
EJAVA | CAUSAL EXTENSIONS FOR JAVA

Alexandre Santoro

Walter Mann

Neel Madhav

David Luckham

Technical Report: CSL-TR-98-768

(Program Analysis and Veri�cation Group Report No. 79)

August 1998

This project is funded by DARPA under Air Force Rome Labs Coop-Agreement

number F30602-96-2-0191 and under SRI, subcontract number C-Q0545.

eJava | Causal Extensions for Java

Alexandre Santoro Walter Mann Neel Madhav David Luckham

Technical Report: CSL-TR-98-768

Program Analysis and Veri�cation Group Report No. 79

August 1998

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Programming languages like Java provide designers with a variety of classes that simplify the

process of building multithreaded programs. Though useful, especially in the creation of reactive

systems, multithreaded programs present challenging problems such as race conditions and syn-

chronization issues. Validating these programs against a speci�cation is also not trivial since Java

does not clearly indicate thread interaction. These problems can be solved by modifying Java so

that it produces computations, collections of events with both causal and temporal ordering rela-

tions de�ned for them. Speci�cally, the causal ordering is ideal for identifying thead interaction.

This paper presents eJava, an extension to Java that is both event based and causally aware, and

shows how it simpli�es the process of understanding and debugging multithreaded programs.

Key Words and Phrases: eJava, Java, causal model

Copyright c
 1998

by

Alexandre Santoro

Walter Mann

Neel Madhav

David Luckham

eJava{ Causal Extensions for Java
1

Alexandre Santoro Walter Mann Neel Madhav David Luckham

Programming languages like Java provide designers with a variety of classes that simplify the

process of building multithreaded programs. Though useful, especially in the creation of reactive

systems, multithreaded programs present challenging problems such as race conditions and

synchronization issues. Validating these programs against a speci�cation is also not trivial since

Java does not clearly indicate thread interaction. These problems can be solved by modifying

Java so that it produces computations, collections of events with both causal and temporal

ordering relations de�ned for them. Speci�cally, the causal ordering is ideal for identifying

thead interaction. This paper presents eJava, an extension to Java that is both event based

and causally aware, and shows how it simpli�es the process of understanding and debugging

multithreaded programs.

1 Introduction

Programming languages like Java provide designers with a variety of classes that simplify the process

of program development. Some of these classes, such as threads, allow one to easily build concurrent

programs. Multithreading is especially useful in the implementation of event-based systems, where

one thread monitors user events and starts other threads to handle the user's requests. This is the

model behind Java's AWT[GYT96].

Though very useful for this kind of programming, multithreading creates a series of problems,

such as race conditions and synchronization issues. Discussing the issues related to concurrent

programming is beyond the scope of this text. For that the reader is referred to [Ari90] and

[Sch97]. It is su�cient to say that understanding and debugging multithreaded programs is a

complex task.

As an example, suppose that a speci�cation of a Java program requires two threads. Thread

T1 prints sequentially the letters A, B and C, while thread T2 prints the numbers 1, 2, and 3.

The execution of such a program could result in an output such as: A,1,2,3,B,C. Printing to

1A previous version of this paper was published in the Proceedings of the 10th International Conference on Software

Engineering and Knowledge Engineering | SEKE '98, pages 251{260.

1

the standard output, in this case enforces thread synchronization and produces a totally ordered

output.

Now suppose that the speci�cation of the program was modi�ed, adding the restriction that

T2 must only start printing after T1 has printed A. The output of the �rst program apparently

satis�es this condition, though source code analysis would be necessary to verify that T2 actually

waited for T1 before it started printing; it may just be a coincidence that the output is the desired

one. Besides, di�erent runs could shu�e the results di�erently, even if the program was executed

in exactly the same way. Clearly, temporally ordered output is not su�cient for error detection in

thread-based programs.

Attempts have been made in several areas to deal with the problem of validating and analyzing

concurrent programs. Woods and Yang, for example, suggest the use of domain knowledge and

source code analysis as a way to understand program execution[WY95]. Li and Shigo tackled

the problem of understanding complex concurrent systems in the domain of SDL, a language for

describing telecommunication systems[LS92]. Their approach consisted of a framework based on

simulated components trying to capture the characteristics of the actual system. Finally, Tombos et

al. de�ned event-driven reactive component semantics based on event histories in order to describe

the higher level semantics of the system[TGD97]. All these approaches fail in that they base their

deduction of model behavior on domain knowledge, and not just on the model itself. They are

useful for de�ning and understanding systems, but aid only indirectly in the process of debugging

and validation.

Another approach to debugging and checking programs, concurrent or not, has been by the

use of formal language extensions. Two notable examples of such languages are Anna[Luc90] and

Ei�el[Mey88]. Through the use of assertions in Anna, or invariants in Ei�el one is able to de�ne

the expected relation between input and output of objects, as well as the behavior of the object

itself. These constructs are helpful in debugging and guaranteeing correctness, but they do not aid

in understanding concurrent programs.

Rapide[LKA+95] presents an interesting solution to this problem. Rapide is an architectural

prototyping language that, when executed, produces computations: a collection of events and two

ordering relations between them. Events represent any activity of interest in the program, and the

ordering relations are timing and causality. Timing relations describe the temporal ordering of the

events; causal relations attempt to de�ne an ordering for the events based on the \execution
ow"

of a program. For more details on Rapide the reader is referred to [Luc96] and [Luc98].

Computations may be viewed as directed acyclic graphs, with the nodes representing events

and the arcs representing the causal relation between them. This representation makes it possible

2

A

B

C

1

2

3

(a) Independent

A

B

C

1

2

3

(b) Interacting

Figure 1: Speci�cation of behavior

to di�erentiate between program threads that interact and those which do not, as may be seen

in �gure 1. Figure 1(a) shows a computation with two independent threads executing without

interfering with each other; �gure 1(b) shows a computation where the second thread waits for

the �rst one to print before it starts its own execution. This di�erence is clearly indicated by the

presence of the extra arc in the second �gure.

eJava is an attempt to extend Java with the same kind of functionality found in Rapide. It is

an non-intrusive extension of Java that has, as a a side e�ect the production of event information.

This information is then used by a logger, a tool that extracts events and their causal relation from

an event data set to produce a computation. This computation is a representation of the program's

execution and may then be analyzed for errors and unexpected synchronization behavior.

In order to extend Java in this way it is necessary to �rst build a causal model for the language,

a set of rules that de�ne the several causal relations between events generated by an eJava program.

Such a causal model is an collection of rules based on a causal model theory, which is an abstraction

of the important aspects of causal relations.

The rest of this paper presents a subset of eJava, concentrating on the non-distributed aspects

of the language (for a more complete de�nition of eJava the reader is referred to [Man98]). It starts

by presenting computations and causal theory in sections 2 and 3. Section 4 applies this theory

to the de�nition of eJava and its causal model. Section 5 shows an example of an eJava program.

Finally, section 6 summarizes our results and gives some suggestions of future work.

3

2 Computations, Time and Causality

Computations are a convenient representation of the execution of distributed and/or parallel sys-

tems. They consist of a set of events, E , and two ordering relations on E : a temporal relation T

and a causal relation K.

The temporal relation T orders the events in E with respect to one or more clocks. If a and b

are events ordered by T we state that a � b. This relation has several interesting properties. First,

it is both re
exive and transitive. Second, it provides a total order with respect to a clock for the

events; if two events a and b share a clock, then at least one of a � b or b � a must be true.

The causal relation K de�nes an ordering with respect to the cause of an event. Cause here is

distinct from the philosophical or statistical notion of cause. Rather, it is to be thought of as an

ordering based on the control
ow, data
ow and synchronization points of a program's execution.

What exactly determines this ordering is dependent on the causal model used for that particular

language or system. Furthermore, a language or system might have more than one causal model.

Given two events a and b, if a causally precedes b then we say that a� b. This causal relation

has some interesting properties. First, it is irre
exive; events cannot causally precede themselves.

Second, it is assymetric; if a� b is true, then b�a must be false. Third, it is a transitive relation;

if a� b and b� c then a� c. Finally, the causal relation de�nes a partial order; it may be the case

for two events a and b that neither a� b nor b� a is true. In this case we state that a and b are

independent and write it as akb. Thus, with respect to causality, computations may be represented

as directed acyclic graphs as mentioned before. To keep the visual representation of the graph

simple, often only the transitive reduction is shown.

3 Causal Modeling

A causal model of a language or system is a set of rules formalizing the conditions under which two

events are causally related. Causal model theory is based on three concepts: threads, events, and

connections. Once these concepts are de�ned for the system or language being studied, source-code

analysis and/or execution of the system produce a set of events E , a temporal relation T and a set

of connections C. E , T and C, together with the rules and theory presented in this section are all

that is necessary to derive the causal relation K and create a computation.

The theory presented here is a simpli�cation of a more complex model. It makes some assump-

tions that are pertinent only to the eJava case. First, it assumes that one is dealing with a single

program and that the system has only one clock. Second, it assumes that there are no propagation

delays to contend with. A causal modeling theory that addresses these issues is the subject of a

4

future paper.

The rest of this section will present a theory of causal modeling. It will �rst de�ne the basic

concepts of threads, events and connections. Rules are then presented for determining whether two

events are causally related or not.

3.1 De�nitions

Threads

Threads are the producers of events and the basic sequencing components of a system, providing

a total order for the events they produce. Threads, then, are a representation of a \control
ow"

ordering of the system under study.

Associated with each thread is a counter which is incremented according to the causal model.

Whenever a thread generates an event, the current value of its counter is passed along with it.

Events

Events are a representation of the activities of interest in the system being analyzed. What de�nes

an activity as being of interest is system dependent and part of the process of causalmodel de�nition.

In some cases, determining what constitutes an event requires prior knowledge of the system under

study. More often, it can be derived exclusively from properties of the language used to build the

system, as is the case with eJava.

What information an event contains is also system dependent. Di�erent activities might require

that di�erent information be conveyed and thus the elements of an event may vary. Nevertheless,

there is a minimum amount of information that an event must have in order for one to reconstruct

causality. These include a name, the time of creation (according to some clock), the thread that

created the event and the value of the thread's counter.

Formally, events can be de�ned as:

De�nition 1 An event e is a n-tuple containing at least the following elements:

e = (en; et; ep; ev ; � � �) (1)

where en is the event's name, et is the time of event creation, ep is the associated thread and ev is

the value of the thread counter when the event was generated.

Event names may be composed of many parts and convey most of the information necessary for

causal ordering. One part of the name, for example, might de�ne a generic category of an event,

5

while another indicates a speci�c case of that category and a third part could indicate a unique ID

for that event. For example, a system might create an event named ReadVar.Foo.12 where ReadVar

is a generic description of the action (reading a variable), Foo indicates which speci�c variable is

being read, and 12 indicates it is the twelfth access of such a variable. The implication of this is

that event names need not be known before system execution.

Connections

Static connections2 are a way of representing ordering that is due to an exchange of information

between parts of a system and thus represents the \data
ow" ordering component of causality.

This exchange might happen through message passing, data sharing or any other mechanism that

provides a synchronization point between activities happening in possibly distinct threads.

Connections must have at least two elements: a source name and a destination name. Formally

one would state:

De�nition 2 A static connection is an ordered pair with the following elements:

c = (cs; cd) (2)

where cs is the name of the source event and cd is the name of the destination event.

For example, suppose a Java program had a statement of the form A = B;. One might want

to state that there is an ordering there imposed by the fact that A gets the value some thread last

wrote to B. Since the thread that last wrote to B and the the thread executing this statement might

be di�erent, one might want to make this ordering explicit through the use of a connection. Such

a connection could be written as

(Write.B Write.A)

if Write.A and Write.Bwere the names of the events corresponding to writing to A and B respectively.

3.2 Rules

Execution and/or analysis of the system should produce the event set E , the temporal relation T

and the set of connections C. Two basic rules of causality are then applied pair-wise to the elements

of E in order to determine their causal relation. One rule orders the events with respect to threads

and the second orders them with respect to connections. These rules use T and C in order to

determine whether there is a causal arc between the two events or not.
2Dynamic connections are not necessary for the de�nition of the eJava causal model, so they will not be described

here.

6

Thread-based ordering

The �rst ordering in any causal model is imposed by the sequential nature of threads of execution.

Once a thread is de�ned, events generated by that thread are sequential in nature and are thus

fully ordered. The thread counter keeps track of the ordering within the thread. This relation can

be formally de�ned by the following rule:

8 a; b � E : fap = bp; av < bvg) a�b (3)

This rules is intended to guarantee that if a thread generates two events sequentially, incre-

menting its counter value between event generation, the events will be causally ordered.

Connection-based ordering

The second ordering in any causal model is imposed by the connections. If two events are part

of the computation and there is a connection \joining" them, then a causal ordering is de�ned

between them. Formally, this can be expressed as follows:

8 a; b � E ; a 6= b : f9 c � C j an = cs; bn = cd; at � btg) a�b (4)

The conditions are stating that a connection a and b should respect the temporal ordering, and

the connection's delay. It also states their names should properly match the connection's source

and destination event name. Take, for example, the connection shown in section 3.1. Given the

events a = (Write.B 0 t1 4), b = (Write.A 4 t2 4) and c = (Write.B 5 t3 2), applying

the connection ordering rule would show that a� b, but not c� b since it does not satisfy the time

ordering condition.

3.3 Connection Groups

Events are always generated during run-time execution of the system, while connections may be

extracted from three di�erent sources: the causal model for the language, analysis of the programs

source code or run-time execution of the system. Depending on the causal model desired, it might

not be possible to know all connections before execution. This complicates the process of building

the causal relations, especially if one does not have access to the program's source code.

A solution to this problem is collecting connections into groups where event names are identi�ed

by patterns instead of explicitly. Using patterns to describe these connection groups may allow one

to build causal models without having to do source code analysis.

7

For example, suppose the causal model requires that all reads to a variable follow the last write

to that variable. Unless one knew the name of all variables beforehand, these connections could

only be derived at run-time, which would require more complex processing of the event data. Even

if analysis of the source code provided information about all the variables in the system, one would

have to list each connection explicitly. In an eJava program with three variables, A, B and C one

would have to create the connections:

(Write.A Read.A)

(Write.B Read.B)

(Write.C Read.C)

Clearly, this could be simpli�ed if one could specify connection groups. All connections are

based on name matching and since event names are strings, a way to approach this problem is

by using string pattern matching in the event names. This would allow one to causally relate any

events that matched the \in" and \out" patterns of a connection.

Rather than create a new pattern matching language, we borrow ideas from the pattern language

de�ned for Tcl[Ous96]. Of interest to us are just two operators: *" which will match anything,

and \\?", where \?" is a number, which will match whatever the corresponding *" in the previous

pattern matched (i.e, 1 corresponds to the match of the �rst *", 2 to the second, etc.).

Using this pattern language, connection groups would take the form:

(Pattern with * Pattern with \ ...)

Consider the variable read/write connections mentioned above. Supposing that all \write to

variable" events are of the form Write.<varname> and all the \read variable value events are of the

form Read.<varname>, and that these are the only events that have names starting with Read and

Write, one could express the connections as:

(Write.* Read.\1)

which states that a Write to any variable should causally precede a Read to a variable with the

same name.

This notation provides two major advantages. First, it is much shorter than listing all the

possible variable read and write events in the system. Second, it enables one to de�ne connections

without the need for source code analysis.

8

4 eJava De�nition

4.1 Overview

eJava is an extension of Java for the purpose of instrumenting Java programs to generate compu-

tations. All extensions to Java occur within formal comments, special symbols that indicate eJava

constructs but are treated by Java compilers as simple comments (and hence ignored). Thus, every

eJava program is a legal Java program. The execution semantics of an eJava program is identical

to the execution semantics of the underlying Java program. Furthermore, every Java program is

also a legal eJava program; even without explicit user generation of events, the implicitly generated

events yield an overall view of program execution and thread synchronization.

The only lexical extension de�ned in eJava is the formal comment symbol, //+. These formal

comments give the user some
exibility and control over the computation produced. It is through

them that explicit events are de�ned and generated.

Figure 2 shows a view of an eJava system. In it, eJava code (Java code plus eJava's formal

comments) is processed by an eJava compiler to produce bytecode that is then executed in a Java

virtual machine. The output of this machine is two-fold: the results of executing the program

normally (as if it were a regular Java program), and a �le containing event information. This �le

is then processed by a logger, which creates a computation based on the information contained in

the �le and the causal model for eJava. This computation can be used as the input to several

computation-aware tools such as partial order viewers and animators.

The rest of this section de�nes the causal model for eJava, not including those constructs and

de�nitions that relate to distributed programming, which will be the subject of another paper.

Again, the reader is directed to [Man98] for a complete speci�cation of the eJava language. The

components required by the theory presented in section 3.1 (threads, events and connections) are

de�ned here.

4.2 Threads

Threads in the eJava causal model are the same as threads in Java. A thread's name may be found

by calling the getName() method for that class. Each thread has a counter which is incremented

whenever an event is generated that has the thread as its associated thread.

4.3 Events

Events identify any activity of interest in a system. In the case of eJava there are two di�erent

types of events: explicit and implicit. Explicit events are user-de�ned events created by formal

9

eJava Code

bytecode

computation

Java output

eJava output

Java
Virtual

Machine

eJava compiler

logger

Figure 2: An eJava system.

annotations to a Java program, while implicit events are generated automatically.

Whether explicit or implicit, events have the same format and the same attributes. Some of

these attributes are required for reconstructing causality, while others add information that might

be of interest to the developer. For the purpose of building a causal model, the attributes of interest

are:

� name The name of the event. This is used not only for identi�cation purposes but also when

applying the connection rules in in order to create a causal ordering.

� associated thread The thread (as given by the call to java.lang.Thread.currentThread())

executing the statement or declaration that caused the event to be generated. An event is

considered generated by a particular thread if, at the point where the event was generated, a

call to currentThread() would yield that thread.

� time stamp Usually a pair of values denoting when the event started and ended. In eJava

the start time and end time are always the same, so the timestamp is an integer, the value

10

of System::currentTimeMillis() on execution of the statement that caused the event to be

generated.

Of the three parameters mentioned above, two are extracted automatically from the system,

leaving event names to be de�ned by the causal model. Proper name selection is important in that

it will determine the connection rules for the causal model.

4.3.1 Explicit Events

Explicit events are generated by //+ perform statements, which may occur anywhere a Java state-

ment may occur. These statements de�ne the event name and its parameters, and when a //+

perform statement is executed, it causes an event to be generated. The programmer has no con-

trol over the value of the thread, counter and time parameters of the event; these are generated

automatically by eJava.

Explicit events allow the eJava programmer to add more information to a computation. For

instance, the events' parameters may provide additional information on the state of the program at

the point in execution where the event was generated. Explicit events may also be used to indicate

the occurrence of an activity in the system that would not be logged automatically by the implicit

events. For example, explicit events could be used to indicate when the value of a variable becomes

negative.

4.3.2 Implicit Events

Implicit events are automatically generated by the execution of an eJava compiled program. They

are generated when certain language speci�c activities of interest are executed. The following is a

list of these events:

� Object Create.<objname>

This event is generated at the point where the object is created. The creation of an object

is de�ned as the point at which the constructor begins executing. <objname> is the name

returned by a call to the object's hashCode() method.

� Object Finalize.<objname>

This event is generated whenever an object is �nalized. Finalization is de�ned as the point

where the �nalize method for the object is called. <objname> is the name returned by a call

to the object's hashCode method.

11

The creation and �nalization of the \main" object (the static class object that the main

program is part of) are not logged. Creation of objects of prede�ned (or library) classes are

suppressed by default. They may be manually unsuppressed.

� Variable Read.<varname>

This event is generated whenever a primitive variable is actually read. <varname> is the name

of the primitive variable.

� Variable Write.<varname>

This event is generated whenever a primitive variable is actually written. <varname> is the

name of the primitive variable.

Local variables (variables declared in methods) are not logged because they can never be

accessed by more than one independent thread, and thus reads and writes on local variables

do not introduce any causal arcs.

� <M> Call

This event is generated when the method of an object is called (i.e. when the method itself

begins executing). <M> is the method's name.

� <M> Return

This event is generated at the completion of the return from the method (i.e. when the caller

begins executing again.) <M> is the method's name.

� Thread Start Call.<threadname>

This event is generated when the start() method of a thread object is called. <threadname>

is the name of the thread that will be started, as given by a call to the thread's toString()

method. It is NOT the name of the currently executing thread.

� Thread Start.<threadname>

This event is generated each time the run() method of a thread starts. <threadname> is the

name of the thread.

� Thread End.<threadname>

This event is generated each time the run() method of a thread ends. <threadname> is the

name of the thread.

12

� Thread Synchronize Start.<objname>

This event is generated whenever thread synchronization begins (i.e. whenever a synchronized

method or a synchronized statement begins executing). It is also generated right after the

completion of a wait() statement. <objname> is the name of the object whose lock is acquired.

� Thread Synchronize End.<objname>

This event is generated whenever thread synchronization ends (i.e. whenever a synchronized

method returns or a synchronized statement �nishes executing). It is also generated right

before the execution of a wait() statement on an object. <objname> is the name of the object

whose lock is released.

eJava ensures that every object, thread and primitive �eld variable in a program has a unique

name, which is used in the event information. The name of a static class object is simply the name

of the class. The name of every other object (including a thread object) is derived by concatenating

the name of its class and the String image of a call to the hashCode() method of the object. The

name of a static primitive �eld variable is derived by appending the name of the variable to the

name of the class. The name of a primitive �eld variable in an object is derived by concatenating

the name of the object (as de�ned above) and the name of the variable.

In the actual implementation of eJava, only the �rst part of the name (the one until the �rst

'.') was used as the event's name. The rest of the name became event parameters and the logger

is responsible for reconstructing the complete name in order to apply the causal model. This was

done so as to improve the legibility of computations.

4.4 Connection Rules

The �nal step in de�ning the eJava causal model consists of listing the rules for creating connections.

In the case of eJava connection groups are su�cient to complete the description of the causal model.

The implication of this is that no source code or execution analysis is necessary to de�ne all the

connections for the system. This allows one to \hardwire" the causal model directly into the logger.

Here is the connection groups that de�ne the connections in eJava:

1. (Object Create.* Thread Start.\1)

This group establishes that the creation of a thread causally precedes the start of its execution.

2. (Thread Start Call.* Thread Start.\1)

13

This group establishes that the start of the execution of a thread must causally follow the

point in execution of the thread that originated the Thread::start() call to it.

This presents a problem. In Java, any object that has visibility to a Thread object may start

it by calling its start() method. In particular, a thread other than the one that created the

Thread object may start it. If multiple threads independently call the start() method of a

thread, the result is unde�ned by the Java language. Further, starting a thread results in

the call of its run() method, with no indication of which object or thread started the new

thread. Since there is no way for an observer to tell which thread started the new thread,

the Thread Start event causally follows some indeterminate subset of the Thread Start Call

events that satisfy the group above.

3. (Variable Write.* Variable Read.\1)

This group just orders the variable reads with respect to the variable writes. Since primi-

tive variables might be accessed by more than one thread, this group guarantees the causal

ordering between reads and writes.

4. (Variable Write.* Variable Write.\1)

The sequence of Variable Write events denotes the order of writes to the variable. Like in the

previous connection group, this is a result of the fact that more than one thread may have

access to a primitive variable.

5. (Thread Synchronize End.* Thread Synchronize Start.\1)

This group guarantees that any activity that happens in an area of mutual exclusion (i.e. a

synchronized method call) will be totally ordered.

Note that this is only one of many possible causal models. Other models are possible with more,

less, or possibly di�erent connection rules. For example, the model above does not order the events

corresponding to reading a speci�c variable. If it were desirable to have this ordering explicit in

the model it could be achieved by adding the group:

(Variable Read.* Variable Read.\1)

Di�erent causal models would allow one to interpret the same set of events in di�erent ways and

gives one the ability to explore the program space in a new way.

14

5 Example

5.1 Description

Suppose one wants to use eJava to build a system that models a �sherman and a �sh. The

�sherman's behavior is quite simple: he �shes until he either catches a �sh or gets tired of waiting.

Either way, when one of these two condition is met he goes home.

The �sh is not as lucky. Its life consists of swimming until it �nds some food and eats it. The

problem is that the food is either the �sherman's bait or toxic waste. Whatever he eats, the next

thing the �sh does is die.

One way to implement this code is by having two di�erent threads, one for the �sh and one for

the �sherman. During execution each thread will produce explicit events indicating its state3: the

�sherman thread will either be \�shing" or \going home;" the �sh thread will be either \swimming,"

\biting," or \dying."

5.2 Code

Implementing the speci�cation in eJava led to the code below for the �sherman:

class fisherman extends Thread {

fisherman() {}

//+ action Fish();

//+ action GoHome();

static int tillBored = 100;

public synchronized void run() {

try {

//+ perform Fish();

wait(tillBored);

} catch (InterruptedException e) { }

//+ perform GoHome();

}

public synchronized void do_notify() {

3Though convenient, this is not actually necessary. The same information could be derived from the implicit

events.

15

notify();

}

}

eJava added four lines to the standard Java code. The two //+ action declarations de�ne the

types of user-de�ned events that the class can produce. The two //+ perform statements in the

body of the run() method, when executed, generate the events de�ned by the actions.

The code for the �sh class is:

class fish extends Thread {

//+ action Swim();

//+ action Bite();

//+ action Die();

fisherman the_fisherman = null;

boolean take_bait = false;

fish(fisherman o, boolean bait) {

the_fisherman = o;

was_bait = bait;

}

public void run() {

//+ perform Swim();

//+ perform Bite();

if (was_bait) {

the_fisherman.do_notify();

}

//+ perform Die();

}

}

Again, it is straightforward: //+ action declarations de�ne the events the class may produce,

while the //+ perform statements generate those events. Note that whether the �sh will eat the

bait or the toxic waste is determined by a parameter in its constructor just for convenience; the

program might as well have used a random number generator in order to decide which action to

take.

Finally, the main code for the example is:

16

public class test {

public static final void

main(String []args)

{

fisherman CaptainBob =

new fisherman();

CaptainBob.start();

fish Goldie =

new fish(CaptainBob, args.length>0);

Goldie.start();

}

}

It is straightforward Java code, with nothing special about it. It just creates instances of each

class and starts them. The program terminates when all threads �nish running. It also takes as

a command line argument to determine whether the �sh will bite the bait or the toxic waste (no

arguments, toxic waste; any argument, bait).

5.3 Results

Before going into the results of executing the eJava program, let us discuss what would happen if it

had been compiled by a Java compiler, with print statements where there currently are //+ perform

statements. The result would be a totally ordered list of events that would not produce a complete

set of information. Since the �sh bites before knowing what happens, extra print statements are

necessary to determine what caused the death of the �sh. As for the �sherman thread, it never

knows why it quit the wait process and therefore is unable to inform if there was a bite or not.

Clearly, more code would be necessary to provide all this extra information.

Execution of the same program under eJava creates the computation in �gure 3. This compu-

tation contains all the events, both the user-de�ned and implicit ones. It includes events for object

creation, thread synchronization and variable access. The causal ordering derivation is also quite

simple. The edges labeled with an A indicate the causal arcs that are due to connection rule 2.

The arcs labeled B are due to connection rule 5. All other arcs are a result of applying the thread

ordering rule.

Though �gure 3 gives a good idea of what goes on during the execution of the eJava program,

it goes into a little bit too much detail for ease of understanding. This problem can be easily solved

by �ltering the computation so that it contains only the user-de�ned events. This leads to the

computations in �gure 4. In this �gure it is obvious which one is the computation in which the �sh

17

Object_Create

Object_Create Thread_Start

Thread_Start

Swim

Fish

Thread_Start_Call

Thread_Start_Call Thread_Synchronize_Start

Thread_Synchronize_Start

Thread_Synchronize_Start

Variable_Write

Bite

Die

Thread_EndThread_End

Thread_Synchronize_End

Thread_Synchronize_End

Thread_Synchronize_End

do_notify_Call

do_notify_Return

GoHome

Variable_Read

A

A

B

B

Figure 3: Complete computation for biting case.

18

Swim

FishBite

Die GoHome

(a) Bait

Swim Fish

Bite

Die GoHome

(b) Toxic waste

Figure 4: Reduced computations

bites the bait and which one is the computation in which he eats the toxic waste. As can be seen, the

program unambiguously de�nes what happened during execution, making the thread-interaction

(when and if it happens) explicit.

6 Conclusion

This paper presented the de�nition of an extension to Java called eJava. Java was extended with

causal semantics which, without any loss of functionality, resulted in program executions that

generated computations. These computations are much more descriptive of what happens during

the run of a program, which made understanding (and therefore debugging) multithreaded programs

easier. Maybe the greatest bene�t of computations and eJava is the ability to easily identify the

points where threads interact, either through variable sharing or synchronization methods.

Computation-producing, causality-aware programming languages and systems provide many

other bene�ts than easier debugging of concurrent systems. First, they allow one to build formal

models of systems that are more descriptive. The partial-order nature of computations allows one

to specify independent components of the system, as well as make explicit the points of interaction.

The computations generated by such languages also allow one to visually identify the parallel

components of a system as well as its bottlenecks. These characteristics, as presented in the

Rapide language, have been used to build an executable standard for the SPARC-V9 instruction

set architecture[SPL95].

One other great advantage of computations is that one can use maps to build new computations

in order to validate systems[GL92][Mel90]. Maps are objects that take computations as inputs and

produce computations as output. Maps look for speci�c event patterns in the input computation

and when a match is found add events to the output computation. Parameter values from the

pattern match may be used in the creation of the output events.

19

Maps can be used for multiple purposes. First and foremost, they allow one to create compu-

tations that are an abstraction of the input computation. For example, in the SPARC-V9 model

mentioned earlier, all the events that make up one instruction could be abstracted to one event

corresponding to the whole instruction. A series of maps could then be used to provide di�erent

views of the same system.

Another use of maps is that they are an easy mechanism for building automatic constraint

checking tools that not only verify timing constraints, but also guarantee that independence and

parallelism is respected. For an example of such an application of maps the reader is referred to

[Ken96].

The authors believe that computations are a useful, information-rich way of presenting informa-

tion about the behavior of distributed and concurrent systems. Current work is under way by the

Program Analysis and Veri�cation Group developing tools for producing, viewing and analyzing

computations.

7 Acknowledgements

The authors would like to thank James Vera, John Kenney, and the other members of the Program

Analysis and Veri�cation Group of the Computer Systems Laboratory at Stanford University for

their help and support in the development of eJava.

References

[Ari90] Moti Ben Ari. Principles of Concurrent and Distributed Programming. Prentice-Hall,

1990.

[GL92] Benoit A. Gennart and David C. Luckham. Validating discrete event simulations using

event pattern mappings. In Proceedings of the 29th Design Automation Conference

(DAC), pages 414{419, Anaheim, CA, June 1992. IEEE Computer Society Press, Best

paper award.

[GYT96] James Gosling, Frank Yellin, and Java Team. The Java Application Programming In-

terface Volume 2: Window Tookit and Applets. The Java Series. Addison-Wesley, 1996.

[Ken96] John J. Kenney. Executable formal models of distributed transaction systems based on

event processing. Technical Report CSL{TR{96{710, Computer Systems Lab, Stanford

University, November 1996.

20

[LKA+95] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and

Walter Mann. Speci�cation and analysis of system architecture using Rapide. IEEE

Transactions on Software Engineering, 21(4):336{355, April 1995.

[LS92] Xiaofeng Li and Osamu Shigo. A simulation-based SDL support system. In Proceed-

ings of the Fourth International Conference on Software Engineering and Knowledge

Engineering, pages 284{291, 1992.

[Luc90] David C. Luckham. Programming with Speci�cations: An Introduction to ANNA, A

Language for Specifying Ada Programs. Texts and Monographs in Computer Science.

Springer-Verlag, October, 1990.

[Luc96] David C. Luckham. Rapide: A language and toolset for simulation of distributed systems

by partial orderings of events. In Doron A. Peled, Vaughan R. Pratt, and Gerard J.

Holzmann, editors, Workshop on Partial Order Methods in Veri�cation, DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, pages 329{357. Princeton

University, 1996.

[Luc98] David C. Luckham. Rapide: A language and toolset for causal modeling of distributed

system architectures. In Proceedings of the Second International Conference on World-

Wide Computing and its Applications, pages 88{96. Springer-Verlag, 1998.

[Man98] W. Mann. ejava: An extension of java for event generation. Technical Report CSL{

TR{98{757, Computer Systems Lab, Stanford University, apr 1998.

[Mel90] Sigurd Meldal. Supporting architecture mappings in concurrent systems design. In

Proceedings of Australian Software Engineering Conference. IREE Australia, May 1990.

[Mey88] B. Meyer. Ei�el: Reusability and Reliability. In Will Tracz, editor, Software Reuse:

Emerging Technology. IEEE Computer Society Press, 1988.

[Ous96] John K. Ousterhout. Graphical Applications with Tcl and Tk. Professional Computing

Series. M and T Books, 1996.

[Sch97] Fred B. Schneider. On Concurrent Programming. Graduate Texts in Computer Science.

Springer-Verlag, 1997.

[SPL95] Alexandre Santoro, Woosang Park, and David C. Luckham. SPARC-V9 Architecture

Speci�cation with Rapide. Technical Report CSL{TR{95{677, Computer Systems Lab,

Stanford University, September 1995.

21

[TGD97] Dimitrios Tombos, Andreas Geppert, and Klaus R. Dittrich. Semantics of reactive com-

ponents in event-driven work
ow execution. In Proceedings of the Ninth International

Conference on Advanced Information Systems Engineering, pages 409{422, 1997.

[WY95] Steven Woods and Qiang Yang. Understanding as constraint satisfaction. In Proceedings

of the Seventh International Workshop on Computer Aided Software Design, pages 318{

327, 1995.

22

