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A sufficient condition foiCt-continuity of subdivision surfaces was proposed by Reif [17] and
extended to a more general setting in [22]. In both cases, the anal@@icohtinuity is reduced to
establishing injectivity and regularity of a characteristic map. In all known prod@$-gbntinuity,
explicit representation of the limit surface on an annular region was used to establish regularity,
and a variety of relatively complex techniques were used to establish injectivity. We propose a
new approach to this problem: we show that for a general class of subdivision schemes, regularity
can be inferred from the properties of a sufficiently close linear approximation, and injectivity can
be verified by computing the index of a curve. An additional advantage of our approach is that
it allows us to proveCl-continuity for all valences of vertices, rather than for an arbitrarily large,
but finite number of valences. As an application, we use our method to ar@liyzentinuity of
most stationary subdivision schemes known to us, including interpolating Butterfly and Modified

Butterfly schemes, as well as the Kobbelt's interpolating scheme for quadrilateral meshes.
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1 Introduction

Subdivision is becoming increasingly popular as a surface representation in computer graphics applications. To ensure
that a subdivision algorithm has the desired behavior for almost all input data, a theoretical analysis of the surface
has to be performed. For subdivision on arbitrary meshes, even the analysis of the basic property of the surfaces,
Cl-continuity, poses a considerable challenge; [18, 9, 14, 15, 19]. In this paper we describe a set of theoretical results
and algorithms that make it possible to perform@tecontinuity tests automatically.

The principal result allowing one to analy@é-continuity of most subdivision schemes, is the sufficient condition
of Reif [17]. This condition reduces the analysis of stationary subdivision to the analysis of a single map, called the
characteristic mapfor each valence of vertices in the mesh. The analys@&afontinuity is performed in three steps
for each valence:

1. compute the control net of the characteristic map;
2. prove that the characteristic map is regular;

3. prove that the characteristic map is injective.

This map can be expressed in a closed form for spline-based subdivision schemes, such as Loop, Catmull-Clark
and Doo-Sabin. For these schemes, proving regularity of the characteristic map is tedious but straightforward, as
the Jacobian of the map can be expressed in terms of piecewise polynomial basis functions. Proving injectivity is
somewhat more difficult. [18, 14].

Our goal is to verify regularity and injectivity automatically for arbitrary (not necessarily spline-based) subdivision
schemes, once the control net for the characteristic map is known. Our approach has two additional benefits:

¢ With some mild assumptions on the dependence of the coefficients of the characteristic scheme on the valence,
we are able to analyZ@'-continuity forall valences.

e Stability of C!-continuity with respect to perturbations of coefficients can be estimated.

Our method is based on two results, discussed in Sections 3 and 4. The estimates of Section 3 allow us to infer
regularity from the properties of the linear approximations to the limit map, which can be computed explicitly. In
Section 4 we show that a regular characteristic map can be proved to be injective simply by verifying that the index
of the restriction of the map to the boundary of its domain is 1. The latter result follows from self-similarity of the
characteristic map: in general, it is not true that a map is injective if it is regular on its domain even if the domain is
the plane and the map is polynontiaComputing the index of a curve is a simple procedure that can be implemented
robustly.

A crucial element of our technique is the interval computation: although in many cases all required calculations
can be performed symbolically, it is much more efficient and, in fact, simpler, to obtain guaranteed bounds on the
guantities of interest using interval arithmetics. As an additional benefit, we are able to prove facts not about single
characteristic maps defined by exact values of the control points, but about families of maps, corresponding to the
control points with interval components.

Using our method, we analyze interpolating triangular and quadrilateral subdivision schemes — the Butterfly [6], the
Modified Butterfly [21] and the Kobbelt schemes [12]. We also repeat the analysis for two schemes that were analyzed
previously by other authors: the Loop [18] scheme and the Catmull-Clark scheme [14]. For the latter schemes we
extend the analysis to all valences. It is important to emphasize that once the control points for the characteristic maps
are computed, the same code is used to analyze all these schemes.

Related work. This work further extends the results presented in [19]. To the best of our knowledge, all schemes
that were analyzed by other authors admitted closed-form expressions for the characteristic maps; our method for
establishing regularity radically differs from symbolic methods used in [18, 9, 14]. Initial Discrete Fourier Transform
(DFT) analysis that we use to find the control points for the characteristic map follows the well-established pattern
usedin[1, 9, 18, 20, 14]. Methods for proving injectivity of the characteristic map for spline-based invariant schemes
were proposed in [18] and [14].

1This statement is known as the Jacobian conjecture for dimension 2, and a counterexample was found by S. Pinchuk in [16].



Our estimates of the errors of linear approximations rely on the work of Cavaretta, Dahmen and Micchelli [2], and
on the work of Cohen, Dyn and Levin [3] on matrix subdivision.
Finally, we extensively use interval arithmetics (see, for example, [13]).

Overview. In Section 2, we describe the notation for subdivision on complexes and state relevant results from [22]
and [19]. In Section 3, we discuss the basic properties of the matrix subdivision schemes, and derive estimates for
the convergence rates of linear and piecewise constant approximations to the limit functions generated by subdivision.
These estimates apply to the surfaces as well as the directional derivatives of the coordinate functions.

In Section 4, we prove that the index of a curve can be used to test injectivity of the characteristic map. Section 5
provides a brief description of algorithms for verification@continuity based on the results of Sections 3 and 4.

Section 6 describes the DFT analysis specific to invariant scheéhesntinuity of the Butterfly and the Modified
Butterfly schemes is analyzed in Section 7; the Kobbelt interpolating scheme for quadrilateral meshes is considered in
Section 8.

In Section 9 we briefly discuss the applications of our method to other schemes.

2 Subdivision Schemes

In this section we summarize the main definitions and facts about subdivision on complexes that we use. The main
result is the generalization of Reif’s sufficient condition (Theorem 2.1. More details can be found in [22, 19].

2.1  Subdivision on Complexes

Simplicial complexes. Subdivision surfaces are naturally defined as functions on two-dimensional simplicial com-
plexes. Recall that a simplicial compl&xis a set of vertices, edges and triangle®M, such that for any triangle
all its edges are i, and for any edge its vertices areKn We assume that there are no isolated vertices or edges.
|K| denotes the union of triangles of the complex regarded as a subR&twith induced metric. We say that two
complexek; andK; areisomorphidf there is a homeomorphism betweghi | and|Kz| that maps vertices to vertices,
edges to edges and triangles to triangles.

A subcomplexf a complexK is a subset oK that is a complex. A 1-neighborhodd (v,K) of a vertexv in a
complexK is the subcomplex formed by all triangles that hanvas a vertex. Thenneighborhood of a vertexis
defined recursively as a union of all 1-neighborhoods of vertices iirthe1)-neighborhood of. We omitK in the
notation for neighborhoods when it is clear what complex we refer to.

Recall that dink of a vertex is the set of edges{(v,K) that do not contain. We consider only complexes with
all vertices having links that are connected simple polygonal lines, open or closed. If the link of a vertex is an open
polygonal line, this vertex is a boundary vertex, otherwise it is an internal vertex.

Most of our constructions use two special types of complexdstegular complexe®y and theregular complex
R. Each complex is simply a triangulation of the plane consisting of identical triangles. In the regular complex each
vertex has exactly 6 neighbors. Ikaegular complex all vertices have 6 neighbors, except one vErteskich hask
neighbors. We calC the central vertex of &-regular complex and identify it with zero in the plane.

Subdivision of simplicial complexes. We can construct a new compl&(K) from a complex by subdivision,
adding a new vertex for each edge of the complex and replacing each old triangle with four new triangles. Note that
k-regular complexes are self-similar, thatlgRx) andRy are isomorphic.
We use notatiof! for j times subdivided compleR!(K) andV! for the set of vertices dk!. Note that the sets
of vertices are neste¥° c V1 c ....

Subdivision schemes. Next, we attach values to the vertices of the complex; in other words, we consider the space
of functionsV — B, whereB is a vector space ov&. The rangeB is typically R' or C' for somel. We denote this
spaceP(V,B), or P(V), if the choice ofB is not important.

A subdivision schenfer any functionp! (v) on vertices/1 of the complexx! computes a functiopi*1(v) on the
vertices of the subdivided compl&(K) = K. More formally, a subdivision scheme is a collection of operaits
defined for every comple, mappingP(K) to P(K*). We consider only subdivision schemes that are linear, that is,
the operator§/K] are linear functions of?(K). In this case the subdivision operators are defined by equations



pt(v) = Evawp"(W)

for all v e V1. The coefficients,y may depend oK.

We restrict our attention to subdivision schemes which are finitely supported, locally invariant with respect to a set
of isomorphisms of complexes and affinely invariant.

A subdivision scheme iinitely supportedf there is an integeM such thag # 0 only if w € Ny (v,K) for any
complexK (note that the neighborhood is taken in the com{éx1). We call the minimal possibIs! the support
sizeof the scheme.

We assume our schemes tolbeally definedandinvariant with respect to isomorphisms of compléxes

Together these two requirements can be defined as follows: there is a constightthat if for two complexes;
andKs and two vertices; € V; andv; € Vs, there is an isomorphism: N (vi, K1) — N (v2,K>), such thap(vy) = o,
thenay,w = y,p(w)- IN Most cases, tHecalization size l= M.

The final requirement that we impose on subdivision schemaf§ine invarianceif T is a linear transformation
B — B, then foranw T p*1(v) =y awT p/(v). This is equivalent to requiring that all coefficiemts, for a fixedv
sumupto 1.

Limit functions.  For each vertex € U‘J?":OVj there is a sequence of valuggv), p'*(v), ... wherei is the minimal
number such that' containsy.

Definition 2.1. A subdivision scheme is called convergent on a complex K, if for any functidfi(K, B) there is a
continuous function f defined ¢k | with values in B, such that

lim sup||p! (v) — f(v)|, — 0
J=%vevi

The function f is called the limit function of subdivision.

Notation: f[p] is the limit function generated by subdivision from the initial valpes P(K).

Itis easy to show that if a limit function exists, it is uniquesibdivision surfaces the limit function of subdivision
on a complex with values inR3. In this case we call the initial valug8(v) the control pointsof the surface.

Locally any surface generated by a subdivision scheme on an arbitrary complex can be thought of as a part of a
subdivision surface defined onkaregular complex. Note that this fact alone does not guarantee that it is sufficient
to study subdivision schemes only &regular complexes (see [22]). If the number of control points of the initial
complex for ak-gonal patch is less than the number of control points of the celgahal patch in thé-regular
complex, then only a proper subspace of all possible configurations of control points on the subdivided complexes can
be realized. Although it is unlikely, it is possible that for such complexes almost all configurations of control points
will lead to non-smooth surfaces, while the scheme is smooth olktegular complexes.

Subdivision matrices. Consider the part of a subdivision surfatly] with y € ul = [N1(0, fRﬂ'()|, defined on the
k-gon formed by triangles of the subdivided comp%é(adjacent to the central vertex. It is straightforward to show
that the values at all dyadic points in thisgon can be computed given the initial valugigv) for v € N (0, le().
In particular, the control pointpl*(v) for v € N_(0, Rfjl) can be computed using only control poimtsw) for
w e N (0, ﬂ%lj(). Let p! be the vector of control points! (v) for v e N (0, le(). Let p+ 1 be the number of vertices in
NL (0, Ry).

'L(As tla)e subdivision operators are linepf; T can be computed froml Using a(p+ 1) x (p+ 1) matrixSl: pitl =
Sip

pIf for somemand for allj > m, S = S"= S, we say that the subdivision schemesiationary on the k-regular
complex or simply stationary, and ca8 the subdivision matrixof the scheme. Note that our definition in the case
k = 6 is weaker than the standard definition of stationary schemes on regular complexes [2].
As we will see, eigenvalues and eigenvectors of the matrix have fundamental importance for smoothness of subdivi-
sion.

2|n fact, we only need invariance with respect to sufficiently large set of isomorphisms of complexes; this allows us to include schemes defined
on tagged complexes; see [22, 19].



Eigenbasis functions. letAg = 1,A;,...A; be different eigenvalues of the subdivision matrix in nonincreasing order,
the condition\o > A1 is necessary for convergence.
For anyA; let J}, j =1... be the complex cyclic subspaces corresponding to this eigenvalue.
Let n'j be theordersof these cyclic subspaces; the order of a cyclic subspace is equal to its dimension minus one.
Let b'jr, r=0... n'j be the complex generalized eigenvectors corresponding to the cyclic sul;i*]spﬁbe vectors
bj, satisfy

SB, =Aib, +bj, ; ifr>0 SBy=Abl (2.1)

The complexeigenbasis functiorare the limit functions defined bﬁgr = f[b‘j,] Uy —C
Any subdivision surfacé[p] : U; — R® can be represented as

) =3 By fir ) (22)

i

whereB!, € C3, and ifb}, = ok, Bl = 8K, where the bar denotes complex conjugation.
One can show using the definition of limit functions of subdivision and (2.1) that the eigenbasis functions satisfy
the following set ofscaling relations

flo(y/2) =Niflh () + fl,_a(y) ifr>0, flo(y/2) =Aiflo(y) (2.3)

Cl-continuity of surfaces. By Cl-continuous surfaces we mean two-dimensional manifolds immersed (not neces-
sarily embedded) ifR® (see [22] for more detailed discussion). It can be easily shown that no scheme can generate
Cl-continuous surfaces for any configuration of control points. Hence, we only require that subdivision generates
C!-continuous surfaces for any choice of control points on a compjexcept a nowhere dense set of configurations.

In almost all cases, for local schen@S-continuity for arbitrary complexes follows fro@!-continuity onk-regular
complexes. A subtle problem may occur, howevercfamstraineccomplexes (see [22] for further details).

Characteristic maps.

Definition 2.2. Thecharacteristic map® : U1 — R2 is defined for a pair of cyclic subspacgs Jj of the subdivision
matrix as( fao, fa1) if I§ = J§, Aais real, (fao, feo) if I§ # J5, Aa, A are real, and(0 fao, Ofao) if Aa = Ac, b=d.

Three types of characteristic maps are shown in Figure 1.
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Figure 1: Three types of characteristic maps: control points after 4 subdivision steps are shown. a. Two real eigenval-
ues. b. A pair of complex-conjugate eigenvalues. c. single eigenvalue with Jordan block of size 2.

The domain of a characteristic map is tkgon U4, consisting ofk triangles of the regular complex; we call
these trianglesegmentsWe assume that the subdivision scheme gene@tesntinuous limit functions the regular
complexes, and the characteristic ma@liscontinuous inside each segment and has continuous one-sided derivatives
on the boundary.



Sufficient condition for Ct-continuity.  The following sufficient condition is a special case of the condition that was
proved in [22]. Although all our constructions apply in the more general case, we state the only a simplified version of
the criterion to simplify the presentation. This form captures the main idea of the sufficient condition. This condition
generalizes Reif’s condition [17].

Define for any two cyclic subspaces c(nﬂj,JF) to ben! 4 nf, if 3t # J; let ord(J},J}) = 2n} —2; note that
for n‘j = 0, this is a negative number, and it is less than ord for any other pair. This number allows us to determine
which components of the limit surface contribute to the limit normal (see [22, 19] for details). We say that a pair of

cyclic subspaced?, JS is dominantif for any other paird!, J¢ we have eithefAac| > [Nidk|, o [AaA¢| = [Aidg| and
ord (Jg,Jg) > ord (J},Jlk). Note that the blocks of the dominant pair may coincide.

Theorem 2.1. Let H-r be a basis in which a subdivision matrix S has Jordan normal form. Suppose that there is a
dominant pair of 3, J§. If AaA¢ positive real, and the Jacobian of the characteristic mapgpfJ has constant sign
everywhere on YJexcept zero, then the subdivision scheme is tangent plane continuous on the k-regular complex.

If the characteristic map is injective, the subdivision scheméis@tinuous.

In the special case when all Jordan blocks are trivial, this condition reduces to an analog of the Reif's condition.
To apply Theorem 2.1, we use self-similarity of the characteristic map: fot arly, the Jacobiad[®](t/2) =
AN [@](1). It is immediately clear that to prove regularity of the characteristic map it is sufficient to consider the
Jacobian on a single annular portiorlzfas shown in Figure 2. To prove injectivity, we use the criterion described in
Section 4.
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Figure 2: Thek-gon without originU; {0} can be decomposed into similar rings, each two times smaller than the
previous ring. The size of the ring is chosen in such a way that the control set of any ring does not contain the
extraordinary vertex. In this figure the control set is assumed to consist out of the vertices of the triangles of the ring
itself, and of a single layer of vertices outside the ring.

Our goal is to develop an efficient general method that would allow us to apply this condition to arbitrary subdivi-
sion schemes. In the next two sections we develop theoretical foundation for application of this criterion. In Section 3,
we prove that regularity of the characteristic map can be verified using linear approximations to the map. This is
sufficient to analyze tangent plane continuity. In Section 4, we show that injectivity of the characteristic map can be
verified by computing the index of a curve.

3 Approximation Errors of Stationary Subdivision

We have observed that regularity of the characteristic map can be established, if it is known that the scheme is regular
on an annular region (ring) shown in Figure 2. All control vertices for a layer are regular, and the subdivision rules that
are used to compute the limit surface on the ring are the rules used for the regular complex. Clearly, the ring cannot be
identified with a subset of a regular complex. However, such identification can be done for each ségimeents of
the ring together with its control points. Therefore, if we can prove regularity of a limit map on the regular complex,
we can apply the same algorithm to prove regularity of the characteristic map for each segment.

Our method is based on the observation that we can define a a subdivision scheme for the vector of differences. The
limit function of this scheme is the vector of partial derivatives of the characteristic map. We estimate the error of the



piecewise-linear approximations produced by this scheme. From linear approximations and errors we compute upper
and lower bounds for the Jacobian of the characteristic map. If these bounds have the same sign, we can conclude that
the map is regular.

Our derivations are similar to the derivations in Chapters 2 and 3 of Cavaretta, Dahmen and Micchelli [2], and
those found in Dyn,Levin and Micchelli [7]. We have to consider convergence not only of the scheme, but also of the
corresponding scheme for differences, which in generahisiix subdivision scheméor this reason, some of the
theorems in [2] have to be generalized to the matrix case. Cohen, Dyn and Levin have developed the basic theory of
univariate matrix schemes in [3]. We usmiltivariate matrix subdivision schemékat is, we need a synthesis of the
theories presented in [2] and [3]. The theory of matrix subdivision differs from the theory of scalar subdivision in a
non-trivial way, when the components of the limit functions generated by the scheme are interdependent [3]. However,
this case is of little interest to us: if the components of the difference scheme are interdependent, the limit surfaces
are degenerate. Hence we can assume independence of components. With this assumption, the results in [2] can be
readily extended to the matrix case.

Definitions. For a regular complex, the vertices can be identified with the integer points in the plane. In general,
we can consider functions on the integer lati#ein R%. Most of the discussion applies to integer latti@sof
arbitrary dimension with minor changes. We perform the derivations for thescaseto simplify the presentation.

We use Greek letters to denote multiindices corresponding to the points of the lattiedn1,02). A stationary
matrix subdivision scheme on a regular complex is defined by the equation

(SP (Vo) = %AG—ZBp(VB)

whereA, aren x n matrices, andpy are in (¢5)" = (¢£2(2?) x ...£°(2?)), the space of 2-dimensional sequences
of n-dimensional vectors with bounded norm. As we are interested in schemes with finite support, all results can
be extended to arbitrary vectopg in a straightforward manner (see [2]). We are primarily interested in the cases
n=1,2,4, corresponding to scalar subdivision, difference schemes and second difference schemes respectively.

If a subdivision scheme converges on the regular complex, there is a matrix fuficti®® x R" — R, such that
any limit function f [p] generated from the initial valugse (€°2°)n, can be written a$[p|(t) = 54 P(t — o) pa, Where
t € R2. The matrix refinable functio® satisfies the refinement relation

D(t) = D2t — o)A

The function® can be obtained as a limit of subdivision applied to initial matrix dateith Aq = 0 if a £ 0, andAg
is n x nidentity matrix.

We say that a matrix schemerisndegenerati the vectorsf [p|(t), t € R?, for all t for somep € (6‘;)” span the
whole spac®". Itis straightforward to show, following the derivation in [2], Proposition 2.1, that for a nondegenerate
matrix scheme to be convergent the following condition is necessary:

Theorem 3.1. For a nondegenerate matrix scheme S to be convergent it is necessary that for-gey,e;) , @ €

{01}

Y Ae-za = 3.1

where | is the identity matrix.

A matrix subdivision scheme &able(or, more preciselyl.*-stable) [3] if the matrix refinable functio® corre-
sponding to the scheme satisfies the inequalities

crsupi|p|, < sup|| 5 @(t—a)p]., < casup o, @2)
a teR2 ‘@ a

for some positive constants, ¢, and anyp € (€°2°)n.



Convergence condition. To analyze convergence of matrix subdivision schemes, we usmithiction functions
Let D(p) be a real-valued nonnegative function definec(@ﬁ)n. A subdivision schem8&is contractiverelative toD
if there is an integeN and a positive constagg, < 1, for which we have

D(S'p) <wD(p) foranype (¢3)"

A typical contraction function has the forﬁD pr, wherellp denotes the vector of directional differences.
The following theorem is a direct generalization of of Theorem 3.1 [2], with the proof extended without any
changes from the scalar case.

Theorem 3.2. Let S be a matrix subdivision scheme, and D a contraction function. Suppose that for some scheme B,
which we call acomparisorscheme,
|Sp—Bpl, <cD(p) forany pe (¢3)"

where c is a constant.
If the comparison scheme is stable and converges, then S also converges.

We use three types of comparison schemes in our analysis: schemes that produce piecewise constant, piecewise
linear, and piecewise bilinear limit functions.

Error estimates. Using Theorem 3.2, we can derive error estimates for the piecewise-linear, bilinear or constant
approximations of the limit function of subdivision. LEF be the limit function obtained by applying the comparison
schemeB to the control valuep™. This is our approximation. The choice Bfguarantees that the limit functions of

B can be computed trivially. Then we have

L™ =L, = [|(S—B)P"[|,, < cD(p™)
Suppose than = kN+ g; thenD(p™) < yD(p9) and

Ik =Ll

IN

3 it <
Z)HS B)p! ™., <CZ)D p™t)

N-1

c > ilD MH-iN— ) C.; ( ZlD(pmﬂN—q) +D(pm+(i—1)N)>

8

If m>N,

I L’“Hw—lc (VZD p" %) +D(p" >) (3.3)

Estimating candy. To use the estimates (3.3), we need to compute the congtpatgic. These constants clearly
depend on the choice of the contraction function and on the choice of the comparison scheme. We use the contraction
functions of the formHDpHm, where(] : (E‘;)” — (E‘;)Zn is a difference operator, which assigns to each veptor
of lengthn the vector of differences in 2 independent directions of lengthSpecific choice of] can be adapted
to the scheme; the simplest choice {§1pzmyi),]" = [Pa+a] " — [Pa]" = g [Pa], Wheres, i = 0,1, is one of the
multiindices(0,1) and(1,0). The superscripin of p denotes the component pfm= 1...n. Other possible choices
include replacing vectorg by displacements in other directions. Specific choices are discussed in Sections 7-9.
Whenever for a schentgthere is a difference scheresatisfying the commutation formula

OSp=SOp (3.4)



foranyp. If ||SN|| ., < 1 for someN, we can usd| Op||,, as a contraction function, becadies\p|,, < [|SN|..||Op]l..-
While in most cases the simplest choicd ik theoretically possible, in practice the constidrian be quite large. In
certain cases, such as the Butterfly scheme, different contraction functions yield better results.

For contraction functions of the type described above computatigq afid is reduced to computing the (matrix)
difference schem& and its sup norm. Lemma 2.3 from [2], which directly generalizes to the matrix case, yields an
algorithm for computing the matrix Laurent polynomial of the difference scheme.

Formulas fory. We describe the algorithm for computing the difference scheme in the bivariate case, for the simplest
comparison functio®(p) = ||0p|| .., p € (¢3)", with Op described above. In a more explicit form,

D(p) = supmax([A0) Pa] ™, [B0,1)Pa]")

Let A(z) be the Laurent polynomial with matrix coefficients of a matrix sch&@neith z= (z,2). The commu-
tation formula in the-domain can be written as

(z—-1DA@2p@2) \ A Z-1\ [ Tu@Z-1)+T2(Z-1)
((a—nNama)‘J“a(é—l) (Bamé—n+nxmé—n) (3.5)

for any p. The matrix Laurent polynomiad’ with the coefficients of sizer2x 2nis the Laurent polynomial of the
difference schem8. Each coefficient oA is composed out of the coefficientsk n blocksT;j (z). The blocksTj;

are not defined uniquely, and can be computed in a variety of ways. A method suggested by Lemma 2.3 of [2], yields
the following formulas for a decompositi®{(z) = (Z — 1)Ti(2) + (Z — 1) T2(2)

(1— ZZ)R(Z]_, —1) + (1—|— Zz)R(Zl, 1)

Tl(Z) =

2R - (1-2)R(z,-1) - (1+ 2)R(z1,1) '
s 231

Whenever a scheme with the Laurent polynoniahtisfies Theorem 3.1, it follows that—1, —1) = A(1,—-1) =
A(—1,1) = 0. ThenTi(z) andT,(z) are guaranteed to be matrix Laurent polynomials, rather than rational functions,
forR(z) = (z — DA(2),i = 1,2.

These formulas can be used to compute the blocks for each line in (3.5). Note that the formulas are asymmetric,
and care mast be taken to choose the order of variaplaadz, to obtain better estimates. The rule of thumb is
that the norm of the off-diagonal blocks should be small; then for schemes with factorizable Laurent polynomials the
2n x 2ndifference scheme can be decomposed intortwa schemes.

The same method can be used to compute difference schemes for other choitiestefe use. Oncg is known,
we computen as||SN|| . = [|[A@AR) .. A )|/, using the formula for the sup-norm of a bivariate polynomial with
n x nmatrix coefficientsy; = [a™);;:

— Im .
HC(Z) Hw = el,EZE{rS%),(rThl,.m:;.n% ‘02|+e121+e2‘ (3.7)

Computing c. To compute, itis sufficient to observe that if the comparison sch@&ignondegenerate and conver-
gent, therB(z) — A(2) can be always decomposed in a way similaR(e) in (3.6). This means that we can represent
B— SasSJ, for some 2 x 2n matrix schemé&, which leads to the estimate os||S|..

Summary of the estimates. We have obtained the following estimates for the constants yR,cP, characterizing
approximation errors for the approximations of the limit functions and its derivatives respectiveBjslaatonvergent
scalar subdivision scheme, satisfying commutation form@a= SUp, wherep € £3, andS is a 2x 2 matrix scheme.
Let B be a scalar comparison scheme, éBd- S)p = SJp. Then we can takgn = [|SN|,,, andc = ||§|,.. If the
difference scheme2 converges and satisfies the commutation fornii28 p = S'Op, whereS' is a 4x 4 matrix
subdivision schemef = ||S’|.., If the difference schemeR corresponding to a comparison scheBies also a
comparison scheme, af@S — 28')p = SOp, thenc® = ||S| ..
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Limitations of the method. While for anyC*-continuous subdivision scheme and for all operafothat we use

the difference scheme® and S’ are defined, it is not guaranteed that for any|SN||,, < 1 or ||[SN||,, < 1. This

is the main limitation on the applicability of our method. Even for a convergent scheme it might be possible that
|SN||,, > 1 for all N. However, note that a sharper estimate can be madg fae are interested in the action of

the difference scheme not on arbitrary elementﬁégﬁzn, but only on the elements that are have the farmfor

somep € (¢3)". Therefore, we can ugSN|_||,, instead ol SN|| ., where| denotes restriction to the subspace of
differences. If we use this norm, than the following theorem holds:

Theorem 3.3. A matrix subdivision scheme S is nondegenerate, convergent and stable, if and only if the there is a
difference schemé Satisfying the commutation formula 3.4 and such tmag .. || SN| ||, = 0.

The proof of the theorem is identical to the proof of Theorem 2.3, [2]. The additional condition — stability of the
scheme —is quite weak, and in all cases of interest is likely to be satisfied.

Computing the nornij-| ; ||, is possible for schemes with finite support, but is substantially more complicated than
computing the sup norm. For schemes with factorizable Laurent polynomials for suitable chd[t;(ﬁs| Bﬂm is often
equal to|| Hw (for example, this is true for tensor product schemes). However, for certain schemes with nonfactorizable
polynomials computing]-| ||, may be the only option.

4 Injectivity of the Characteristic Map

In general, it is difficult to establish injectivity of a map defined as a limit of a subdivision process. Even if the
Jacobian of a map is nonzero everywhere, only local injectivity is guaranteed. However, the special structure of the
characteristic maps allows one to reduce the injectivity test to computing the index of a curve, a relatively simple and
fast operation: for example, the index can be computed counting the number of intersections of the curve with a line.

A step in this direction was made by Peters and Reif [14]. However, their method still required closed-form
expression for the derivative of the characteristic map along a line, and was formulated only for schemes invariant
with respect rotations dé-regular complexes (see Section 6).

The characteristic map can be extended using scaling relations to the whole plane. In the following theorem we
assume that the characteristic map is defineRan

Theorem 4.1. Suppose a characteristic map= ( fa, fc) satisfies the following conditions:
1. the preimage&—1(0) contains only one element, O;
2. the characteristic map has a Jacobian of constant sign at all points where it is defined.

Then the extension of the characteristic map is surjective and is a covering away from 0. In particular, if the winding
number of the image(y) of a curve is 1, the characteristic map is injective and the schem& &o6tinuous.

Proof. Three cases are possible: the characteristic map is defined by a pair of real eigenvectors, by two generalized
eigenvectors from the same Jordan block corresponding to a real eigenvector, or the real and imaginary parts of an
eigenvector corresponding to a complex eigenvalue.

A pair of real eigenvectors. In the first case the components of the characteristic map satisfy the scaling relations
of the simplest formfa(y/2) = Aafa(y), fe(y/2) = Acfe(y).

First, we establish the following important fact: if a characteristic map satisfies the first two conditions of the
lemma, then the map is continuous at infinity.

Consider two circles of radiiand 2 centered at 0 in the domain ¢f The imaged(R) of the ringR bounded by
the two circles is compact, and does not contain 0. Thus, there is a cdvsta@itsuch that for any poirp in the ring
l8(p)[| > M.

Consider any poinp in the domain ofb. There is a numbet e Z such that Bp is contained in the rin@R. Thus,
by scaling relations|®(p)|| > min(|Aal, |A¢|)¥M. Clearly, as|p|| — o, k — oo, and for anyC there isC’ such that if
Ipll >C', [®(p)[| > C.

Consider the stereographic mBdrom the plane into the sphere without one point. The rfaporresponds to
a map on the sphergbs = POP1: &\ {N} — S, whereN is the center of projection. From the continuity of



® at infinity it follows that if we extend the mapping by settidgs(N) = N, we get a continuous mapping. As we
have assumed that the Jacobian of the characteristic map has constant sign where it is defined, the mapping is also a
local homeomorphism away from 0. The sphere is compact, thus its image is compact, hence closed, i.e., contains its
boundary. But under local homeomorphism the points on the boundary of the image can be images only of the points
of the boundary of the domain. Therefore, the only points that can be contained in the boundary of the image are 0
andN. We conclude that the image has no boundary, i.e., the mapping is surjective.

Finally, for anyp setqbgl(p) is finite: if it were not finite, it would have a limit point is compact). ASDgl(p)
is a discrete set for any local homeomorphism, the only limit points that it may have areN) &wt ®(0) = 0 and
®(N) =N, so this is impossible. We conclude that for any pairhe setd)gl(p) is finite. As any poiny € d)gl(p),
p # 0,N has a neighborhodd (y) such thats|yy) is a homeomorphism, then the intersection of all neighborhoods
V = dg(U(y)) has inverse image consisting of disjoint homeomorphic imag¥s @his proves tha®s is a covering
away from 0.

Two generalized eigenvectors. The case of the characteristic map generated by imaginary and real part of a complex
eigenvector corresponding to a complex eigenvalue is similar to the case of two real eigenvectors; we proceed directly
to the proof for the case of two generalized eigenvectors from a single Jordandbledio, f1), satisfyingfo(3) =
Mo(y) and f1(3) = A f1(y) + fo(y).

From these equations we immediately obtain

®(2%) = A—lp ( i _S/)\ ) d(y) = A—lpT(D(y) (4.1)

Consider the image of a circleof radiusr centered at 0. Let IGy) be the interior domain of the simple curve
y. As ®~1(0) by assumption ig0}, then 0 is an interior point of the image of (gt and there is an open disk
centered at 0 of some radits which is contained irp(Int(y)). For anyp the image of the disk bounded by\2is
determined by the equations (4.1). It can be obtained from the image of the disk boungég bifine transform
A—lpT from (4.1). If a diskD; of radiusr is contained ind(Int(y)), then the interior of the eIIipséﬁT Dy is contained
in CD(Int(ZPy)). We can estimate the length of the minor axis of this ellipse: it can be represented parametrically as
(35 cOgt), 35 (sin(t) — (p/A) codt))). The square of the distance from 0 to a point on the ellipse is
r? 2 . p o T2 p? p .

32 (cos'(t) + (sin(t) — X cogt))?) = ﬁ(lJr ﬂ(cos(Zt) +1)— x sin(2t))

This quantity can be estimated from below (5§/A%P) (1+ p?/A — p/A)

As A < 1, the length of the minor axis increases with p for sufficiently lgsgg&Ve conclude that ap — o, the
image of the exterior of & is arbitrarily far from zero, an@ is continuous at infinity. Then the rest of the argument
that was used for the case of two eigenvectors applies.

Finally, our covering is injective, if and only if the winding number of a simple curve around zero is 1. This
fact can be seen by looking at the fundamental groups of the domain and the image. The assumptions guarantee that
both have fundamental group As for a covering the fundamental group of the covering space is a subgroup of the
fundamental group of the base space, with a monomorphism induced by the covering map. A simple curve around
zero is the generating element of the fundamental group of the domain. Thus, the mapping of fundamental groups is
an isomorphism which is necessary and sufficient for the covering mapping to be an injection, if and only if the simple
curve maps to a curve homotopic to a simple curve, i.e., one with winding number 1.

O

Computing the winding number. In general, we do not have a closed-form expression for any curves on the limit
surface. One way to compute the winding number of a curve is to choose a sufficiently close linear approximation
and compute the winding number of the approximation. The following Proposition can be easily proved (see [19] for
details):

Proposition 4.2. Lety(t) is a curve in the domain ob, Ly, is a piecewise linear approximation tb. Suppose for
somee sup | P(y(t)) — Lm(y(t))|| < &, andinfi||P(y(t))|| > 2¢, Then the winding number of(y(t)) is equal to the
winding number ofb(y(t)).
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As subdivision computes linear approximations to the surface, and the approximation estimates are known, we can
use this proposition to compute the winding number.

5 Algorithms

In this section we describe the algorithms for verificatiorCofcontinuity of subdivision near extraordinary points
based on the theorems presented in Sections 3 and 4. Two algorithms are used toCGlredyruity of a scheme
near an extraordinary point of a fixed valence: the first one verifies regularity, the second verifies injectivity. We give
a brief description of the algorithms; more details can be found in [19]. The source code is available from the author.
We assume that the eigenvectors and eigenvalues of the subdivision matrix defining the characteristic map are
known with guaranteed precision:xfis a component of an eigenvector or an eigenvalue, it is represented by a pair of
exactly representable numbéxg, x,] such thatyg > x < xg.
All calculations are performed in interval arithmetics, which makes it possible to obtain guaranteed bounds on the
computed quantities, despite using finite-precision arithmetics.

5.1 Verification of Cl-continuity for a fixed valence.

We verify Cl-continuity by checking regularity and injectivity of the characteristic map on a ring, as described in
Section 2.

First, we verifyregularity, computing successive linear approximations to the characteristic map and using error
estimates of Section 3 to estimate the range for the Jacobian. If the computed bounds are on the same side of zero, this
guarantees that the Jacobian has constant sign on the domain.

To guarantee that the conditigbr*(0) of Theorem 4.1 and the assumption of Proposition 4.2 are satisfied, it is
necessary to verify that the image of the characteristic map on the ring is sufficiently far from zero. The algorithm is
straightforward, and we omit the detailed description.

Finally, we computinghe winding numbeof the curve obtained by restricting the linear approximation to the
characteristic map to the boundary of the domain. If the winding number is 1, this completes the proof that the
characteristic map is injective and regular.

In the descriptions of algorithm&' denotes the control mesh of the characteristic map affebdivision steps.

The components of the control points are stored in interval representation. The namibers, 2 are the estimates of

the errors of the linear approximation to the components of the characteristic mag,, &jo= 1,2 are the estimates

of the error of the approximation by divided differences to the derivatives of the characteristic map. All errors are
computed using formulas from Section 3.

Regularity. Once we know the error in the approximation of the derivatives by the divided differences, we can
estimate the Jacobian. Observe that the jacoligyf1,02 2,02 1,01 f2] = 01102 f2 — 021101 T2, is a bilinear function
of the derivatives. If the intervals for the derivatives are known, the Jacobian can be regarded as a bilinear function on
a four-dimensional cube, and it attains its minimal/maximal value at a vertex of the cube. This leads to the following
algorithm:

We present a slightly simplified version of the algorithm, which does not detect the situation when the Jacobian is
guaranteed to change sign, and the test fails. A complete version can be found in [19].

11



TestRegular (G, yp,Cp)

Jmin = 40, Jmax =+
foreach vertexe Int(G')
dl = él(|+17]) _él(laj)
d? =G (i,j+1) - G(,j)
compute 16 numberg, | =1...16
choosing signs ifd} 4 £11)(d2 + €22) (d3 + €12) (d2 + £21)
Jmin := Min(Jmin,Jy, | = 1...16)
Jmax = MaXImaxJi, | =1...16)
endforeach
if 0¢Jnin and 0¢ Jmax
and Jnin and Jnaxhave the same sign
then return true
return undefined

Computing the winding number. While the simplest approach to this problem is to count the number of intersec-
tions with a straight line, numerically this is not the best choice when the curve is piecewise-linear. Instead, we choose
a different approach: we observe that the winding number for a piecewise-linear curve can be compyitedfas 1
the sum of signed lengths of projections of segments onto a unit square centered at zero. As the coordinates of the
vertices are represented by intervals, the actual calculation becomes somewhat more complicated. For each interval
endpoint of the segment we determine the sides of the square on which the endpoint may be projected. We require the
calculation to be sufficiently precise (i.e. the size of the intervals for the points to be sufficiently small) for the total
number of sides intersecting the projection of the interval to be no more than two.

In the algorithm belowhead andtail return the endpoints of a segment of the curve, subscripts 1 and 2 denote
the coordinates, and the functisies( X) returns the set of sides (identified by numbers 1..4) to which a goint
with interval coordinates is projected.

ComputeProj (G')

projLength =0
for every segemerstof the curve
n® := head§)/max( head®)1, head§)y)
nf = tail(s)/max( tail©)1, tail(s)o)
if |Sides (n%)|>2 or |Sides (nf)|>2
then return fall

intervSides = Sides (n%)USides (nf)

if |intervSides | >2 then return undefined

if 1eintervSides then projLength += n£ -n

if 2e€intervSides then projLength +=nj — n};

if 3eintervSides then projLength +=n3—n,

if 4 ¢ intervSides then projLength += n{ -nj
endfor

return projLength

The algorithms described in this section are quite efficient — even in the case of the Butterfly scheme, which
required 6 subdivision levels to verify*-continuity of a single valence, the execution time per valence was about 7
sec on a 300MHz Pentium II.
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5.2 \Verification of C1-continuity for all valences.

The algorithms of the previous section allow us to prove that a sche@edsntinuous for any given valence. We

have made only weak assumptions about invariance of the schemes (rotational invariance is not required), and we
have not assume any relations between the subdivision rules used near extraordinary vertices of different valences.
Although one can verif£!-continuity for a number of valences that is sufficiently large for all practical purposes, as

it was done, for example, in [18] and [14], it is not quite satisfying theoretically.

Our approach to analysis of subdivision for large valences applies to schemes invariant with respect to rotations
of k-regular grids around the extraordinary vertex. In this case, the segments of the characteristic map are identical,
and the analysis has to be performed for a single segment. As the valence grows, the control points of a segment
approach a degenerate configuration for which all control points are on a single line. However, by rescaling the
control points in one direction by/kin(211/k), wherek is the valence, we typically remove the singularity. Because
subdivision is affine-invariant, verifying regularity and injectivity of the rescaled characteristic map is equivalent to
verifying injectivity and regularity of the original map. For all common subdivision rules, when the coefficients are
defined as functions of c&/k) and sir{2rt/k), ask approaches infinity, the control points of the segment approach
a nondegenerate limit configuration. More precisely, assume that the eigenvahrme$\, and eigenvectorg, and
&, defining the characteristic map are continuous functions-efcog2m/k), that can be computed in the interval
form, that is, given an interval of values of we can compute an interval of values)of Recall that all algorithms
that we have described operate with interval representationse,laetd®; be the vectors with interval components
obtained by evaluatinga(c) ande,(c) on the intervak = [1—¢,1]. If we have verified that the limit map defined
by €, andey is injective for these interval eigenvectors, we have verified that it is injective for any valence for which
cog21/k) > 1—¢&. Thus, we obtain a proof &*-continuity for all valences greater than sokgeat no additional cost
—all we have to do is to choose the valueab be[1—¢, 1].

Finally, we observe that it is not always possible to represent an eigenvalue of the subdivision matrix as an explicit
function ofc. For example, for Kobbelt’'s scheme the characteristic polynomial has degree 6 and is not factorizable.
However, the eigenvectors can always be represented as explicit functions of the eigenvalues and coefficients of the
subdivision scheme. Therefore, the problem is reduced to computing the eigenvalue as a fueatith gbiaranteed
intervals. While there are always cases when this is difficult if at all possible, in most cases it appears to be an
achievable goal — see Section 8 for an example.

6 Invariant Schemes

The algorithms described in previous sections are quite general. However, specific examples of schemes considered
in this paper are invariant with respect to all isomorphisms of complex&he algorithms of Section 5 can be
further simplified and optimized for such schemes: due to symmetry, we need to consider only a single sector of
the characteristic map. In addition, the transformation of the subdivision matrix described below reduces analysis of
subdivision matrices to the analysis of parametric families of smaller matrices.

The constructions of this section follow the ideas of Ball and Storry [1], also used in [21] and in [14]. If a scheme
is invariant with respect to all isomorphisms of complexes, in particular, it is invariant with respect to automorphisms
of ak-regular complex. Ip is an automorphism of a compl&x the coefficients of subdivision satisfy

a(v,w) = a(p(v),p(w)) (6.1)

For k-regular complexes, the set of automorphisms consists of rotations around the extraordinary vertex, mirror
reflections and their combinations; we use only rotations.

Let M be the localization/control size for the subdivision scheme kmegyular complex. In this case, the control
set ofU; is aM-neighborhood of the extraordinary vertex. One sector of this neighborhood (center excluded) contains
M(M+1)/2 = N vertices, the total number of vertices beMb+ 1. We will use notations j| for the verticessis the
number of the secta=0...k— 1, j > 0 is an arbitrarily chosen numbering of vertices within a sector. We use the
numbering shown in Figure 3.

The central vertex if00]. We assume that the numbering is chosen consistently in each sector, Rid{ssj]) =
[s+mmodk j] whereR™ corresponds to the rotation of the plane logrZ k.

3An example of a scheme which isotinvariant with respect to some isomorphism is the piecewise-smooth scheme of Hoppe et al.[10]

13



Figure 3: The numbers of the vertices in a sector of the control mesh for the characteristic map. Left: the numbering
for triangular schemes; right: the numbering for quadrilateral schemes.

With this notation, (6.1) becomed[s' j'],[s j]) =a([(s + m) j'],[(s+ m) j]) for anym, where the sums are modulo
k.

The coefficients are functions gfj’, ands— < only; In the cases whep= 0 or j/ = 0 (one ofv, w is the
extraordinary vertex), the coefficients do not dependgsers. We introduce notatioma([s j],[s'j']) = ajj/(s—9),
bj =a([00],[sj]), cj =a([s]],[00]), ago = a([00],[00]). The subdivision matrix will have a convenient block form
if we arrange the vertices “by symmetry clas§0; 0], [0,1], [1,1], [2,1] ... [k—1,1], [0,2] ... [k—1,N]. With this
ordering of vertices, the subdivision matrix has the form

aoo ‘ bg b-ll\—l—l
Co Ago <o Aon-1

S=| . . o (6.2)
Cn-1 | An—10 - An-—in-z

whereA, j; arek x k matrices with entrieg;j/(s), s=0...k— 1. Clearly, these matrices are cyclig. denotes the
vector[bj,...b;j] of sizek with equal entries; similarly; is the vectofc;,...cj]".

A cyclic matrix can be reduced to a diagonal form using the DFTIbet diag(1, %Dk. L %Dk) whereDy is the
DFT matrix of sizek. The number of DFT blocks ifd is N.

Applying a the transform t&, we obtain

w0 b0 - bl D
. #DicCo #DiAooDy -+ #DyxAon-1Dk
DSD = . .
%DkCN—l %DkAN—loD_k %DkAN—lN—lD_k

The matriceg1/k)DxADi are diagonal with entries on the diagomala;j;, wherea = [a;;/(0)...a;j (k—1)].
Note that vector®yb; andDxc, have zeros in all positions except the fiSib; = [kb;0...0]", Dxcj = [c;0. .o,

Finally, the subdivision matrix can be reduced to block diagonal form by applying a permutatioR. bieethe
permutation that rearranges the entries of a vector of lekgth 1 as follows:[0,1,2,3,...NK — [0,1,k+1,...(N—
Dk+1,2,k+2,...(N—1)k+2...NK Applying this permutation we obtain

PDS@*lpflzdiag(z,B(e%i—“) ,...B(e%_klﬂ)) (6.3)

The matrix hask — 1 N x N blocks B(w) wherew = /K .. k-1m/k  EachB(e?™/k) has entriegDa;j/|m,
i.e., is composed ofm-th entries of DFT transforms of all vectolbg;,. Form= 0 we have to consider a larger
(N+1) x (N+ 1) matrix Z with vectorsb = [b,---bn_1]" and(1/k)c = (1/k)[co,---cn-1]" added on two sides.
Note thatB(e?™/k) = B(e2k-mmi/k) and the eigenvalues of these blocks are conjugate. If an eigenvalue happens to
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be real, and corresponds to the bl@fe?™/k) with m+ k/2, it necessarily has an eigenspace of dimension at least 2.
If x is its complex eigenvector obtained from an eigenvect@(ef™ k), a pair of real eigenvectors in this subspace
can be taken to b x andx. If an eigenvalua is complex, the two-dimensional real eigenspace corresponding to
and) is also spanned by x andCx.

Keeping in mind the support size of the scheme, it is easy to show that eactBadszk has a particular structure,
for a suitable choice of numbering of vertices in each sector.

_( Boo(w) 0O
B(Q))—( Big(w) Bll(co) )

In this way, the size of the matrices that have to be analyzed is further reduced; for example, for the Butterfly
scheme considered in SectioB{w) is 6 x 6, andBgp(w) is 3x 3.

Necessary condition for tangent plane continuity of invariant schemes. Before we proceed to the analysis of
specific subdivision schemes, we formulate a necessary conditi@tfoontinuity. We need this condition to show
that the Butterfly scheme isot Ct-continuous for most valences.

Each eigenvalue of the subdivision matrix is an eigenvalue of a B6eX™/k) m=1...k— 1 orZ. Each eigen-
vector can be obtained by taking an eigenvector of one of the blocks, setting the rest of the entries to 0, and transforming
it usingDP. This means that the eigenvectors have symmetries that can be used to establish necessary conditions on
location of dominant eigenvalues of the subdivision matrix.

A condition of this type was proposed in [14] (Theorem 3.1). The theorem of Peters and Reif states that the
dominant eigenvalues for a subdivision scheme with injective characteristic map necessarily have to be the eigenvalues
of the blocksB(e?"/¥) and B(e2k-D™/%), Intuitively, it appears that this is true for any “reasonable” subdivision
scheme. However, it is possible to construct examplédlatontinuous schemes with eigenvalues corresponding to
the characteristic map being in other blocks. Typically, such schemes would have noninjective characteristic map.
Injectivity of a characteristic map is not strictly necessaryG@drcontinuity of the scheme, contrary to Theorem 2.2
of [14]. However, the cases when the schem@ligontinuous and the characteristic map is not injective, are quite
degenerate and are unlikely to be practically useful.

A weaker version of the conditions of Peters and Reif under some additional assumptions is proved in [19]. We a
further simplified version of the condition, which is sufficient for our purposes.

As the subdivision matrix for an invariant scheme can be reduced to the block diagonal form, each cyclic subspace
of the matrix is also a cyclic subspace of on&oB(w), w= &M/k .. k-Dri/k

Lemma 6.1. Suppose that the subdivision matrix for a subdivision scheme has a pair of dominant cyclic subspaces
Jg, J§, which either coincide and both have order 1, or are distinct and have order 0. Suppose these subspaces
correspond to the blocks(B?™/K) and Be?*-Mi/k) 'm=£ 1, and the Jacobian of the characteristic map of this pair
of cyclic subspaces is not identically zero. hdte an eigenvalue of the block&™/¥) and x a corresponding complex
eigenvector.

Suppose that for the limit map:fJ; — R? generated by the paifl x, Ox the following two conditions hold:
f=1(0) = {0}, and the winding number of the curve obtained by restricting f to the boundary isf LI Then the
scheme is not Econtinuous.

Proof. see [19] for the proof. O

7 Analysis of the Butterfly and Modified Butterfly Schemes

The Butterfly subdivision scheme was proposed by Dyn, Gregory and Levin in [6]. In [7], it was proved that the
scheme produced!-continuous limit functions for regular meshes. Here we present an analysis of the scheme near
extraordinary vertices. It turns out that for valen&es 3 andk > 8 the scheme is n@!-continuous. We also show

that the Modified Butterfly scheme [21]@&'-continuous for all valences.

Definition of the schemes. The Butterfly scheme is an interpolating scheme: once a vertex is added to the complex,
the control point corresponding to the vertex does not change. In [6], the coefficients of the scheme are parameterized
by a parametew. The scheme has maximal approximation ordemfes 1/16; we analyze the scheme for this value
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of w. The mask of the subdivision rule for newly inserted vertices is shown in Figure 4 on the left. The attractive
feature of the scheme is its simplicity: the rules are the same for all vertices. However, as we will prove, the scheme
does not producg!-continuous surfaces.

In[21] we have proposed a modification of the Butterfly scheme, which does not have this problem. The rule for the
immediate neighbors of an extraordinary vertex is modified in such a way that the spectrum of the subdivision matrix is
similar to the spectrum of the subdivision matrix for valence 6, i.e. has eigenvalugsif,idlockB(0), 1/2 in blocks
B(e?/%) andB(e?k—D/%) and 1/2 in blocksB(e*"/¥) andB(e?k—2/K), The rest of eigenvalues should be less than
1/8. In order to achieve this, we use a mask with coefficiefts. sc_1, as shown in Figure 4 on the right. Note that
this mask is asymmetric. For vertices on level finer than 0, this is not a problem: we are modifying coefficients of the
scheme only for neighbors of extraordinary vertices, and only one of the two neighbors can be extraordinary after one
subdivision step. On the top level both neighbors can be extraordinary. The choice that we make on the top level does
not affectCl-continuity. We make amd hocchoice to take the average of the results produced by each of the two
possible choices. Fdt > 5 the coefficients ars; = (1/k) (1/4+ cog2m/k) +1/2cog41/k)), j=0,... ,k—1. For
k=3 weusep=5/12,52=—-1/12,and fok=4,5 = 3/8,5 = —1/8,s13 = 0. The properties of the scheme are
discussed in greater detail in [21, 19].

1
_ 1 8 _ 1L
16 16
1z . 1
2 2
_ 1 _ 1L
16 p 16
8

Figure 4: The masks of the Butterfly and Modified Butterfly schemes.

Subdivision matrices. For the Butterfly scheme, the size of the blo&&) (Section 6) is 6< 6. There is no need
to consider Oth block separately, as it can be split into a trivialllblock and a 6« 6 block.

All blocks have eigenvalues 0 andl/16, the eigenvalue-1/16 having multiplicity 2 for each block. The other
eigenvalues are eigenvalues of the upper leftBsubblockBpo(w); these subblocks have the form

1 1 1 2 1 1
ITyle—ie?-1) -im-4 0
_ 1 1 1~ 1 1 1 1
Boo(®) = | 3+ 30— {50~ {5 8 —16~ 16W
1 0 0

wherec = Ow = cog2mm/k). The characteristic polynomial of this matrix is

P(Ad) = A3+ (~1/4—3/2d+ d?) A2+ (i L 28

1
_ 2\ 6 =
5 6d 3/16d))\ & d

whered = ¢2.
For the Modified Butterfly scheme, there first ronBah(w) is replaced byA (w), 0, 0], whereA(w) is the prescribed
largest eigenvalue for the blo&w). The roots of the characteristic polynomial in this case\ee), 0 and ¥/8.

Convergence rates. For both schemes, which coincide on the regular complexes, we use the contraction function
[0pll.,, with the difference operatdfi = [A(1q),80,1)] @ (65) — (€°2°)2 (cf. [7]). For the difference scheme acting

on the vector$A1 o) p,A0,1) P We use the difference operataf = [Ag 1), 1,1),A(1,0):A1,1)] - (6;)2 — (€§°)4. The
convergence constants for the Butterfly schemeard/2,y; = 7/8,y» = 31/64,y3 = 261/1024. The constants for

the difference scheme acB = 1/2,\? = 1,\5 = 7/8,\5 = 11/16.
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We have chosen to ugdor 3 levels of subdivision, as after 3 levels of subdivision the convergence famttevel

is close enough to what we would get if we were to use more Ieygr’éis close to,/i/4.

These estimates indicate that the convergence for derivatives is quiteypsbays close to @ per level. However,
this is a worst case estimate and in practice the scheme converges much faster. The reason for this is that for schemes
with negative coefficients, the “worst case” happens when the initial values have changing signs, i.e., consist primarily
out of high frequency components, which is uncommon for surfaces.

Analysis of the Butterfly scheme. The following proposition summarizes the information about the roots of the
characteristic polynomial that we need to analyze the scheme. Whenever an approximate value of a root is given,
it is implied that the precision is given by the last digit. Roots as functionsare shown in Figure 5. The proof

is straightforward, but tedious. An outline is presented in Appendix A.1. A detailed proof is contained in the
Appendix B.

M | two complex, : three real roots ' :two comple>{,
0.57 one real root | . |one real root
I I
I I I
+ : max. eigénvalu :
| . decreases |
I I I
-+ I ' I I
| ' I
o255t ————m™m™—F—F—"— ="~~~ ———"——————— m——— 3

21 . I |
T I i I I
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I ' 12 I
0.125972 | - | |
I . I I
\ | |
I I I

| ' ! | d
0 0.25 06  Opax 08 do 1

Figure 5: The magnitudes of the eigenvalues of the bRgkw) as functions ofl = cos’(w) for the Butterfly scheme.
The vertical lines indicate the valuesafor which the matrix has a nontrivial Jordan structure. The circles indicate
eigenvalues with multiplicity greater than 1, the numbers next to the circles are multiplicities.

Proposition 7.1.

e Forde (1/4,de), der =~ 0.84868 there are three real roots. The largest root is real, and is greater théh
the other roots are less théely4.

e Forde (0,1/4)U(dcr, 1) there are two complex and one real root. The magnitude of the complex roots is always
less tharil/4, For d € (dcr, 1) the real root is greater thad/4, for d € (0,1/4), itis less tharl/4.

e Ford =0, the characteristic polynomial has a double rdg8, and a single roo0.
For d = 1/4, there is a double roat/4 and a single roofl/16.
For d = d, there is a single rook; ~ 0.46503and a double rooh, = 0.16887
For d = 1, there is a triple rootl/4.

For d € (dmax 1), dmax= 0.6760Q the largest root decreases as a function of d.

Using the information about the eigenvalues given by Proposition 7.1, we conclude tkat id¥, the maximum
eigenvalue of the second blo&4Tt/k), is greater than the largest eigenvalue of the first bBEt/k). Evaluating
eigenvalues fok = 3...9 directly, we can see that this is also trueKer 8 andk = 9. Fork = 3, (d = 1/4), the blocks
B(21/3), andB(411/3), have double eigenvalueg4
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Once the eigenvalues are known, the eigenvectors corresponding to the pair of dominant eigenvalues can be found
from the complex eigenvector &{w) given by

(0+1)((2c— A +1)

&(w) = A1, 2_16A

To compute the pair of eigenvectors defining the characteristic map, we first es(@hdo an eigenvector
of a full 6 x 6 block usingv(w) = (Al —Bi11) Bigep. Then the complete complex eigenvectofor valencek is
[0,e(0),e(211/K), e(411/K), ...e(2(k— 1)Tt/K)]. From this vector we obtain two real vectdre and Ue, defining the
characteristic map.

The algorithms that we use to check regularity of the characteristic map with minor changes can be used to verify
the assumptions of Lemma 6.1. For valenkes4,5,7 we use these algorithms to show injectivity and regularity of
the characteristic map.

Our findings are summarized in the following proposition:

Proposition 7.2. The Butterfly scheme is!@ontinuous for valences 4,5,6,7; it is not Ct-continuous for any
other valence, and is not tangent plane continuous ferk

While the scheme is not formaly!-continuous, the actual appearance of the surfaces generated by the scheme is
not obviously non-smooth: for valences other than 3, the scheme produces tangent plane continuous surfaces, and the
“twist” that makes the surfaces n@f-continuous is a relatively subtle effect. For more details, see [19].

Modified Butterfly scheme. As the eigenvalues of the subdivision matrix in this case are prescribed, no eigenvalue
analysis is necessary. The eigenvectors can be determined in the same way as it was done for the Butterfly scheme.
The control mesh for the ring consists of 6 rings of vertices around the central vertex as shown in Figure 6.

Modified Butterfly Kobbelt

Figure 6: Control nets of the characteristic maps for the Modified Butterfly scheme and the Kobbelt scheme.

The convergence rates for the Modified Butterfly scheme are exactly the same as for the Butterfly scheme, as these
schemes coincide on the regular complexes. We used our algorithms for verification of regularity and injectivity of the
characteristic map to prove that the schen@lisontinuous for any fixed valence.

As it was discussed above, it is possible to prove convergence for all valences if suitably chosen affine transforms
of the control nets for one segment of the characteristic map converge to a liit asand the normalized segment
in the limit is regular and injective. This is the case for the Modified Butterfly scheme; the affine transform that we
use is simply scaling along thyeaxis bysin(21t/k).

Normalized control nets for several valences and the limit mesh are shown in Figure 7

The algorithm of Section 5 steps through the valences, verif@hgontinuity for each valence which has suffi-
ciently different control net. In the case of the Modified Butterfly scheme we were able to use only a relatively small
step size B x 106, with all tests passing only after 6 steps of subdivision. once for a given scheme, time becomes a
concern only for multiparameter schemes. The maximal valkftgat had to be tested (1481) is determined by the
condition|cog2m/k) — 1| < 9, such that the tests succeed &g ([1 — &, 1])) (recall that all quantities are represented
as intervals). For each tested valence, we increase the interval size for control points, in order to be able to analyze
many valences simultaneously for large valences. We have used the intervalsize00°® for valence greater than
6. The total number of valences that had to be analyzed separately was 406.
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Figure 7: The convergence of the normalized control meshes of one segment of the characteristic maps for the Modified
Butterfly scheme as valence increases. Only the boundaries of the meshes are shown.
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Figure 8: The upper and lower bounds for the Jacobians; the error bars show the interval for each bound; the step
of the algorithm was chosen to be62° so that the lower bound of the interval fagin is close to zero. The initial
anomaly in the lower bound is due to the fact that 8 subdivision steps, rather than 6 as for all other valences, were
required to verify regularity for valence 3.

8 Analysis of Kobbelt Scheme

Kobbelt's subdivision scheme [12], is an interpolatory scheme defined on quad meshes; in the regular case, the scheme
reduces to the tensor product of four-point schemes [5]. There are two challenges in the analysis of this scheme: first,
as for the Butterfly scheme, the limit surface can not be expressed in explicit form. In addition, the eigenvalues of the
subdivision matrix cannot be found explicitly. .

Leta = (84w)/16 andp = —w/16 be the coefficients of the four point scheme, wheig a parameter. Lemi{I
be the control point corresponding to the vertex with nunhliesector at subdivision leve]. Then the control points
for level j + 1 are computed from the values on leyeh two steps. First, thedge pointsre computed; all vertices
are computed in the usual manner using the four-point rule, excluding the vqxi’g’ﬁeisnmediately adjacent to the
extraordinary vertex. These vertices are computed using the formulas

plit = ac+ap), +pul +Bp;
ookl . . . B . . . apkt (8.1)
ul = K iZO Pl (Pl patpli+ i) - a(pitz?z"' P12+ P2t Plg2) + ak 2 Pl
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whereu! are intermediate “virtual points”.

Next, theface pointsare computed. All face points are computed in the same way: four-point coefficients are
applied to four consecutive edge points on lejel1, as shown in Figure 9. It is important to note that there are two
ways to choose four consecutive edge points; the coefficients for the scheme are chosen in such way that both choices
produce the same result.

g ¢ * P

regular edge rule

virtual point B al a B
\
D—ﬁ—0—0—4
g« * B
edge rule near
an extraordinary vertex face rules

Figure 9: Rules for the Kobbelt scheme. The stars indicate extraordinary vestieg8+w) /16,3 = —w/16. In the
masks for face control points (right) empty circles are edge vertices inserted santiesubdivision step. The dashed
lines show the two possible sequences of four edge points that are used to compute a face point.

We performed the analysis of the schemevioe 1, which is the value for which the four point scheme has
maximal smoothness. After the standard operation of applying DFT to the subdivision matrix, we obtain the following
12x12 matrixB(w):

[ o0 co1 B 0 0 0 0 o 0o 0 o0 0]
Ci0 i1 (1+wap  Pwtap B2 pPa+ap 0 0 0 0 o0 0
1 0 0 0 0 0 0 0 0 0 0 0
a+pa 0 0 0 B 0 0o 0 0 0 o0
0 1 0 0 0 0 0 0 0 0 0 0
aw oa+Bw 0 B 0 0 0 0 0 0 0 0 (8.2)
a 0 a 0 0 0 B 0 0 0 0 0
Bo+ol+afw  afwtra?  BRu+a? a? ap  aB(1+w) ap ap B2 0 0 P
Bw a 0 a 0 0 0 B 0 0 0 0
(1+w)ap a2 (1+w)ap a? a? a? B2(1+w) aBf ap P2 ap ap
B a 0 0 0 a 0 o 0o o0 o0 B
| apt+awtfie?  a?+aBw  pPHow  (L+wjaB  ap a? aBw B O 0 B ap |
wherew = ek m=1.. .k kis the valence, and
where
Coo= 0t + 4BBmo— B (1+20) co1 =48 8no— B (@+2c+1)
C10=4Badmo+ 0% (1+w)— (L+w)aB c11=4p%mo— €2(1+ 2¢)+2aBc+a?
a

As it is discussed in 6, for any subdivision scheme each block can be separated into subblocks, with eigenvalues
of lower-right 6x 6 block not depending on the valence and equat1g16,—1/32, —1/64 (double),—~1/128, and
1/256.

The larger eigenvalues are always eigenvalues of the uppertedtiiock. The roots of the characteristic poly-
nomial of that block cannot be found explicitly. However, for fixadndk, we can easily find the roots numerically,
with guaranteed lower and upper bounds on the roots. The characteristic polynomial has the form
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Numerically computed roots of this polynomial are plotted as functiormsrfigure 10

0.6"|M/
0.5

Figure 10: The magnitudes of the eigenvalues of the subdivision matrix for Kobbelt's scheme as functieas of
cosz%”. Only the eigenvalues of the upper-righk® block are shown. Note that the magnitudes of the complex
conjugate eigenvalues coincide, and there are fewer than 6 distinct curves.

Analysis of the eigenvalues. From the plot it is clear that the largest eigenvalue increases as a functipthefe-

fore, it appears that the largest eigenvalue of the subdivision matrix for any valence correspuonre4 tdoreover,

our calculations indicate that the largest eigenvalue is always real. Using interval methods, we prove the following
proposition:

Proposition 8.1. For any valence k, and any m 1...k— 1 the largest eigenvalue is real and unique, and for any
block B(2mm/k), m# k— 1,1 the largest eigenvalue is less than the largest eigenvalue of the bl¢eksgk and
B(2r(k— 1)/k). The unique largest eigenvalue is the only eigenvalue in the int@#D.613, for k > 4.

The detailed proof with all calculations, including the Maple code, be found in Appendix B.
Here we present an outline of the proof. The proof is performed in several steps:

1. We show that foc < 0, all roots of the characteristic polynomR(c,A) are likely to be less than®1 (actually,
they are less than®, but due to numerical nature of our calculations, we have to relax the upper boundary).

2. We show that for ang € [0...1], there is a unique real rogtin the interval[0.5,0.613, and the functiom(c)
is Cl-continuous and increases.

3. We "deflate” the characteristic polynomial (that is, divide by the monoMiall), and verify that all roots of
the deflated polynomial are inside the circle of radius 0.%fer0, 1].

Marden-Jury test. On steps 1 and 3 we have to show that the roots of a polynomial are inside a circle of iadius

the complex plane. This task is similar to the task of establishing stability of a filter with the transfer funtaiah 1
wherea(z) = yM &7 is a polynomial. The filter is stable, if all roots of the polynondé) are inside the unit circle.

A variety of tests exist for this condition; for our purposes, the algebraic Marden-Jury test is convenient [11]. With
appropriate rescaling of the variable it can be used to prove that all roots of a polynomial are inside the circle of any
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given radiug. As the test requires only a simple algebraic calculation on the coefficients of the polynomial, it can be
easily performed for symbolic and interval coefficients.

To perform the test for a real polynomigl!_jA™, a table is constructed. The first line is given Ify= a,
i =0...M. The rest of the table is defined recursively:

i i
L VI

i i
Mvi—i I’j

pi+l —

e . j=0..M—i

Each row contains one element less than the previous row. Once the table is computed, the necessary and sufficient
condition for stability isr§ < 0,r) >0 fori =1...M.
A more detailed discussion of the proof of Proposition 8.1 can be found in Appendix A.2.

Analysis of Cl-continuity. Using Proposition 8.1, we can easily compute the largest eigenvalue with guaranteed
bounds for anyk: this will be the unique real root in the intervil.5,0.613. We compute roots up to a maximal
valenceky. Once the eigenvalues are known, the eigenvectors defining the characteristic map are computed, and the
tests described in Section 5 are applied to estaliiisbontinuity of the scheme for any fixed valence.

For this scheme we use the standard difference opefattefined n Section3; because this is a tensor product
scheme, the matrix difference scheme is diagonal and can be decomposed into scalar schemes. The convergence
constants are = 13/32,y; = 25/32,y> = 105/256,y3 = 425/2048. The convergence constants for the difference
scheme areP = 31/64,y? =5/4,y8 = 15/16,y5 = 5/8.

To complete analysis of the scheme we need to describe the behayi@) @t infinity. Specifically, to use our
algorithm for verification of smoothness for all valences, for any interval vakidl — €, 1] we need to estimate the
corresponding interval valugc). As p(c) changes slowly, linear approximation is sufficient for our purposes; the
upper bound for the derivatiy§ = 1/c, can be easily computed. This allows us to compute the interval eigenvectors
at infinity, and verifyCl-continuity for all valences greater thig

The control mesh for the characteristic map of the Kobbelt scheme for valence 7 is shown in Figure 6. Figure 11
shows the dependence of the upper and lower estimates of computed Jacobians on the valence. Valences up to 812 had
to be examined; because eigenvectors for large valences were sufficiently close, it was possible to perform analysis for
a number of valences simultaneously; thus, only 193 valences had to be tested.
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Figure 11: The upper and lower bounds for the Jacobian of the characteristic maps as functions of the valence for the
Kobbelt scheme. The error bars indicate the size of the interval; the step of the algorithm was chosen 19% 3
the maximal examined valence was 818; the total number of valences for which the test was performed was 193.

We conclude thathe Kobbelt scheme is'@&ontinuous for all valences.
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9 Other Schemes

C!-continuity of the Loop scheme was verified in [18] for valences up to 150. For the Catmull-Clark sabeme,
continuity was analyzed for valences up to 10,000 in [14]. As the subdivision matrices have relatively simple form,
and the eigenvalues and eigenvectors can be explicitly computed, our algorithms can be applied without any extra
effort to obtain a proof ofc!-continuity for all valences. Spline-based schemes have a remarkable property: the
convergence rateg andy? for the scheme and the difference scheme are bp® this is due to the fact that both

the scheme and the derivative scheme have only positive coefficients. In addition, replacing the coefficients of the
scheme by intervals, we establish not o8k:continuity of the schemes, but also stability for small perturbations of

the non-zero coefficients, as long as the perturbed coefficients lead to a convergent scheme. Due to fast convergence
and high stability, intervals of large size can be used in the analysis, and only few valences (up to 58 for the Loop, up
to 89 for Catmull-Clark) have to be analyzed. The number of subdivision iterations required to verify regularity is also
quite small: 3 iterations are sufficient in both cases.

Our techniques can be also applied in virtually unchanged form to the dual, or corner cutting, subdivision schemes.
Two schemes of this type are known to us: the Doo-Sabin subdivision scheme [4] and the Midedge subdivision scheme
[9, 15]. For these scheme8!-continuity was already proved for all valences [14, 9, 15]. Using our method, it is
possible to perform perturbation analysis of the type that we have described above. We will discuss issues related to
stability of smoothness properties of subdivision in greater detail in a future paper.

10 Conclusions

We have presented a general method for the verificatiGd-antinuity of stationary subdivision. This method allows

us to analyze schemes which are not derived from spline subdivision, and perform most of the analysis automatically.
Most of the difficulties in the analysis of the Butterfly and Kobbelt scheme can be eliminated, if the coefficients of the
scheme are constructed taking the eigenstructure of the subdivision matrix into account. While this approach might
lead to somewhat more complex expressions of coefficients, it is likely to have little if any effect on the performance,
as the example of the Modified Butterfly scheme demonstrates. In the extreme case when the coefficients are computed
from a set prescribed eigenvalues, the analysis of the eigenstructure becomes trivial.

Our method opens the way for a general characterization of inv&faodntinuous schemes with small support:
such schemes are defined by a small number of parameters, and our interval algorithms can be usedte prove
continuity for continuous ranges of these parameters.

Applications of our algorithms are not restricted to the invariant schemes for closed meshes: in fact, we have suc-
cessfully used them to establi€h-continuity on the boundary of several variations of common subdivision schemes.
These results are discussed in a future paper.

As it could be seen from our analysis of the Butterfly and Kobbelt subdivision schemes, the eigenstructure of a
particular scheme or family of schemes still has to be analyzed manually. This stage requires determining the Jordan
normal form of the subdivision matrix; in general, it is not always possible to do this numerically. However, we have
demonstrated, using the Kobbelt scheme as an example, that it is possible to use semi-numerical methods to obtain
all necessary information. We believe that a satisfactory solution of this problem requires methods similar to those
developed in [8]. While it might not be possible to determine the Jordan normal form exactly, one can find all possible
Jordan normal forms of matrices that are obtained from the original subdivision matrix by a small perturbation. This
approach is likely to yield an algorithm that would be capable to perform the an@fsisntinuity of a scheme given
only the coefficients of the scheme as the input.

While our method can be used to analyze parametric families of subdivision schemes, due to its semi-numeric
nature, it cannot be used for such tasks as finding precise ranges of the values of the parameters for which the scheme
remainsC!-continuous. While this is of little relevance for practical applications, it can be regarded as a theoretical
drawback.
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A Technical Proofs

In this appendix we outline the proofs of two propositions used in the analysis of the Butterfly and Kobbelt schemes.
These proofs use symbolic and numeric computations. The complete Maple code with explanation is available sepa-
rately.

A.1 Proposition 7.1

The roots of the characteristic polynomial of the Butterfly scheme can be found explicitly; depending on the value
of d = ¢, there can be either 1 real and 2 complex roots, or 3 real roots. For four special vatli#iseomatrix
has nontrivial Jordan blocks; the special valued afe the roots of the discriminant of the characteristic polynomial,
which is a polynomial ind. These roots are 0,/4, 1, andd. = 0.84868. The types of roots depend on the sign
of the discriminant of the characteristic polynomial; the discriminant is positiv@gly4) and(dr, 1), negative on
(1/4,der). On each interval, well-known formulas can be used to find the roots of the characteristic polynomial as
functions ofd explicitly. To determine the largest root for any valualpthat is, the largest magnitude of an eigenvalue
of a subblockBoo(w) for a givenw, we consider the cases of 3 real roots and one real root separately.

Supposea\i(d), i = 1,2,3 are the three real roots fdre [1/4,dc]|. As zero is a root only fod = 0, the three real
roots do not change signs fdre [0, 1]. Itis sufficient to compute the value of roots at any point to show that all three
roots are nonegative. Therefore, the curMagd)|, |A2(d)|, |Az(d)| can intersect only if the roots coincide, which
means that the discriminant is zero. Thus, the curves cannot intersect on the ifitédvel;). The largest root can
be determined simply by evaluating the roots with guaranteed precision at any point of the interval.

If there is only one real root, we can easily show thaifer 1/4 P(1/4,d) < 0 and ford > 1/4P(1/4,d) > 0. We
conclude that fod > dc, the single real root is greater thapl and ford < 1/4 it is less than 14. The magnitude
of the complex roots also satisfies a cubic equation. Using the same method, we can show that these roots have
magnitudes less tharf4 on(1,4) and(3/4,1).

Finally, we determine the range dffor which the largest root decreases as a functioth dMote that\maxd) is a
unique solution of the equatid®(A,d) in the domain(1/4,1) x (1/4,). We can determine the zeros of the derivative
Anax(d) from the system of the equatioR§A,d) = 0, P;(A,d) = 0, solving ford. ExcludingA using standard @bner
basis techniques, and solving with guaranteed precisiod, fae obtain the valudnax As the derivative is not zero
on (dmax 1), we determine the sign simply evaluating it at a point, and conclude that it is negative.

A.2 Proposition 8.1

Here we describe how steps 1-3 of the proof of Proposition 8.1 are performed.

Step 1. We have to verify that all roots of the polynomial fore [0,1] have magnitude less than 1. We split the
interval into sufficiently small subintervals, so that we can evaluate Marden-Jury test in interval arithmetics for each
subinterval with definite results.

The following observation is crucial for steps 2 and 3. Although the characteristic polynomial has degheé 6 in
is only quadratic irc, and has, two solutions; (A) andca(A).

Step 2. Using interval evaluation of the derivative, one of the two solutions,c3ék), can be shown to be increasing
for A € [0.5,0.613. Asc1(0.5) =0, andc,(0.613) > 1, we conclude that for € [0, 1], there is always a real solution
in the rang€0.5,0.613. If we evaluate the second romf(A) for the same interval of, we can observe that the values
of ¢, are outside the rande-1,1]. Therefore, forc € [0,1] there is a unique real solutidnin the rangd0.5,0.613.
Becausec; () is Cl-continuous and its derivative is positive, the inverse functife) has the same properties (we
usep to distinguish between the real eigenvalue that we have identified from the indetermofdtee characteristic
polynomial).

Step 3. To show that all other roots of the characteristic polynomiakfer[0, 1] are smaller thap(c), we perform
deflation symbolically, usingt as a parameter: we divid&c,A) by (A — ) symbolically, and substitute = c1 ().
The coefficients of the resulting polynomial are functiongiofAgain, we separate the rangejointo subintervals,
small enough to be able to obtain a definite result from the Marden-Jury test. This proves that for all valires of
[0.5,0.613, and, therefore, for att € [0, 1] p(c) is the largest root dP(A, c).
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The proposition is derived from the three statements in Section 8 in the following way.

As fork >4, 00527” > 0.51, the largest eigenvalue cannot possibly correspond to a bdck which cosz%" <o0.
From step 3, it follows that the largest root has to be the real uggtfor somec. As for anym> 1 m< k-1,
cosz%" < cos%", and we have shown on step 1 tipét), increases, and for aryp(c) is the largest root (step 3), we
conclude that the largest eigenvalue always corresponats=dl, is real, and is the unique eigenvalue in the range

0.5,0.613.
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B Source Code

In this appendix, we have collected the Maple worksheets that contain the code for computing the eigenvalues and
eigenvectors. of several subdivision schemes: Butterfly, Modified Butterfly, Kobbelt, Loop and Catmull-Clark. These
worksheets also contain the code used in the proofs of the facts about the eigenvalues that was use ©'analyze
continuity of these schemes. In addition, we include the worksheet with the code computing the convergence constants
¢ andy (Section 3).

We do not include the C++ code that implements the algorithms of Section 5, and the part of the Maple code that
was used to generate C code. Complete sources are available from the author.

The worksheets are arranged in the following order:

e Convergence rates of matrix subdivision schemes.

Eigenstructure of the Butterfly scheme.

Eigenstructure of the Kobbelt scheme.

Eigenstructure of the Loop scheme.

Eigenstructure of the Catmull-Clark scheme.
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Conver gence Rates of M atrix Subdivision Schemes

Denis Zorin, 1997-98

I ntroduction

The procedures defined in this worksheet can be used to estimate the convergence rates of scalar and matrix subdivision schemes. Itis
based on the generalization to the matrix case of several theoremsin "Stationary Subdivision” by Cavaretta, Dahmen and Micchelli
[CDM], and to the multivariate case of several theoremsfrom "Matrix subdivision" by Cohen, Dyn and Levin [CDL]. Thegoal isto
compute four constants , ¢, Y, Cp , such that a given (possibly matrix) subdivision scheme S and its difference scheme S, satisfy

n
D(S'p) <yD(p), Dy(S, P) <Vp Dy(P)
for somenand ng, and a particular choice of contraction functions D (p) and D,(p), and
| -Bp|<cD(p), |S,p-B,p|<c,D(p)
where B is the comparison scheme, By isthe comparison scheme for the difference scheme.

We use commutation formulas to compute the constants (see the paper for details).

If amatrix scheme has a stable scaling function, it is C1if and only if the difference schemeis CO ([CDM, Th. 8.1,8.2], [CDL. Th
5.2, 5,4] combined). Therefore, we can use second difference schemesin most cases to analyze C1-continuity.

We assume only that al schemes have constants as invariant space C (constant vectors for matrix schemes), that is, SC = C, which is
anecessary condition for convergence to nonzero functions in the scalar case [CDM, Th. 2.3]. For the matrix schemes, it is not strictly
necessary: it is only necessary that SC is a subset of C; however, if it isaproper subset, it means that the components of the limit
function are dependent [CDL, Prop. 2,1]. Our matrix schemes are primarily obtained as difference schemes, and all interesting cases
are nondegenerate, i.e. SC=C. Whenever thisisthe case, the code will compute an estimate. However, if the estimate for the
convergence rate is greater than 1, this does not necessarily mean that the scheme diverges. There may be two reasons for this. First,
we estimate the convergence rate using the sup norm of the difference scheme of A", for user-specified n. For slowly converging
schemes with some of the coefficients being negative, onemay need arbitrarily large n, for which the norm cannot be practically
computed. The second reason is more fundamental. Let D be the subspace of the space of sequence on which amatrix scheme S acts,
such that any sequencein D can be represented as a vector of differences of values of some sequence p. For sufficiently large n, the
infinity norm of adifference schemerestricted to D, islessthan 1; however, we do not have a practical way of computing norms on
D, and we compute the norm on the whole space; it is not necessary for this norm to be lessthan 1 for any n. In some cases (most
notably, for the Butterfly scheme) these problems can be alleviated by choosing a suitable contraction function; our implementation
alows oneto choose contraction functions from a particular class (see the definitionsof Conver genceEsti mate and

Di f f Schene). Moreover, somewhat better estimates can be obtained using a calculation specific to this type of schemes
implemented in Fact ori zabl eConver genceEsti nat e.

The main functionsare Conver genceEst i nat e and Fact ori zabl eConver genceEsti nat e. Thenameszl and z2,
aswell as ganma, c, gammaD, cD, areglobal. Calculationsfor specific schemes are demonstrated in the last section. For the
schemes listed there Fact ori zabl eConver genceEst i mat e would be sufficient; however, in the general case we need
Conver genceEst i mat e, which will be used for non-factorizable schemes elsewhere.

Utilities

> with(linalg); kernelopts( ASSERT = true)
Warning, ‘new definition for norn
Warning, ‘new definition for trace'

I sLaur ent Pol ynon( A) Check if theargument isa scalar Laurent polynomial in z1,z2 with arbitrary coefficients.
> |sLaurentPolynom :=
proc(A::ratpoly(anything, [ z1, 22])) global z1, 22; type( denom(factor(A)), monomial(anything, [ z1, 22])) end
I sLaurent Matri x(A) Checkif theargumentisa matrix Laurent polynomial in z1,z2 with arbitrary coefficients.
> |sLaurentMatrix := proc(A::matrix(ratpoly(anything, [ z1, 22])))
local res, ind;
res:=true; for ind in indices(A) dores:=resand IsLaurentPolynom( Al op(ind)]) od; res
end
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I sl ntegerVect or 2Li st (W Check if theargument isalist of vectors with integer components, each vector of length 2 each
component in the range 0..3, and if one of the componentsis O, the other is also 0. Used to check validity of arguments
representing contraction functions.

> |sIntegerVector2List := proc(W::list(list(integer)))
local i, res;
res:=true;
for i to vectdim(W) do
res:=resand evalb(vectdim(op(i, W)) =2);
res:=resand evalb(0O<WI[i][1] and W[i][ 1] £3);
res:=resand evab(0<WI[i][2] and W[i][2] £3);
res:=resand evalb(W[i][1] ZWI[i][2]) or W[i][1] =0and W[i][2] =0
od;
res
end

Type definitions

> type/LaurentPolynom := eval( IsLaurentPolynom)
> type/LaurentMatrix := eval(lsLaurentMatrix)
> type/lntegerVector2List := eval(IslntegerVector2List)
MakeContracti onMatri x(W Makeamatrix Laurent polynomial out of alist of vectors W such that
I sl nt eger Vect or 2Li st (W 1, 3) istrue. The matrix is defined asdiag(p;, .. p,) , where p; are vectors corresponding to

vectors of W, obtained by replacing 1 with 212 -1, 2with 222 -1 and 3 with 212 222 -1

> MakeContractionMatrix := proc(W::IntegerVector 2List)
local p, i, Wmatrix;
global z1, z2;
p=[z21-1,2-1, 2202 -1];
Wmatrix := matrix(20vectdim(W), vectdim(W), 0);
for i to vectdim(W) do Wmatrix[ 200 — 1, i] := pfW[i][1]]; Wmatrix[ 201, i] := p[ W[i][ 2]] od;
evalm(Wmatrix)
end
MakePol ynom( coef) make apolynomial in z1,z2 out of atwo-dimesional array of coefficients.
> MakePolynom := proc(polycoef::array(2))
local ind, p;
global z1, z2;
p:=0; for ind in indices( polycoef) do p := p + Z1”op(1, ind)[(Z2"op( 2, ind) Cpolycoef[ op(ind)] od; eval(p)
end
Coef Li st (A) Makea2d table of matrix coefficients of a matrix Laurent polynomial in 2 variables.
convert polynomials to tables of coefficient indexed by powers
> extractCoeffs := proc(x::LaurentPolynom)
local i, dummy, polycoeffs, terms, powers, extrPowers,
global z1, z2;
polycoeffs := [ coeffg expand(factor(x)), [ z1, 2], terms) ];
extrPowers ;= unapply([ 'degree(dummy, z1), 'degree'(dummy, 22)], dummy);
powers := map( extrPowers, [ terms] );
table([ seq( op(op(i, powers)) = op(i, polycoeffs), i =1 .. vectdim(polycoeffs))])
end
given a coefficient, make a matrix
> makeCoeffMatrix := proc(A::LaurentMatrix, i::integer, j::integer)
local I, m, matrcoeff;
matrcoeff := matrix(rowdim(A), coldim(A), 0);
for | torowdim(A) do
for mto coldim(A) do if member([i, j1, { indices(A[l, m])} ) then matrcoeff[ I, m] := A[l, m][i, j] fi od
od;
eval( matrcoeff)
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end
> CoeffList := proc(A::LaurentMatrix)

local x, matrcoeff, n, zeroMatrix, 1d1, 1d2, udl, ud2, I, m, pcoeff, allpowers;

global extractCoeffs, makeCoeffMatrix;
pcoeff := map( extractCoeffs, A);
allpowers := map( unapply({ 'indices(x)}, x), pcoeff);
allpowers := [ op(‘union‘ (op(map(op, [ entries(allpowers)]))))1;
1d1 := min(op( map(unapply('op’( 1, x), X), allpowers)));
1d2 := min( op( map(unapply('op’(2, x), X), allpowers)));
udl := max(op( map(unapply('op’(1, x), x), allpowers)));
ud2 := max(op( map(unapply(’op’(2, x), x), allpowers)));
matrcoeff := array(ldl .. udl, |d2 .. ud2);
for nin allpowers do matrcoeff[ op(n)] := makeCoeffMatrix( pcoeff, op(n)) od;
zeroMatrix := matrix(rowdim(A), coldim(A), 0);
for | from Id1 to udl do

for mfrom Id2 to ud2 do if not member([1, m], allpowers) then matrcoeff[ I, m] := evalm(zeroMatrix) fi od

od;
eval( matrcoeff)

end

Cener at eCode( Qut put Fi | e, SchemeNanme, Const s, Mask, Control Si ze, tri angul ar) Generate code for a
function that creates an instance of class RegScheme, defining a scheme. Seefile regscheme.h for class definition. Const s isa
list of tables of convergence constants, each table generted by acall to Conver genceEst i mat es or asimilar function. Mask
is the standard coefficient mask of the scheme,

Control Si ze isthe number of layers of control vertices outside a patch required to define the surface on the patch (clearly ths
number can be computed from the mask; however, computing the minimal number in the general case requires some care;
typically, in each specific case this number is obvious, and we simply specify it explicitly); t ri angul ar indicatesthe
symmetry type: if it istrue, than 3-directional symmetry is assumed; otherwise 2-directional
symmetry is assumed.
> GenerateCode := proc(
OutputFile::string, SchemeName::string, Consts::list(table), Mask::array(2), Control Sze::integer, triangular ::boolean)
local i, g, dg, mask, mminl, mmin2, mmax1, mmax2;
global S,
assert(0 < ControlSze, ‘ Control Sze must be nonnegative' );
fprintf( OutputFile, ‘ RegScheme* %s() {\n‘, SchemeName);
mask := eval(Mask);
for i in indices(Mask) do if Mask[ op(i)] = 0then mask[op(i)] := BV else mask[ op(i)] := Mask[ op(i)] fi od;
mask := map( ConvertToFloat, eval(mask));
mminl := min( op( map(unapply('op’(1, x), x), [indices(Mask)])));
mmin2 := min( op( map( unapply('op’(2, x), x), [indices(Mask)])));
mmax1 := max(op( map( unapply('op’(1, x), x), [indices(Mask)1)));
mmax2 := max(op( map( unapply('op’(2, x), x), [indices(Mask)1)));
fprintf( OutputFile, * Float* g = new Float[%d];\n*, vectdim(Consts));
fprintf( OutputFile, * Float* dg = new Float[%d];\n‘, vectdim(Consts));
fprintf( OutputFile, * Float** mask = new pFloat[%d];\n' , mmax1 — mminl + 1);
fprintf(OutputFile, * for(inti = 0; i < %d; i++)\n mask[i] = new Float[%d];\n, mmax1 — mminl + 1,
mmax2 — mmin2 + 1);
g:=array(1 .. vectdim(Consts));
dg :=array(1 .. vectdim(Consts));
for i to vectdim(Consts) dog[i] := Constg[i][y]; dg[i] := Constg[i][ gammaD] od;
g := map( ConvertToFloat, eval(Q));
dg := map( ConvertToFloat, eval(dg));
S=[15
C(mask);
C(9);
C(dg);
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for i to vectdim(S) do fprintf( OutputFile, ‘%s', §i]) od;
fprintf( OutputFile, ‘return new RegScheme( %A, %d, g, %A, dg, new Grid<Float,Float> ( %d, %d, %d, %d, mask), %d
, %9); \nj\n\n‘, ConvertToFloat(Constg[ 1][ c]), vectdim( Consts), ConvertToFloat( Consts[ 1][cD]), mminl,
mmax1, mmin2, mmax2, ControlSze, triangular);
NULL
end

Conver gence estimates for bivariate matrix schemes

Note: al polynomials are required to be matrix polynomials; to use the functions for scalar polynomials, convert it to a1 by 1 matrix
first.

Decompose a bivariate matrix L aurent polynomial
| deal Deconpose(A,i,j,symretrize) Givena Laurent polynomial A(z, z,) knownto bein theideal generated
byz - 1and 2, -1 find polynomials TA,and TA, suchthat A= (z," - 1) TA +(z, —1) TA, ,or

A= (212 222 -1)TA + (222 -1)TA, or A= (212 -1)TA + (212 222 - 1) TA,; theexpressions are derived from the
expressions of Lemma2.3[CDM] . The decomposition is not unique; the expressions are asymmetric even in the first case;

the choice of the pair of polynomialsis given by the argumentsi and j; i corresponds to 212 -1, 2to 222 -1 and3to
212 222 - 1. The order matters; the last argument isused is used to request symmetrized decomposition with respect to 212 -1,

and 222 —-1;if oneofi,is3, thelast argument isignored. The function returnsalist of 2 polynomials.
> |dealDecompose := proc(A::LaurentPolynom, i::integer, j::integer, symmetrize::boolean)
local TAL, TA2, Q, p;
global 71, 2;
ASSERT(1l<iandi<3andl<jandj<3andi#],
‘second and third argument cannot coincide and should bein therange 1..3" );
ASSERT(simplify(subs({ zZ1 =-1, 22=-1}, A)) =0 and simplify(subs({ z1 =1, 2=-1}, A)) =0 and
simplify(subs({ zZ1 =-1,22=1}, A)) =0 and simplify(subs({ ZL =1, 22=1},A)) =0,
‘Laurent polynomial does not have all roots [(-1)"e, (-1)"g], eg= 0,1 );
p[1] :=z1"2-1;
p[2] =272 -1;
p[3] :=z1"2[F2"2 - 1;
Q[1,2] :=(1-2z1)[8ubs(z1 =-1, A) + (1 + z1)(subs(z1 = 1, A);
Q[1,3]:=(1-21)Bubs({ 2=-21002, zZ1 = -1}, A) + (1 + Z1)CBubs({ 2 =12, zZ1 = 1}, A);
Q[2,1] :=(1-2)Bubs(z2=-1, A) + (1 + 2)(Bubs(22 = 1, A);
Q[2,3] :=(1-2)Bubs({ zZ1 = - Z1[2, 2 = -1}, A) + (1 + 22)[(Bubs({ zZ1 = Z1[2, 2 = 1}, A);
Q[3,1]:=(1-Z102)bubs(22=~-1/71, A) + (1 + Z1[2)[bubs(22 = 1/ z1, A);
Q[3,2] :=(1-Z102)Cbubs(zZ1 = -1/ 22, A) + (1 + Z12)[bubs(z1 = 1/ 22, A);
if symmetrizeandi =1andj=2then
TAL :=factor(1020A+ Q[ 2, 1] - Q[ 1, 2]) / 4O 1”2 - 1));
TA2 :=factor(1{20A + Q[ 1, 2] - Q[ 2,1]) / 40 z2"2 - 1))
elif symmetrizeand i =2 and j = 1then
TA2 :=factor(1{2CA+ Q[2,1] - Q[1,2]) /4O z21"2 - 1));
TAL :=factor(1{2[A+ Q[1,2] - Q[2,1])/4(z2"2 - 1))
else TAL :=factor(Q[j, i]/2Cp[i]); TA2 :=factor((20A - Q[j,i1) / 20p[j])
fi;
if simplify(p[i]0OTAL + p[j]0OTA2 — A) # 0 then print(‘ decomposition error* ) fi;
[TAL, TA2]
end

| deal DeconposeMat ri x( A, W synmetri ze) Givenamatrix Laurent polynomial A(z;, z,) known to bein theideal
generated by 212 -1land 222 —1 find amatrix Laurent polynomial Q such that A= QW( 212, 222) ; componentwise,
2 2 2 2
A2 2)=Q 5 (2 L)W, (2,2 ) +Q (2, 2) W, (7, 2,)
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Qis twiceaswide as A and has the same number of rows. W isalist of pairs of integers p; of length n equal to the width
of A. Eachinteger isoneof 1,2,3 correspondingto z, - 1, z,— 1and z z,— 1 respectively. In each pair, the integers cannot
coincide. The matrix Laurent polynomial W is defined asdiag(p; .. p,) - The last argument is usd for the same purpose asin
| deal Deconpose.

> |dealDecomposeMatrix := proc(A::LaurentMatrix, W::IntegerVector 2List, symmetrize::boolean)
local Q, i, j, Wmatrix, testA, Qdecomp;
global z1, z2;
ASSERT(vectdim(W) = coldim(A),
‘the length of the 2nd argument (list) should be the same as width of the first argument (matrix)* );
Q := matrix(rowdim(A), 2Ctoldim(A));
for i to rowdim(A) dofor j to coldim(A) do
if i mod 2=1then
Qdecomp := Ideal Decompose( A i, j 1, W[j1[ 2], W[j]1[ 1], symmetrize);
Qli, 20 - 1] := op(2, Qdecomp);
Q[i, 24] := op(1, Qdecomp)
else
Qdecomp := Ideal Decompose( A, j 1, W[j1[ 11, W[ ][ 2], symmetrize);
ASSERT(IsLaurentPolynom(op( 1, Qdecomp)) and IsLaurentPolynom( op( 2, Qdecomp)),
‘decomposition failed' );
Q[i, 200 - 1] := op( 1, Qdecomp);
Qli, 2] = op(2, Qdecomp)
fi
od
od;
Wmatrix := MakeContractionMatrix(W);
testA ;= evam(A - (Q &* (subs({ z1 = z1"2, 22 = 22”2}, evalm(Wmatrix)))));
ASSERT(norm(testA) = 0, ‘ scheme was not decomposed correctly* );
evam(Q)
end

Compute a difference scheme for a matrix scheme

Di f f Schenme( A, W Compute the difference matrix scheme Q for a bivariate matrix scheme; the choice of directions for
differencesis given by W, defined asin | deal DeconposeMat ri x. We assumethat scheme is specified by its matrix
Laurent polynomial A(z,, z,), and reproduces constant vectors; the calculation solves the equation

W(z,2)A(z,2)=Qz, ) W(Zf, 222) componentwise,
W (2, ) A (2,2) = Qi1 2- (2 ) W, 1(2121 222) +Qyi_1,)(2, L)W, 2(2121 222)

2 2 2 2
Wi A2, ) A (2,2) = Qp 2 - (2 )W, (2,2, ) + Qi 5i(2, ) W, (2, 2,)
> DiffScheme := proc(A::LaurentMatrix, W::IntegerVector 2List)

local WA, Wmatrix, Q, testA;

global z1, z2;
ASSERT(coldim(A) =rowdim(A), ‘1st argument should be a square matrix' );
ASSERT(vectdim(W) = coldim(A),

‘the length of the 2nd argument (list) should be the same as either dimension of the 1st argument (matrix)* );

Wmatrix := MakeContractionMatrix(W);
WA := evalm(Wmatrix &* A);
Q := Ideal DecomposeMatrix( WA, W, false);
testA := evalm(WA — (Q &* (subs({ z1 = zZ1"2, 22 = 222}, evalm(Wmatrix)))));
ASSERT(norm(testA) = 0, ‘ difference scheme was not found correctly’ );
evalm(Q)

end

Infinity norm for matrix polynomials
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I nf Nnor nSuns( A, n) computethelist of 4" vectorsof sumsof magnitudes of entries of matrix coefficients of

A(2) A(Z2) A(Z) .. A(Z2") where 2= (z,,2,); each component in each vector corresponds to arow in the matrix
coefficients sumg[i j] includes all matrix coefficients of monomials z1' 22 suchthat | mod 2"=i -1 andkmod 2"=j -1

> InfNnormSums := proc(A::LaurentMatrix, n::integer)

local x, pn, cfs, i, J, k, I, m, coeffsums, 1d1, udl, 1d2, ud2, ind1, ind2;

global 71, 2;
ASSERT(n =1 or rowdim(A) = coldim(A), ‘the matrix should be squareif n> 1');
pn:=A;
foriton—21dopn:=evam(pn&* (subs({ z1 =z1N(2"i), 22 =z2"(2")}, evadm(A)))) od;
pn := map( expand, evalm(pn));
cfs:= CoeffList(pn);
coeffsums:=array(0..2"n-1,0.. 2"n-1);
for i from0Oto2*"n-1dofor j from0to2*n - 1 do coeffsumd i, j] := vector(rowdim(A), 0) od od;
ind1 := map(unapply('op’(1, x), X), [indices(cfs)]);
ind2 := map(unapply('op’(2, X), X), [indices(cfs)]);
Id1 := min(op(indl));
udl := max(op(indl));
1d2 := min(op(ind2));
ud2 := max(op(ind2));
for | from Id1 to udl do for kfrom ld2 to ud2 do for mto coldim(A) do coeffsums[| mod 2*n, k mod 2"n] :=

evalm( coeffsumg] | mod 2*n, k mod 2*n] + map(abs, col(cfq I, k], m)))
od
od

od;
eval( coeffsums)

end

| nf Nnor mV( A, n) get the vector of componentwise inf norms of A(z) A(Z) A(Z*) .. A(z(zn)) where z=(z,2,), asthe
componentwise maximum of the vector sums computed by InfNnormSums
> InfNnormV := proc(A::LaurentMatrix, n::integer)
local x, i, j, m, sums, vsumlist;
for i torowdim(A) dovsumlist[i] :=[ ] od;
sums := InfNnormSums( A, n);
for i from0to2*n-1do
for j from 0to 2*"n— 1 dofor mto rowdim(A) do vsumlist] m] :=[ op(vsumlist m] ), sumg[i, j][ m]] od od
od;
map( unapply('max’(’op’(x)), x), vsumlist)
end
>

| nf Nnor n{ A, n) get theinf norm of A(z) A(Z) A(") .. A(2?”) where z= (2, 2,), as the maximum of all components of
vector sums computed by InfNnormSums.
> InfNnorm := proc(A::LaurentMatrix, n::integer) max(op(map(op, [ entries(InfNnormV (A, n))]))) end

Convergencerate estimates for a matrix scheme and its difference scheme

Conver genceEsti mates(A n,nD, W WD, B) Compute convergence constantsy, c, Yy, C,, described inthe
introduction. The function returns atable indexed by names. The argument W allows one to define a contraction function

| W| , similarly, WD defines the contraction function for the difference scheme. both W and WD are represented by lists of
pairs of integers, asfor Di f f Scheme. The comparison scheme for the difference scheme is taken to be the difference

2 2
. , , Wz, ,2)
scheme of B . Thisis not necessary in general, but convenient for our purposes. We assumethat B has factors ﬁ
Wz, 2,
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wherew isany of the polynomials z, —1,z,- 1,2, z,—1 usedin W.
> ConvergenceEstimates := proc(
A::LaurentMatrix, n::posint, nD::posint, W::Integer Vector2List, WD::Integer Vector2List, B::LaurentPolynom)
local BD, Q, Q2, DA, DQ, BM, i, p, res,
global z1, 22, ¢, cD, y, gammaD;
ASSERT(rowdim(A) = coldim(A), ‘1st argument should be a square matrix' );
ASSERT(vectdim(W) = coldim(A),
‘the length of the 4nd argument (list) should be the same as either dimension of the first argument (matrix)* );
ASSERT(vectdim(WD) = 2[toldim(A),
‘the length of the 5nd argument (list) should be twice either dimension of the first argument (matrix)* );
p=[z21-1,2-1, 2102 - 1];
BM := evalm(B[diag(seq(1,i =1 .. rowdim(A))));
BD := map(factor, diag(seq(op([ 2EBM[ i, i ]p[ W[i1[1]] / subs({ zZ1 = Z1"2, 22 = 22”2}, p{ W[ i][ 1]]),
20BM[i, i1Cp[WIi][2]]/ subs({ z1 = 21”2, 22 = 222}, p{W[i1[2]])]),i =1 .. rowdim(A))));
ASSERT(IsLaurentMatrix(BD), ‘the comparison scheme does not have necessary factors' );
Q := DiffSchemeg( A, W);
Q2 := DiffScheme(evam(2[0Q), WD);
DA := map( expand, map(factor, evam(A - BM)));
DQ := map( expand, map( factor, evam(20Q — BD)));
reg y] := InfNnorm(Q, n);
req c] := InfNnorm(|deal DecomposeMatrix( DA, W, true), 1);
re§ gammaD] := InfNnorm(Q2, nD);
req cD] := InfNnorm( |deal DecomposeMatrix(DQ, WD, true), 1);
eval(res)
end

Estimates for schemeswith a comparison factor

Another type of simplification can be made for schemes with Laurent polynomials of theformB(z, z,) Q(z, z,) (see complete

conditions below).

Li near Deconpose(A, i, j) Givena Laurent polynomial A(z,z,) knownto beintheideal generated by z —1and z,- 1
find polynomials TAjand TA, suchthat A=(z - 1) TA +(2,-1)TA, ,or A=(2,2,-1) TA +(2,—1) TA, or
A=(z,-1)TA +(z,z,- 1) TA,; theexpressions are derived from the expressions of Lemma 2.3 [CDM] . The decomposition
is not unique; the expressions are asymmetric even in thefirst case; the choice of the pair of polynomialsis given by the
argumentsi and j; i correspondsto z, -1, 2toz,— 1 and 3to z, z,— 1. The order matters; the last argument is used to request
symmetrized decomposition with respectto z, =1, and z,-1;if oneof i,j is 3, the last argument isignored . The function
returnsalist of 2 polynomials.

> LinearDecompose := proc(A::LaurentPolynom, i::integer, j::integer, symmetrize::boolean)
local TA1, TA2, Q, p;
global z1, z2;
ASSERT(1<iandi<3andl<jandj<3andi#]j,
‘second and third argument cannot coincide and should beintherange 1..3' );
ASSERT(simplify(subs({ zZ1 =1, z22=1}, A)) =0, ‘Laurent polynomial does not haveroot [1,1]* );

p[1]:=21-1;
pl2] =22-1;
p[3] ;=212 - 1;

3] :==subs({ 22 =712, Z1 = 1}, A);
, 1] :=subs(22 =1, A);
3] ==subs({ zZ1 = Z1032, 2 = 1}, A);
1] :=subs(2=1/71, A);
Q[3,2] :=subs(zL =1/ 22, A);
if symmetrizeand i =1andj =2then
TAL:=factor(1{A+Q[2,1] - Q[ 1, 2])/ 2{z1 - 1)); TA2 :=factor(1QA+ Q[1,2] - Q[2,1])/ 22 - 1))
elif symmetrizeand i =2 and j = 1 then
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end

of the differences corresponding to the components of WD, then B should be divisible by

TA2 :=factor(1{A+Q[2,1] - Q[1,2])/2[{z1 - 1)); TAL :=factor(1{A+Q[1,2] -Q[2, 1])/2{2 - 1))
else TAL :=factor(Q[j, 1]/ p[i]); TAZ :=factor((A—Q[j,i])/pli])
fi;
ASSERT(IsLaurentPolynom(TAL) and IsLaurentPolynom(TA2), [ TAL, TA2]);
if simplify(p[i]CTAL + p[j]0TA2 — A) # 0 then print(‘ decomposition error* ) fi;
[TAL, TA2]

Fact ori zabl eConver genceEst i mat es( A, n, nD, W WD, B) . Similar to Conput eEst i mat es but with additional
assumptions on A and B. A should be a Laurent polynomial (not matrix) divisible by B; W and WD should have lengths 1 and 2
respectively, and if W, are the Laurent polynomials corresponding to the components of W, and WD; are the Laurent polynomials

2 2 2 2
Wi(z,,2, )WD, ((,, 2 ) <o
Wi(z,2,) WD, (2, 2,)

example, if W;=z -1 and W, ;=2 z, - 1, then B should be divisibleby (z +1)(z 2 +1). Theestimatesforyand y,
calculated by this function are the same as the estimates cal culated by Conput eEst i mat es; however, the estimates for ¢ and
cD tend to be better.

> FactorizableConvergenceEstimates := proc(

A::LaurentPolynom, n::posint, nD::posint, W::IntegerVector2List, WD::IntegerVector 2List, B::LaurentPolynom)
local q, pplus, psg, al, a2, all, al2, a21, a22, bl, b2, b11, bl2, b21, b22, tq, tql, tg2, res;
global z1, 22, y, gammabD, c, cD;

end

ASSERT(vectdim(W) = 1, ‘the length of the 4nd argument (list) should be 1 );

ASSERT(vectdim(WD) = 2, ‘the length of the 5nd argument (list) should be 2' );

q:=factor(A/ B);

ASSERT(IsLaurentPolynom(q), ‘A should be divisible by B );

pplus:=[z1+1, 2+ 1, 212 + 1];

psq:=[z1"2 -1, 2"2 - 1, Z1"2[72"2 - 1],

bl :=factor(B / pplus] W[ 1][ 1]]);

b2 :=factor(B / pplusf W[ 1][ 2]]);

b11 := factor(bl/ pplusf WD[ 1][ 1]1);

b12 := factor(bl / pplusf WD[ 11[ 2] 1);

b21 := factor(b2 / pplus] WD[ 2][ 1]1);

b22 := factor(b2 / pplus] WD[ 2][ 2] 1);

ASSERT(
IsLaurentPolynom(b11) and IsLaurentPolynom(b12) and IsLaurentPolynom(b21) and IsLaurentPolynom(b22),
‘the compar son scheme Laurent polynomial is not divisible by some of the difference polynomials' );

tq := LinearDecompose(q — 1, W[ 1][ 1], W[ 1][ 2], true);

tql := LinearDecompose(q — 1, WD[ 1][ 1], WD[ 1][ 2], true);

tq2 := LinearDecompose(q — 1, WD[ 2][ 1], WD[ 2][ 2], true);

al :=factor(A/ pplusf W[ 1][ 111);

a2 :=factor(A/ pplusf W[ 1]1[ 2]1);

req y] := max(InfNnorm(matrix([[al]]), n), InfNnorm(matrix([[a2]]), n));

ASSERT(simplify(A - B - bliq[ 1]Cpsg[ W[ 1][ 1]] — b2[1q[ 2] Cpsq[ W[ 1][ 2]]) = 0, ‘bad decomp’ );

req c] := InfNnorm(matrix([ [ b1Eg[ 1]]1]), 1) + InfNnorm(matrix([ [ b2(iq[ 2]]1]1), 1);

all :=factor(2Cal/ pplusf WD[ 1][ 1]]);

al2 :=factor(2Cal / pplusf WD[ 1][ 2] ]);

a2l :=factor(2Ca2 / pplus] WD[ 2][ 1]]);

a22 := factor(2Ca2 / pplus] WD[ 2][ 2] ]);

re§ gammaD ] := max(InfNnorm(matrix([[al1]]), nD), InfNnorm(matrix([[al2]]), nD),
InfNnorm( matrix([[a21]]), nD), InfNnorm(matrix([[a22]]), nD));

req cD] := max(InfNnorm(matrix([ [ 2[b111gq1[1]]]), 1) + InfNnorm(matrix([ [ 2(b123q1[ 2]]]), 1),
InfNnorm( matrix([ [ 2[b21tg2[ 1]]]), 1) + InfNnorm( matrix([ [ 2[b22[tg2[ 2]]1]), 1));

eval(res)
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Resultsfor specific schemes

Bilinear and Trilinear

Thisisjust asanity check; note that because we use difference schemes of alinear scheme as comparison scheme for

derivatives,

which is not continuous, we cannot infer C1-continuity from the fact that cD = 0. In general, we assume that C1-continuity is

known, and we

areinterested in the rate of approximation. To establish C1-continuity, one hasto look only at vy,

> Linear := (1+z)72/2: Bilinear := evaln(diag(1l)*(1/4)*(1 + z1"(-1))"2*(1 +
z2N(-1))"2*z1*z2):

> op(ConvergenceEstimates(Bilinear, 1,1,[[1,2]], [[1,2],[2,1]] ,Bilinear[1,1]));

1
%;:o, cD:O,y:E, gammaD =1

= oo

> op(Factori zabl eConvergenceEsti mates(Bilinear[1,1], 1,
,Bilinear[1,1]));

03,217, [[1,2],02,1]]

1
%;:o, cD:O,y:E, gammaD =1

> TrilinearEstimate := ConvergenceEstimates(evalm( Trilinear * diag(l)),
1,1,[[1,2]], [[2,3],[3,1]] ,Trilinear) : op(op(TrilinearEstimte));

1
%::O, cD:O,y:E, gammaD =1

3-directional box spline (L oop)
> Trilinear := (1/2)*(1+z1)*(1+z2)*(1+z1*z2)*z1"(-1)*z2"(-1):
ThreeDirCoeffs := array( -2..2,-2..2, |
[ 1/16, 1/8, 1/186, 0, 01,
[ 1/8, 3/8, 3/8, 1/8, 0],
[ 1/16, 3/8, 5/8, 3/8, 1/16 1.
[ 0, 1/8, 3/8, 3/8, /181,
[ 0, 0, 1/16, 1/8, 1/ 16 ]
1):
> ThreeDir := eval m diag(1l)* factor(MkePol ynon( ThreeDi rCoeffs)));
1 (1+2)* (1+22)*(1+212)°H
212222
Because the Laurent polynomial has al three difference factors, and each is squared, we can use a variety of contraction
functions.
Asitistypically the case, the specia function for factorizable polynomials gives better estimatesfor cD.

ThreeDir :=

> op(ConvergenceEsti mates(ThreeDir, 1,1,[[1,2]], [[3,2],[1,3]] ,Trilinear));

%: L D=1 L D
=_‘C = y =_‘ amrm =
2 Y 2 g

> op(ConvergenceEsti mates(ThreeDir, 1,1,[[1,2]], [[1,2

—

,[2,1]] ,Bilinear[1,1]));

%: 1 b 5 1 b 1
=— cD=—y=— gammaD =—
2 8 Y 2 g 2

> op(ConvergenceEsti mates(Threebir, 1,1,[[1,2]], [[1,3

[}

,[1,3]] ,Bilinear[1,1]));

%; 1 b 3 1 b
=—,cD=—,y=_,gammaD =
2 4y Zg

op(Factori zabl eConvergenceEsti mates(ThreeDir[1,1], 1,1,[[1,2]], [[3.2],[1,3]]

, Trilinear));
%: 1 b 1 1 b 1%
:_’C :_’ :_’ amn'a =
2 2y 2 g 2

> ThreeDirEsti mate : = Factori zabl eConvergenceEsti mates(ThreeDir[1,1], 1,1,[[1,2]],
Page 9
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[[1,2],[2,2]] ,Bilinear[1,1]): op(op(ThreeDirEstimate));

E: 1 b 1 1 b 1%
:_,C :_, :_, amrm =
2 2 Y 2 g 2

Butterfly

> ButterflyCoeffs := proc(w) array( -3..3,-3..3, |
[ 0, -w, -w, O, O, O,

[ -w, 0,2*w, 0, -w, 0O,

[ -w, 2*w, 1/2,1/2,2*%w, -w,

[ 0 0,12, 1,1/2, O,

[ 0, -w2*w,1/2,1/2,2*w, -

[ 0, 0O, -w 0,2*w, O, -

[ 0, 0, O, 0, -w -w,
1)
end:

> Butterfly := eval n{ diag(l)* MakePol ynon{ButterflyCoeffs(w))):

> ButterflyEstimatel : = ConvergenceEstimates(Butterfly, 1,1,[[2,2]], [[2,3],[3,1]]
, Trilinear): op(eval (ButterflyEstimtel));

1
%:8|w|, cD = 16| w|, y=max%|w|+

—-3w
2

1
,4|w|+§%gammaD=max(8|w|+|—8w+1|, 16|w|)%
> map(sinplify, op(subs(w = 1/16, eval (ButterflyEstimtel))));

%: L D=1 ! D 1%
:—,C = y :—, amn'a =
2 v 8 9

> ButterflyEsti mate2 : = ConvergenceEsti mates(Butterfly, 2,2,[[1,2]], [[2,3],[3,1]]
, Trilinear):

> assune(W> 0); additionally(W< 1/8);
solve( sinplify( subs( w= W eval (ButterflyEstimate2[ganmaD]))) < 1);

Real Range%)pen( 0), Open%%

> op(map( eval, subs(w = 1/16, eval (ButterflyEstimte2))));

E: R .. 7@
=, C ,amma =
2 Y=es 9 8

> ButterflyEstimate3 : = ConvergenceEstlrrates(ButterfIy, 3,3, [[1,2]], [[2,3],[3,1]]
, Trilinear):

assune(W> 1/12); additionally(W< 1/8);

simplify( subs( w= W eval (ButterflyEsti mate3[gammaD])));

max(456 W2 + 20 W2 + | 184 W + 4 W - 20 W?|,
~336 W + 60 W2 +| 2 W + 432 W° - 48 W? | +| 328 W* + 36 W?| +| 136 W° - 16 W?|, 416 W° + 64 W?,
408 W* + 12 W2 - 2 W +| 6 W — 68 W? | +|-408 W* + 40 W2, 672 W* - 16 W2 + 4 W, 24 W? - 216 W*
+| -2 W + 44 W2 - 360 W*| +| —16 W? + 160 W*| +| 488 W* - 96 W2 + 6 W| + 2 W +| 2 W + 216 W* - 52 W?|,
224 W+ 16 W? +| 880 W + 12 W — 208 W2| + 4 W +| 1 - 24 W — 848 W* + 224 W?|,
288 W% +2|120 W — 2 W| +| =432 W + 128 W2 ~ 20 W + 1| +| -112 W2 + 8 W + 288 W |
~512 W%+ 80 W2 +2|-136 W* — 2 W + 28 W?| + |32 W2 — 16 W + 1 - 96 W3] +| 4 W - 56 W? + 336 W°|,
264 W* + 4 W2 +| 56 W2 + 456 W* + 4 W | +| 60 W? - 416 W* - 2 W,
—288 W* + 2| 20 W2 — 120 W3 - 2 W |+ 48 W2 +| 1+ 8 W2 — 16 W + 432 W*| +| 16 W + 4 W — 288 W°,

264 W2+ 16 W? +| -2 W + 88 W? - 584 W*| +| 640 W° + 6 W — 104 W?|)
> op(map( eval, subs(w = 1/16, eval (ButterflyEstinmate3))));

1 261 11
% =—,cD=1,y="—"—, gammaD = E
2 1024 16

Tensor product of quadratic splines (Doo-Sabin)

\%
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> Quadratic := expand((1/4)*(z~(-1) + 1)73*z); QuadraticTensorSpline :=
eval m(diag(1)*(1/16)*(z1M(-1) + 1)"3*(z2"(-1) + 1)"3*z1*z2 );

drati 11 31 3 1
uadratic -——+——+—+—z
Q 472 4z 4 4
QuadraticTensor Spline := %—6 % E %1 E z1 22%
> op( ConvergenceEsti nmat es(Quadrati cTensor Spl i ne, [[1,2]], [[1,2],[2,1]]
,Bilinear[1,1]));
1 3 1 1
%:z—, cD=—y=7, gammaD=—%
2 4 2 2

> op(Factori zabl eConvergenceEsti mat es(Quadrati cTensorSpline[1,1], 1,1,[[1,2]],
[[1,2],[2,1]] ,Bilinear[1,1]));

%: 1 3 1 b 1%
=—,cD=-, . gammaD =—
2 4y g 2

Tensor product of cubic splines (Camull-Clark)

> Cubic := (1/8)*(1+z~(-1))"4*z"2; TensorCubicSpline := eval n(diag(1l)*(1/64)*(z1"(-1)
+ 1)M4*(z27(-1) + 1)"4*z172%z272 ),

Cubic ::§%1+£%zz
Tensor CubicSpline := %% EE1+—E pake 222%

> op(Conver genceEsti mat es( Tensor Cubi cSpl i ne, [[1,2]] [2,1],[1,2]]
,Bilinear[1,1]));
1 11 1 1
%::—, cD=—y=7, gammaD-—%
2 16 2 2

> Tensor Cubi cEsti mat e: = Factori zabl eConver genceEsti mat es( Tensor Cubi cSpline[1, 1],
1,1,[[1,2]], [[2,1],[1,2]] ,Bilinear[1,1]): op(op(TensorCubicEstinate));

%: 1 b 1 1 b 1%
:—‘C :—, :—, amrm =
2 2 Y 2 g 2

Tensor product of 4-point schemes (K obbelt)
> FourPt := factor((-wz"(-3) + (1/2+w)*z"(-1) + 1 + (1/2+w)*z - wz"3));
TensorFourPt := matrix([[factor((-wzl”(-3) + (1/2+w)*z1N(-1) + 1 + (1/2+w)*z1 -
W z1Mr3) ¥ ( -wrz27h(-3) + (1/2+w) *z27(-1) + 1 + (1/2+w)*z2 -wz2”3 ))]]);

1(1+22FAw-4awB+4Z2w-Z-4wz+2w)
FourPt :=—-— 7

TensorFourPt :=

i

1+ A'w-4wz3+421°w-22 -4 A w+2w) (1+2)2 (2w -4 28w+ 4 22 w-2° - 42w+ 2 w)

2273

> Tensor Four Pt Esti mat el : = ConvergenceEsti mates(TensorFourPt, 1,1,[[1,2]],
[[1,2],[2,1]] ,Bilinear[1,1]);

Tensor FourPtEstimatel := table([
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c=4|wp+2 +2|w|+2 +2 +2

1 1
“wWH-w
2 4

1 3
W H+—w
2 4

1 1
——w-—w?
4 2

3 1
——w——wz‘
4 2
1 3
—w+w —w+w
2 2

E

+|w|+2

cD=max%|w|2+2 +2|w|+ +2 —wz+§w +| WP+ w|+ —\A12—§W,4|W|,

glwpP+2 +3|w|+2

1
W -—w
2

3
-W-—w
2

y:max%|w|+£,4|w|2+2 W -tw I
2 2 2 4

§w+wz‘%

garmeiD = maxEB|wf + 4| |+ 8| wf+ 4] 2P -]+ 2| 4w - w|+2

1
—AW - W+
2

.8|wl,

16[wf + 4] 4w + 2], 4| w| | 1- ]2

D

> op( map( eval, subs( w = 1/16, eval (TensorFourPtEstimatel))));

13 31 25 5
=—,cD=—,y=—-,gammaD =—
32 64 32 4
> Tensor Four Pt Esti mat e2 : = ConvergenceEsti mat es(TensorFourPt, 2,2,[[1,2]],
[[2,2],[2,1]] ,Bilinear[1,1]):
> op(map( eval, subs( w = 1/16, eval (TensorFourPtEstimate2))));
13 31 105 15
%::—, cD=—y="—, gammaD:—%
32 64 256 16
> Tensor Four Pt Esti mat e3 : = Conver genceEsti mat es( TensorFourPt, 3,3,[[1,2]],
[[1,2],[2,1]],Bilinear[1,1]):
op(map( eval, subs( w = 1/16, eval (TensorFourPtEstimate3))));

13 31 425 5
%:—, cD =—,y=——-, gammaD =—%
32 64 2048 8

> Tensor Four Pt Esti mat elf : = op(Factorizabl eConvergenceEsti mat es( Tensor FourPt[ 1, 1],
1,1,[[1,2]]1, [[2,1]1,[1,2]] ,Bilinear[1,1]));
. o 1 1 1 1
Tensor Four PtEstimatelf := £ = 2 max |W|,2|W| +2 EWZ+EW +2 —EWZ—EW

CD=4|W|2+2|W|+ max(4|w|2+4|—w—wz|, 4|W|),

y=max%|w|+£,4|w|2+2 W -tw +|w|+2 Twee2
2 2 2 4

§W+V\F‘%gammaD :max%|w|2+4|w|+§,

8|w|2+4|—2\/\12—w|+2|4vvz—w|+2‘—4wz—w+§‘,8|w|, 16|W|2+4|4\I\12+2W|,4|W|+|1—4W|%

> op(map( eval, subs( w = 1/16, eval (TensorFourPtEstimatelf))));

9 27 25 5
c=—,cD=—,y=—",gammaD =—
32 64 32 4

# Code generation
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Eigenstructur e of the Butterfly Scheme

Denis Zorin, February 1998

Thisworksheet contains the symbolic part of the analysis of tangen plane continuity and C1-continuity of the Butterfly scheme. We
compute the eigenvalues of the subdivision matrix with the maximal magnitude and the corresponding eigenvectors. For the valence K =
3, the largest eigenvalue is 1/4, with 3 Jordan blocks: two of size 2 and one of size 3. For K = 4,5,7 the largest eigenvalues arein the first
and last blocks of the DFT-transformed matrix, and have trivial Jordan blocks. For K >= 8, the largest eigenvalues are in other blocks. We
generate the C-code for the computationally intensive part of the analysis (anaysis of the characteristic maps). The generated code uses
functions from our wrapper class for f.p. numbers, encapsulating interval arithmetics.

# Utilities

Subdivision matrix

> assune( ¢ >= -1); additionally( ¢ <= -1); additionally (c, real); assunme( K, integer);

addi tional ly( K >= 3);
> Butterfly := matrix( [

[ (2/2) + 4*wc - 2*w(2*c”2-1), O0,- w(conjugate(onmega) + 1),0,0,0],

[1,0,0,0,0,0],

[(1/2)*(1+ omega) - w‘(conjugate(onega) + onega™2 ), -w (1 + onega), 2*w, 0,0, 0],
[1/2 - 2*wtc, 1/ 2, 2*w(1+conj ugate(onega)), 0, -w, -w-conjugate(onega)],
[1/2 + 2*wronega, 2*w - w‘onega, 1/ 2-w+conj ugat e(onega), 0, -w, 0] ,
[(1/2)*omega + 2*w, 2*wFonega-w, 1/2 - wonega,0,0,-w]);

1 — ]
_-;+4wc—2w(2c2—1) 0 -w(w+1l) 0 0 0 [
- 1 0 0 0 0 0H
| 1 1 — 2 |
N £+Em—w(m+w) -w(1+w) 2w 0 0 0 [
=[] 1 1 — —
Butterfly : ] —-2wc = 2w(w+1l) 0 -w -ww
u 2 2 u
H 1 1 — H
0 —+2WWw 2W-wWw —-ww 0 -w 0 [
] 2 2 ]
] 1 1 ]
O —w+2w 2WW-w ——Ww 0 0 -w
O 2 2 O
> Butterconst :={ w = 1/16}; Buttervar := { onega = exp(2*I*Pi*m K), ¢ = cos(2*mPi/K)
b
1
Butterconst :={w=—"}
16
I tm
mTt %TE
Buttervar :={ c=cos T w=e }
> ButterflyExpanded := map( sinplify, subs( s*2 = 1-c*2, map( sinmplify, map( evalc,
subs( { onega = c + s*| , op(Butterconst)}, eval (Butterfly))) )))
ButterflyExpanded :=
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N 51 1, 1 1 1 N
= —+—Cc-—C 0 -—Cc-—+—Is 0 O 0 =
H 8 4 4 16 16 16 N
B 1 0 0 0 0 0 N
. 7 1,9 1 1 1 1 1 u
-+ -c--c+—ls-—lcs —-——--—c-—ZIs - 0 O 0 N
16 16 8 16 8 16 16 16 8 N
N 11 1 1 11 -1 1 1 [
[ —-=cC - —c+-—-=Is 0 — ——c+—ls
H 2 8 2 8 8 8 16 16 16 n
H 11 1 1 1 11 1 -1 H
] —+-c+_ls ——-—c-—Is —-—c+—ls 0 — 0 N
N 2 8 8 8 16 16 2 16 16 16 N
N 1 1 1 1 1 1 11 -1 N
= “CcH+_ s+ —c+_ls-— —-—c-—Ils 0 O — =
O 2 2 8 8 8 16 2 16 16 16 O

Because the matrix has block-diagonal structure, we have to compute only the eigenvalues of the subblocks on the diagonal.
Butterfly0O := submatrix( ButterflyExpanded, 1..3,1..3):
> Butterflyll := submatrix( ButterflyExpanded, 4..6,4..6):
> Butterflyl0 := submatrix( ButterflyExpanded, 4..6,1..3):
>

) m 1t COmm
Introduce new variables, cs and ss, for cos%? Eand si n%? %

> Cre := diag( 1, 1, cs - I*ss );
0 0
Cre:= 1 0
0 cs-Iss

Reduce the first subblock to areal matrix using a coordinate transoform. Eigenvalues do not change.

> ButterOOre := map( sinplify, subs( ss*2 = 1- cs”™2, map( expand, map( sinplify, subs(
{s"2 =1 - ¢c"2}, subs( { ¢ = 2*cs"2 - 1, s = 2*cs*ss}, map(sinmplify, map( evalc, map(
sinplify, evalm Cre & eval (Butterfly00) & inverse(Cre)))))))))));

\%

3 1

+-cs-cs' 0 -

2 8

ButterOOre := 1 0 0
1 ., 11 1 1

—CcS'+—ceCs —-—-cCs -

2 8 8 8

Analysis of the behavior of the eigenvalues

Our goal isto determine the expresions for the eigenvalues of the largest magnitude, excluding 1, and show that for valences > 8 these
eigenvalues are not in the 1st and last blocks of the DFT-transformed subdivision matrix. With some additional easily provable
assumptions, this means that the Butterfly schemeis not C1 for these valences. We aso explicitly compute the eigenvalues for K = 3.

0-th block

The block corresponding to m = 0 is present in every matrix; if the eigenvalues of some other block are greater than 1/4, this
block is not dominant.
> jordan(subs( c¢cs = 1, eval (ButterQOre)));

01 0
L — 1 0 H
04 B
. 1 -
o 1 1 H
u 4 u
0 10
50 0 - B
i 4 0

Characteristic polynomial of thefirst sublock and its descriminant

The eigenvalues of the second subblock are 0, and -1/16; we will see that the first subblock always has larger eigenvalues.
Characteristic polynomial
> ButterCharpoly := subs( cs = sqrt(d), collect( subs( cos(nfPi/K) = c, expand(
charpol y(Butter0Ore, | anbda),trig)), |anbda));
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3 1 . 3 2 3 1 3, 1
ButterCharpoly := A" + 4_1+d _Ed A”+ d+—-—d -—d
> re := coeff( ButterCharpoly, |anbda”2); se := coeff( ButterCharpoly, |lanbda); te :=
rem( ButterCharpoly, |anbda, |anbda);
1 3

re=-—+d°-—-d
4 2

23 1 3 ,
se=—d+—-—d
64 64 16

Reduce the characteristic polynomial; use d = ¢? as the parameter.
> Butt er Char pol yReduced : = col l ect(sinplify(subs( lanbda = nu - re/3,
But t er Charpoly)), nu);

Butter CharpolyReduced :=
1 37 7 1 1 55 73 19 2 1 1
e+ —+d3——d2+—d——d4Eu+—d+ F+—d-—dP+—d -+ ——
192 48 64 3 768 1152 144 64 27 3 6912
> pe := coeff(ButterCharpol yReduced, mu); qge := remButterCharpol yReduced, mu, nu);
1 37 7 1
pe=-——+d-—d+—d--d'
192 48 64 3
1 55 73 19 2 1 1
ge=s—dt—d+—d'-—d+—d® -+ —

768 1152 144 64 27 3 6912
Find the discriminant and deterimineits sign.
> Discr :=sinplify( (pel/3)"3 + (qel/2)"2);

Do - 19, 479 , 1123 . 1369 . 299 . 91 . 1

= d- dr - + - + d>+ -
2359296 3538944 442368 7077888 442368 110592 55296 3072

> Discr := factor(subs( w = 1/16, Discr));

Discr = - d(4d-1) (576 d* - 1616 d° + 976 d* - 20 d + 3) (d - 1)*

1
7077888
> plot(Discr, d =0..1);

-2e-071

-4e-07+

-6e-07

-8e-071

-1e-06

-1.2e-06

Pull out the degree 4 factor responcible for one of the rootson 0..1
Di scrFactor4 := factor(Di scr/ (Il coeff(Di scrs)*(d-1/4)*(d-1)~2*d));
101 61 5 1
d*+ o - d?+ d-
3072 110592 110592 442368 589824

DiscrFactor4 := —
> pl ot (Di scrFactor4, d=0..1);
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4e-051 /

2e-05+ /’/

-2e-051

-4e-05+ —

Find the interesting root
> DiscrRoot := solve( { DiscrFactor4d =0, d <=1, d >= 0},d );

8690 %1134/ %62 — 12 4/ %2 %12/3 - 657264 1/ %2 + 312154 %113
DiscrRoot —{d——+— %2 }
144 144V 7 T 1aa 9612 /o2
%1 := 13061314 + 5238 4/ 229017
4345 %13 + 12 %12/ % + 657264
%11/3

%2 .=

> DiscrRoot := op(2,op(DiscrRoot));
8690 %11’3 %2 — 124/ %2 %1%'3 - 657264 4/ %2 + 312154 %113

DiscrRoot :=—— + —«/ %2
1 %134/ %62

%1 := 13061314 + 5238 4/ 229017
4345 %13 + 12 %12/ % + 657264
% 11/ 3

%2 .=

> eval f (Di scrRoot) ;

.8486812039
We observe that the discriminant has four roots: 0,1, 1/4 and approx. 0.8486812039; these are the only values for which the
matrix may have nontrivial Jordan blocks. The last case does not occur in the cases which are of interest to us. Inthefirst 3
cases the Jordan normal form can be find explicitly.

The case of threereal roots

The discriminant is positive on 0..1/4 and on DiscrRoot..1, negative on 1/4..DiscrRoot
Compute the solutions when the discriminant is negative and, therefore, there are 3 real roots

> R:= sqgrt(-factor(pe)/3):
> phi := arccos( qe/ (2*R*3)):
>rl = -2*Rfcos(phi/3)-re/3: r2 := -2*Rrcos(phi/3 + 2*Pi/3)-re/3: r3 :=

-2*R*cos(phi/3 + 4*Pi/3)-rel 3:
The product of therootsis -d/64, which is negétive; therefore, either all three are positive, or two are negative. 0 is never a
root, except whend =0
The roots cannot be equal on the interval where the discriminant does not change sign; we can figure out the largest one on the
whole interval by evaluating them at a single value of d. We conclude that all three roots are always positive and the largest one
isthe second.
d = 1/4..DiscrRoot. We use interval arithmeticsto guarantee correctness.
> I nverval Roots : = map( unapply('inapply (x,d),x), [rl1,r2,r3] ):
> eval (I nverval Roots(1/2));

[[.08499852729, .08499853961 ], [ .4690415185, .4690415259], [ .1959599360, .19595995301] ]

We conclude that te second root is the largest.
> AbsDom nant EV1 := r2;
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1
AbsDominantEVL ::E\/(d ~1)(64d®- 128 d?+20d - 1)

5 , 73 , 19 . 2 .
—d+—d+—d'-—d+=d° ——d
, 768 1152 144 64 27 6912 11,1
sin[- arccos 6912 E—gd +Ed
((d-1) (64d3—128d2+20d—1))
[[.08499852699, .08499853971 |, [ .4690415184, .4690415260], [ .1959599356, .1959599533] ]

>plot( [rd, r2, r3], d = 1/4..DiscrRoot);

0.5+

0.4+

0.3+

0.2+

0.1+ _—

0.3 0.4 0.5 0.6 0.7 0.8

Thecase of onereal root

First case: Theinterval 0..1/4
We show that for din thisinterval, all roots are < 1/4; we will see that there is aways an eigenvalue > 1/4 elsewhere.
Therefore, the roots on thisinterval are irrelevant. Thereisonly onereal root; if at a point x the value of the polynomial is
positive, than the magnitude of the
real root is lessthan x. We see that the char. polynomial is positive at /4 for d = 0..1/4, and negative for d = 1..1/4. For
any K >3, %< COSEE ﬁ therfore, thereisareal eigenvalue of magnitude greater than 1/4.

> sol ve( subs( lanbda = 1/4, ButterCharpoly) > 0 );

Red Range%oo, Open%% RealRange( Open(1), «)

Now build an equation for the square of the magnitude of the other two roots; it is a cubic equation again:
> rsq = - se; ssq := expand(te*re); tsq := -te*te;

Use the same approach: verifying that all solutions are < 1/16 on d=1..1/4
> sol ve( subs(x = 1/16, x"3 + rsg*x"2 + ssq*x + tsq) > 0);

Real Range%w, Open% % Real Range%)pen% % Open(1) E

For plots, get the expressions for the roots
> R := signun(qge)*sqrt(-pe/3): phi := arccosh( abs(qe)/(2*abs(R) "3)):

>r = -2*Rfcosh(phi/3)-re/3: cl := R*( cosh(phi/3) + I*sqrt(3)*sinh(phi/3))-rel/3:

c2 := R*( cosh(phi/3) + I*sqrt(3)*sinh(phi/3)) -re/3:
> plot( [ abs(r), abs(cl), abs(c2)], d=0..1/4);
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Second case: interval DiscrRoot..1
In this case, we show that the real root isthe largest; we have aready observed that on 3/4 ..1 the magnitude of the
complex roots (when there are
complex roots) is< 1/4; hence, it is sufficien to show that thereal root is greater than 1/4. But we have seen aready, that
the characteristic polynomial is negative at 1/4 for d > 1/4. Therefore, the real root > 1/4.

> R := sqgrt(-pe/3): phi := arccosh( abs(qge)/(2*abs(R)"3)): AbsDom nantEV2 : =
2*R*cosh(phi/3)-rel3;

. 1 3 2 4
AbsDominantEV2 :=E\/l— 192d°+148d°-21d+64d

1 55 73 19 2 1 1
—d+—Pr— - P+—f -+ —
768 1152 144 64 27 3 6912 11,1
coshr; arccosh 6912 r—_Zd?+-d

3/2
|1-192d®+148 - 21 d + 64 | 123 2

Plot of all roots
> di splay(plot( [abs(r),abs(cl)], d = 0..1/4, color=black),
plot([rl,r2,r3],d=1/4..D scrRoot, color=black),
pl ot ([abs(r),abs(cl)], d=Di scrRoot..1.000001, col or=bl ack));

0.51

0.4+

0.31

0.2+

0.1+
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The magnitude of the subdominant eigenvalue decreasesfor d from approximately 0.67600423 to 1

To show that the subdominant eigenvalues of the Butterfly scheme are not in the correct block for sufficiently large valences,
we show that the largest eigenval ue decreases as a function of d near 1. To do this, we find the sign of the derivative; it is
suficient to evaluate the derivative at a single point, and to show that the derivative is not zero anywhereon aninterval. Let

0
y(d) betheroot asafunction of d. Then differentiating the equation y* + r(d) y?* + s(d) y + t(d) = 0, and setting ayto

zero, we observe that at apoint d, where the derivative is zero, the value y(d,) satisfiesthe equation

0 0 0
%l;d r %ﬁ + %d s%y + %;dtﬁz 0. Itissufficient to show that for d on agiveninterval that the largest root of the orginal

equation is not the root of the equation with differentiated coefficients.
> diffCharpoly := diff(re,d)*y*"2 + diff(se,d)*y + diff(te,d);

_ 3 3 3 1
diffCharpoly := %d——%yz+ %——d%y——
2 4 8 64

Thisisjust aquadratic equation and we can immediately determine when it has no roots:
> sol ve( coeff(diffCharpoly, y)*"2 - 4*ren(diffCharpoly,y,y)*coeff(diffCharpoly,y”r2) <

0,d);
9
rarmodbre i creft
We consider the interval 5/8..1;

On thisinterval thereisin fact a point where the magnitude of the largest root of the characteristic polynomia ismaximal. Itis
useful to find it more precisely. We use Groebner bases package to eliminate y from the system of two equations and find a
polynomial equation for d; f i nduni  finds the minimal univariate polynomial in the ideal generated by the two polynomials:
> dEquation := finduni ( d, [subs( lanmbda =y, ButterCharpoly), diffCharpoly]);

dEquation := 9 - 48 d + 332 d” - 960 d* + 1152 d* - 512 ¢°
Now find arational interval for d; r eal r oot provides us with guaranteed bounds on all real roots. Luckily, thereisasingle

real root:
> I nterval Dom nant Max : = op(real root( dEquation, 1/10"7));

1341469 5670735%
6777216 83838608

Interval DominantMax ;= %

> map(eval f, | nterval Dom nant Max);
[ .67600423097610473633, .67600429058074951172 ]
Evaluating the derivative at a point, we get a negative value; we conclude that the derivative is negative for d greater than the
vaue above.
We use the algebraic value of the root returned by solve, rather than transcedental equation, because interval inapply does not
work properly for hyperbolic functions.
> IntervDeriv := inapply( diff(op(l, [solve( ButterCharpoly, lanbda)]),d),d):
eval (I ntervDeriv(0.9));
[-.77122129552760084746, -.77122129552759906668 |
We have shown that the magnitude of the largest eigenvalue decreases from approximately 0.6760043 to 1.

Valence 3

In this case eigenvalue 1/4 is the largest and has three identical Jordan blocks.
Block O

> jordan(subs( cs = 1, eval (ButterQOre)));

01 0
= 1 o H
04 B
_ 1 -
Qo -1
n 4 u
u 10
= 0 0 - O
0 4 0

Block 1
> jordan( subs( cs = 1/2, eval (Butter00re)));
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0 — 0 o U
16 u
1 1 .
10 > 10
u 4 O
] 1 [
= 0 0 e
O 4 O

Block 2

> jordan( subs( cs = -1/2, eval (Butter00re)));
 — 0 o O
16 u
. 1 .
10 ” 10
O 4 O
] 1 [
= 0 0 P
O 4

Valences 4,5
K = 4; Check which formulasto use.
> inappl y(Di scrRoot); inapply(cos(Pi/7)24); inapply(cos(2*Pi/4)"2);
() - [.84868120391246120009, .84868120391246120352 ]
() - [.65892978418482746461, .65892978418482746486 |
0

The largest eigenvalueisin the first block.
> inappl y(subs( d = cos(Pi/4)~2, AbsDom nantEV1));
() - [.46904152209925298145, .46904152209925298172 ]
> inappl y(subs( d = cos(Pi/2)7~2, AbsDom nant EV1 ));
() - [.12499999999999999998, .12500000000000000002 ]
K =5;
> n’appl y(Di scrRoot); inapply(cos(Pi/5)"2); inapply(cos(2*Pi/5)"2);
() - [.84868120391246120009, .84868120391246120352 ]
() - [.65450849718747371183, .65450849718747371227 ]
() - [.095491502812526287866, .095491502812526288029 ]
> inappl y(subs( d = cos(Pi/5)~2, AbsDom nantEV1));

() - [.50667561139380648476, .50667561139380649194 ]
We do not have to check the eigenvalue of the second block: for it, d < 1/4, therefore, the magnitude of the largest eigenvalueis
also lessthan 1/4.

For valence greater than 7, the eigenvalue of the block with m = 1 isnot the largest
We have established that the magnitude of the largest eigenval ue decreases as the function of d when d > 0.6700423 = d,; if

mTt
d=cos%?§ > d,

for m=2, for K > 6 we can conclude that the eigenvalue for m= 2 isgreater than the eigenvalue for m= 1. Thisisthe case
for K >10:
> x = inapply(2*Pi/K, K): eval (Interval _Integerpower(lnterval _cos(x(11)),2));
[.70770750650094321267, .70770750650094321286 ]

For values between 7 and 10, have to check one by one.
K = 7. Check which formulas to use. Note that for m=2 the value isbelow d, , so we do not have to check the other values
g rinr.wappl y(Di scrRoot); inapply(cos(Pi/7)"2); inapply(cos(2*Pi/7)"2);

() - [.84868120391246120009, .84868120391246120352 ]

() - [.81174490092936676519, .81174490092936676535 ]

() - [.38873953302184279774, .38873953302184279798 |
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In this case, the largest eigenvalue is till in the first block:
> inappl y(subs( d = cos(Pi/7)"2, AbsDom nantEV1));

() - [.48191070141255089859, .48191070141255090538 ]
> i nappl y(subs( d = cos(2*Pi/7)"2, AbsDoni nantEV1));

() - [.40611653561495260677, .40611653561495260912 ]

K=8

> i nappl y(Di scrRoot); inapply(cos(Pi/8)"2); inapply(cos(2*Pi/8)"2);
() - [.8486811866, .8486812214 ]
() — [.8535533896, .8535533917]
() - [.4999999998, .5000000002 ]

For d, < d, we cannot use the transcedental expression -- intpak does not have arccosh; rather than expressing it using

logarithm, we use the algebrai ¢ expresssion, which works because the discriminant is positive:
> i nappl y(subs( d = cos(Pi/8)"2,0p(1l, [solve(ButterCharpoly, lanbda)])));

() - [.46241776728303719789, .46241776728303860919 |

We see that in this case the eigenvalue of the second block islarger:
> i nappl y(subs( d = cos(2*Pi/8)"2, AbsDom nant EV1));

() - [.46904152209925298145, .46904152209925298172 ]

K =9; sameresult asfor 8:
> inappl y(Di scrRoot); inapply(cos(Pi/9)"2); inapply(cos(2*Pi/9)"2);

() — [.84868120391246120009, .84868120391246120352 ]
() - [.88302222155948901753, .88302222155948901768 ]

() - [.58682408883346517429, .58682408883346517455 ]
cos(Pi/9)~2,0p(1l, [solve(ButterCharpoly, lanbda)])));

() - [.44442935560347137503, .44442935560347191330 ]
> inappl y(subs( d = cos(2*Pi/9)"2, AbsDom nant EV1));
() - [.49729407293962378849, .49729407293962379215 ]

> i nappl y(subs( d

K =10, sameasfor 8 and 9:
> inappl y(Di scrRoot); inapply(cos(Pi/10)72); inapply(cos(2*Pi/10)"2);

() - [.84868120391246120009, .84868120391246120352 ]
() - [.90450849718747371190, .90450849718747371220 ]

() — [.65450849718747371183, .65450849718747371227 ]
> i nappl y(subs( d = cos(Pi/10)"2, op(1, [sol ve(ButterCharpoly, |anbda)])));

() - [.42859991276733051144, .42859991276733166709 ]
cos(2*Pi/10) "2, AbsDoni nant EV1) ) ;

() - [.50667561139380648476, .50667561139380649194 ]

> i nappl y(subs( d

Summary of the eigenvalue analysis

For K = 3, the largest eigenvalueis 1/4 and has multiplicity 7, with 2 blocks of size 2 and one block of size 3. For K = 4..7 the
largest eigenvalue has
multiplicity 2 and corresponds to the 1st and the last block. For K > 7, the largest eigenvalues are not in the 1st and last blocks.

Eigenvectors

0
0.0 % and the fact that we are interested in the

Find the eigenvectorsin two steps. Using the specia structure of the matrix % B
11

1,0
-1

eigenvectors which are also eigenvalues of the subblock By, ,, wefind the eigenvector as [V, =(B, ; = Al )( ) B, o Vol where v;is

the eigenvector of B, ,. We also use the fact that in

al cases of interest, the eigenvalues of B, , are not eigenvalues of B, ;.

Compute an eigenvvector of By, ; check first that the two second lines of the matrix are always independent; the second component
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1
of the cross product is not zero, because Z <Al

> crossprod( row( evalnm( subs( Butterconst, evaln(Butterfly00)) - lanbda* & () ), 2),
row( evalm( Butterfly00 - |anbda* & () ), 3));

1 1 1 1 9 7 1,9 1
AN -AGA-— -—-—Cc-—Is+tAE-+—c--c+—ls-—lcs
8 16 16 16 6 16 8 16 8

Compute the first part of the vector:
> v0 := subs( _t[1] =1, map(sinplify, linsolve(
submatrix ( evaln( Butterfly00- |anbda*& () ) ,2..3,1..3), [0,0] )));

>
"0'_%\1 1|(—|—|c+s—9s)\+2sc)\+9|A—2|Ac2+7|>\c)H
ot 2 -1+8)\

> Butter1ll anbda : = eval m( Butterflyll - |anbda* & ());

>
O -1 1 1
ED — -—c+—IsH
H 16 16 16 -
_ 1 -

Butterlllambda:=40 -—-A 0 O

] 16 O
i 1 ]
=0 0 -—-A H
O 16 O

> vl := map( sinplify, subs( { s"3 = s*(1-c"2), s”"2 = 1- c"2}, map( expand, evaln( -
inverse( Butterl1llanbda) &* ButterflylO0 & vO0 ))));

1 -3¢c-1-1024 2\ +642°c?+ 165\ -208 N> c+45A c+256 A3 c— 1120 A - 10 A @

vi=5— ,
16 (-1+8A)(1+16A) A
179N -128 A" -29Nc-32A°c—611SA—-321sA*+11+5c+71s+18IscA+14Ac° 1 )
-— ,=(-1lc+2c°-11ls
2 (-1+8A) (1+16A) 2

+6LA+128 N\ C+BLAC+21CS-321SCA+79ISA+4CPA+32A°+1281sA°+41PsA-32Ac*-7)/((-1+81)

(1+16)\))E

Put the two parts of the vector together and simplify notation

> ButterEigenvect := array( map( sinplify, [seq( vO[i], i=1..3), seq(vl[i],i=1..3)])):
Check if the expression makes sensefor K = 6

> map(expand, subs( {lanbda = 1/2, ¢ = 1/2, s = sqrt(3)/2}, eval (ButterEi genvect)));

3 1 35 1 1
%,1,—+—| 3,77+~ 3,1+—I4/3%
4 4 24 4 2

Code generation

Three functions are generated (same as for other schemes):
Fl oat Ei genval ue(i nt K) computesthe eigenvalues,
voi d Ei genvectorReal (Float ¢, Float |anbda, Float* EvRe) initidizesan array for therea part of the complex
eigenvector, voi d Ei genvector | magi nary(Fl oat c, Float* |anbda, Float* Evln initiaizesthearray for the
complex part.
Memory for arrays should be allocated by the calling function.
The output iswritten to afile; if the nameis ‘default’, it iswritten to the standard output (warning: for some reason, writing to
standard output is terribly slow; writing to afile and then looking at it in an editor is much more efficient. All functionsuse Fl oat
as the name of the class for the interval numbers.
It is assumed to have explicit castsfrom 64-bit integers, standard arithmetics operations, and macros FR and Fdi v, (see
Convert ToFl oat for details).

> QutputFile := “butterfly.cpp':

> MakeC assHeader( CQutputFile, ‘Butterfly‘, 2,4,3, RegButterfly):

Code generation for eigenvalues
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To show that the scheme produces C1 surfaces for valences 4,5,7, and not C1 surfaces for other valences we need expressions for
eigenvalues of thefirst block of the DFT-transformed subdivision matrix (m = 1).
We generate two functions, one to be used for valences 4,5,7; the other for larger valences.
[#] Conput eEi genval ues(N, eps, f name) Numerically compute eigenvalues for arange, and write a function with a
largetableinto afile.
Although we have computed explicit formulas above, they are numerically unstable for d closeto 1 (for large K); the
simplest solution isto
to precomute the largest eigenvalue numerically with verified ; we use the fact that the largest eigenvaluesisin theinterval
1/4 .. 1intherange of interest. This function computes eigenvalues up to valence N, verifying that the precision is no less than
eps.

'# Generate eigenvalues

[# Codegeneration for eigenvectors

Modified Butterfly scheme

The Modified Butterfly scheme by construction always has the subdominant eigenvalue 1/2 in thefirst block of the DFT-transformed
subdivision matrix.
Thus, we only need to compute the eigenvectors for the characteristic map analysis. We do not assume that w = 1/16 here.

Compute the complex eigenvector

> ModButter := matrix( [
[ 12/2, 0, 0,0,0,0],
[1,0,0,0,0,0],
[(1/2)*(1+ omega) - w‘(conjugate(onega) + onega™2 ), -w (1 + onega), 2*w, 0,0, 0],
[1/2 - 2*wtc, 1/ 2, 2*w(1+conj ugate(onega)), 0, -w, -w-conjugate(onega)],
[1/2 + 2*wFonmega, 2*w - wfonega, 1/ 2- w*conj ugat e(onega), 0, -w, 0],
[(1/2)*omega + 2*w, 2*wFonega-w, 1/2 - w‘onega,0,0,-w]);

1 O

- 0 0 0 O 0 H

2 B

1 0 0 0 O 0 n

1 L
+£oo—w(oo+oo) -w(1l+w) 2w 0 O 0 [

= 1 1 — —[
ModButter - —-2wc = 2w(w+1) 0 -w -wo
2 2 H

1 1 — -
—+2Ww 2W-ww —-ww 0 -w 0 [

2 2 N

1 O

—w+2w 2WW-W ——W® 0 O -w O

2 2 O

Thisis simple enough for the Maple function.
> jordan(MbdButter, ‘P');

0O 0 0O oH
-w 0 0 0 OH
0 2w 0 0 O
0 0 01 OH
0 0 00 O0f
0 0 0 0 -wd

> MdButterEi genvect := subs( { w= 1/16, cos(2*n*Pi/K) = ¢, sin(2*mPi/K) = s},
map( sinplify, map( evalc, subs( Buttervar, col(eval (‘P'),1)))));
5 1 7 653 11 , 1 35 7, 121 7 1

1 7
ModButter Eigenvect := El 2,-—c®+—+—c-—lcs+—-ls—-—c’+—c,—Cc-—Cc’+—+—Is-—Ics,
3 6 6 3 6 216 108 216 54 27 54 6 3
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Eigenstructur e of the Kobbelt Scheme

Denis Zorin, Stanford University, February 1998

In this worksheet, we explore the eigenstructure of the subdivision matrix for Kobbelt's subdivision scheme. We compute guaranteed
intervalsfor the magnitude of the largest eigenvalue, and formulas for computing corresponding eigenvector. The result is afile with three
interval arithemtics C functions computing the magnitude of the largest eigenvalue for alarge range of valences, and two functions to
compute eigenvectors for the eigenvalue with the largest magnitude. In addition, we estimate the range of eigenvaluesfor large valences,
which alows us to analyze C1-continuity for all valences.

# Utilities

Subdivision matrix of the Kobbelt scheme

Define the blocks of the DFT-transformed subdivision matrix; perform some teststo check if the matrix was defined correctly. We use
the following parameters.a and 3 are the coeffficients of the 4-point scheme (we consider the case when the coefficients are 9/16 and

Tt
| 2 i
-1/16 respectively), ¢ = cos ” and w=e .

We test the correctness of the matrix in two ways: first, we compute a submatrix explicitly for the case K = 4, and check if the matrices
agree; second, compute the eigenvectors and eigenvalues for K =4; in this case, the matrix has to have eigenvalue 1/2, and te
corresponding complex eigenvector should be a part of aregular quadrilateral grid in the complex plane.
> Kobbelt := matrix([[al phatd4*beta*d-beta*(1+2*c),
4*d*bet a2/ al pha- bet a*2* (conj ugat e(onega) *2+2*c+1)/ al pha, beta, 0, O,
o, o, 0, 0, 0, 0, 0],
[ 4*bet a*al pha*d+al pha”2*( 1+onega) - ( 1+onega) *al pha*bet a,
4*pbet a”2*d- bet a”2* (1+2*c) +2* al pha* bet a* c+al pha”2,
(1+onega) *al pha*beta, beta”2*onega+al pha*beta, beta”2,
bet a*2*conj ugat e( onega) +al pha*beta, 0, 0, 0, 0, O, 0], [1, O, O, O, O,
0o, 0, 0, 0, O, O, 0], [al pha, al phatbeta*conjugate(onega), 0, 0, O,
beta, 0, 0, 0, 0, 0, 0], [O, 4, O, O, O, O, O, O, O, O, O, O],
[ al pha*onega, al pha+beta*onega, 0, beta, 0, 0, 0, 0, 0, 0, O, 0],
[ al pha, O, alpha, 0, 0, O, beta, 0, 0, 0, 0, 0],
[ bet a2* conj ugat e( onega) +al pha*2+al pha*bet a*onega,
al pha*bet a*conj ugat e( onega) +al pha™2, bet a”2*onega+al pha”2, al pha”2,
al pha*bet a, al pha*beta*(1l+conjugate(onega)), al pha*beta, al pha*beta,
betar2, 0, 0, beta”2*conjugate(onega)], [beta*onega, al pha, 0, alpha,
0, 0, 0, beta, 0, 0, 0, 0], [(21+onega)*al pha*beta, al pha"2,
(1+onega) *al pha*beta, al pha2, al pha™2, al pha"2, beta”2*(1l+onega),
al pha*bet a, al pha*beta, beta”2, al pha*beta, al pha*beta], [beta, alpha,
0, 0, 0, alpha, 0, 0, 0, 0, 0, beta],
[ al pha*bet a+al pha”2* onega+bet a*2*onega”2, al pha”*2+al pha*bet a*onega,
bet a®*2+al pha®2*onmega, (1+omega)*al pha*beta, al pha*beta, al pha”2,
al pha*bet a*onega, beta”2*onega, 0,0, beta”2, al pha*beta]]);

’

o O

H dp? pP(aP+2c+1) N
H a+4Bd-B(1+2c) f—— B 0 0 0 0 0 0O 0 O o0 H
H a a O
H 2 2. 2 2 2 2 22— H
Mpad+a  (1+w)-(1+w)ap 4B d-B (1+2c)+2afc+a  (l+w)af P w+tap B B w+ap 0 0 0O 0 O 0 H
H 1 0 _ 0 0 0 0 0 0 0O 0 O 0 H
N o a+Bw 0 0 0 B 0 0 0O 0 O 0O
N 0 1 0 0 0 0 0 0 0O 0 O 0O
Kobbelt := [ aw a+pBw 0 B 0 0 0 0 0 0 o0 0 Q
H o] 0 a 0 0 0 B 0 0O 0 O 0 [
E [32;)+orz+or[3w uB:)HxZ Bzm+a2 112 af (1[3(:)+1) af afp BZ 0 0 BZEE
H Bow o 0 a 0 0 0 B 0 0 0 0f
E (l+w)a P 0(2 (l+w)ap 112 112 0(2 [32(1+m) aBf af BZ af uBE
H o 0 0 0 o 0 0 0 0 0 B
B u[3+a2u>+[32w2 u2+u[3u> [32+u2w (1+w)apB af ctz apw [3200 0 O [32 u[}f
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> Kobconst :={ alpha = 9/16, beta = -1/16 };

Kobconst 9 51
obconst :={a=—"B="—
ta=1gP=1e!

> KobExpanded : = subs(Kobconst , eval m( Kobbelt));

0o 51 1 1 11— 1 1 1 0
H =--d+-c —d-—w' -—c-— — 0 0 0 0 0 0 0 o o H
H 84 8 36 144 727 144 16 H
H o 45 1 5 5 9 9 1 9 1 1—- 9 H
d-—d+—+— —d+—-—c¢ W T W T T W 0 0 0 0 0 0 O
0 64 128 128 64 16 64 256 256 256 256 256 256 256 n
n 1 0 0 0 0 0 0 0 0 0 o 0 O
O 9 9 1-— 1 H
O — —-—w 0 0 0 — 0 0 0 0 o 0
A 16 16 16 16 A
H 0 1 0 0 0 0 0 0 0o 0 o0 0 H
H 9 9 1 1 i
H —w —-—w 0 — 0 0 0 0 0 0 o 0 H
H 16 16 16 16 H
H 2 0 2 0 0 0 = o o o o of
KobExpanded := [ . 16 16 H
01— 8 9 9 — 8l 1 81 81 -9 9— 9 -9 -9 1 1 —f
Hi W+ —-——w - W Wt — T w-— —_ — — 0 0 ——or
M256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 M
H 1 9 9 -1 H
u -—w — 0 — 0 0 0 — 0 0 O 0 O
0 16 16 16 16 0
0 9 9 81 9 9 81 81 81 1 1 9 9 1 -9 90
H —— - W — T W — — — —+ W T T T T T H
H 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 [
H -1 9 9 -1 H
H = — 0 0 0 — 0 0 0 0 0 —H
0 16 16 16 16 [
09 81 1 2 81 9 1 81 9 9 -9 81 9 1 1 9 [
B+ 0w+ —w W —t—w - W — -——w ~——w 0 0 — —H
0 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 0

Specia caseK = 4:

> KobRegul ar := map( unapply( subs( ¢ = 0,x), x), map( sinplify, map( evalc, subs( { d
=0, onega =1, ¢ =0}, evalnmKobExpanded) )))):

>

Manually computed matrix for the regular case

> KobRegul ar Manual := matrix( [[ 9/16 - |1"~2/16, 0,-1/16,0,0,0], [ (81/256)*(I1+1) -
(9/256)*(1~2 - 1), 81/256 + (1/256)*1~2, (-9/256)*(1+1), -9/256 +l/256, 1/256, -9/256
- (1/256)*17],

[1,0,0,0,0,0], [9/16,9/16 +I/16, 0,0,0, -1/16],[0,1,0,0,0,0],[ 9*1/16, 9/16 - 1/16
0,-1/16,0, 0] ]);

1 5 -1 O
o= — 0 0 0 H

H 8 16 B
H45 45 | 5 9 9 9 N | 1 9 1 H
-, > =z, 2, - = _ = _ -4
128 128 16 256 256 256 256 256 256 256 [
g 1 0 0 0 0 0 O
KobRegularManual := 3 9 1 1 -
= —+— 0 0 0 — H

1 16 16 16 16 H

1 O 1 0 0 0 0 H

H 9 9 1 -1 -

0 —I —=—1 0 — 0 0 n

0 16 16 16 16 U

Check agreement with the regular case .
> norn( eval n{submatrix( KobRegular, 1..6,1..6) - KobRegul arManual));
0

Check if the eigenvector for the eigenvalue 1/2 isaregular grid:
> ei genvects( KobRegul ar );

1 -1 1 27 27 1
%,1,{[0,0,0,0,0,0,0,0,0, 1,0,0]}%%, 1,{%),0,0,0,0,0,0,‘, l,—-—l,-l,—‘léﬁ
56 28 8§ 8 8 8

%, 1,{[1,1+|,2,2+|,2+2|,1+2|,3,3+|,3+2|,3+3|,2+3|,1+3|]}%
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1 3 3 1 1
1,9 ,0,0.0.0.0.0,—I,I.—+—I,1,—§%%,1,{[0,0,0,0,0,0,1,1,1,1+|,|,|]}%
2 2 2 2 6

5
%,2,{[0,0,0,0,0,0,0,—|,—4|,9—9|,4, 1]}%
% _ -
5

3 3 3 3 27 15 5 5 15
,0,L,—-—=1,0,—=+—-1,—3-1,———1,0,——+—1,-1+3lI
4 8 8 4 8 8 4 4 8
1 31 31 3 3 15 3 2715 3 3 3
e B B N R e et Pt g
8 8 8 8 8 4 8 8 8 8 8 8 4 8

Eigenvalues of the O-th block for all valences:

> KobZer oBl ock := map( unapply( subs( ¢ =1,"x"), 'x’), map( sinplify, map( evalc,
subs( { d =1, onega =1, ¢ =1}, eval n(KobExpanded) )))):

The largest eigenvalueis 1/4; we will see that the largest eigenvalue of one of the other blocksis always greater than 1/4, and the

dominant eigenvalue is never in the O-th block.

> ei genval s(KobZer oBl ock) ;

1 -1-1-1-1-1111111

256' 32" 128" 16' 64 64’ 4' 4’ 16' 16' 16' 16

Characteristic polynomial of the subdivision matrix

Compute and factor the characteristic polynomial of the blocks of DFT-transformed subdivision matrix. The resulting polynomial is

2 1T
parameterized by c = cos%?E The polynomial has a number of small roots, which do not depend on ¢, and afactor of degree 6. For

illustrative purposes, and to guide us in the subsequent derivations, we compute al the roots of the polynomia numerically, and plot
the magnitudes of the roots. Of course, neither the plot nor the computed values cannot be used in the analysis without additional
verification.
We have already computed eigenvalues for the Oth block, and we can assumethat d = 0
> KobChar pol ynom : = subs( { s"3 = s*(1-¢c"2),s"2 =1 - ¢"2,s"4 = (1-c"2)"2}, factor(
col l ect (charpoly( map( sinplify, map( evalc, subs( s*"2 = 1-c”2, map( sinplify, subs( {
d =0, onmega = ¢ + |*s}, eval (KobExpanded)))))),!|anbda), | anbda))):
> KobChar pol ynom : = factor( map( sinplify, KobCharpolynom);

1
KobCharpolynom := — (32N +1) (128N +1) (1+641)? (-1 + 42880 \*+ 90 A + 576 A’ ¢
72057594037927936
+9216 A* ¢+ 49152 A° ¢ - 18 A ¢ — 5376 A° ¢ + 448 A ¢ + 983040 A° — 304128 A* - 2928 A* - 1048576 A°) (256 A — 1)
(1+16A)

> KobFactor6 : = KobChar pol ynoni (
(32*| anbda+1) *(128*| anbda+1) * (1+64*| anbda) "2* (256*| anbda- 1) *(16*| anbda+1) ) :
> KobFactor6 : = collect ( KobFact or 6/ | coef f (KobFact or 6, | ar‘rbda) | anbda) ;

6 3 297 335 7 183 2
KobFactor6 := A" + —c— A+ -
64 1024 1024 8192 16384 4096 16384 65536
45 9

* %524288 ’ 524288 E)\ 1048576

Compute the eigenvalues; execution of this statement may take awhile.
> Ei genval sList := seq([solve( subs( ¢ = evalf( (n+le-10)/100), KobFactor6))], n =

-100. . 100) :
Convert the lists of eigenvalues to the form suitable for plotting
> EigenvalsPlotLists := seq( [ seq( [-1 + (i-1)/100, abs(op(j,

op(i,[EigenvalsList])))], i =1..201)] ,j=1..6):
Plot of the magnitudes of eigenvalues as functions of c; to see approximately the magnitudes of the eigenvalues for a block m of the

21Tm
subdivision matrix for valence K, draw avertical lineat c= COSET% and find where it intersects the curves in the plot.

> di spl ay(seq(pl ot (op(i,[Eigenval sPlotLists]),color=black), i = 1..6), col or=bl ack,
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axesfont=[ TI MES, | TALI C, 10], labels=[*",""]);

Eigenvalues

The roots of the characteristic polynomial of Kobbelt's schemein general cannot be found explicitly. However, we can obtain enough
information about the eigenvalues to verify C1-continuity. We proove that for any m, k, m=1.. k-1 thelargest eigenvalueisreal
and unique, and that for m# k — 1, 1 the largest eigenvalue is less than the largest eigenvalue of blocks 1 and k — 1. We also show
that the unique largest eigenvalue is asingle eigenvalue in the interval [0.5..0.613], for k> 4.

For the value k = 3, eigenvalues are examined separately. The proof is performed in severa steps:

(2). We show that for c < 0, al roots of the characteristic polynomial P(c, A) are lessthan 0.51 (actually, they are less than 0.5, but
due to numerical nature of our calculations, we have to relax the upper boundary).

(2). We show that for any ¢ =0 .. 1, thereisauniquerea root W in the interval [0.5,0.613], and the function p(c) is C1-continuous and
increases.

(3). We"deflate" the characteristic polynomial (that is, divide by the monomia A — ) in symbolic form, with p and c as
indeterminates. Next, we verify that for all p=.5...613, and corresponding c([) , that al roots of the deflated polynomial are inside
the circle of radius 0.5 centered at 0 in the complex plane, that is, have magnitudes less than p(c) for any 0 < c. Using p asthe
primary parameter isimportant, as ¢ can be explicitly computed from 1, but not the other way.

2 1T 2mTt
Asfork>4, 51< COSE? % the largest eigenval ue cannot possibly correspond to a block m, for which COSET Es 0. From(3), it

2mTt 21
follows that the largest root has to be thereal root p(c) for somec. Asforanyl<m m<k-1, COSET %< COSET % and we

have shown (1) that p(c), increases, and for any ¢ p(c) isthe largest root, we conclude that the largest eigenvalue always corresponds
tom=1,isred, and isthe unique eigenvalue in the range 0.5..0.613.

On steps 1 and 3 we have to show that roots of a polynomial are inside acircle of radius r in the complex plane. Thistask issimilar
to the task of establishing

1
stability of afilter with the transfer function 5 where & z) isapolynomial. Such filter isstable, if al roots of the polynomial are

inside the unit circle.

A variety of tests exist for this condition; for our purposes, the algebraic Marden-Jury test is convenient. With aproporiate rescaling of
the variable it can be used to prove that all roots of a polynomial areinside the circle of any given radiusr. Asthe test requires only a
simple agebraic calculaion on the coefficients of the polynomial, it can be easily performed for symbolic and interval coefficients.
Finally, we compute the largest root of the characteristic polynomia numerically for all valences up to some maximum. For each
computed root, we verify that that the precisionis at least € =.1 10™°: we use interval arithmetics to evaluate the polynomial at Ay— €
and A, + € and assert that the sign is guaranteed to change.  There may be more than one root: we still have to prove that there is only
asingleroot in the computed interval and that the rest of the roots are smaller. The maximal valence N is chosen in such away that for
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21t
N cos%wﬁs"sufficiently close" to 1. Thismeansthat for al K >N corresponding eigenvalue differsfrom thelimit value A by

no more than € , where € issmall enough for usto establish, using interval arithmetics, that the Jacobian of the characteristic map is
positive for eigenvectors computed using formulas derived below for al A intheinterval [A, - €, A ] . The actual computation of the
Jacobian and evaluation of the necessary contraction functionsis performed in the C part of the code. We use maximal value 3000
here, just in case ( below we see that 1450 is sufficient to require theinterval for A with the size of only .1 107,

Marden-Jury test

Mar denJury(a, var, rootrad) Compute Marden-Jury tablefor apolynomia p invariable var , with variable rescaled by
rootrad.
Used to verify that al roots of a polynomia are inside the circle of radiusr.
> MardenJury := proc(a::polynom, var::name, rootrad)
local i, k, M, acol, thl, restable;
M :=degree(a, var);
for i fromOtoM dothl[0,i] := coeff(a, var, i )(rootrad™(i — M) od;

for i toM do
for kfromOtoM —idothl[i, k] :=thl[i—1,0]0bl[i -1, k] —=tbl[i -1, M-k-i+1]0bl[i-1,M~-i+1] od
od;
for i toM dorestable[i] :=thlI[i, 0] od;
eval(restable)

end
Interval version of Marden-Jury test
> IntervMardenJury := proc(a::polynom(interval ), var::name, rootrad::numeric)
local i, k, M, acol, tbl, restable;
M := degree(a, var);
for i from0OtoMdothl[ O, i] := Interval_times( coeff(a, var, i), rootrad®(i — M)) od;
for i toM dofor kfromO0toM —idotbl[i, K] := Interval_add( Interval_times(tbI[i — 1, O], thI[i - 1, k]),
Interval_times(—1, Interval_times(tbl[i -1, M —k—i+ 1], thl[i -1, M —i +1])))
od
od;
for i toM dorestable[i] :=thl[i, O] od;
eval(restable)

end
>

Deflation

z
def | at e(p, var, root val ) compute the coefficients of the polynomial %; itisassumed that pisdivisibleby z- z,

var isthe name of thevariable, r oot val istheroot.
> deflate := proc(p::polynom, var::name, rootval)
local i, dp, r;
dp:=0;
r := lcoeff(p, var);
for i from degree(p, var) — 1 by -1to0dodp :=dp + rCvar’i; r := coeff(p, var, i) + rootval [T od;
dp
end

Analysis of the eigenvalues

Now we perform steps 1-3 described above.
(2). We show that for c< 0, al roots of the characteristic polynomial P(c, A) are lessthan 0.51 (actualy, they are less than
0.5, but due to numerical nature of our calculations, we have to relax the upper boundary).

> Mitab : = MardenJury(KobFactor6, |anbda, 51/100):

> Mitablnterv := map(unapply(’'inapply’ ( dummy, c¢ ),dumy), Mtab ):

> TestNegativeC := proc(cstart::numeric, cend::numeric, cstep::numeric)

local MJ, cx;
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global MJtablnterv;
for cx from cstart by cstep to cend do
MJ := map(unapply( dummy([ cx, cx + cstep] ), dummy), MJtabinterv);
if 0<op(2, MJ[1]) or op(1, MJ[2]) <0or op(1, MJ3])<O0or op(l, MJ4])<O0or op(1, MJ5])<0or
op(1, MJ[6]) <0 then ERROR(‘test failed for interval = *, [ cx, cx + cstep] )
fi

od;
print(* All tests passed‘ )
end
>
Do tests, adjusting the step in c. Thisis not really necessary -- we can simply take the smallest step, but to save time we use
larger stepsfirst.
Test NegativeC(-1.0,-0.65,0.05);
All tests passed
> Test NegativeC(-0.6,-0.275,0.025);
All tests passed
> Test NegativeC(-0.25,-0.06,0.01);
All tests passed
> Test NegativeC(-0.05,0.,0.005);
All tests passed

(2). We show that for any ¢ =0 .. 1, thereisauniquereal root W in theinterval [0.5,0.613], and the function p(c) is
C1-continuous and increases.

Solve the characteritic polynoia for ¢

> csolutions := [solve( KobFactor6, c)]:

We are intersted in the first solution only; we will verify later that te second one is out of the range [-1..1] for relevant
values of A

> cl anbda : = csolutions[1];

1
clambda = a0 (-6144 \° - 1920 \* + 432\ - 18

+2 J 9437184 \°® + 13238272 A\° - 5451776 \* + 393216 A> + 30784 \* — 3440 A + 81) (-1 + 8) / A’
>

Compute the derivative.
> clanmbdadi ff := sinplify( diff(clanbda, |anbda)):

1
The solution for A = E can be computed explicitly.

> sinmplify( subs( lanbda = 1/2, clanbda));
0
The solution for A =.613 is outside the range.
> clanbdalnterv : = inapply( clanbda, |anbda): clanbdalnterv(0.613);
[1.007236841, 1.007237163]
>
Show that the derivativeis positive for A in [0.5..0.613] (the upper bound is the upper estimate for A(1)
intervedi ff := inapply( clanbdadiff, |anbda):
> for xI from .5 by .004 to .613 do
res:=intervcdiff([xl, xI +.004]); if res; < 0 then ERROR(test failed for interval, [xl, xI +.004]) fi
od;
print(all tests passed)
all tests passed

We conclude that ¢,(A ) increases from 0 to above 1 on [0.5..0.613]; therefore, the inverse increases from 0.5 to approx.
0.613 on [0..1].

The second solution is outside the range of ¢ for this range of A:
> i napply( csolutions[2], |anbda) (0.5, 0.613);
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[-28.12500027, -28.12499976 ]
We conclude that for ¢ > 0 in the interval 0.5..0.613 there is a unique real solution.
(3). We"deflate" the characteristic polynomia (that is, divide by the monomia A — ) in the symbolic form, with y and c as
the indeterminates. Next, we verify that forall c=0.. 1, and for all A =.5 .. .613, dl roots of the deflated polynomial are
inside the circle of radius 0.5 centered at 0 in the complex plane, that is, have magnitudes less than p(c) forany O<c.

Symbolic deflation; if we substitute apair ¢, u(c) we get the deflated polynomial for a specific value of c.
> defl at edkKobFactor6 : = col |l ect ( expand( defl ate(KobFactor6, |anbda, mu)),

| anbda) ;
% %A % 207 15 Zﬁﬁ
defl atedKobFactor6 := A° + ———c ———u——uc+p
1024 ° 1024 16
21 335 B
%4096 8192 16384 1024” 1024”__“ __“ cw%/\

+E5183 L9 BB T, 9, 2 uz-Eu -—u .. “ﬂ .
5536 16384 4096' = 8192' 16384 1024 1024 524288
45 335, 9 o , 183 207 . o 21 15, 3 7,

“s2a288 812" 16382 " C 1024 ©Temszst T102a M TH T ﬁ” C__“ __“ ¢ lezgat ©

Verify that for all cin0..1and p in 0.5.. 0.613 deflated polynomial has roots of magnitude < 0.5
> TestDeflated := proc(Istart::numeric, lend::numeric, Istep::numeric)
local cf, i, MJ, Ix, cinterv, deflatedinterv;
global deflatedMJtablnterv, clambdalnterv;
for i from Oto 5 docf[i] := inapply( coeff( deflatedKobFactor6, A, i), c, 1) od;
for Ix from Istart by Istep to lend do
cinterv := clambdalnterv([ I, Ix + Istep] );
deflatedinterv := 0O;
for i from O to 4 do deflatedinterv := deflatedinterv + eval(cf[ i ](cinterv, [1x, Ix + Istep]) )CA od;
deflatedinterv := deflatedinterv + [ 1.0, 1.0][A"5;
MJ := IntervMardenJury(deflatedinterv, A, .5);
if 0<op(2, MJ[1]) or op(1, MJ[2]) <0or op(1, MJ3])<0or op(1, MJ4])<0orop(l, MJ5])<0or
op(1, MJ[6]) <0 then ERROR( test failed for interval = *, [Ix, Ix + Istep])
fi

od;
print(* All tests passed‘ )
end
> TestDefl ated(0.5, 0.613, 0.0005);
All tests passed
We conclude that in the range ¢ = 0..1, all roots of the deflated polynomia have magnitudes less than 0.5

>

[#] Special case: k=3
Calculation of thelargest eigenvalues with guaranteed precision

This function produces a table of approximate values of the eigenvalue with given precision for use with interval arithmeticsin
the C part of the analysis code; to avoid conversion problems, we write two integers: mantissa + exponent base 10. The last
valueisthe limit value for infinity (computed with ¢ set to 1 in the char. polynomial). The result isa C function written to a
file; if thefile nameis‘default’, then the output iswritten to the standard output.
The argument of the function is valence, the function returns the interval value for the largest eigenvalue. The body isjust a
largeswi t ch statement.
We assume that the exponents for eigenval ues are nonpositive, which is aways the case for Kobbelt’s scheme.
ComputeEigenvalues := proc(N::integer, eps::numeric, fname::string)
local K, intervKobFactor6, intervPi, interve, expandedKobFactor6, approxEV, r, deflatedKobFactor6, i, marTable, cK;
global KobFactor6;

Digits:=15;

intervKobFactor6 := inapply( KobFactor6, A, c);

intervPi ;= Interval_times([ 2.0, 2.0], Interval_arccos([ 0, 0]));
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intervc := inapply(cos( 2C0ntervPi / K), K);
fprintf(fname, ‘virtual Float Eigenvalue(int K) {\n' );
fprintf(fname, * static INTEGER64 EV[] = {\n );
expandedKobFactor6 := subs(c = 1, KobFactor6);
approxEV := fsolve( expandedKobFactor6, A, A =.5 .. 1);
if 0 <op(2, intervKobFactor6(approxEV — eps, 1)) or op( 1, intervKobFactor6(approxEV + eps, 1)) < 0then
ERROR(*fsolve precision failure for infinity* )
fi;
fprintf(fname,  CONST64(%d),CONST64(%d), CONST64(%d),\n‘, op( 1, approxEV — eps), op(1, approxEV + eps),
107(-op(2, approxEV)));
fprintf(fname,  CONST64(0),CONST64(0), CONST64(0), CONST64(0), CONST64(0), CONST64(0),\n* );
for K from 3to N do
if (K—=3) mod 100 = 0 then print(K) fi;
cK = interve(K);
expandedKobFactor6 := subs(c = cos( 200t/ K), KobFactor6);
approxEV := fsolve( expandedKobFactor6, A, A =.25 .. 1);
if 0 <op(2, intervKobFactor6(approxEV — eps, cK)) or op(1, intervKobFactor6(approxEV + eps, cK)) <0 then
ERROR(‘fsolve precision failure for K =*, K)
fi;
fprintf(fname, ' CONST64(%d),CONST64(%d),CONST64(%d),\n*, op(1, eval(approxEV - eps)),
op( 1, eval(approxEV + eps) ), 10" —op( 2, approxEV)))
od;
fprintf(fname, ‘ CONST64(0)};\n return Float(EV[ 3* K] ,EV[ 3* K+ 1] )/Float(EV[ 3*K+2] ) ;\nj\n\n* );
NULL
end

The derivative of the largest eigenvalue with respect to c at infinity.

To establish C1-continuity for all valences, we need to analyze behavior of the magnitude of the largest eigenvalue as the function
of the valence, as the valence increases to infinity ( ¢ approaches 1). We estimate a constant B, such that | A=A, | < B| c-1 |

9 v
—c| ;as
O\

sufficiently close to 1. This constant can be taken to be the maximum of , or, equivalently, as maximum of

i)
—A
ac

the characteristic polynomial is quadratic in ¢, the latter isrelatively easy to compute. Once B is known, we can estimate the sizee
of the interval for A near A_ , such that if the characteristic map isinjective and regular for all these values, it is sufficient to

€ 2T
establish C1-continuity for K, <K, whereE <1-co %

KO
> intervedi ff := inapply( clanbdadiff, |anbda):
Evaluate for al lambdain the range 0.7..1; step 0.001 gives reasonable bounds; this may take some time.
> cdiffinterv :=[];
for i fromO to 299 do
cdiffinterv := Interval _union(cdiffinterv, intervcdiff([0.7+i *0.001,

0. 7+(i +1)*0. 001]));
od: eval (cdiffinterv);

cdiffinterv:=[ ]

[9.984080932, 15.63504120]
> B :=op(2, Interval _reciprocal ( op(1, cdiffinterv)));

B :=.1001594446

For example, if we usetheiinterval of size.1 10° for A_,, we haveto consider all valences up to the valence for which

0!

2T
B‘ cos%? %— 1|<.110®, which turns out to be approx. 1450.

> Interval _tines( B, Interval _add( Interval _cos( Interval tinmes( Interval tinmes( 2,
2*Interval _arccos(0.0)), Interval _reciprocal (1450))),-1));

[ -.9403469458 10°®, -.9403269135 10°°]
Eigenvectors
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Finally, we derive the expressions for the complex eigenvector of the largest eigenvalue of the subdivision matrix. We use the fact that
the largest eigenvalue has multiplicity 1 andisarea eigenvaue of the first subblock B, , of the subdivision matrix.

First part of the eigenvector

> KobBl ock00 : = subs( s*"2 = 1-c”*2, map( evalc, subs( { d = 0, onega = c + |*s},
submatri x( KobExpanded, 1..6,1..6))));
KobBlock00 :=
5 1 1o 1 1 -1 0
—+-cC -_-C¢ -—_-c+__lcs — 0 0 0 =
8 8 72 727 712 16 H
5 45 45 5 5 9 9 9 1 1 9 1 1 9 1 H
+—c+—Is —=-—cC ————-—c-——Is —c+—ls-—— — —c-—-—ls
28 128 128 16 64 256 256 256 256 256 256 256 256 256 256 [
1 0 0 0 0 0 O
9 9 1 1 -1 0
- —-c+—ls 0 0 0 - H
16 16 16 16 16 H
0 1 0 0 0 0 H
9 9 9 1 1 -1 H
—c+ s ——-—c-—Is 0 — 0 0 M
16 16 16 16 16 16 O
The characteristic polynomial of this submatrix is exactly the degree 6 factor of the characteristic polynomia of the whole
matrix:

> collect( sinplify( subs( { s"3 = s*(1-c¢c"2), s"2 =1 - c"2},
char pol y( KobBl ock00, | anbda))), |anbda) - KobFact or 6;
0
> redBl ockO0 : = submatrix ( eval m( KobBl ockO0O - |anbda * &+ ()), 2..6, 1..6):
>v0 := map( sinmplify, subs( { s"3 = (1-c¢c"2)*s, s"2 = 1-c"2, _t[1] = 1}, linsol ve(
redBl ock00, vector([0,0,0,0,0]) )));
v0:2§\ gA(ZczA—l—c+384)\2—Is+384c)\2—25600)\3—2560)\3+2I)\cs—2560l)\3s+384l)\Zs+2c)\)
' %1
IAN(-9s+91c-21c?+2sCc—-2281Ac+13441cA’+240sA— 1441 A + 4096 | A+ 101 - 1344 A% s)
o %1 ‘
2P N-1-Cc+384N°—15+384CcA* - 2560 A’ — 2560 A®+ 21 A cs—2560 | A’ s+384 1 A°s+2CA
9 %1
_9|>\(—8|c—4096|c)\3+105—9|—1443A+144|Ac+12s)\c+4096>\3s+240|A—1344|)\2—12|>\c2)E
%1
%1:=80A+4c*A-16CA - 2112 A°~ 5120 c > — 1+ 576 c A* - 65536 A* + 20480 A°

Verify agreement with the regular case:
>subs( { s =1, ¢ =0, lanbda = 1/2}, eval (v0) );

11 1 1
%,—+—|,1,1+—|,1+|,—+|E
2 2 2 2

Second part, separatereal and imaginary parts

Now we compute the second part of the vector:
> KobBl ock10 : = submatri x ( KobExpanded, 7..12, 1..6);

1,

1
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] 9 9 O
H — 0 — 0 0 0 H
H 16 16 H
H1— 8 9 9 — 81 1 81 81 -9 9 9 —
O0—W+—-""—w ~————W+— W+ — — ———— W]
] 256 256 256 256 256 256 256 256 256 256 256 [
] 1 9 9 N
H - E () E 0 E 0 0 H
KobBlockl0 = 1 9 9 81 9 9 81 81 81 [
0 - W — - - — — — N
N 256 256 256 256 256 256 256 256 N
] -1 9 9 O
] — — 0 0 0 — N
- 16 16 16 -
H 9 81 1, 8 9 1 81 9 9 -9 81 H
0w+ W T w0 —T T W T — A
0 256 256 256 256 256 256 256 256 256 256 256 O
> KobBl ocklll anbda : = submatrix ( eval m{ KobExpanded - | anbda * &+ ()), 7..12,
7..12);

1 ]

-—=A 0 0 0 0 0 H

16 B

-9 9 1 1 — H

— -—=-\ — 0 —w [

256 256 256 256 [

-1 ]

0 E -A 0 0 0 H

KobBlocklllambda := 1 1 -9 9 1 L 9 9 [

+—w — —_— — - — — H

56 256 256 256 256 256 256 [

-1 |

0 0 0 0 -A — O

16 H

9 1 1 H

-—w —w 0 0 — —-—-\d

256 256 256 256

> vl := map(sinmplify, subs( { s*"4 = (1-c”2)72, s"2 = 1-¢c"2, s*"3 = (1-c"2)*s}, map(

sinmplify, map( evalc, subs( onega = 1*s + ¢, evaln( - inverse(KobBl ocklll anbda) &*
KobBl ock10 & v0)))))):

Put together the vector:

> KobEi genvect := vector( [seq( vO[i], i = 1..6), seq( vi[i], i =1..6) ]):

Verify agreement with the regular case:
>subs( { s =1, ¢ =0, lanbda = 1/2}, map( sinplify, evaln( eval (KobEi genvect)) )
)

11 1 1 3313 33 313
e R B B B P P T P R Pt ]

2 2 2 2 22 2 2 2 2
Separate real and complex parts
> KobEi genvect Re : = map( eval c, nmap( Re, KobEi genvect)):

In addition, scale imaginary part by by 1/s
> KobEi genvectI m:= map( sinplify, evalnm( (1/s) * map( evalc, map( Im
KobEi genvect)))):

# Code generation
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Eigenstructure of the L oop Scheme

Denis Zorin, January 1998

In this worksheet we compute the eigenvalues and eigenvectors of the subdivision matrix of the Loop scheme. Thisanalysis repeats the
original derivation of Loop from hisMSthesis. We aso compute eigenvalues and eigenvectors of the modified Loop scheme, which
aways has largest eigenvalue equal to 1/2.

[# Utilities

L oop scheme subdivision matrix, eigenvalues, eigenvectors

> assune( c, real); additionally( ¢ >= -1 ); additionally( ¢ <= 1);

> Loop := matrix( [[ (1 - Kral pha)*d, K*al pha*d, 0, 0],
[ (3/8)*d, 3/8 + (1/4)*c, 0, 0],
[ (1/16)*d, 5/8 + (1/8)*c, 1/16,
(1/16) *(1+conj ugat e(onega)) ],
[ (1/8)*d, (3/8)*(1 + onega), 0, 1/8]
1)
(1-Ka)d Koad O 0 O
0 3 1 ]
Hoo= —+-c 0 0 H
4 8 8 4 H
Loop;:— 1 5 1 1 1 1 —
0 ——=d —+-Cc — Lt Cw
] 16 8 8 16 16 16 [
0 1 3 3 1 [
= R S =
0 8 8 8 8 [
> Loopvar := { onega = ¢ + |*s};
Loopvar :={w=c+1 s}
> eval ues : = eigenval s(subs( { d = 0, op(Loopvar)}, eval n(Loop)));
31 11
evalues:=0,—-+—C, 7, =
8 4 168
> EV : = max(eval ues);
3 1
EVi=—+-c
8 4
> LoopZero := map( evalc, subs( { d =1, ¢ =1, onmega = 1}, eval mLoop))):
> ei genval s( LoopZero);
115
Lo —>-Ka
8 16 8

6
Minimal value of the largest eigenvalue of thefirst block is 1/4; determine he range for a; a clearly should be less than 5/8K and
greater than the following number:

> AlphaCrit := solve( 5/8 - Kralpha = 3/8 + 1/4*cos(2*Pi/K), alpha );
T
—1+cos%—%
1 K
AlphaCrit :=—-=—————
4 K
> evects := subs( s"2 = 1-c¢"2, [eigenvects(map(eval c,subs( { d = 0, op(Loopvar)},

eval n(Loop))))]1);
t'—@+l 1 %1130“26*402§'("'C+s")EH%1 0,0, (I+lc+s), 1 E
evects := 2C A D, 2 adroce5 2 i1 ,L,{[0,0,-1 (I +1c+s),1]}

%6' 1,{[0,0,1,0]}%[0,1,{[1,0,0,0]}]@
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> for i froml to vectdi m(evects) do
if op(1,op(i, evects)) = EV then v := op(1, op(3, op(i, evects))); fi;
od;
> LoopEi genvector := map(sinplify, map(evalc, eval(v)));
2c+13 §c+1+|s%

5+4c¢’2 c+1

LoopEigenvector := %) 1,

Drop thefirst element

> LoopEi genvect or vector( [ seq(LoopEigenvector[i], i = 2..4)]);
) 2c+13 3c+1+ls
LoopEigenvector := 1, V2
5+4c 2 c+1

[# Generate code

M odified L oop scheme subdivision matrix, eigenvalues, eigenvectors

Thisisthe expression for al blocks except Oth; the Oth block is the same as for the standard Loop.

> ModLoop := matrix( [[ (1 - Kral pha)*d, K*al pha*d, 0, 0],
[ (3/8)*d, (1/2)"m 0, 0],
[ (1/16)*d, 5/8 + (1/8)*c, 1/16,
(1/16) *(1+conj ugate(onega))],
[ (1/8)*d, (3/8)*(1 + onega), 0, 1/8]
1)
M1-Ka)d Kad O 0 [
H —d %g 0 0 H
0 8 u
ModLoop := ] 51 1 1 1-—
0 ——=d —+-C — —t+ W]
16 8 8 16 16 16 [
0 1 3 3 1 O
H -d —+-w 0 P =
0 8 8 8 8 O
> meval ues : = eigenval s(subs( { d = 0, op(Loopvar)}, eval n( ModLoop)));
11
mevalues::o,% i
16 8

The admissable range of o is obvious.
> mevects := subs( s*"2 = 1-c"2, [eigenvects(map(evalc, subs( { d = 0, op(Loopvar) , m=
1}, eval m(MbdLoop))))1);

mevects ;= E

[O, l,{[l,0,0,0]}],%, 1,{[0,0,1,0]}%%, 1,{%),1,%+;c,|(—IC+S—I)§%%, 1L{[0,0,-I (I +1c+s), 1]}%
i

> for i from1l to vectdi n(nmevects) do
if op(l,op(i, nmevects)) = 1/2 then mv := op(1l, op(3, op(i, nmevects))); fi;
od;
> ModLoopEi genvector := map( evalc, map(sinmplify, nv));

12 4
ModLoopEigenvector := %) 1, 7 + ; c,c+1+]| s%

Drop thefirst element
> ModLoopEi genvector := vector( [ seq(MdLoopEi genvector[i], i = 2..4)]);
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12 4
ModLoopEigenvector := % = +; c,c+1l+] s%

'# Generate code
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Eigenstructure of the Catmull-Clark scheme

Denis Zorin, February 1998

In this worksheet, we examine the eigenstructure of the subdivision matrices of the Catmull-Clark subdivision scheme. This scheme was
analyzed in the papers by Ball and Storry (tangent plane continuity) and Peters and Reif (C1-continuity). We mostly follow the analysis
found in the latter paper. In addition, we determine the range of coefficients for the extraordinary vertex, for which the schemeis
C1-continuous.

# Utilities

Subdivision matrix

The constants following Peter and Reif , with K replacing n.

> assune( c, real); additionally( ¢ <=1 ); additionally( c >=-1);
CCconst :={ pl = 1/64, p2 = 3/32, p3 =9/16, g1 = 1/16, g2 = 3/8, r = 1/4 };
CCvar := { onega = exp( 2*Pi*I*m K), ¢ = cos( 2*Pi*m K) };

cCoong = ipl=t e el gl pod, 2t
const :={pl=—,p2=_—, p3=—,ql="—,R2=_r="
Ly TSl CE T Cal

HTJ
CCvar :={w:e% “ E,c:cos%n—Kmé

The DFT-transformed subdivision matrix; the order of rowsis different from P. & R. (thereisatypo in Petersand Reif inrow 4,
elements 1 and 3).

>CC:=mtrix( [ [al pha*d, bet a*d, ganma*d, 0, 0, O, 0] ,
[ g2*d, 2*ql*c+q2, ql*(1+conjugate(onega)),O0,0,0,0],
[ r*d, r*(l+onega), r,0,0,0,0],

[ p2*d, 2*pl*c+p3, p2*(l+conjugate(onmega)), p2,
pl, 0, pl*conj ugat e(onega)],

[ gl*d, gl*onega + @2, q2, ql,
ql, 0, 0],
[ pl*d, p2*(1l+onega), p3, pl*(1+onega), p2,
pl, p2 ],
[ gl*d, gl + g2*onega, Q2 , ql*onega, 0, 0, q1]
1);
d Bd yd 0 0 0 0@
2d 2qglc+02 gl(l+w) 0 0 0 o0
rd r(l+w) ro 0 0 0 O0H
CC:=[p2d 2plc+p3 p2(1l+w) p2 pl 0 plwH
1d gqlw+o2 o2 ql gt 0 o0 H
1d p2(1+w) p3 pl(1+w) p2 pl p2 H
1d gl+Q2w 02 gl w 0 0 q1O

> CCeExpanded : = nmap( evalc, subs( { onega = ¢ + s*I, op(CCconst)}, eval (CQ))):
We are primarily interested in m = 1; in this case d = 0 and we ignore the first row and column
> A00 : = submatrix( CCExpanded, 2..3,2..3);

1 3 1 1 1
88 16716° 16
A00 := 1 1
+—c+—1Is -
4 4 4

> A10 : = submatrix( CCExpanded, 4..7,2..3):
> All : = subnmatrix( CCeExpanded, 4..7, 4..7):
> CCZero := map( evalc, subs( { ganma = 1 - alpha - beta, ¢ = 1, onega =1, d = 1,
op(CCconst)}, eval (CC)));
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a B 1-a-B O 0 0 00O
3 1 1 ]
- = - 0O 0O 0O O0H
8 2 8 H
1 1 1 H
- = - 0O 0 0 o0f
4 2 4 i
3 019 3 3 1 g
CCZero:= 32 32 16 32 64 64
1 7 3 1 1 H
6 16 8 16 16 N
1 3 9 1 3 1 3p
16 16 32 32 64 324
17 3 1 1H
— - — 0 0 —O
6 16 8 16 160
Eigenvalues
The eigenvalues of the matrix are eigenvaluesof A, , and of A, ;.
All eigenvalues of A, ; do not depend on ¢ and are less than 1/8:
> map( sinmplify, subs( s"2 = 1-c”2, [eigenvals( All)]));
bei s
"16'8' 32
It can be seen that whenever the eigenvalues are real, one of them is greater than 1/4.
> eigenv := map( evalc, subs( { s*"2 =1 - c¢c"2} , [eigenval S(A00)]));
, 1 5 1 3 1 5 1 /5
eigenv = C+—+—4/C+10Cc+9,—c+-——-—4/c°+10c+9
6 16 16 16 16 16

Make sure that the roots are never equal; then the largest is determined simply by comparing them for any value of c.
> solve( (op(l, eigenv) - op(2, eigenv))”2 = 0);
-9,-1
Figure out which oneislarger.
> if sinmplify( subs( ¢ = 0, op(1l, eigenv) > op(2, eigenv))) then
| anbdal : = op(1l, eigenv);
el se
| ambdal : = op(2, eigenv);
fi;

5 1 1 5
M =—+—c+—49+10c+c

16 16 16
The larger eigenvalue increases with ¢ on theinterval of interest. We conclude that the largest eigenvalue for K > 4 is guaranteed
tobeinthe
1st or Oth block of the subdivision matrix. Thisisaso true for K = 3, because there are only two blocks, excluding Oth, and they are
complex-conjugate.
> solve( {diff(lanbdal, c) > 0, abs(c) < 1});

{-1<c,c<1}
The largest elgenvalues of the Oth block:
> evZero := eigenval s( submatrix( CCZero, 1..3,1..3) );
1 11 2 1 11 2
evZero:zl,—a——+—1/16a —8a—3+8B,—a————\/16a -8a0-3+8p
2 8 8 2 8 8

Determine the ranges for a and 3
Determine when the eigenvalues arereal.
> solve( (4*( op(2, [evZero]) - op(3, [evZero] )))"2 >= 0 );

{5—2a2+a<s}
- <
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1
Determine where the eigenvalues interesect the level )\1% EE which isthe minimal value of the eigenvalue of the first block,

achieved for K = 3.
> sol ve( abs(op(2, [evZero])) = subs( ¢ = -1/2, |anbdal) );

9 117 1 13 9 45 1 5
a=a,B=——a+———a4/17 +—4/17}, =—a+—+-0417 +—4/17, 0=
{ B 4 64 4 64 Al 4 64 4 64 }

9 117 1 13 9 45 1 5
{B=-—a +__:10M/17 +6—44/17,a:a},{B:Za +a+zaq/17 +6—4vl7,0(=0(}

4 64
> solve( abs( op(3, [evZero])) = subs( ¢ = -1/2, lanbdal) );
9 117 1 13 9 45 1 5
=——a+—-—a17+—4/17,0=0a},{B=—a+—+—0417 +—4/17,0 =0
tp 4 64 4 64 3P 4 64 4 64 )

The parabolais the boundary of the region where the eigenval ues are complex.
> solve( ( op(2, [evZero]))"2 - (op(3, [evZero]) )"2 =0 );

IR S
{B_B a 0(,(1—(1},{0(—4,[3—[3}

1
The following plot shows the region in the a — 3 plane where the eigenvalues of Oth block are less than )\1% E% For the
coefficients a, 3, yto be positive, a and 3 have to beinside the triangle [0,0], [1,0], [0,1].
1
For the magnitudes of eigenvaluesto beless than )\1% E% they have to be in the grey region, the equation of the line delimiting

theregionis
9a 117 1la4/17 134/17

- +
4 64 4 64

> with(plots): display( PLOT(POLYGONS([[1,0], [1,1], [0,1]], COLOR(RGB, 1.0,1.0,1.0),
STYLE(PATCH))), contourplot( max(abs(op(3, [evZero])), abs(op(2, [evZero]))), alpha =
0..1, beta =0..1, grid = [20,20], contours = [subs(c = -1/2, lanbdal)], filled=true,
coloring=[grey, white]), plot( 3/8 - 2*alpha*2 + alpha, alpha =0..1, 0..1, color =
white), plot( 1-al pha, alpha = 0..1, color = black) );

0.8+

beta

0.2

alpha

Eigenvalue summary. Whenever the coefficientsa and B are in the region depicted above, the largest eigenvalue of the
subdivision matrix is the eigenvalue of the first block, and it is greater than any other eigenvalue of the subdivison matrix.
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Eigenvector
The eigenvector of A, , canbe immediately seen from the matrix.
>v0 :=][ 4*lanbda - 1, (1+ c + I*s) ];
VvO=[4A-1,1+c+]5]

Invert A, | —Al

> Allinv := map( sinmplify, subs( s”"2 =1 - c”2, eval (map( expand, eval n(inverse(
eval m(All - lanbda*& ()))))))):

computev, as —(A; ; —A 1) Ay Vg

>vl := map( sinplify, subs( { s"3 = s*(1-¢c"2), s*2 = 1-c"2}, map( expand, eval n{
-Allinv & Al0 & vO0 )))):

We do not substitute the value for det A, ; —A |
> CCEi genvector := vector( [ vO[1], vO[2], vi[1], vi[2], vi1[3], vi[4]] );

~60 A +3+16 CA”+20 CA + 288 \°
256 \° 40\ +1
1024 ¢ A + 1024 | sA®+ 6144 A% + 1152 c A+ 1120 | SA° =384 \°~ 156 CA 96 A — 196 | SA +6+5¢c+51's 2
(256 \* - 40\ +1) (-1 +16\) '
49152 \* + 49152 ¢ A* + 49152 1 sA* + 77056 ¢ A° + 256 ¢ A® + 76800 | s A° + 76800 A° + 256 | sA® ¢ + 400 ¢ \?
+4001 sA” c - 11808 A* - 11808 | SA* - 11408 ¢ A”+ 100 2 A + 60 A + 100 | SAC+ 160 CA +60 1 SA +15+15c+151s
)/((16384)\3—2816)\2+1047\—1)(—1+16)\)),(1024)\3+6144I sA®+6144cA®-3841sA°+32 2 A% - 384 C A
+1120)\2+32Is)\zc—96c)\—96ls)\+4OIs)\c+40c2)\—196)\+5+6ls+6c)/(—1+56)\—896)\2+4096)\3)

E

Verify that the vector is correct in the regular case.
> map( sinplify, subs( { lanbda = 1/2, s =1, ¢ = 0}, eval (CCEigenvector)));

[L,1+1,2,2+1,2+21,1+21]

CCEigenvector := Eﬂ)\ -1,1+c+1s,2

# Code generation
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