (1+z)^2/2: Bilinear := evalm(diag(1)*(1/4)*(1 + z1^(-1))^2*(1 + 
z2^(-1))^2*z1*z2):

> op(ConvergenceEstimates(Bilinear, 1,1,[[1,2]], [[1,2],[2,1]] ,Bilinear[1,1]));  







, , , = c 0  = cD 0  = γ

1

2
 = gammaD 1

> op(FactorizableConvergenceEstimates(Bilinear[1,1],1,1,[[1,2]], [[1,2],[2,1]] 
,Bilinear[1,1]));  







, , , = c 0  = cD 0  = γ

1

2
 = gammaD 1

> TrilinearEstimate  := ConvergenceEstimates(evalm( Trilinear * diag(1)), 
1,1,[[1,2]], [[2,3],[3,1]] ,Trilinear) : op(op(TrilinearEstimate));







, , , = c 0  = cD 0  = γ

1

2
 = gammaD 1

3-directional box spline (Loop)
> Trilinear := (1/2)*(1+z1)*(1+z2)*(1+z1*z2)*z1^(-1)*z2^(-1):  

ThreeDirCoeffs := array( -2..2,-2..2, [ 
  [ 1/16, 1/8, 1/16,   0,     0 ], 
  [  1/8, 3/8,  3/8, 1/8,     0 ], 
  [ 1/16, 3/8,  5/8, 3/8,  1/16 ], 
  [    0, 1/8,  3/8, 3/8,   1/8 ], 
  [    0,   0, 1/16, 1/8,  1/16 ] 
]):

> ThreeDir := evalm( diag(1)* factor(MakePolynom(ThreeDirCoeffs)));

 := ThreeDir










1

16

( ) + 1 z1 2 ( ) + 1 z2 2 ( ) + 1 z1 z2 2

z12 z22

Because the Laurent polynomial  has all three difference factors, and each is squared, we can use a variety of contraction 
functions. 
As it is typically the case, the special function for factorizable polynomials gives better estimates for  cD.

> op(ConvergenceEstimates(ThreeDir, 1,1,[[1,2]], [[3,2],[1,3]] ,Trilinear));







, , , = c

1

2
 = cD 1  = γ

1

2
 = gammaD

1

2
> op(ConvergenceEstimates(ThreeDir, 1,1,[[1,2]], [[1,2],[2,1]] ,Bilinear[1,1]));







, , , = c

1

2
 = cD

5

8
 = γ

1

2
 = gammaD

1

2
> op(ConvergenceEstimates(ThreeDir, 1,1,[[1,2]], [[1,3],[1,3]] ,Bilinear[1,1]));







, , , = c

1

2
 = cD

3

4
 = γ

1

2
 = gammaD

1

2
> op(FactorizableConvergenceEstimates(ThreeDir[1,1], 1,1,[[1,2]], [[3,2],[1,3]] 

,Trilinear));







, , , = c

1

2
 = cD

1

2
 = γ

1

2
 = gammaD

1

2
> ThreeDirEstimate := FactorizableConvergenceEstimates(ThreeDir[1,1], 1,1,[[1,2]], 
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[[1,2],[1,2]] ,Bilinear[1,1]): op(op(ThreeDirEstimate));







, , , = c

1

2
 = cD

1

2
 = γ

1

2
 = gammaD

1

2

Butterfly
> ButterflyCoeffs := proc(w) array( -3..3,-3..3, [ 

 [  0, -w, -w,  0,  0,  0,  0 ], 
 [ -w,  0,2*w,  0, -w,  0,  0 ], 
 [ -w,2*w,1/2,1/2,2*w, -w,  0 ], 
 [  0,  0,1/2,  1,1/2,  0,  0 ], 
 [  0, -w,2*w,1/2,1/2,2*w, -w ], 
 [  0,  0, -w,  0,2*w,  0, -w ], 
 [  0,  0,  0,  0, -w, -w,  0 ] 
]);

 end:
> Butterfly := evalm( diag(1)* MakePolynom(ButterflyCoeffs(w))):
> ButterflyEstimate1 := ConvergenceEstimates(Butterfly, 1,1,[[1,2]], [[2,3],[3,1]] 

,Trilinear): op(eval(ButterflyEstimate1));







, , , = c 8 w  = cD 16 w  = γ







max , + 9 w  − 

1

2
3 w  + 4 w

1

2
 = gammaD ( )max , + 8 w −  + 8 w 1 16 w

> map(simplify, op(subs(w = 1/16, eval(ButterflyEstimate1))));







, , , = c

1

2
 = cD 1  = γ

7

8
 = gammaD 1

> ButterflyEstimate2 := ConvergenceEstimates(Butterfly, 2,2,[[1,2]], [[2,3],[3,1]] 
,Trilinear):

> assume(W > 0); additionally(W < 1/8);  
solve( simplify( subs( w = W, eval(ButterflyEstimate2[gammaD]))) < 1);







RealRange ,( )Open 0







Open

1

12
> op(map( eval, subs(w = 1/16, eval(ButterflyEstimate2))));







, , , = c

1

2
 = cD 1  = γ

31

64
 = gammaD

7

8
> ButterflyEstimate3 := ConvergenceEstimates(Butterfly, 3,3,[[1,2]], [[2,3],[3,1]] 

,Trilinear):
> assume(W > 1/12); additionally(W < 1/8);  

simplify( subs( w = W, eval(ButterflyEstimate3[gammaD])));

max  +  + 456 W3 20 W2 −  +  − 184 W3 4 W 20 W2 ,(

−  +  +  +  + 336 W3 60 W2  +  − 2 W 432 W3 48 W2 −  + 328 W3 36 W2  − 136 W3 16 W2  + 416 W3 64 W2, ,

 +  −  +  + 408 W3 12 W2 2 W  − 6 W 68 W2 −  + 408 W3 40 W2  −  + 672 W3 16 W2 4 W 24 W2 216 W3 − , ,

−  +  − 2 W 44 W2 360 W3 −  + 16 W2 160 W3  −  + 488 W3 96 W2 6 W 2 W  +  − 2 W 216 W3 52 W2 +  +  +  +  + ,

 +  +  +  + 224 W3 16 W2  +  − 880 W3 12 W 208 W2 4 W  −  −  + 1 24 W 848 W3 224 W2 ,

 +  +  + 288 W3 2  − 120 W3 2 W −  +  −  + 432 W3 128 W2 20 W 1 −  +  + 112 W2 8 W 288 W3 ,

−  +  +  +  + 512 W3 80 W2 2 −  −  + 136 W3 2 W 28 W2  −  +  − 32 W2 16 W 1 96 W3  −  + 4 W 56 W2 336 W3 ,

 +  +  + 264 W3 4 W2 −  +  + 56 W2 456 W3 4 W  −  − 60 W2 416 W3 2 W ,

−  +  +  +  + 288 W3 2  −  − 20 W2 120 W3 2 W 48 W2  +  −  + 1 8 W2 16 W 432 W3 −  +  − 16 W2 4 W 288 W3 ,

 +  +  + 264 W3 16 W2 −  +  − 2 W 88 W2 584 W3  +  − 640 W3 6 W 104 W2 )
> op(map( eval, subs(w = 1/16, eval(ButterflyEstimate3))));







, , , = c

1

2
 = cD 1  = γ

261

1024
 = gammaD

11

16

Tensor product of quadratic splines (Doo-Sabin)
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> Quadratic := expand((1/4)*(z^(-1) + 1)^3*z); QuadraticTensorSpline := 
evalm(diag(1)*(1/16)*(z1^(-1) + 1)^3*(z2^(-1) + 1)^3*z1*z2 );

 := Quadratic  +  +  + 
1

4

1

z2

3

4

1

z

3

4

1

4
z

 := QuadraticTensorSpline








1

16







 + 1

1

z1

3 





 + 1

1

z2

3

z1 z2

> op(ConvergenceEstimates(QuadraticTensorSpline, 1,1,[[1,2]], [[1,2],[2,1]] 
,Bilinear[1,1]));







, , , = c

1

2
 = cD

3

4
 = γ

1

2
 = gammaD

1

2
> op(FactorizableConvergenceEstimates(QuadraticTensorSpline[1,1], 1,1,[[1,2]], 

[[1,2],[2,1]] ,Bilinear[1,1]));







, , , = c

1

2
 = cD

3

4
 = γ

1

2
 = gammaD

1

2

Tensor product of cubic splines (Camull-Clark)

> Cubic := (1/8)*(1+z^(-1))^4*z^2; TensorCubicSpline := evalm(diag(1)*(1/64)*(z1^(-1) 
+ 1)^4*(z2^(-1) + 1)^4*z1^2*z2^2 );

 := Cubic
1

8







 + 1

1

z

4

z2

 := TensorCubicSpline








1

64







 + 1

1

z1

4 





 + 1

1

z2

4

z12 z22

> op(ConvergenceEstimates(TensorCubicSpline, 1,1,[[1,2]], [[2,1],[1,2]] 
,Bilinear[1,1]));







, , , = c

1

2
 = cD

11

16
 = γ

1

2
 = gammaD

1

2
> TensorCubicEstimate:= FactorizableConvergenceEstimates(TensorCubicSpline[1,1], 

1,1,[[1,2]], [[2,1],[1,2]] ,Bilinear[1,1]): op(op(TensorCubicEstimate)); 







, , , = c

1

2
 = cD

1

2
 = γ

1

2
 = gammaD

1

2

Tensor product of 4-point schemes (Kobbelt)
> FourPt := factor((-w*z^(-3) + (1/2+w)*z^(-1) + 1 + (1/2+w)*z - w*z^3)); 

TensorFourPt := matrix([[factor((-w*z1^(-3) + (1/2+w)*z1^(-1) + 1 + (1/2+w)*z1 - 
w*z1^3)*( -w*z2^(-3) + (1/2+w)*z2^(-1) + 1 + (1/2+w)*z2 -w*z2^3 ))]]);

 := FourPt −
1

2

( ) + 1 z 2 ( ) −  +  −  −  + 2 z4 w 4 w z3 4 z2 w z2 4 w z 2 w

z3

TensorFourPt := 

1

4






( ) + 1 z1 2 ( ) −  +  −  −  + 2 z14 w 4 w z13 4 z12 w z12 4 z1 w 2 w ( ) + 1 z2 2 ( ) −  +  −  −  + 2 w z24 4 z23 w 4 z22 w z22 4 z2 w 2 w

z23 z13






> TensorFourPtEstimate1 := ConvergenceEstimates(TensorFourPt, 1,1,[[1,2]], 
[[1,2],[2,1]] ,Bilinear[1,1]);

TensorFourPtEstimate1 table([ := 
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 = c  +  +  +  +  + 4 w 2 2  + 
1

2
w2 1

4
w 2 w 2  + 

1

2
w2 3

4
w 2 −  − 

1

4
w

1

2
w2 2 −  − 

3

4
w

1

2
w2

cD max  +  +  +  +  +  + 5 w 2 2  + 
1

2
w w2 2 w  + 

3

2
w w2 2 −  + w2 1

2
w  + w2 w −  − w2 1

2
w 4 w, ,



 = 

 +  +  + 8 w 2 2 −  − w2 1

2
w 3 w 2 −  − w2 3

2
w





 = γ






max , + 2 w

1

2
 +  +  +  + 4 w 2 2 −  − w2 1

2
w w 2  + 

1

2
w

1

4
2  + 

1

2
w w2

gammaD max  +  + 8 w 2 4 w
1

2
 +  +  + 8 w 2 4 −  − 2 w2 w 2  − 4 w2 w 2 −  −  + 4 w2 w

1

2
8 w, , ,



 = 

 + 16 w 2 4  + 4 w2 2 w  + 4 w  − 1 4 w,




])
> op( map( eval, subs( w = 1/16, eval(TensorFourPtEstimate1))));







, , , = c

13

32
 = cD

31

64
 = γ

25

32
 = gammaD

5

4
> TensorFourPtEstimate2 := ConvergenceEstimates(TensorFourPt, 2,2,[[1,2]], 

[[1,2],[2,1]] ,Bilinear[1,1]):
> op(map( eval, subs( w = 1/16, eval(TensorFourPtEstimate2))));







, , , = c

13

32
 = cD

31

64
 = γ

105

256
 = gammaD

15

16
> TensorFourPtEstimate3 := ConvergenceEstimates(TensorFourPt, 3,3,[[1,2]], 

[[1,2],[2,1]],Bilinear[1,1]):  
op(map( eval, subs( w = 1/16, eval(TensorFourPtEstimate3))));







, , , = c

13

32
 = cD

31

64
 = γ

425

2048
 = gammaD

5

8
> TensorFourPtEstimate1f := op(FactorizableConvergenceEstimates(TensorFourPt[1,1], 

1,1,[[1,2]], [[2,1],[1,2]] ,Bilinear[1,1]));

TensorFourPtEstimate1f  = c 2






max ,2 w  +  + 2 w 2 2  + 

1

2
w2 1

2
w 2 −  − 

1

2
w2 1

2
w ,



 := 

 = cD  +  + 4 w 2 2 w ( )max , + 4 w 2 4 −  − w w2 4 w ,

 = γ






max , + 2 w

1

2
 +  +  +  + 4 w 2 2 −  − w2 1

2
w w 2  + 

1

2
w

1

4
2  + 

1

2
w w2 gammaD max  +  + 8 w 2 4 w

1

2
,



 = ,

 +  +  + 8 w 2 4 −  − 2 w2 w 2  − 4 w2 w 2 −  −  + 4 w2 w
1

2
8 w  + 16 w 2 4  + 4 w2 2 w  + 4 w  − 1 4 w, , ,









> op(map( eval, subs( w = 1/16, eval(TensorFourPtEstimate1f))));

, , , = c
9

32
 = cD

27

64
 = γ

25

32
 = gammaD

5

4

Code generation
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Eigenstructure of the Butterfly Scheme

Denis Zorin,  February 1998

This worksheet contains the symbolic part of the analysis of  tangen plane continuity and C1-continuity  of  the Butterfly scheme.  We 
compute the eigenvalues of the subdivision matrix with the maximal magnitude  and the corresponding eigenvectors. For the valence K = 
3, the largest eigenvalue is 1/4, with 3 Jordan blocks: two of size 2 and one of size 3. For K = 4,5,7 the largest eigenvalues are in the first 
and last blocks of the DFT-transformed matrix, and have trivial Jordan blocks.  For K >= 8, the largest eigenvalues are in other blocks. We 
generate the C-code  for the computationally intensive part of the analysis (analysis of the characteristic maps).  The generated code  uses  
functions from our wrapper class for f.p. numbers, encapsulating interval arithmetics.

Utilities

Subdivision matrix
> assume( c >= -1); additionally( c <= -1); additionally (c, real); assume( K, integer); 

 
additionally( K >= 3);

> Butterfly := matrix( [  
 [ (1/2) + 4*w*c - 2*w*(2*c^2-1), 0,- w*(conjugate(omega) + 1),0,0,0], 
 [1,0,0,0,0,0], 
 [(1/2)*(1+ omega) - w*(conjugate(omega) + omega^2 ), -w*(1 + omega),2*w,0,0,0],  
 [1/2 - 2*w*c,1/2,2*w*(1+conjugate(omega)),0, -w, -w*conjugate(omega)], 
 [1/2 + 2*w*omega, 2*w - w*omega,1/2-w*conjugate(omega),0,-w,0],  
 [(1/2)*omega + 2*w,2*w*omega-w, 1/2 - w*omega,0,0,-w]]);

 := Butterfly











































 +  − 
1

2
4 w c 2 w ( ) − 2 c2 1 0 −w ( ) + ω 1 0 0 0

1 0 0 0 0 0

 +  − 
1

2

1

2
ω w ( ) + ω ω2 −w ( ) + 1 ω 2 w 0 0 0

 − 
1

2
2 w c

1

2
2 w ( ) + ω 1 0 −w −w ω

 + 
1

2
2 w ω  − 2 w w ω  − 

1

2
w ω 0 −w 0

 + 
1

2
ω 2 w  − 2 w ω w  − 

1

2
w ω 0 0 −w

> Butterconst := { w = 1/16}; Buttervar := { omega = exp(2*I*Pi*m/K), c = cos(2*m*Pi/K) 
}; 

 := Butterconst { } = w
1

16

 := Buttervar { }, = c






cos 2

m π
K

 = ω e







2

I π m

K

> ButterflyExpanded :=  map( simplify, subs( s^2 = 1-c^2, map( simplify, map( evalc, 
subs( { omega = c + s*I , op(Butterconst)}, eval(Butterfly))) ))) 
;

ButterflyExpanded := 
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









































 +  − 
5

8

1

4
c

1

4
c2 0 −  −  + 

1

16
c

1

16

1

16
I s 0 0 0

1 0 0 0 0 0

 +  −  +  − 
9

16

7

16
c

1

8
c2 9

16
I s

1

8
I c s −  −  − 

1

16

1

16
c

1

16
I s

1

8
0 0 0

 − 
1

2

1

8
c

1

2
 +  − 

1

8
c

1

8

1

8
I s 0

-1

16
−  + 

1

16
c

1

16
I s

 +  + 
1

2

1

8
c

1

8
I s  −  − 

1

8

1

16
c

1

16
I s  −  + 

1

2

1

16
c

1

16
I s 0

-1

16
0

 +  + 
1

2
c

1

2
I s

1

8
 +  − 

1

8
c

1

8
I s

1

16
 −  − 

1

2

1

16
c

1

16
I s 0 0

-1

16
Because the matrix has block-diagonal structure, we have to compute only the eigenvalues of the subblocks on the diagonal.
> Butterfly00 := submatrix( ButterflyExpanded, 1..3,1..3):
> Butterfly11 := submatrix( ButterflyExpanded, 4..6,4..6): 
> Butterfly10 := submatrix( ButterflyExpanded, 4..6,1..3): 
> 

Introduce new variables, cs and ss, for 






cos

m π
K

 and 






sin

m π
K

 . 

> Cre :=  diag( 1, 1, cs - I*ss );

 := Cre
















1 0 0
0 1 0
0 0  − cs I ss

Reduce the first subblock to a real matrix using a coordinate  transoform. Eigenvalues  do not change.
> Butter00re :=  map( simplify, subs( ss^2 = 1- cs^2, map( expand, map( simplify, subs( 

{s^2 = 1 - c^2}, subs( { c = 2*cs^2 - 1, s = 2*cs*ss},  map(simplify, map( evalc, map( 
simplify, evalm( Cre &*  eval(Butterfly00) &* inverse(Cre)))))))))));

 := Butter00re





















 +  − 
1

8

3

2
cs2 cs4 0 −

1

8
cs

1 0 0

−  + 
1

2
cs3 11

8
cs −

1

8
cs

1

8

Analysis of the behavior of the eigenvalues
Our goal is to determine the expresions for the eigenvalues of the largest magnitude, excluding 1, and show that for  valences > 8 these 
eigenvalues are not in the 1st and last blocks of the DFT-transformed subdivision matrix.  With some additional easily provable 
assumptions, this means that the Butterfly scheme is not C1 for these valences.   We also explicitly compute the eigenvalues for K = 3.

0-th block

The block corresponding to m = 0 is present in every matrix; if the eigenvalues of some other block are greater than  1/4, this 
block is not dominant.
> jordan(subs(  cs = 1, eval(Butter00re)));



























1

4
1 0

0
1

4
1

0 0
1

4

 Characteristic polynomial of the first sublock and its descriminant

The eigenvalues of the second subblock are 0, and -1/16; we will see that the first subblock always has larger eigenvalues.
Characteristic polynomial
> ButterCharpoly := subs( cs = sqrt(d), collect( subs( cos(m*Pi/K) = c, expand( 

charpoly(Butter00re,lambda),trig)), lambda));
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 := ButterCharpoly  +  +  − λ3 





−  +  − 

1

4
d2 3

2
d λ2 






 +  − 

23

64
d

1

64

3

16
d2 λ

1

64
d

> re := coeff( ButterCharpoly, lambda^2); se := coeff( ButterCharpoly, lambda); te := 
rem(ButterCharpoly, lambda, lambda);

 := re −  +  − 
1

4
d2 3

2
d

 := se  +  − 
23

64
d

1

64

3

16
d2

 := te −
1

64
d

 

Reduce the characteristic polynomial;  use   = d c2 as the parameter.
> ButterCharpolyReduced := collect(simplify(subs( lambda = mu - re/3, 

ButterCharpoly)), mu); 

ButterCharpolyReduced := 

 +  +  +  +  −  +  −  + µ3 





−  +  −  +  − 

1

192
d3 37

48
d2 7

64
d

1

3
d4 µ

1

768
d

55

1152
d2 73

144
d4 19

64
d3 2

27
d6 1

3
d5 1

6912
> pe := coeff(ButterCharpolyReduced, mu); qe := rem(ButterCharpolyReduced, mu,mu);

 := pe −  +  −  +  − 
1

192
d3 37

48
d2 7

64
d

1

3
d4

 := qe  +  +  −  +  −  + 
1

768
d

55

1152
d2 73

144
d4 19

64
d3 2

27
d6 1

3
d5 1

6912
Find the discriminant and deterimine its sign.
> Discr := simplify( (pe/3)^3 + (qe/2)^2);

 := Discr  −  −  +  −  +  +  − 
1

2359296
d

19

3538944
d2 479

442368
d4 1123

7077888
d3 1369

442368
d6 299

110592
d5 91

55296
d7 1

3072
d8

 
> Discr := factor(subs( w = 1/16, Discr));

 := Discr −
1

7077888
d ( ) − 4 d 1 ( ) −  +  −  + 576 d4 1616 d3 976 d2 20 d 3 ( ) − d 1 2

> plot(Discr, d = 0..1);

d
10.80.60.40.2

0

-2e-07

-4e-07

-6e-07

-8e-07

-1e-06

-1.2e-06

Pull out the degree 4 factor responcible for one of the roots on 0..1 

 DiscrFactor4 := factor(Discr/(lcoeff(Discrs)*(d-1/4)*(d-1)^2*d));

 := DiscrFactor4 −  +  −  +  − 
1

3072
d4 101

110592
d3 61

110592
d2 5

442368
d

1

589824
> plot(DiscrFactor4, d=0..1);
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d
10.80.60.40.2

4e-05

2e-05

0

-2e-05

-4e-05

Find the interesting root
> DiscrRoot := solve( { DiscrFactor4 = 0, d <= 1, d >= 0},d ); 

 := DiscrRoot { } = d  +  − 
101

144

1

144
%2

1

144

 −  −  + 8690 %1  / 1 3 %2 12 %2 %1  / 2 3 657264 %2 312154 %1  / 1 3

%1  / 1 3 %2

 := %1  + 13061314 5238 229017

 := %2
 +  + 4345 %1  / 1 3 12 %1  / 2 3 657264

%1  / 1 3

> DiscrRoot := op(2,op(DiscrRoot));

 := DiscrRoot  +  − 
101

144

1

144
%2

1

144

 −  −  + 8690 %1  / 1 3 %2 12 %2 %1  / 2 3 657264 %2 312154 %1  / 1 3

%1  / 1 3 %2

 := %1  + 13061314 5238 229017

 := %2
 +  + 4345 %1  / 1 3 12 %1  / 2 3 657264

%1  / 1 3

> evalf(DiscrRoot);

.8486812039
We observe that the discriminant has four roots: 0,1, 1/4 and approx. 0.8486812039; these are the only values for which the 
matrix may have nontrivial Jordan blocks.  The last case does not occur in the cases which are of interest to us.  In the first 3 
cases the Jordan normal form can be find explicitly.

 The case of three real roots

 The discriminant is positive on  0..1/4 and on  DiscrRoot..1, negative on 1/4..DiscrRoot
Compute the solutions when the discriminant is negative and, therefore, there are 3  real roots 
> R :=  sqrt(-factor(pe)/3):
> phi := arccos( qe/(2*R^3)):
> r1 := -2*R*cos(phi/3)-re/3: r2 :=  -2*R*cos(phi/3 + 2*Pi/3)-re/3: r3 :=  

-2*R*cos(phi/3 + 4*Pi/3)-re/3:  

The product of the roots is  -d/64, which is negative; therefore, either all three are positive, or two are negative. 0 is never a 
root, except when d = 0
 The roots cannot be equal on the interval where the discriminant does not change sign; we can figure out the largest one on the 
whole interval by evaluating them at a single value of d. We conclude that all three roots are always positive and the largest one 
is the second.
d = 1/4..DiscrRoot.  We use interval arithmetics to  guarantee correctness. 
> InvervalRoots := map( unapply(’inapply’(x,d),x), [r1,r2,r3] ):
> eval(InvervalRoots(1/2));

[ ], ,[ ],.08499852729 .08499853961 [ ],.4690415185 .4690415259 [ ],.1959599360 .1959599530
We conclude that te second root is the largest. 
> AbsDominantEV1 := r2;
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AbsDominantEV1
1

12
( ) − d 1 ( ) −  +  − 64 d3 128 d2 20 d 1 := 

















sin  + 
1

3

















arccos 6912

 +  +  −  +  −  + 
1

768
d

55

1152
d2 73

144
d4 19

64
d3 2

27
d6 1

3
d5 1

6912

( )( ) − d 1 ( ) −  +  − 64 d3 128 d2 20 d 1
 / 3 2

1

6
π

1

12

1

3
d2 1

2
d +  −  + 

[ ], ,[ ],.08499852699 .08499853971 [ ],.4690415184 .4690415260 [ ],.1959599356 .1959599533
> plot( [r1, r2, r3], d = 1/4..DiscrRoot);

d
0.80.70.60.50.40.3

0.5

0.4

0.3

0.2

0.1

 The case  of one real root

First case: The interval 0..1/4
We show that for d in this interval, all roots are < 1/4; we will see that there is always an eigenvalue > 1/4 elsewhere.
Therefore, the roots on this interval are irrelevant. There is only one real root; if at a point x the value of the polynomial is 
positive, than the magnitude of the  
real root is  less than x. We see that the char. polynomial is positive at 1/4 for d = 0..1/4, and negative  for d = 1..1/4.  For 

any K > 3,   < 
1

4







cos

π
K

2

, therfore, there is a real eigenvalue of magnitude greater than 1/4.

> solve( subs( lambda = 1/4, ButterCharpoly) > 0 );

,






RealRange ,−∞







Open

1

4
( )RealRange ,( )Open 1 ∞

Now build an equation for the square of the magnitude of the other two roots; it is a cubic equation again:
> rsq := - se; ssq := expand(te*re); tsq := -te*te;  

 := rsq −  −  + 
23

64
d

1

64

3

16
d2

 := ssq  −  + 
1

256
d

1

64
d3 3

128
d2

 := tsq −
1

4096
d2

Use the same approach: verifying that all solutions are < 1/16 on d=1..1/4
> solve( subs(x = 1/16, x^3 + rsq*x^2 + ssq*x + tsq) > 0);

,






RealRange ,−∞







Open

1

4







RealRange ,







Open

3

4
( )Open 1

For plots, get the expressions for the roots 
> R :=  signum(qe)*sqrt(-pe/3): phi := arccosh( abs(qe)/(2*abs(R)^3)):

> r := -2*R*cosh(phi/3)-re/3: c1 := R*( cosh(phi/3) + I*sqrt(3)*sinh(phi/3))-re/3: 
c2 := R*( cosh(phi/3) + I*sqrt(3)*sinh(phi/3)) -re/3:

> plot( [ abs(r), abs(c1), abs(c2)], d=0..1/4);
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d
0.250.20.150.10.05

0.25

0.2

0.15

0.1

0.05

0

Second case: interval DiscrRoot..1
In this case, we show that the real root is the largest;  we have already observed that  on 3/4 ..1 the magnitude of the 
complex roots (when there are  
complex roots)  is < 1/4; hence, it is sufficien to show that the real root is greater than 1/4. But we have seen already, that 
the characteristic polynomial is negative at 1/4 for d > 1/4. Therefore, the real root > 1/4. 

> R :=  sqrt(-pe/3): phi := arccosh( abs(qe)/(2*abs(R)^3)): AbsDominantEV2 := 
2*R*cosh(phi/3)-re/3; 

AbsDominantEV2
1

12
 −  +  −  + 1 192 d3 148 d2 21 d 64 d4 := 

















cosh
1

3

















arccosh 6912

 +  +  −  +  −  + 
1

768
d

55

1152
d2 73

144
d4 19

64
d3 2

27
d6 1

3
d5 1

6912

 −  +  −  + 1 192 d3 148 d2 21 d 64 d4
 / 3 2

1

12

1

3
d2 1

2
d +  −  + 

Plot of all roots
> display(plot( [abs(r),abs(c1)], d = 0..1/4,  color=black), 

plot([r1,r2,r3],d=1/4..DiscrRoot,  color=black), 
plot([abs(r),abs(c1)],d=DiscrRoot..1.000001,  color=black));

d
10.80.60.40.2

0.5

0.4

0.3

0.2

0.1

0
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 The magnitude of the subdominant eigenvalue  decreases for  d  from approximately 0.67600423  to 1

To show that the subdominant eigenvalues of the Butterfly scheme are not in the correct block for sufficiently large valences, 
we show that the largest eigenvalue decreases as a function of d near 1.  To do this, we find the sign of the derivative; it is 
suficient to evaluate the derivative at a single point, and to show that the derivative is not zero anywhere on  an interval.  Let 

( )y d   be the root as a function of  d. Then  differentiating the  equation  =  +  +  + y3 ( )r d y2 ( )s d y ( )t d 0 , and setting  
∂
∂
d

y to 

zero, we observe that at a point  d0 where the derivative is zero, the value  ( )y d0   satisfies the equation  

 =  +  + 








∂
∂
d

r y2 







∂
∂
d

s y








∂
∂
d

t 0.   It is sufficient to show that  for d on a given interval that the largest root of the orginal 

equation is not the root of the equation with differentiated coefficients.
> diffCharpoly := diff(re,d)*y^2 + diff(se,d)*y + diff(te,d);

 := diffCharpoly  +  − 






 − 2 d

3

2
y2 






 − 

23

64

3

8
d y

1

64
This is just a quadratic equation and we can immediately determine when it has no roots: 
> solve( coeff(diffCharpoly, y)^2 - 4*rem(diffCharpoly,y,y)*coeff(diffCharpoly,y^2) < 

0,d);







RealRange ,







Open

29

72







Open

5

8
 We consider the interval 5/8..1; 
On this interval there is in fact a point where the magnitude of the largest root of the characteristic polynomial is maximal. It is 
useful to find it more precisely. We use Groebner bases package to eliminate y from the system of two equations and find a 
polynomial equation for d; finduni finds the minimal univariate polynomial in the ideal generated by the two polynomials:
> dEquation := finduni( d, [subs( lambda = y, ButterCharpoly), diffCharpoly]); 

 := dEquation  −  +  −  +  − 9 48 d 332 d2 960 d3 1152 d4 512 d5

Now find a rational interval for d; realroot provides us with guaranteed bounds on all real roots.  Luckily, there is a single 
real root: 
> IntervalDominantMax := op(realroot( dEquation, 1/10^7)); 

 := IntervalDominantMax






,

11341469

16777216

5670735

8388608
> map(evalf, IntervalDominantMax);

[ ],.67600423097610473633 .67600429058074951172
Evaluating the derivative at  a point, we get a negative value; we conclude that the derivative is negative  for d  greater than the 
value above. 
We use the algebraic value of the root returned by solve, rather than transcedental equation, because interval  inapply does not 
work properly for  hyperbolic functions.
> IntervDeriv := inapply( diff(op(1, [solve( ButterCharpoly, lambda)]),d),d): 

eval(IntervDeriv(0.9));

[ ],-.77122129552760084746 -.77122129552759906668
We have shown that the magnitude of the largest eigenvalue decreases from approximately 0.6760043 to 1.

Valence 3

In this case eigenvalue 1/4 is the largest and has three identical Jordan blocks.
Block 0 

> jordan(subs( cs = 1, eval(Butter00re)));



























1

4
1 0

0
1

4
1

0 0
1

4
Block 1
> jordan( subs( cs = 1/2, eval(Butter00re)));
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

























1

16
0 0

0
1

4
1

0 0
1

4
Block 2
> jordan( subs( cs = -1/2, eval(Butter00re)));



























1

16
0 0

0
1

4
1

0 0
1

4

Valences 4,5

K = 4; Check which formulas to use.
> inapply(DiscrRoot); inapply(cos(Pi/7)^4); inapply(cos(2*Pi/4)^2);

 → ( ) [ ],.84868120391246120009 .84868120391246120352

 → ( ) [ ],.65892978418482746461 .65892978418482746486

0
The largest eigenvalue is in the first block. 
> inapply(subs( d = cos(Pi/4)^2, AbsDominantEV1));

 → ( ) [ ],.46904152209925298145 .46904152209925298172
> inapply(subs( d = cos(Pi/2)^2,AbsDominantEV1 ));

 → ( ) [ ],.12499999999999999998 .12500000000000000002
K = 5;
> inapply(DiscrRoot); inapply(cos(Pi/5)^2); inapply(cos(2*Pi/5)^2);

 → ( ) [ ],.84868120391246120009 .84868120391246120352

 → ( ) [ ],.65450849718747371183 .65450849718747371227

 → ( ) [ ],.095491502812526287866 .095491502812526288029
> inapply(subs( d = cos(Pi/5)^2, AbsDominantEV1));

 → ( ) [ ],.50667561139380648476 .50667561139380649194
We do not have to check the eigenvalue of the second block: for it, d < 1/4, therefore, the magnitude of the largest eigenvalue is 
also less than  1/4.

For valence  greater than  7, the  eigenvalue  of the block with m = 1 is not the largest

We have established that the magnitude of the largest eigenvalue decreases as the function of d when d > 0.6700423 = d0;  if 

 = d






cos

m π
K

2

  >  d0 

for   = m 2,  for K > 6 we can conclude that the eigenvalue for   = m 2  is greater than the eigenvalue for   = m 1. This is the case 
for K > 10:
>  x := inapply(2*Pi/K, K): eval(Interval_Integerpower(Interval_cos(x(11)),2));

[ ],.70770750650094321267 .70770750650094321286
For values between 7 and 10 , have to check  one by one.

K = 7. Check which formulas to use.  Note that for m = 2  the  value  is below d0 , so we do not have to check the other values 
of m.
> inapply(DiscrRoot); inapply(cos(Pi/7)^2); inapply(cos(2*Pi/7)^2);

 → ( ) [ ],.84868120391246120009 .84868120391246120352

 → ( ) [ ],.81174490092936676519 .81174490092936676535

 → ( ) [ ],.38873953302184279774 .38873953302184279798
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In this case, the largest eigenvalue is still in the first block:
> inapply(subs( d = cos(Pi/7)^2, AbsDominantEV1));

 → ( ) [ ],.48191070141255089859 .48191070141255090538
> inapply(subs( d = cos(2*Pi/7)^2, AbsDominantEV1));

 → ( ) [ ],.40611653561495260677 .40611653561495260912

K = 8
> inapply(DiscrRoot); inapply(cos(Pi/8)^2); inapply(cos(2*Pi/8)^2);

 → ( ) [ ],.8486811866 .8486812214

 → ( ) [ ],.8535533896 .8535533917

 → ( ) [ ],.4999999998 .5000000002

For  < d0 d , we cannot use the transcedental expression -- intpak does not have arccosh; rather than expressing it using 
logarithm, we use the algebraic expresssion, which works because the discriminant is positive: 
> inapply(subs( d = cos(Pi/8)^2,op(1, [solve(ButterCharpoly, lambda)])));

 → ( ) [ ],.46241776728303719789 .46241776728303860919
We see that in this case the eigenvalue of the second block is larger: 
> inapply(subs( d = cos(2*Pi/8)^2,AbsDominantEV1));

 → ( ) [ ],.46904152209925298145 .46904152209925298172
K = 9; same result as for 8:
> inapply(DiscrRoot); inapply(cos(Pi/9)^2); inapply(cos(2*Pi/9)^2);

 → ( ) [ ],.84868120391246120009 .84868120391246120352

 → ( ) [ ],.88302222155948901753 .88302222155948901768

 → ( ) [ ],.58682408883346517429 .58682408883346517455
> inapply(subs( d = cos(Pi/9)^2,op(1, [solve(ButterCharpoly, lambda)])));

 → ( ) [ ],.44442935560347137503 .44442935560347191330
> inapply(subs( d = cos(2*Pi/9)^2,AbsDominantEV1));

 → ( ) [ ],.49729407293962378849 .49729407293962379215
K = 10, same as for 8 and 9:
> inapply(DiscrRoot); inapply(cos(Pi/10)^2); inapply(cos(2*Pi/10)^2);

 → ( ) [ ],.84868120391246120009 .84868120391246120352

 → ( ) [ ],.90450849718747371190 .90450849718747371220

 → ( ) [ ],.65450849718747371183 .65450849718747371227
> inapply(subs( d = cos(Pi/10)^2,op(1, [solve(ButterCharpoly, lambda)])));

 → ( ) [ ],.42859991276733051144 .42859991276733166709
> inapply(subs( d = cos(2*Pi/10)^2,AbsDominantEV1));

 → ( ) [ ],.50667561139380648476 .50667561139380649194

Summary of the eigenvalue analysis 

For K = 3, the  largest eigenvalue is 1/4 and has multiplicity 7, with 2 blocks of size 2 and one block of size 3. For K = 4..7 the 
largest eigenvalue has  
multiplicity 2 and corresponds to the 1st and the last block. For K > 7, the largest eigenvalues are not in the 1st and last blocks.

Eigenvectors

Find the eigenvectors in two steps.  Using the special structure of the matrix  










B ,0 0 0

B ,1 0 B ,1 1

,  and the fact that we are interested in the 

eigenvectors  which are also eigenvalues of  the subblock  B ,0 0,  we find the  eigenvector as  [ ],v0 −( ) − B ,1 1 λ I
( )−1

B ,1 0 v0 , where  v0 is 

the eigenvector of  B ,0 0.   We also use the fact that in  

all cases of interest, the eigenvalues of B ,0 0 are not eigenvalues of  B ,1 1.

Compute an eigenvvector of B ,0 0; check first that the  two second lines of the matrix are always independent; the second component 

Page 9



of the cross product is not zero, because   ≤ 
1

4
λ:

> crossprod( row( evalm( subs( Butterconst, evalm(Butterfly00)) - lambda* &*() ), 2), 
row( evalm( Butterfly00 - lambda* &*() ), 3));







, ,−λ







 − 

1

8
λ  − λ

1

8
−  −  −  + 

1

16

1

16
c

1

16
I s λ







 +  −  +  − 

9

16

7

16
c

1

8
c2 9

16
I s

1

8
I c s

Compute the first part of the vector: 
> v0 := subs( _t[1] = 1, map(simplify, linsolve(  

         submatrix ( evalm( Butterfly00- lambda*&*() ) ,2..3,1..3), [0,0] )));
> 

 := v0








, ,λ 1 −

1

2

I ( )−  −  +  −  +  +  −  + I I c s 9 s λ 2 s c λ 9 I λ 2 I λ c2 7 I λ c

−  + 1 8 λ
> Butter11lambda := evalm( Butterfly11 - lambda* &*());
> 

 := Butter11lambda



























−λ
-1

16
−  + 

1

16
c

1

16
I s

0 −  − 
1

16
λ 0

0 0 −  − 
1

16
λ

> v1 := map( simplify, subs( { s^3 = s*(1-c^2), s^2 = 1- c^2}, map( expand, evalm( - 
inverse( Butter11lambda)  &* Butterfly10 &* v0 ))));

v1 −
1

16

−  −  −  +  +  −  +  +  −  − 3 c 1 1024 λ3
64 λ2

c2 165 λ 208 λ2
c 45 λ c 256 λ3

c 1120 λ2
10 λ c2

( )−  + 1 8 λ ( ) + 1 16 λ λ
,




 := 

−
1

2

−  −  −  −  −  −  +  +  +  +  + 79 λ 128 λ2 29 λ c 32 λ2 c 61 I s λ 32 I s λ2 11 5 c 7 I s 18 I s c λ 14 λ c2

( )−  + 1 8 λ ( ) + 1 16 λ
1

2
11 c 2 c2 11 I s−  +  − (,

61 λ 128 λ2
c 61 λ c 2 I c s 32 I s c λ 79 I s λ 4 c3 λ 32 λ2

128 I s λ2
4 I c2 s λ 32 λ c2 7 +  +  +  +  −  +  +  +  +  +  −  − ( )−  + 1 8 λ) / (

( ) + 1 16 λ )





Put the two parts of the vector together and simplify notation 
> ButterEigenvect := array( map( simplify, [seq( v0[i], i=1..3), seq(v1[i],i=1..3)])): 

Check if the expression makes sense for K = 6
>  map(expand, subs( {lambda = 1/2, c = 1/2, s = sqrt(3)/2}, eval(ButterEigenvect)));







, , , , ,

1

2
1  + 

3

4

1

4
I 3

3

2
 + 

5

4

1

4
I 3  + 1

1

2
I 3

Code generation 
Three functions are generated (same as for other schemes):
Float Eigenvalue(int K) computes the eigenvalues,  
void EigenvectorReal(Float c, Float lambda, Float* EvRe) initializes an array for the real part of the complex 
eigenvector,  void EigenvectorImaginary(Float c, Float* lambda, Float* EvIm) initializes the array for the 
complex part.  
Memory for arrays should be allocated by the calling function.
The output is written to a file; if the name is ‘default‘,  it is written to the standard output (warning: for some reason, writing to 
standard output is terribly slow;  writing to a file and then looking at it in an editor is much more efficient. All functions use  Float 
as the name of the class for the interval  numbers. 
It is assumed to have explicit  casts from 64-bit integers,  standard arithmetics operations, and macros FR  and  Fdiv,  (see  
ConvertToFloat for details).
> OutputFile := ‘butterfly.cpp‘:
> MakeClassHeader( OutputFile, ‘Butterfly‘, 2,4,3, RegButterfly):

Code generation for eigenvalues

Page 10



To show that the scheme produces C1 surfaces for valences 4,5,7, and not C1 surfaces for other valences we need expressions for 
eigenvalues of the first block of the DFT-transformed subdivision matrix (m = 1).    
 We generate two functions, one to be used for  valences 4,5,7; the other for larger valences.

  ComputeEigenvalues(N,eps,fname) Numerically compute eigenvalues for a range, and write a function with a 
large table into a file. 
  Although we have computed explicit formulas above,  they are numerically unstable for d close to 1 (for large K);  the 
simplest solution is to  
  to precomute the largest eigenvalue numerically with verified ; we use the fact that the largest eigenvalues is in the interval 
1/4 .. 1 in the range of interest. This function computes eigenvalues up to valence N, verifying that the precision is no less than 
eps.

Generate eigenvalues

 Code generation for eigenvectors

Modified Butterfly scheme
The Modified Butterfly scheme by construction always has the subdominant eigenvalue 1/2  in the first block of the DFT-transformed 
subdivision matrix. 
Thus, we only need to compute the eigenvectors for  the characteristic map analysis.  We do not assume that w = 1/16 here.

Compute the complex eigenvector
> ModButter := matrix( [  

 [ 1/2, 0, 0,0,0,0], 
 [1,0,0,0,0,0], 
 [(1/2)*(1+ omega) - w*(conjugate(omega) + omega^2 ), -w*(1 + omega),2*w,0,0,0],  
 [1/2 - 2*w*c,1/2,2*w*(1+conjugate(omega)),0, -w, -w*conjugate(omega)], 
 [1/2 + 2*w*omega, 2*w - w*omega,1/2-w*conjugate(omega),0,-w,0],  
 [(1/2)*omega + 2*w,2*w*omega-w, 1/2 - w*omega,0,0,-w]]);

 := ModButter











































1

2
0 0 0 0 0

1 0 0 0 0 0

 +  − 
1

2

1

2
ω w ( ) + ω ω2 −w ( ) + 1 ω 2 w 0 0 0

 − 
1

2
2 w c

1

2
2 w ( ) + ω 1 0 −w −w ω

 + 
1

2
2 w ω  − 2 w w ω  − 

1

2
w ω 0 −w 0

 + 
1

2
ω 2 w  − 2 w ω w  − 

1

2
w ω 0 0 −w

This is simple enough for the Maple function.
> jordan(ModButter,‘P‘);



























1

2
0 0 0 0 0

0 −w 0 0 0 0
0 0 2 w 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 −w

>  ModButterEigenvect := subs( { w = 1/16, cos(2*m*Pi/K) = c, sin(2*m*Pi/K) = s}, 
map( simplify, map( evalc, subs( Buttervar, col(eval(‘P‘),1)))));

ModButterEigenvect 1 2 −  +  +  −  + 
1

3
c2 7

6

5

6
c

1

3
I c s

7

6
I s  −  + 

653

216

11

108
c2 1

216
c  −  +  +  − 

35

54
c

7

27
c2 121

54

7

6
I s

1

3
I c s, , , , ,



 := 
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 +  −  +  +  +  − 
2

27
c3 103

54
c

14

27
c2 7

6

2

27
I s c2 121

54
I s

14

27
I c s





Code generation
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Eigenstructure of the Kobbelt Scheme

Denis Zorin, Stanford University, February 1998

In this worksheet, we explore the eigenstructure of  the subdivision matrix for Kobbelt’s subdivision scheme.  We compute guaranteed 
intervals for  the magnitude of the largest eigenvalue, and formulas for computing  corresponding eigenvector. The result is a file with three 
interval arithemtics C functions computing  the magnitude of the largest eigenvalue for a large range of valences, and two functions to 
compute eigenvectors for the eigenvalue with the largest magnitude.  In addition, we estimate the range of eigenvalues for large  valences, 
which allows us to analyze C1-continuity for all valences.

Utilities

Subdivision matrix of the  Kobbelt scheme
Define the blocks of the  DFT-transformed subdivision matrix; perform some tests to check if the matrix was defined correctly. We use 
the following parameters:α and β  are the coeffficients of the 4-point scheme (we consider the case when the coefficients are 9/16 and 

-1/16 respectively),   = c






cos

2 π
K

, and   = ω e









2 π
K

.

We test the correctness of the matrix in two ways: first,  we compute a submatrix explicitly for the case K = 4, and check if the matrices  
agree;  second, compute the eigenvectors and eigenvalues for K =4;   in this case, the matrix has to have eigenvalue 1/2, and te 
corresponding complex eigenvector should be a part of a regular quadrilateral grid in the complex plane.
> Kobbelt := matrix([[alpha+4*beta*d-beta*(1+2*c), 

4*d*beta^2/alpha-beta^2*(conjugate(omega)^2+2*c+1)/alpha, beta, 0, 0, 
0, 0, 0, 0, 0, 0, 0], 
[4*beta*alpha*d+alpha^2*(1+omega)-(1+omega)*alpha*beta, 
4*beta^2*d-beta^2*(1+2*c)+2*alpha*beta*c+alpha^2, 
(1+omega)*alpha*beta, beta^2*omega+alpha*beta, beta^2, 
beta^2*conjugate(omega)+alpha*beta, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0], [alpha, alpha+beta*conjugate(omega), 0, 0, 0, 
beta, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
[alpha*omega, alpha+beta*omega, 0, beta, 0, 0, 0, 0, 0, 0, 0, 0], 
[alpha, 0, alpha, 0, 0, 0, beta, 0, 0, 0, 0, 0], 
[beta^2*conjugate(omega)+alpha^2+alpha*beta*omega, 
alpha*beta*conjugate(omega)+alpha^2, beta^2*omega+alpha^2, alpha^2, 
alpha*beta, alpha*beta*(1+conjugate(omega)), alpha*beta, alpha*beta, 
beta^2, 0, 0, beta^2*conjugate(omega)], [beta*omega, alpha, 0, alpha, 
0, 0, 0, beta, 0, 0, 0, 0], [(1+omega)*alpha*beta, alpha^2, 
(1+omega)*alpha*beta, alpha^2, alpha^2, alpha^2, beta^2*(1+omega), 
alpha*beta, alpha*beta, beta^2, alpha*beta, alpha*beta], [beta, alpha, 
0, 0, 0, alpha, 0, 0, 0, 0, 0, beta], 
[alpha*beta+alpha^2*omega+beta^2*omega^2, alpha^2+alpha*beta*omega, 
beta^2+alpha^2*omega, (1+omega)*alpha*beta, alpha*beta, alpha^2, 
alpha*beta*omega, beta^2*omega, 0,0,beta^2, alpha*beta]]); 

 := Kobbelt


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


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








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
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 +  − α 4 β d β ( ) + 1 2 c  − 4
d β

2

α
β

2
( ) +  + ω2

2 c 1

α
β 0 0 0 0 0 0 0 0 0

 +  − 4 β α d α
2

( ) + 1 ω ( ) + 1 ω α β  −  +  + 4 β
2

d β
2

( ) + 1 2 c 2 α β c α
2

( ) + 1 ω α β  + β
2

ω α β β
2

 + β
2

ω α β 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

α  + α β ω 0 0 0 β 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

α ω  + α β ω 0 β 0 0 0 0 0 0 0 0
α 0 α 0 0 0 β 0 0 0 0 0

 +  + β
2

ω α
2

α β ω  + α β ω α
2

 + β
2

ω α
2

α
2

α β α β ( ) + ω 1 α β α β β
2

0 0 β
2

ω
β ω α 0 α 0 0 0 β 0 0 0 0

( ) + 1 ω α β α
2

( ) + 1 ω α β α
2

α
2

α
2

β
2

( ) + 1 ω α β α β β
2

α β α β
β α 0 0 0 α 0 0 0 0 0 β

 +  + α β α
2

ω β
2

ω
2

 + α
2

α β ω  + β
2

α
2

ω ( ) + 1 ω α β α β α
2

α β ω β
2

ω 0 0 β
2

α β
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> Kobconst := { alpha = 9/16, beta = -1/16 }; 

 := Kobconst { }, = α
9

16
 = β

-1

16
> KobExpanded := subs(Kobconst , evalm(Kobbelt));

 := KobExpanded




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

 −  + 
5

8

1

4
d

1

8
c  −  −  − 

1

36
d

1

144
ω2 1

72
c

1

144

-1

16
0 0 0 0 0 0 0 0 0

−  +  + 
9

64
d

45

128

45

128
ω  +  − 

1

64
d

5

16

5

64
c −  − 

9

256

9

256
ω  − 

1

256
ω

9

256

1

256
 − 

1

256
ω

9

256
0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
9

16
 − 

9

16

1

16
ω 0 0 0

-1

16
0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
9

16
ω  − 

9

16

1

16
ω 0

-1

16
0 0 0 0 0 0 0 0

9

16
0

9

16
0 0 0

-1

16
0 0 0 0 0

 +  − 
1

256
ω

81

256

9

256
ω −  + 

9

256
ω

81

256
 + 

1

256
ω

81

256

81

256

-9

256
−  − 

9

256
ω

9

256

-9

256

-9

256

1

256
0 0

1

256
ω

−
1

16
ω

9

16
0

9

16
0 0 0

-1

16
0 0 0 0

−  − 
9

256

9

256
ω

81

256
−  − 

9

256

9

256
ω

81

256

81

256

81

256
 + 

1

256

1

256
ω

-9

256

-9

256

1

256

-9

256

-9

256
-1

16

9

16
0 0 0

9

16
0 0 0 0 0

-1

16

−  +  + 
9

256

81

256
ω

1

256
ω

2
 − 

81

256

9

256
ω  + 

1

256

81

256
ω −  − 

9

256

9

256
ω

-9

256

81

256
−

9

256
ω

1

256
ω 0 0

1

256

-9

256

Special case K = 4:
>  KobRegular := map( unapply( subs( c = 0,x), x),  map( simplify, map( evalc, subs( { d 

= 0, omega = I, c = 0 },  evalm(KobExpanded) )))):
> 

Manually computed matrix for the regular case
> KobRegularManual := matrix( [[ 9/16 - I^2/16, 0,-1/16,0,0,0], [ (81/256)*(I+1) - 

(9/256)*(I^2 - I), 81/256 + (1/256)*I^2,  (-9/256)*(I+1), -9/256 +I/256, 1/256, -9/256 
- (1/256)*I],  
[1,0,0,0,0,0], [9/16,9/16 +I/16, 0,0,0, -1/16],[0,1,0,0,0,0],[ 9*I/16, 9/16 - I/16, 
0,-1/16,0, 0] ]);

 := KobRegularManual






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
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


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5

8
0

-1

16
0 0 0

 + 
45

128

45

128
I

5

16
−  − 

9

256

9

256
I −  + 

9

256

1

256
I

1

256
−  − 

9

256

1

256
I

1 0 0 0 0 0
9

16
 + 

9

16

1

16
I 0 0 0

-1

16
0 1 0 0 0 0

9

16
I  − 

9

16

1

16
I 0

-1

16
0 0

Check agreement with the regular case .
> norm(  evalm(submatrix( KobRegular, 1..6,1..6) - KobRegularManual));

0

Check if the eigenvector for the eigenvalue 1/2 is a regular grid:
> eigenvects( KobRegular );







, ,

1

256
1 { }[ ], , , , , , , , , , ,0 0 0 0 0 0 0 0 0 1 0 0







, ,

-1

128
1 { }







, , , , , , , , , , ,0 0 0 0 0 0 0

1

8
1  − 

27

8

27

8
I −I −

1

8
I, ,







, ,

1

2
1 { }[ ], , , , , , , , , , ,1  + 1 I 2  + 2 I  + 2 2 I  + 1 2 I 3  + 3 I  + 3 2 I  + 3 3 I  + 2 3 I  + 1 3 I ,
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





, ,

-1

32
1 { }







, , , , , , , , , , ,0 0 0 0 0 0 0

1

2
I I  + 

3

2

3

2
I 1

1

2







, ,

-1

16
1 { }[ ], , , , , , , , , , ,0 0 0 0 0 0 1 1 1  + 1 I I I, ,







, ,

-1
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2 { }[ ], , , , , , , , , , ,0 0 0 0 0 0 0 −I −4 I  − 9 9 I 4 1 ,







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1

32
2 { }[ ], , , , , , , , , , ,0 1 0  − 6 2 I 32  + 6 2 I 0  − 18 9 I  − 90 18 I 243  + 90 18 I  + 18 9 I

1

8
3 {, ,


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
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1

8
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3

4

3

8
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3

8

3

4
I

27

8
 − 3 I  − 
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8

5

4
I 0 −  + 

5

4
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8
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1
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8
I

27

8
 − 
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8

3

8
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3
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3

8
I }



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Eigenvalues of the 0-th block for all valences:
> KobZeroBlock := map( unapply( subs( c = 1,’x’), ’x’),  map( simplify, map( evalc, 

subs( { d = 1, omega = 1, c = 1 },  evalm(KobExpanded) )))):

The largest eigenvalue is 1/4;  we will see that the largest eigenvalue of one of the other blocks is always greater than 1/4, and the 
dominant eigenvalue is never in the 0-th block.
> eigenvals(KobZeroBlock);

, , , , , , , , , , ,
1

256

-1

32

-1

128

-1

16

-1

64

-1

64

1

4

1

4

1

16

1

16

1

16

1

16

Characteristic polynomial of the subdivision matrix
Compute and factor the characteristic polynomial of the blocks of DFT-transformed subdivision matrix. The resulting polynomial is 

parameterized by  = c






cos

2 π
K

.  The polynomial has a number of small roots, which do not depend on c, and a factor of degree 6.   For 

illustrative purposes, and to guide us in the subsequent derivations, we compute all the roots of the polynomial numerically, and plot 
the magnitudes of the roots. Of course, neither the plot nor the computed values cannot be used in the analysis without additional 
verification.

We have already computed eigenvalues for the 0th block, and we can assume that d = 0
> KobCharpolynom := subs( { s^3 = s*(1-c^2),s^2 = 1 - c^2,s^4 = (1-c^2)^2}, factor( 

collect(charpoly( map( simplify, map( evalc, subs( s^2 = 1-c^2, map( simplify, subs( { 
d = 0, omega = c + I*s}, eval(KobExpanded)))))),lambda),lambda))):

> KobCharpolynom := factor( map( simplify, KobCharpolynom));

KobCharpolynom
1

72057594037927936
( ) + 32 λ 1 ( ) + 128 λ 1 ( ) + 1 64 λ 2 1 42880 λ3 90 λ 576 λ2 c−  +  +  + (− := 

9216 λ4
c 49152 λ5

c 18 λ c 5376 λ3
c 448 λ3

c2 983040 λ5
304128 λ4

2928 λ2
1048576 λ6 +  +  −  −  +  +  −  −  − ) ( ) − 256 λ 1

( ) + 1 16 λ
> KobFactor6 := KobCharpolynom/( 

(32*lambda+1)*(128*lambda+1)*(1+64*lambda)^2*(256*lambda-1)*(16*lambda+1)):
> KobFactor6 := collect(KobFactor6/lcoeff(KobFactor6,lambda),lambda);

KobFactor6 λ6 





−  − 

3

64
c

15

16
λ5 






−  + 

9

1024
c

297

1024
λ4 






−  −  + 

335

8192

7

16384
c2 21

4096
c λ3 






−  + 

9

16384
c

183

65536
λ2 +  +  +  +  := 







−  + 

45

524288

9

524288
c λ

1

1048576
 +  + 

Compute  the eigenvalues; execution of this statement may take a while.
> EigenvalsList := seq([solve( subs( c = evalf( (n+1e-10)/100),KobFactor6))], n = 

-100..100): 

Convert the lists of eigenvalues to the form suitable for plotting
>  EigenvalsPlotLists := seq( [ seq( [-1 + (i-1)/100, abs(op(j, 

op(i,[EigenvalsList])))], i = 1..201)] ,j=1..6):

Plot of the magnitudes of eigenvalues as functions of c; to see approximately the magnitudes of the eigenvalues for a block m of the 

subdivision matrix for valence K,  draw a vertical line at  = c






cos

2 π m

K
;  and find where it intersects the curves in the plot.

> display(seq(plot(op(i,[EigenvalsPlotLists]),color=black), i = 1..6),color=black, 
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axesfont=[TIMES,ITALIC,10], labels=[‘‘,‘‘]);

10.50-0.5-1

0.6

0.5

0.4

0.3

0.2

0.1

Eigenvalues
The roots of the characteristic polynomial of Kobbelt’s scheme in general cannot be found explicitly. However, we can obtain enough 
information about the eigenvalues to verify C1-continuity. We proove that for any ,m k,   = m  .. 1  − k 1  the largest eigenvalue is real 
and unique,  and that for  , ≠ m  − k 1 1 the largest eigenvalue is less than the largest eigenvalue of blocks 1 and  − k 1.  We also show 
that the unique largest eigenvalue is a single eigenvalue in the interval [0.5..0.613],  for k > 4.   
For the value  = k 3, eigenvalues are examined separately.  The proof   is performed in several steps:  
(1). We show that for c < 0, all  roots of the characteristic polynomial ( )P ,c λ  are less than 0.51 (actually, they are less than 0.5, but 
due to numerical nature of our calculations, we have to relax the upper boundary).  
(2). We show that for any  = c  .. 0 1, there is a unique real root µ in the interval [0.5,0.613], and the function ( )µ c  is C1-continuous and 
increases.  
(3). We "deflate"  the  characteristic polynomial (that is, divide by the monomial  − λ µ)  in symbolic form, with µ and c as 
indeterminates. Next, we verify that for  all  = µ  .. .5 .613, and corresponding ( )c µ  , that all roots of the deflated polynomial are inside 
the circle of radius 0.5 centered at 0 in the complex plane, that is, have magnitudes less than ( )µ c   for any  < 0 c. Using µ as the 
primary parameter is important, as c can be explicitly computed from µ, but not the other way. 

As for k > 4,  < .51






cos

2 π
k

, the largest eigenvalue cannot possibly correspond to a block m, for which  ≤ 






cos

2 m π
k

0 .  From (3),  it 

follows that the largest root has to be the real root ( )µ c  for some c.  As for any , < 1 m  < m  − k 1,  < 






cos

2 m π
k







cos

2 π
k

 , and we 

have shown (1) that ( )µ c , increases, and for any c ( )µ c  is the largest root, we conclude that the largest eigenvalue always corresponds 
to m = 1, is real, and is the unique eigenvalue in the range 0.5..0.613. 
 
 On steps 1 and 3 we have to show that roots of a polynomial are  inside a circle of radius r in the complex plane.  This task is similar 
to the task of establishing 

stability of a filter with the transfer function 
1

( )a z
, where ( )a z  is a polynomial. Such filter is stable, if all roots of  the polynomial are 

inside the unit circle.  
A variety of tests exist for this condition; for our purposes, the algebraic Marden-Jury test is convenient. With aproporiate rescaling of 
the variable it can be used to prove that all roots of a polynomial are inside the circle of any given radius r. As the test requires only a 
simple algebraic calculaion on the coefficients of the polynomial, it can be easily performed for symbolic and interval coefficients. 
Finally, we compute the largest root of the characteristic polynomial numerically for all valences up to some maximum.  For each 

computed root, we verify that that the precision is at least  = ε .1 10-10: we use interval arithmetics to evaluate the polynomial at   − λ0 ε  

and   + λ0 ε and assert that the sign is guaranteed to change.    There may be more than one root: we still have to prove that there is only 
a single root in the computed interval and that the rest of the roots are smaller.  The maximal valence N is chosen in such a way that for 
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N 






cos

2 π
N

is "sufficiently close"  to 1.  This means that   for all K > N  corresponding eigenvalue  differs from  the limit value λ∞ by 

no more than ε , where  ε  is small enough for us to  establish, using interval arithmetics,  that the Jacobian of the characteristic map is 
positive for  eigenvectors computed using formulas derived below for all  λ in the interval [ ], − λ∞ ε λ∞  . The actual computation of the 

Jacobian and evaluation of the necessary contraction functions is performed in the C part of the code.  We use maximal value 3000 

here, just in case ( below we see that 1450 is sufficient to require the interval for λ  with the size of only .1 10-5. 

Marden-Jury test

MardenJury(a,var,rootrad) Compute Marden-Jury table for  a polynomial p in variable var, with variable rescaled by 
rootrad. 
Used to verify that all roots of a polynomial are inside the circle of radius r.
> MardenJury , ,::a polynom ::var name rootradproc( ) := 

local ;, , , , ,i k M acol tbl restable
 := M ( )degree ,a var ;

for from to do odi 0 M  := [ ]tbl ,0 i ∗( )coeff , ,a var i ^rootrad ( ) − i M ;
i Mfor to do
for from to do odk 0  − M i  := [ ]tbl ,i k  − ∗[ ]tbl , − i 1 0 [ ]tbl , − i 1 k ∗[ ]tbl , − i 1  −  −  + M k i 1 [ ]tbl , − i 1  −  + M i 1

od;
for to do odi M  := [ ]restable i [ ]tbl ,i 0 ;

( )eval restable
end

Interval version of Marden-Jury test
> IntervMardenJury , ,::a ( )polynom interval ::var name ::rootrad numericproc( ) := 

local ;, , , , ,i k M acol tbl restable
 := M ( )degree ,a var ;

for from to do odi 0 M  := [ ]tbl ,0 i ( )Interval_times ,( )coeff , ,a var i ^rootrad ( ) − i M ;
i M k 0  − M i [ ]tbl ,i k Interval_add ( )Interval_times ,[ ]tbl , − i 1 0 [ ]tbl , − i 1 k ,( := for from to dofor to do

( )Interval_times ,−1 ( )Interval_times ,[ ]tbl , − i 1  −  −  + M k i 1 [ ]tbl , − i 1  −  + M i 1 )
od

od;
for to do odi M  := [ ]restable i [ ]tbl ,i 0 ;

( )eval restable
end

> 

Deflation

deflate(p,var,rootval) compute the coefficients of the polynomial 
( )p z

 − z z0

; it is assumed that p is divisible by  − z z0.  

var is the name of the variable, rootval is the root.

> deflate , ,::p polynom ::var name rootvalproc( ) := 

local ;, ,i dp r
 := dp 0;

 := r ( )lcoeff ,p var ;
for from by to do odi  − ( )degree ,p var 1 −1 0 ; := dp  + dp ∗r ^var i  := r  + ( )coeff , ,p var i ∗rootval r ;
dp

end

Analysis of the eigenvalues

Now we perform steps 1-3 described above.
(1). We show that for c < 0, all  roots of the characteristic polynomial ( )P ,c λ  are less than 0.51 (actually, they are less than 
0.5, but due to numerical nature of our calculations, we have to relax the upper boundary). 
> MJtab := MardenJury(KobFactor6, lambda, 51/100): 
> MJtabInterv := map(unapply(’inapply’( dummy, c ),dummy), MJtab ): 

> TestNegativeC , ,::cstart numeric ::cend numeric ::cstep numericproc( ) := 

local ;,MJ cx
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global ;MJtabInterv
cx cstart cstep cendfor from by to do

 := MJ ( )map ,( )unapply ,( )dummy [ ],cx  + cx cstep dummy MJtabInterv ;
 or  or  or  or  < 0 ( )op ,2 [ ]MJ 1  < ( )op ,1 [ ]MJ 2 0  < ( )op ,1 [ ]MJ 3 0  < ( )op ,1 [ ]MJ 4 0  < ( )op ,1 [ ]MJ 5 0 or if

 < ( )op ,1 [ ]MJ 6 0 ( )ERROR ,‘test failed for interval = ‘ [ ],cx  + cx cstepthen
fi

od;
( )print ‘All tests passed‘

end
> 

Do tests, adjusting the step in c. This is not really necessary -- we can simply take the smallest step, but to save time we use 
larger steps first. 
TestNegativeC(-1.0,-0.65,0.05);

All tests passed
> TestNegativeC(-0.6,-0.275,0.025);

All tests passed
> TestNegativeC(-0.25,-0.06,0.01);

All tests passed
> TestNegativeC(-0.05,0.,0.005);

All tests passed

(2). We show that for any  = c  .. 0 1, there is a unique real root µ in the interval [0.5,0.613], and the function ( )µ c  is 
C1-continuous and increases.

Solve the characteritic polynoial for c
> csolutions := [solve( KobFactor6, c)]:

We are intersted in the first solution only; we will verify later that te second one is out of the range [-1..1] for relevant 
values of λ
> clambda := csolutions[1];

clambda
1

896
6144 λ3

1920 λ2
432 λ 18−  −  +  − ( := 

2  +  −  +  +  −  + 9437184 λ6 13238272 λ5 5451776 λ4 393216 λ3 30784 λ2 3440 λ 81 + ) ( )−  + 1 8 λ λ2

> 

Compute the derivative. 
> clambdadiff := simplify( diff(clambda, lambda)):

The solution for  = λ
1

2
 can be computed explicitly.

> simplify( subs( lambda = 1/2, clambda)); 

0

The solution for  = λ .613 is outside the range.
> clambdaInterv := inapply( clambda, lambda): clambdaInterv(0.613);

[ ],1.007236841 1.007237163
> 

Show that the derivative is positive for λ  in [0.5..0.613] (the upper bound is the upper estimate for ( )λ 1   
intervcdiff := inapply( clambdadiff, lambda):

> xl .5 .004 .613for from by to do

; := res ( )intervcdiff [ ],xl  + xl .004 if then fi < res1 0 ( )ERROR ,test failed for interval [ ],xl  + xl .004

od;
( )print all tests passed

all tests passed

We conclude that ( )c1 λ  increases from 0 to above 1 on [0.5..0.613]; therefore, the inverse increases from 0.5 to approx. 

0.613 on [0..1]. 

The second solution is outside the range of c for this range of λ:
> inapply( csolutions[2], lambda)(0.5, 0.613);
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[ ],-28.12500027 -28.12499976
We conclude that for c > 0 in the interval 0.5..0.613 there is a unique real solution.

(3). We "deflate"  the  characteristic polynomial (that is, divide by the monomial  − λ µ)  in the symbolic form, with µ and c as 
the indeterminates. Next, we verify that for all  = c  .. 0 1, and for all  = λ  .. .5 .613, all roots of the deflated polynomial are 
inside the circle of radius 0.5 centered at 0 in the complex plane, that is, have magnitudes less than ( )µ c   for any  < 0 c. 

Symbolic deflation; if we substitute a pair ,c ( )µ c  we get the deflated polynomial for a specific value of c.
> deflatedKobFactor6 := collect( expand( deflate(KobFactor6, lambda, mu)), 

lambda);

deflatedKobFactor6 λ5 





−  −  + 

15

16

3

64
c µ λ4 






−  +  −  −  + 

9

1024
c

297

1024

15

16
µ

3

64
µ c µ2 λ3 +  +  := 







 −  −  −  +  −  −  + 

21

4096
c

335

8192

7

16384
c2 9

1024
µ c

297

1024
µ

15

16
µ2 3

64
µ2 c µ3 λ2 + 







 −  +  −  −  −  +  −  −  + 

183

65536

9

16384
c

21

4096
µ c

335

8192
µ

7

16384
µ c2 9

1024
µ2 c

297

1024
µ2 15

16
µ3 3

64
µ3 c µ4 λ

9

524288
c +  + 

45

524288

335

8192
µ2 9

16384
µ c

9

1024
µ3

c
183

65536
µ

297

1024
µ3 µ5 21

4096
µ2

c
15

16
µ4 3

64
µ4

c
7

16384
µ2

c2 −  −  −  −  +  +  +  +  −  −  − 

Verify that for all c in 0..1 and µ in 0.5.. 0.613 deflated polynomial has roots of magnitude < 0.5
> TestDeflated , ,::lstart numeric ::lend numeric ::lstep numericproc( ) := 

local ;, , , , ,cf i MJ lx cinterv deflatedinterv
global ;,deflatedMJtabInterv clambdaInterv

for from to do odi 0 5  := [ ]cf i ( )inapply , ,( )coeff , ,deflatedKobFactor6 λ i c µ ;
lx lstart lstep lendfor from by to do

 := cinterv ( )clambdaInterv [ ],lx  + lx lstep ;
 := deflatedinterv 0;

for from to do odi 0 4  := deflatedinterv  + deflatedinterv ∗( )eval ( )[ ]cf i ,cinterv [ ],lx  + lx lstep ^λ i ;
 := deflatedinterv  + deflatedinterv ∗[ ],1.0 1.0 ^λ 5;

 := MJ ( )IntervMardenJury , ,deflatedinterv λ .5 ;
 or  or  or  or  < 0 ( )op ,2 [ ]MJ 1  < ( )op ,1 [ ]MJ 2 0  < ( )op ,1 [ ]MJ 3 0  < ( )op ,1 [ ]MJ 4 0  < ( )op ,1 [ ]MJ 5 0 or if

 < ( )op ,1 [ ]MJ 6 0 ( )ERROR ,‘test failed for interval = ‘ [ ],lx  + lx lstepthen
fi

od;
( )print ‘All tests passed‘

end
> TestDeflated(0.5, 0.613, 0.0005);

All tests passed
We conclude that in the range c = 0..1, all roots of the deflated polynomial have magnitudes less than 0.5 
> 

Special case: k = 3

Calculation of  the largest eigenvalues  with guaranteed precision 

This function produces a table of approximate values of the eigenvalue with given precision for use with interval arithmetics in 
the C part of the analysis code; to avoid conversion problems, we write two integers: mantissa + exponent base 10.  The last 
value is the limit value for infinity (computed with c set to 1 in the char. polynomial).  The result is a C function written to a 
file; if the file name is ‘default‘, then the output is written to the standard output. 
The argument of the function is valence, the function returns  the interval value for the largest eigenvalue. The body is just a 
large switch statement. 
We assume that  the exponents for eigenvalues are nonpositive, which is always the case for Kobbelt’s scheme. 
ComputeEigenvalues , ,::N integer ::eps numeric ::fname stringproc( ) := 
local ;, , , , , , , , , ,K intervKobFactor6 intervPi intervc expandedKobFactor6 approxEV r deflatedKobFactor6 i marTable cK
global ;KobFactor6

 := Digits 15;
 := intervKobFactor6 ( )inapply , ,KobFactor6 λ c ;

 := intervPi ( )Interval_times ,[ ],2.0 2.0 ( )Interval_arccos [ ],0 0 ;
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 := intervc ( )inapply ,( )cos ∗  / 2 intervPi K K ;
( )fprintf ,fname ‘virtual Float Eigenvalue(int K) {\n‘ ;
( )fprintf ,fname ‘ static INTEGER64 EV[] = {\n‘ ;

 := expandedKobFactor6 ( )subs , = c 1 KobFactor6 ;
 := approxEV ( )fsolve , ,expandedKobFactor6 λ  = λ  .. .5 1 ;

 or  < 0 ( )op ,2 ( )intervKobFactor6 , − approxEV eps 1  < ( )op ,1 ( )intervKobFactor6 , + approxEV eps 1 0if then
( )ERROR ‘fsolve precision failure for infinity‘

fi;
fprintf fname ‘CONST64(%d),CONST64(%d),CONST64(%d),\n‘ ( )op ,1  − approxEV eps ( )op ,1  + approxEV eps, , , ,(

^10 ( )− ( )op ,2 approxEV );
( )fprintf ,fname ‘CONST64(0),CONST64(0),CONST64(0), CONST64(0),CONST64(0),CONST64(0),\n‘ ;

K 3 Nfor from to do
if then fi = mod( ) − K 3 100 0 ( )print K ;

 := cK ( )intervc K ;
 := expandedKobFactor6 ( )subs , = c ( )cos ∗  / 2 π K KobFactor6 ;

 := approxEV ( )fsolve , ,expandedKobFactor6 λ  = λ  .. .25 1 ;
 or  < 0 ( )op ,2 ( )intervKobFactor6 , − approxEV eps cK  < ( )op ,1 ( )intervKobFactor6 , + approxEV eps cK 0if then

( )ERROR ,‘fsolve precision failure for K =‘ K
fi;
fprintf fname ‘CONST64(%d),CONST64(%d),CONST64(%d),\n‘ ( )op ,1 ( )eval  − approxEV eps, , ,(

( )op ,1 ( )eval  + approxEV eps ^10 ( )− ( )op ,2 approxEV, )
od;

( )fprintf ,fname ‘CONST64(0)};\n return Float(EV[3*K],EV[3*K+1])/Float(EV[3*K+2]) ;\n}\n\n‘ ;
NULL

end

The derivative of the largest eigenvalue with respect to c at infinity. 

To establish C1-continuity for all valences, we need to analyze behavior of the magnitude of the largest eigenvalue as the function 
of  the  valence, as  the valence increases to infinity ( c approaches 1). We estimate a constant  B, such that  <  − λ λ∞ B  − c 1 ,  

sufficiently close to 1. This constant can be taken to be the maximum of  
∂
∂
c

λ , or, equivalently, as  maximum of  
∂
∂
λ

c
( )−1

;  as 

the characteristic polynomial is quadratic in c, the latter is relatively easy to compute.  Once B is known, we can estimate the size ε 
of the  interval for λ  near λ∞ , such that if the characteristic map is injective and regular for all these values, it is sufficient to 

establish C1-continuity for  < K0 K, where  < 
ε
B

 − 1








cos

2 π
K0

.

> intervcdiff := inapply( clambdadiff, lambda):

Evaluate for all lambda in the range 0.7..1; step 0.001 gives reasonable bounds; this may take some time.
> cdiffinterv := [];  

for i from 0 to 299 do  
    cdiffinterv :=  Interval_union(cdiffinterv, intervcdiff([0.7+i*0.001, 
0.7+(i+1)*0.001]));  
od: eval(cdiffinterv);

 := cdiffinterv [ ]

[ ],9.984080932 15.63504120
> B := op(2, Interval_reciprocal( op(1, cdiffinterv)));

 := B .1001594446

For example, if we use the interval of size .1 10-5  for λ∞,  we have to consider all  valences up to the valence for which 

 < B  − 






cos

2 π
K

1 .1 10-5 ,  which turns out to be approx. 1450.

> Interval_times( B, Interval_add( Interval_cos( Interval_times( Interval_times( 2, 
2*Interval_arccos(0.0)), Interval_reciprocal(1450))),-1));

[ ],-.9403469458 10-6 -.9403269135 10-6

Eigenvectors
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Finally, we  derive the expressions for the complex eigenvector of the largest eigenvalue of the subdivision matrix. We use the fact that 
the largest eigenvalue   has multiplicity 1 and is a real eigenvalue of the first subblock B ,0 0 of the subdivision matrix.  

 First part of the eigenvector
> KobBlock00 := subs( s^2 = 1-c^2, map( evalc, subs( { d = 0, omega = c + I*s}, 

submatrix( KobExpanded, 1..6,1..6))));

KobBlock00 := 













 + 
5

8

1

8
c −  −  + 

1

72
c
2 1

72
c

1

72
I c s

-1

16
0 0 0

 +  + 
45

128

45

128
c

45

128
I s  − 

5

16

5

64
c −  −  − 

9

256

9

256
c

9

256
I s  +  − 

1

256
c

1

256
I s

9

256

1

256
 −  − 

1

256
c

9

256

1

256
I s

1 0 0 0 0 0
9

16
 −  + 

9

16

1

16
c

1

16
I s 0 0 0

-1

16
0 1 0 0 0 0

 + 
9

16
c

9

16
I s  −  − 

9

16

1

16
c

1

16
I s 0

-1

16
0 0

The characteristic polynomial of this submatrix is exactly the degree 6 factor of the characteristic polynomial of the whole 
matrix: 
> collect( simplify(  subs( { s^3 = s*(1-c^2), s^2 = 1 - c^2}, 

charpoly(KobBlock00,lambda))), lambda) - KobFactor6;

0
> redBlock00 := submatrix ( evalm( KobBlock00 - lambda *  &*()), 2..6, 1..6): 
> v0 := map( simplify, subs( { s^3 = (1-c^2)*s, s^2 = 1-c^2, _t[1] = 1}, linsolve( 

redBlock00, vector([0,0,0,0,0]) )));

v0 λ 9
λ ( ) −  −  +  −  +  −  −  +  −  +  + 2 c2 λ 1 c 384 λ2

I s 384 c λ2
2560 c λ3

2560 λ3
2 I λ c s 2560 I λ3

s 384 I λ2
s 2 c λ

%1
, ,




 := 

1 9
I λ ( )−  +  −  +  −  +  +  −  +  +  − 9 s 9 I c 2 I c2 2 s c 228 I λ c 1344 I c λ2 240 s λ 144 I λ 4096 I λ3 10 I 1344 λ2 s

%1
, ,

9
 −  −  +  −  +  −  −  +  −  +  + 2 c2 λ 1 c 384 λ2

I s 384 c λ2
2560 c λ3

2560 λ3
2 I λ c s 2560 I λ3

s 384 I λ2
s 2 c λ

%1
,

−9
I λ ( )−  −  +  −  −  +  +  +  +  −  − 8 I c 4096 I c λ3 10 s 9 I 144 s λ 144 I λ c 12 s λ c 4096 λ3 s 240 I λ 1344 I λ2 12 I λ c2

%1






 := %1  +  −  −  −  −  +  −  + 80 λ 4 c2 λ 16 c λ 2112 λ2
5120 c λ3

1 576 c λ2
65536 λ4

20480 λ3

Verify agreement with the regular case: 
> subs( { s = 1, c = 0, lambda = 1/2}, eval(v0) );







, , , , ,

1

2
 + 

1

2

1

2
I 1  + 1

1

2
I  + 1 I  + 

1

2
I

 Second part, separate real and imaginary parts

Now we compute the second part of the vector:
> KobBlock10 := submatrix ( KobExpanded, 7..12, 1..6);
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 := KobBlock10













































9

16
0

9

16
0 0 0

 +  − 
1

256
ω

81

256

9

256
ω −  + 

9

256
ω

81

256
 + 

1

256
ω

81

256

81

256

-9

256
−  − 

9

256

9

256
ω

−
1

16
ω

9

16
0

9

16
0 0

−  − 
9

256

9

256
ω

81

256
−  − 

9

256

9

256
ω

81

256

81

256

81

256
-1

16

9

16
0 0 0

9

16

−  +  + 
9

256

81

256
ω

1

256
ω2  − 

81

256

9

256
ω  + 

1

256

81

256
ω −  − 

9

256

9

256
ω

-9

256

81

256
> KobBlock11lambda := submatrix ( evalm( KobExpanded - lambda *  &*()), 7..12, 

7..12);

 := KobBlock11lambda













































−  − 
1

16
λ 0 0 0 0 0

-9

256
−  − 

9

256
λ

1

256
0 0

1

256
ω

0
-1

16
−λ 0 0 0

 + 
1

256

1

256
ω

-9

256

-9

256
 − 

1

256
λ

-9

256

-9

256

0 0 0 0 −λ
-1

16

−
9

256
ω

1

256
ω 0 0

1

256
−  − 

9

256
λ

> v1 := map(simplify, subs( { s^4 = (1-c^2)^2, s^2 = 1-c^2, s^3 = (1-c^2)*s},  map( 
simplify, map( evalc, subs( omega = I*s + c, evalm( - inverse(KobBlock11lambda) &* 
KobBlock10 &* v0)))))):

Put together the vector: 
> KobEigenvect := vector( [seq( v0[i], i = 1..6), seq( v1[i], i = 1..6) ]):

Verify agreement with the regular case:
> subs( { s = 1, c = 0, lambda = 1/2},  map( simplify, evalm(  eval(KobEigenvect)) ) 

);







, , , , , , , , , , ,

1

2
 + 

1

2

1

2
I 1  + 1

1

2
I  + 1 I  + 

1

2
I

3

2
 + 

3

2

1

2
I  + 

3

2
I  + 

3

2

3

2
I  + 1

3

2
I  + 

1

2

3

2
I

Separate real and complex parts
> KobEigenvectRe := map( evalc, map( Re, KobEigenvect)):

In addition, scale imaginary part by by 1/s 
> KobEigenvectIm := map( simplify,  evalm( (1/s) * map( evalc, map( Im, 

KobEigenvect)))):

Code generation
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Eigenstructure of the Loop Scheme

Denis Zorin, January 1998

In this worksheet we compute the eigenvalues and eigenvectors of the subdivision matrix of  the Loop scheme.  This analysis repeats the 
original derivation of Loop from his MS thesis.   We also compute eigenvalues and eigenvectors of the modified Loop scheme, which 
always has largest eigenvalue equal to 1/2.

Utilities

Loop scheme subdivision matrix, eigenvalues, eigenvectors
> assume( c, real); additionally( c >= -1 ); additionally( c  <= 1); 
> Loop := matrix( [[ (1 - K*alpha)*d,         K*alpha*d,   0,0],  

                 [         (3/8)*d,     3/8 + (1/4)*c,   0,0], 
                 [        (1/16)*d,     5/8 + (1/8)*c, 1/16, 
(1/16)*(1+conjugate(omega))], 
                 [         (1/8)*d, (3/8)*(1 + omega), 0, 1/8] 
                 ]);

 := Loop





























( ) − 1 K α d K α d 0 0
3

8
d  + 

3

8

1

4
c 0 0

1

16
d  + 

5

8

1

8
c

1

16
 + 

1

16

1

16
ω

1

8
d  + 

3

8

3

8
ω 0

1

8
> Loopvar := { omega = c + I*s};

 := Loopvar { } = ω  + c I s
> evalues := eigenvals(subs( { d = 0, op(Loopvar)}, evalm(Loop)));

 := evalues , , ,0  + 
3

8

1

4
c

1

16

1

8
> EV := max(evalues);

 := EV  + 
3

8

1

4
c

> LoopZero := map( evalc, subs( { d = 1, c = 1, omega = 1}, evalm(Loop))):
> eigenvals( LoopZero);

, , ,1
1

8

1

16
 − 

5

8
K α

Minimal value of the largest eigenvalue of the first block is 1/4; determine he range for α; α   clearly should be less than 5/8K and 
greater than the following number:
> AlphaCrit :=  solve( 5/8 - K*alpha = 3/8 + 1/4*cos(2*Pi/K), alpha ); 

 := AlphaCrit −
1

4

−  + 1






cos 2

π
K

K
> evects := subs( s^2 = 1-c^2, [eigenvects(map(evalc,subs( { d = 0, op(Loopvar)}, 

evalm(Loop))))]);

evects








, , + 

3

8

1

4
c 1 { }









, , ,0 1

1

2

 +  + 30 c 26 4 c2

 +  + 4 c2 9 c 5

3

2

I ( )−  +  − I c s I

 + c 1







, ,

1

8
1 { }[ ], , ,0 0 −I ( ) +  + I I c s 1, ,




 := 







, ,

1

16
1 { }[ ], , ,0 0 1 0 [ ], ,0 1 { }[ ], , ,1 0 0 0,





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> for i from 1 to vectdim(evects) do  
  if op(1,op(i, evects)) = EV then v := op(1, op(3, op(i, evects))); fi;   
od;

> LoopEigenvector := map(simplify, map(evalc, eval(v)));

 := LoopEigenvector






, , ,0 1

 + 2 c 13

 + 5 4 c

3

2

 +  + c 1 I s

 + c 1
Drop the first element
> LoopEigenvector := vector( [ seq(LoopEigenvector[i], i = 2..4)]); 

 := LoopEigenvector






, ,1

 + 2 c 13

 + 5 4 c

3

2

 +  + c 1 I s

 + c 1

Generate code

Modified Loop scheme subdivision matrix, eigenvalues, eigenvectors

This is the expression for all blocks except 0th; the 0th block is the same as for the standard Loop.
> ModLoop := matrix( [[ (1 - K*alpha)*d,         K*alpha*d,   0,0], 

                   [         (3/8)*d,     (1/2)^m,   0,0], 
                   [        (1/16)*d,     5/8 + (1/8)*c, 1/16, 
(1/16)*(1+conjugate(omega))], 
[         (1/8)*d, (3/8)*(1 + omega), 0, 1/8] 
]);

 := ModLoop































( ) − 1 K α d K α d 0 0
3

8
d









1

2

m

0 0

1

16
d  + 

5

8

1

8
c

1

16
 + 

1

16

1

16
ω

1

8
d  + 

3

8

3

8
ω 0

1

8
> mevalues := eigenvals(subs( { d = 0, op(Loopvar)}, evalm(ModLoop)));

 := mevalues , , ,0








1

2

m 1

16

1

8

The admissable range of α is obvious. 
> mevects :=  subs( s^2 = 1-c^2, [eigenvects(map(evalc, subs( { d = 0, op(Loopvar) , m = 

1}, evalm(ModLoop))))]);

mevects


 := 

, , ,[ ], ,0 1 { }[ ], , ,1 0 0 0






, ,

1

16
1 { }[ ], , ,0 0 1 0







, ,

1

2
1 { }







, , ,0 1  + 

12

7

4

7
c I ( )−  +  − I c s I







, ,

1

8
1 { }[ ], , ,0 0 −I ( ) +  + I I c s 1





> for i from 1 to vectdim(mevects) do  
  if op(1,op(i, mevects)) = 1/2 then mv := op(1, op(3, op(i, mevects))); fi;   
od;

> ModLoopEigenvector := map( evalc, map(simplify, mv));

 := ModLoopEigenvector






, , ,0 1  + 

12

7

4

7
c  +  + c 1 I s

Drop the first element
> ModLoopEigenvector := vector( [ seq(ModLoopEigenvector[i], i = 2..4)]); 
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 := ModLoopEigenvector






, ,1  + 

12

7

4

7
c  +  + c 1 I s

Generate code
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Eigenstructure of the Catmull-Clark scheme

Denis Zorin,  February 1998

In this worksheet, we examine the eigenstructure of the subdivision matrices of the Catmull-Clark subdivision scheme. This scheme was 
analyzed in the papers by Ball and Storry (tangent plane continuity) and Peters and Reif (C1-continuity). We mostly follow the analysis 
found in the latter paper. In addition, we determine the  range of coefficients for the extraordinary vertex, for which the scheme is  
C1-continuous.

Utilities

 Subdivision matrix
The constants following  Peter and Reif , with K replacing n.
> assume( c, real); additionally( c <= 1 ); additionally( c >= -1 ); 

CCconst := { p1 = 1/64, p2 = 3/32, p3 = 9/16, q1 = 1/16, q2 = 3/8, r = 1/4 }; 
CCvar := { omega = exp( 2*Pi*I*m/K), c = cos( 2*Pi*m/K) };

 := CCconst { }, , , , , = p1
1

64
 = p2

3

32
 = p3

9

16
 = q1

1

16
 = q2

3

8
 = r

1

4

 := CCvar { }, = ω e







2

I π m

K
 = c







cos 2

π m

K
The DFT-transformed subdivision matrix; the order of rows is different  from P. & R. (there is a typo in Peters and Reif  in row 4, 
elements 1 and 3). 
> CC := matrix(  [ [alpha*d,    beta*d,                 gamma*d,0,0,0,0],  

                 [   q2*d, 2*q1*c+q2, q1*(1+conjugate(omega)),0,0,0,0], 
                 [    r*d, r*(1+omega),                     r,0,0,0,0], 
                 [   p2*d, 2*p1*c+p3,  p2*(1+conjugate(omega)), p2, 
p1,0,p1*conjugate(omega)], 
                 [   q1*d, q1*omega + q2,                   q2,                   q1, 
q1,0,0], 
                 [   p1*d, p2*(1+omega),                    p3,  p1*(1+omega),   p2, 
p1, p2 ], 
                 [   q1*d, q1 + q2*omega, q2                  ,q1*omega,0,0,q1] 
]);

 := CC



























α d β d γ d 0 0 0 0

q2 d  + 2 q1 c q2 q1 ( ) + 1 ω 0 0 0 0
r d r ( ) + 1 ω r 0 0 0 0

p2 d  + 2 p1 c p3 p2 ( ) + 1 ω p2 p1 0 p1 ω
q1 d  + q1 ω q2 q2 q1 q1 0 0
p1 d p2 ( ) + 1 ω p3 p1 ( ) + 1 ω p2 p1 p2
q1 d  + q1 q2 ω q2 q1 ω 0 0 q1

> CCExpanded := map( evalc, subs( { omega = c + s*I, op(CCconst)}, eval(CC))):

We are primarily interested in m = 1; in this case d = 0 and we ignore the first row and column
> A00 := submatrix( CCExpanded, 2..3,2..3);

 := A00



















 + 
1

8
c

3

8
 +  − 

1

16

1

16
c

1

16
I s

 +  + 
1

4

1

4
c

1

4
I s

1

4
> A10 := submatrix( CCExpanded, 4..7,2..3):
> A11 := submatrix( CCExpanded, 4..7, 4..7):
> CCZero := map( evalc, subs( { gamma = 1 - alpha - beta, c = 1, omega = 1, d = 1, 

op(CCconst)}, eval(CC)));
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 := CCZero

















































α β  −  − 1 α β 0 0 0 0
3

8

1

2

1

8
0 0 0 0

1

4

1

2

1

4
0 0 0 0

3

32

19

32

3

16

3

32

1

64
0

1

64
1

16

7

16

3

8

1

16

1

16
0 0

1

64

3

16

9

16

1

32

3

32

1

64

3

32
1

16

7

16

3

8

1

16
0 0

1

16

Eigenvalues

The eigenvalues of the matrix  are eigenvalues of  A ,0 0  and of A ,1 1.

All eigenvalues of A ,1 1  do not depend on c and are less than 1/8:
> map( simplify, subs( s^2 = 1-c^2, [eigenvals( A11)]));







, , ,

1

64

1

16

1

8

1

32
It can be seen that whenever the eigenvalues are real, one of them is greater than 1/4. 
> eigenv := map( evalc,  subs( { s^2 = 1 - c^2} , [eigenvals(A00)]));

 := eigenv






, +  + 

1

16
c

5

16

1

16
 +  + c2 10 c 9  +  − 

1

16
c

5

16

1

16
 +  + c2 10 c 9

Make sure that the roots are never equal; then the largest is determined simply by comparing them for any value of c. 
> solve( (op(1, eigenv) - op(2, eigenv))^2 = 0);

,-9 -1
Figure out which one is larger. 
> if simplify( subs( c = 0, op(1, eigenv) > op(2, eigenv)))  then  

  lambda1 := op(1, eigenv); 
else  
  lambda1 := op(2, eigenv); 
fi;

 := λ1  +  + 
5

16

1

16
c

1

16
 +  + 9 10 c c2

The larger eigenvalue increases with c  on the interval of interest. We conclude that the largest eigenvalue for  K > 4 is guaranteed 
to be in the 
1st or 0th block of the subdivision matrix. This is also true  for K = 3, because there are only two blocks, excluding 0th, and they are 
complex-conjugate.
> solve( {diff(lambda1, c) > 0, abs(c) < 1});

{ }, < -1 c  < c 1
The largest eigenvalues of the 0th block:
> evZero := eigenvals( submatrix( CCZero, 1..3,1..3) );

 := evZero , ,1  −  + 
1

2
α

1

8

1

8
 −  −  + 16 α2

8 α 3 8 β  −  − 
1

2
α

1

8

1

8
 −  −  + 16 α2

8 α 3 8 β

Determine the ranges for α and β
Determine when the eigenvalues  are real.
> solve(  (4*( op(2, [evZero]) - op(3, [evZero] )))^2 >= 0 );

{ } ≤  −  + 
3

8
2 α2 α β
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Determine where the eigenvalues interesect the level  






λ1 −

1

2
, which is the minimal value of the eigenvalue of the first block, 

achieved for K = 3. 
> solve( abs(op(2, [evZero])) = subs( c = -1/2, lambda1)  );

,{ }, = α α  = β −  +  −  + 
9

4
α

117

64

1

4
α 17

13

64
17 { }, = β  +  +  + 

9

4
α

45

64

1

4
α 17

5

64
17  = α α

,{ }, = β −  +  −  + 
9

4
α

117

64

1

4
α 17

13

64
17  = α α { }, = β  +  +  + 

9

4
α

45

64

1

4
α 17

5

64
17  = α α

> solve( abs( op(3, [evZero])) = subs( c = -1/2, lambda1)  );

,{ }, = β −  +  −  + 
9

4
α

117

64

1

4
α 17

13

64
17  = α α { }, = β  +  +  + 

9

4
α

45

64

1

4
α 17

5

64
17  = α α

The parabola is the boundary of the region where the eigenvalues are complex.  
> solve( ( op(2, [evZero]))^2 - (op(3, [evZero]) )^2 = 0 );

,{ }, = β  −  + 
3

8
2 α2 α  = α α { }, = α

1

4
 = β β

The following plot shows the region in the  − α β plane where the eigenvalues of 0th block are less than 






λ1 −

1

2
.   For the 

coefficients  , ,α β γ to be positive,  α and β have to be inside the triangle [0,0], [1,0], [0,1]. 

For  the magnitudes of eigenvalues to be less than 






λ1 −

1

2
, they have to be in the grey region, the equation of the line delimiting 

the region is  

 = β −  +  −  + 
9 α
4

117

64

1 α 17

4

13 17

64
> with(plots): display( PLOT(POLYGONS([[1,0], [1,1], [0,1]], COLOR(RGB, 1.0,1.0,1.0), 

STYLE(PATCH))), contourplot( max(abs(op(3, [evZero])), abs(op(2, [evZero]))), alpha = 
0..1, beta = 0..1, grid = [20,20], contours = [subs(c = -1/2, lambda1)], filled=true, 
coloring=[grey, white]),  plot( 3/8 - 2*alpha^2 + alpha, alpha = 0..1 , 0..1, color = 
white), plot( 1-alpha, alpha = 0..1, color = black) );

alpha
10.80.60.40.2

beta

1

0.8

0.6

0.4

0.2

0

Eigenvalue summary.  Whenever the coefficients α and β are in the region depicted above, the largest eigenvalue of the 
subdivision matrix is the eigenvalue of the first block, and it is greater than any other eigenvalue of the subdivison matrix.  
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Eigenvector

 The   eigenvector  of  A ,0 0  can be  immediately seen from the matrix.
> v0 := [ 4*lambda - 1, (1+ c + I*s) ];

 := v0 [ ], − 4 λ 1  +  + 1 c I s

Invert    − A ,1 .1 λ I
> A11inv := map( simplify, subs( s^2 = 1 - c^2, eval(map( expand, evalm(inverse( 

evalm(A11 - lambda*&*()))))))):

compute v1 as  −( ) − A ,1 1 λ I A ,1 0 v0

> v1 :=  map( simplify, subs( { s^3 = s*(1-c^2), s^2 = 1-c^2}, map( expand,  evalm( 
-A11inv &* A10 &* v0 )))): 
 

We do not substitute the value for det   − A ,1 1 λ I
> CCEigenvector := vector( [ v0[1], v0[2], v1[1], v1[2], v1[3], v1[4]] );

CCEigenvector  − 4 λ 1  +  + 1 c I s 2
−  +  +  +  + 60 λ 3 16 c λ2 20 c λ 288 λ2

 −  + 256 λ2
40 λ 1

, , ,



 := 

 +  +  +  +  −  −  −  −  +  +  + 1024 c λ3 1024 I s λ3 6144 λ3 1152 c λ2 1120 I s λ2 384 λ2 156 c λ 96 λ 196 I s λ 6 5 c 5 I s

( ) −  + 256 λ2
40 λ 1 ( )−  + 1 16 λ

2 (,

49152 λ4 49152 c λ4 49152 I s λ4 77056 c λ3 256 c2 λ3 76800 I s λ3 76800 λ3 256 I s λ3 c 400 c2 λ2 +  +  +  +  +  +  +  + 

400 I s λ2 c 11808 λ2 11808 I s λ2 11408 c λ2 100 c2 λ 60 λ 100 I s λ c 160 c λ 60 I s λ 15 15 c 15 I s +  −  −  −  +  +  +  +  +  +  +  + 

( ) −  +  − 16384 λ3 2816 λ2 104 λ 1 ( )−  + 1 16 λ) ( ) 1024 λ3 6144 I s λ3 6144 c λ3 384 I s λ2 32 c2 λ2 384 c λ2 +  +  −  +  − (,

1120 λ2 32 I s λ2 c 96 c λ 96 I s λ 40 I s λ c 40 c2 λ 196 λ 5 6 I s 6 c +  +  −  −  +  +  −  +  +  + −  +  −  + 1 56 λ 896 λ2 4096 λ3) ( )







Verify that the vector is correct in the regular case.
> map( simplify, subs( { lambda = 1/2,  s = 1, c = 0}, eval(CCEigenvector)));

[ ], , , , ,1  + 1 I 2  + 2 I  + 2 2 I  + 1 2 I

Code generation
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