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Abstract

This report presents the design of a 64-bit integer multiplier core that can perform 32-

bit or 16-bit parallel integer multiplications(PMUL) and 32-bit or 16-bit parallel integer

multiplications followed by additions(PMADD). The proposed multiplier removes sign and

constant bits from its core and projects them to the boundaries to minimize the complexity

of base cells. It also adopts an array-of-arrays architecture with unequal array sizes by

decoupling partial product generation from carry save addition. This makes it possible to

achieve high speed for 64-bit multiplication. Two architectures, which are done in dual-rail

domino, are tested for functionality in Verilog and simulated in HSPICE for TSMC 0.35�m

process. The �rst architecture is capable of both PMUL and PMADD. The estimated delay

is 4.9 ns(excluding a �nal adder) at 3.3V supply and 25c with an estimated area of 6.5

mm2. The second architecture, only capable of PMUL, has an estimated delay of 4.5 ns.

Its estimated area is 5.2 mm2.
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1 Introduction

Current CPUs with MultiMedia eXtension(MMX) instructions exploit sub-word parallelism

by employing programmable datapath. One example is four parallel 8-bit adders imple-

mented with a 32-bit adder with programmable carry chains.

A multiplier is a basic arithmetic unit that could potentially use the sub-word paral-

lelism. It is composed of three major blocks: an array of multiplexors to generate partial

products, carry save adder(CSA) arrays or trees to sum partial products, and a �nal adder.

An N-bit multiplier(no encoding) consists of roughly NxN multiplexors, (N-2)xN carry save

adders, and a 2N-bit carry propagation adder(CPA). It is a su�cient number of elements

to build at least M (N/M)-bit multipliers where N is divisible by M. For instance, a 64 bit

multiplier, composed of 64� 64 multiplexors, 62� 64 CSAs, and a 128-bit CPA, can build

2 32-bit multipliers since they only require 2� (32 � 32) multiplexors, 2� (30� 32) CSAs

and 2 64-bit CPAs.

A set of MMX instructions involving multiplication can be catagorized into two groups.

The �rst kind is parallel multiplication of 16-bit or 32-bit integers(PMUL) shown in �gure 1.

The second, �gure 2, is parallel multiplication followed by addition of the multiplication

results(PMADD). To achieve these operations, the datapath of a multiplier has to be par-
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titioned into smaller size multipliers. We refer this as a partitionable multiplier in this

report.

The design of a partitionable multiplier introduces new problems that were not come

across in the design of an unpartitionedmultiplier. First, the most important question is how

we can minimize the complexity that is added to an unpartitioned multiplier. For instance,

several operation mode, such as 64-bit, 32-bit, or 16-bit, complicates multiplexor design.

It is because a multiplexor cell that generates a Booth encoded output f�2M;�M; 0g in

64-bit mode, now should be able to generate a constantf0 or 1g, or a sign bit in another

mode. The complexity is interpreted as more wires and gates per cell, which increases area

and degrades performance. Second, how we can guarantee the correctness of operations is

another crucial issue. The results of smaller multipliers located inside the core are likely

to interfere with each other while they are propagated to the boundaries of a multiplier.

It requires a mechanism that prevents the internal results from being corrupted. Third,

researchers[2][3] have shown di�erent trade-o�s between architectures and circuit styles of

a multiplier and have given the best architecture and circuit style based on constraints.

However, it is not clear that a certain architecture and circuit style that best �ts for an

unpartitioned multiplier is the best for the partitionable multiplier due to the complexity

and constraints set by aforementioned operations.

In section 2, background material on multiplication algorithms and multiplier archi-

tectures is presented. In section 3, various design issues including a partition method, an

implementation of various operation mode, and related problems, are discussed. In section

4, two major techniques to solve the problems are discussed. In section 5, two proposed

architectures based on these techniques are compared.

2 Background

2.1 Signed multiplication based on Booth's algorithm

A multiplication is obtained by addition of a certain number of partial products. A partial

product is de�ned as a multiple of a multiplicand. Since the number of addition is directly

interpreted as delay and silicon area, a small number of partial products to start with is

crucial. Without any encoding method, N partial products need to be added for an N-bit

multiplication. Modi�ed Booth's algorithm[1], whose dot diagram is shown in �gure 3,

reduces the number of partial products to dN
2
e or dN+1

2
e by partitioning multipliers into

overlapping groups of 3 bits. Each group is decoded in parallel to select a multiple of the

multiplicand from the set f�2M;�M; 0g. For an unsigned multiplication, an extra row is

necessary to make the result positive. However, for a signed multiplication this step is not

needed. We will focus on the signed multiplication throughout this report.

2.2 Tree vs. Array

While Booth encoding helps reduce a latency by reducing the number of additions, inter-

connection between additions can reduce the latency further by parallelizing the additions.

Trees[6][7] and arrays are two di�erent interconnection schemes. Trees of adders exploit

2
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Figure 5: Delay for various topologies:double precision,Booth 2 encoding,MOSIS 0.8� pro-

cess (a) 10 tracks per channel (b) 20 tracks per channel

of arrays) outperforms trees in (a) since trees are forced to use static CMOS.Considering

80 to 120 lambda(10-15 tracks per channel) is reasonable bit pitch, tree architecture would

be even worse for a partitionable multiplier since it requires more tracks than an unparti-

tioned multiplier. This research shows that we need two to �ve more tracks needed in a

partitionable multiplier. Hence, in this report we focus on the hybrid architectures such as

an array of arrays and a tree of arrays.

3 Design issues

3.1 Parallel multiplication(PMUL)

In many design, multiplicand and multiplier bits are running perpendicular to each other.

Figure 6 shows a 64-bit multiplier broken into sub-blocks(smaller multipliers) for 16-bit and

32-bit mode. In 16-bit mode, multiplicand bits run vertically. They are labeled from bit 0 to

63 and broken into a1,a2,a3,a4. Multiplier bits, labeled 0 to 63 and broken into b1,b2,b3,b4,

go through Booth encoders and run horizontally. Each sub-block in (a) represents a 16-bit

multiplier. Groups of multilpicand and multiplier bits with same indices, i.e. a1 and b1,

are crossed in shaded areas. This forces the sub-blocks producing multiplication results

to be placed diagonally. Multiplexor outputs for non-shaded sub-blocks are masked out

to zero. In 16-bit mode, the �rst partial product is f48 zeros, M15,M14,M13,...,M2,M1g.

The 8th partial product is f32 zeros, M31,M30,M29,...,M17,M16, 16 zerosg. The results of

multiplications are generated at the right and bottom sides of shaded sub-blocks. Then,

the results are propagated to the right or the bottom of the 64-bit multiplier. For instance,

the result of a1 � b1 is propagated to the side that is marked as c1. The results of sub-

blocks remain unchanged on their ways to the sides because they are added with zeros from

masking.

One thing that is missing from �gure 6 is all the sign and constant bits that were required

in the signed Booth multiplication, �gure 3. Figure 7 shows superimposed sign and constant

bits on 16-bit and 32-bit mode. As it is pointed out, two adjacent results, i.e. a1� b1 and

5
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a2� b2, are now interfered in propagation because of carries from sign and constants bits.

Figure 8 shows a dot diagram for a 16-bit partitionable multiplier that is programmable

as two 8-bit multipliers. In contrast to �gure 3, all the partial products are lined up so that

a dot �nds the same weight dot in the next row by skipping two spaces to the right. A

black dot represents a regular multiplexor. S,P, and L are de�ned as:

S : (Sign of Booth encoding for a current partial product) XOR (MSB of multiplicand)

P : (Sign of Booth encoding for a previous partial product)

L : a regular multiplexor with 2M set to 0

Overlapping two diagrams in �gure 8 implies that multiplexors in the sign and constant

bit positions become substantially complex. It is readily seen that the complexity of mul-

tiplexors get worse for a 64-bit multiplier. Minimization of this comlexity, therefore, is a

critical issue.

3.2 Parallel multiplication followed by addition(PMADD)

While parallel multiplications(PMUL) use sub-blocks such that the results of smaller multi-

pliers don't have same weight, parallel multiplications followed by additions(PMADD) use

7
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sub-blocks such that the results have same weight as shown in �gure 9. (a) represents 16-bit

parallel multiplications followed by serial additions of four results. This can be thought of

as an inner vector product or a 4-tab �nite impulse response(FIR) �lter. Since all the sub-

blocks have the same weight, the result of the �rst(leftmost) multiplier is added with that

of the second and its result is again added with the result of next multipliers. (b) shows

two separate PMADDs and (c) shows a 32-bit version. These operations are particularly

interesting since all the multiplications and additions can be done in one multiplication

cycle. This mode, however, requires additional attention to several overlapping bits shown

in �gure 9. The tail of P bits(black strips) is overlapped with multiplier sub-blocks(gray

area). In (a), three ovelapping P bits need to be removed from the core and added at the

end using additional carry save adders. In (b) and (c), two and one P bits need to be taken

care of separately. These additional bit don't appear in the critical path since they can be

added in parallel with other carry save additions in the core.

4 Key Methods

4.1 Scheme I: projecting sign and constant bits to the boundaries

Figure 10 shows a dot diagram (a) for 16-bit signed multiplication and two other equiv-

alent ones, (b) and (c). The di�erence between (b) and (a) is that (b) extracts all the

constants from each partial product and adds them back in the form of an extra row.

The equivalence of (a) and (b) can be readily seen by adding 0101010101010110 and
�SS �SS �SS �SS �SS �SS �SS �SS. In (c), all S and P's are also dropped from each partial prod-

uct in (b) and added back at the bottom.

The equivalence provides a designer with the 
exibility of positioning 1, S, and P bits.

Figure 11 shows transformed version of �gure 6 for 32-bit and 16-bit mode using equivalence

(b). The shaded area is a constant vector, 1s and 0s. The con�guration I projects all the

1s to the right or the bottom. The total number of partial products is 33 in which the
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Figure 11: Con�guration I: using equivalence (b)

�rst 32 partial products are generated from Booth 2 encoding and the �nal one is from

dealing with the last P bit in 64-bit mode. The constant vector added at the bottom can

be projected to the left side. However, this wouldn't reduce the height of partial products

because of the last P bit. The advantage of this con�guration is that �rst it makes the �rst

partial product's sign bits same as others. That is, �SSSSM15M14::: becomes �SSM15M14:::.

Second, constant vectors only depend on three di�erent modes, neither multiplicand nor

multiplier, and this requires only a few wires for mode selection bits, which leads to a small

additional area.

Figure 12 shows another con�guration using equivalence (c). In addition to the equiv-

alence (c), it went through an additional step: projecting sign bits placed at the bottom

to the left side. This additional step is necessary for two reasons. First, Booth encoding

outputs, required to generate S and P, are available horizontally. Second, adding a vector

of sign bits at the bottom would increase the number of partial products in a critical path

to 34. The advantage of this con�guration is that it makes multiplexors compact and inter-

ference between results proceeding to the right side can be avoided. However, interference

between the results proceeding to the bottom still remains because in 16-bit mode �SS in

MSB positions, circled in �gure 12, generate carries. Compared to con�guration I, it takes

more area to route Booth encoding signals, 64 wires each side, and multiplicand bits at the

boundary.

In summary, scheme I reduces the complexity of a multiplexor and partially solves the

interference problem.
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Figure 12: Con�guration II: using equivalence (c)

4.2 Scheme II: decouple partial product generation from carry save ad-

dition

Interference between adjacent results can be avoided by dropping two MSBs located at the

boundary of two multiplications. Figure 13 shows the boundary of two multiplications,

a3� b3 and a4� b4. Those two MSBs are enclosed by (). Dotted wires between two partial

products represent sums and carries. A sum goes directly down to the next level and a

carry is shifted one to the left. We can picture each number or character associated with

two incoming and outgoing wires as a (3,2) counter. The validity of this scheme can be

shown by looking at the values of crosscut wires. In the worst case, they are

a: 00 10 10 11 11 11 11 ...

b: 00 11 01 11 11 11 11 ...

c: 01 00 11 01 01 01 01 ...

d: 10 01 00 10 10 10 10 ...

Since d has at most one 1 per (3,2) counter, the result is con�ned within 32 bits. The

dropped two MSBs need to be added by a �nal CPA to get correct results. It is achieved

by either adding 01 or 10 in two MSB positions of a segmented CPA since we dropped �SS.

The importance of this scheme is not only prohibiting interference between two adjacent

results from corrupting the values in con�guration I and II. But, it implies that a designer

has far greater 
exibility to choose an architecture among ones discussed in section 2.2.

Without this scheme, an array-of-arrays architecture is forced to have equal array sizes,
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Figure 13: CSA connections at the boundary

i.e., 8 partial products in 16-bit mode, because otherwise a result of 16-bit multiplication

is corrupted by adjacent one. Optimal sub-array sizes for an array-of-arrays should be

increasing toward the end of an array to match the delay through all the sub-arrays. For

instance, optimal sizes for 27 partial products(IEEE 
oating point standard) are 5-5-7-10.

Our scheme allows di�erent array sizes by decoupling partial product generation from carry

save addition. This makes it possible to use an optimal architecture for 64-bit mode.

5 Proposed architectures

5.1 Array of arrays

5.1.1 Architecture I

This architecture is based on con�guration I, shown in �gure 11, and scheme II. A multi-

plexor, shown in �gure 14, is implemented in dual-rail domino and laid out in 130�� 243�

area using 2 metal layers. Four extra signals are added to an unpartitioned multiplier.

Table 1 shows these signals and how this cell is programmed to act as di�erent cell types.

A cell produces f�2M;�M; 0g if row sel=1. Cell becomes L,P,and S when row sel=0. x

represents don't care condition and mcand[i] represents multiplicand bit at ith position

It chose an array-of-array structure, whose layout is shown in �gure 15, and array sizes

are chosen to be 7-7-8-11 from HSPICE simulation. The numbers are summed up to 33

since we have 32 partial products and one constant vector. Results of Array 1 and 2 are
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Figure 14: Multiplexor for Architecture I

row sel msb lsb inv 1 m m x2

Regular Mux 1 0 x x mcand[i] mcand[i-1]

S 1 0 x x mcand[i] mcand[i-1]
�S 1 1 x x mcand[i] mcand[i-1]

L 1 0 x x mcand[i] 0

P 0 x 1 valid x x

0(mask) 0 x 0 x x x

Table 1: Truth table for multiplexor inputs, Architecture I
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Figure 16: Multiplexor for Architecture II

added by (4,2) combiners. The result is again added with a result of array 3 and array 4

serially. Control signals are routed between arrays. The total number of carry save adders

in critical path is 11.

Two versions were implemented. The �rst is only capable of PMUL which takes rel-

atively small area for control wires between multiplexors. The second can perform both

PMUL and PMADD which takes more area than the �rst for the control wires.

5.1.2 Architecture II

This architecture is based on con�guration II, shown in �gure 12, and scheme II. A mul-

tiplexor, shown in �gure 16, is quite simple compared to architecture I and laid out in

116� � 189� area. A regular multiplexor output of the cell is masked out to 0 by setting a

mask bit.

Again, it chose an array-of-arrays structure. Figure 17 shows the layout. This architec-

ture has an additional area allocated for sign bits and wire routing in the right and left side

of a multiplier core. However, the total area is smaller than architecture I because it has a

smaller core.

The functionality of this architecture is limited to PMUL. That is because sign and

constant bits extracted from smaller multipliers in PMADD have same weights and increase
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the number of carry save adders in the critical path.

5.2 Tree of arrays

This is another architecture that was considered in the beginning. The di�erence between

a tree of arrays and an array of arrays is that sub-arrays are added in parallel in a tree

of arrays. This parallel addition requires four more tracks per channel than the array of

arrays in dual-rail design. At the cost of this additional tracks, a tree of arrays tends to have

slightly smaller number of carry save adders in the critical path. In this design, however, it

turns out that the size of sub-arrays is 8-8-8-9 that has 11 carry save adders in its critical

path. This was the same number of CSAs found in the array-of-arrays architecture. For

this reason, this architecture was not built.

5.3 Simulation results

A delay is measured by simulating a critical path. The critical path is broken into three

segments: clock to a Booth multiplexor's output through a Booth encoder, a Booth multi-

plexor's output to the �rst array, and three stages of (4,2) combiners. We modeled a wire

from estimated length of wires and unit length capacitance and resistance extracted for

TSMC 0.35 �m process. All the fan-outs and wiring loads were taken into account. Table 2

shows the result. Only architecture I is capable of PMUL and PMADD. The simulation

results for architecture I are based on the second version and given in the table. The results

for �rst version, only for PMUL, is not in the table because its area and performance are

worse than architecture II. The architecture II takes much less area than architecture I

and perfroms relatively well compared to an unpartitioned multiplier but is not capable of

PMADD.

unpartitioned Multiplier architecture I architecture II

Area Bit Pitch 102 � 130 � 116 �

Booth Mux 168 � 243 � 189 �

CSA 160 � 160 � 160 �

Total(excl. a �nal adder) 4.2 mm2 6.5 mm2 5.2 mm2

Delay Booth encoder 0.37 ns 0.37 ns 0.38 ns

Booth Mux 0.21 ns 0.35 ns 0.24 ns

Total(excl. a �nal adder) 4.16 ns 4.90 ns 4.49 ns

Table 2: Area and Delay

6 Summary

This report has shown the design of a partitionable multiplier. The main goal of this

research was to increase the throughput for 32-bit and 16-bit multiplication by �nding
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an optimal architecture. It is achieved by two schemes we explained in section 4. Two

di�erent architectures based on these schemes were simulated. The �rst is based on a

little complex multiplexor cell with capability of both PMUL and PMADD and the second

is based on a simple multiplexor cell with its capability limited to PMUL. The increased

throughput for 32-bit and 16-bit PMUL of a partitionable multiplier(architecture II) over an

unpartitioned multiplier were 1.85 and 3.7 while it takes 20 % additional area. The increased

throughput for 16-bit PMADD(four integers) of a partitionable multiplier(architecture I)

over an unpartitioned multiplier was 4.2 with 70 % increased area.
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