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Abstract

Video-on-demand (VOD) refers to video services in which users can request any video

program from a server at any time. VOD has important applications in entertainment, ed-

ucation, information, and adverstising, such as movie-on-demand, distance learning, home

shopping, interactive news, etc.

In order to provide VOD services accommodating a large number of video titles and

concurrent users, a VOD system has to be scalable | scalable in storage and scalable in

streaming capacity. Our goal is to design such a system with low cost, low complexity, and

o�ering high level of service quality (in terms of, for example, user delay experienced or

user loss rate).

Storage scalability is achieved by using a hierarchical storage system, in which video

�les are stored in tertiary libraries or jukeboxes and transferred to a secondary level (of

magnetic or optical disks) for display. We address the design of such a system by specifying

the required architectural parameters (the bandwidth and storage capacity in each level)

and operational procedures (such as request scheduling and �le replacement schemes) in

order to meet certain performance goals.
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Scalability in streaming capacity can be achieved by means of request batching, in which

requests for a video arriving within a period of time are grouped together (i.e., \batched")

and served with a single multicast stream. The goal here is to achieve the trade-o� between

the multicasting cost and user delay in the system. We study a number of batching schemes

(in terms of user delay experienced, the number of users collected in each batch, etc.), and

how system pro�t can be maximized given user's reneging behaviour.

Both storage and streaming scalabilities can be achieved with a distributed servers

architecture, in which video �les are accessed from servers distributed in a network. We

examine a number of caching schemes in terms of their requirements in storage and stream-

ing bandwidth. Given certain cost functions in storage and streaming, we address when

and how much a video �le should be cached in order to minimize the system cost. We show

that a distributed servers architecture can achieve great cost savings while o�ering users

low start-up delay.

Key Words and Phrases: Video-on-demand, video server, hierarchical storage systems,

request batching, distributed servers architecture
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Chapter 1

Introduction

Video-on-demand (VOD) refers to video services in which a user is able to request from

a server any video content at any time. VOD encompasses many applications important

in entertainment, education and advertising, such as movie-on-demand (MOD), news-on-

demand, distance learning, home shopping, various interactive training programs, informa-

tion kiosks, etc.[1, 2, 3, 4, 5, 6, 7, 8] In VOD, a user �rst selects a video �le (such as a

movie, an advertisement, or a piece of news) on a relevant video server. Once the �le is

displayed, the user usually can to a certain extend interact with it through fast-forward,

rewind, pause, etc. However, users generally are not allowed to modify or change the

contents of the �les, i.e., video �les are read-only.

In order to provide VOD services accommodating thousands of video titles and thou-

sands of concurrent users, a VOD system has to be scalable { scalable in storage and

scalable in streaming capacity. Our goal in this dissertation is to address these scalability

issues so as to design a VOD system which o�ers high service quality with low cost and

complexity. The service quality can be in terms of, for example, user delay experienced or

user loss rate.

There are two key elements in the successful provisioning of video services: the design

of the video servers and how video content is delivered to the users through networks.

Previous work has mainly focused on server design, while this dissertation addresses both
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server and network issues in o�ering video services.

In this chapter, we �rst present in Sect. 1.1 VOD application characteristics and perfor-

mance goals in server design. Then in Sect. 1.2 we brie
y discuss some of the previous work

in server design and point out the limitations of existing approaches. Finally in Sect. 1.3 we

highlight our contributions in addressing the storage and streaming scalability in o�ering

VOD services. The contributions are on:

� Achieving storage scalability with the use of hierarchical storage system, in which we

have developed a model which speeds up the design process of a hierarchical storage

system and solves many other storage problems of such kind;

� Achieving streaming scalability by means of request batching and multicasting, in which

we have studied a number of batching schemes, and addressed the channel planning

and pro�t issues in such a system; and

� Achieving storage and streaming scalabilities with distributed servers architectures, in

which we have studied a number of caching schemes and shown the cost-advantage

of such an architecture.

1.1 VOD Application Characteristics and Performance

Goals in Server Design

1.1.1 Applications characteristics

In order to design a practical and useful video server, we need to understand the charac-

teristics of VOD applications. We discuss here four applications characteristics: demand

characteristics, video �les characteristics, user interactions, and performance requirements.

Demand characteristics: Demand characteristics include three attributes: the requests

arrival process, size of each arrival, and the request's holding time.
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� Arrival process | An arrival consists of one or more simultaneous video requests,

each of which asks for the display of a certain video in the database. In other words,

each request demands a video stream from the video server. In a VOD environment,

the arrival process may vary according to the time of day, day of week, or month

of year, or be a�ected by external news (such as Olympic games, good or bad news

around the world, or the academy awards).

Finding a realistic arrival process with both long-term and short-term variations is

generally di�cult, and is often possible only by doing some �eld trials or experiments.

The Poisson process is generally used to model the arrival process for large number

of users, in which the inter-arrival time is modeled as exponentially distributed. The

rate of the exponential function may vary depending on the time of day, or number

of users currently seeing or waiting to see their videos. More general arrival pro-

cesses can be modeled as series-parallel combination of exponential processes, such

as hyperexponential distribution, Erlangian distribution, Cox-phased networks, etc

[9, 10].

� Size of each arrival | The size of an arrival refers to the number of video requests in

each arrival. It may be one-at-a-time or multiple requests at a time. The tra�c of

most applications are characterized by one-at-a-time arrival. Multiple requests per

arrival is also known as \bulk arrival." Some applications have bulk arrivals, such as

distance learning or multiuser training programs, in which multiple users may arrive

at more or less the same time.

� Request's holding time | Request holding time is the total time a user occupies

a video stream, for either seeing or interacting with the video. Depending on the

particular application, the request holding time may be somewhat random (e.g., as

in interactive news), or relatively deterministic (e.g., as in movie-on-demand).

Video �les characteristics: The �le-related characteristics of a VOD application include

streaming bandwidth, size of the �les, number of video titles, and video popularity.
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� Streaming bandwidth | The streaming bandwidth of a video, b0, depends on the

video compression scheme used (e.g., MPEG-I, MPEG-II, motion-JPEG, etc.). It

can range from less than 1 Mbps to more than 10 Mbps. Streaming bandwidth

also depends on the encoding method used (e.g., Constant-bit-rate, Variable-bit-rate,

etc.).

� Size of the video �les | The size of a video �le is the actual storage space the �le

consumes in a storage medium. It may range from �10 MB (advertising clips) to

more than �1 GB (movies). All �les in a VOD application may not be of the same

size. In MOD (movie-on-demand), for example, the �le size is likely to be similar

or \homogeneous," with each �le of about, say, 90 minutes playback time. On the

other hand, �le size in interactive news environment can be rather \heterogeneous,"

depending on the piece of news and whether it is a documentary or not. Somewhere

between the \extremes" may be home shopping, in which �le size may range from

�5 MB to �30 MB (20 seconds to 2 minutes).

Note that the size of a video �le does not necessarily relate to the request's holding

time. This is because users may �nish their displays at any time. Furthermore, some

parts of the video can be repeated many times, other parts may be skipped (e.g., by

fast forwarding or jump command), and the user may pause at any time.

� Number of video titles | Applications targeted to general public are likely to have

more titles than applications for a smaller group of users.

� Video popularity | Di�erent videos have di�erent access frequency. The popularity

of a video is de�ned as the probability for the video to be accessed or chosen by

any incoming request. (The popularity index of a video is proportional to the video

popularity.)

If all of the video titles are equally likely to be chosen by an incoming request, the

video popularity is uniform. Non-uniform video popularity is commonly modeled
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using Zipf or geometric distribution. To explain these models, we �rst arrange the

popularity of all Nv videos in the system in decreasing order. Let the popularity of

the ith video be pi, where 1 � i � Nv.

{ Zipf distribution [11, 12, 13]: In this model, the popularity of the ith video is

proportional to 1=i�, where � is a (real) parameter known as Zipf parameter.

Most models in the literature take � to be 1:0, though according to some actual

rental data, � = 0:271 may be more likely [12]. Given �, we can then express pi

as:

pi = C=i�; (1.1)

where

C =

 
NvX
i=1

1=i�
!�1

: (1.2)

{ Geometric distribution [14, 15]: In this model, the ratio of pi to pi�1 is equal

to a constant, the \skew parameter" � (0 � � � 1). Since pi=pi�1 = �, we can

express pi, where 1 � i � Nv, as

pi =
(1� �)

(1� �Nv)
�i�1: (1.3)

User interactions: In VOD, after a video is displayed, the user may be able to interact

with the video sequence. We describe here four attributes of user interactions: i) modi�a-

bility of video �les, ii) the types of interactions; iii) the frequency of interactions; and iv)

the locality of interaction.

i) Modi�ability of video �les | An application may not allow the general users to modify

its video �les. These read-only applications encompass most of VOD applications,

such as movie-on-demand, home-shopping, interactive news, etc. As the users are not

allowed to edit the �les, there is no write-back tra�c due to �le modi�cation. On the

other hand, in a video editing environment, video �les are constantly being updated or
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created. Video servers for such purpose may have to be designed di�erently, because

of the issues in write-back tra�c and placement of data-blocks.

ii) Types of interactions | Types of interactions refers to the user commands in inter-

acting with the displaying video. Di�erent VOD applications have di�erent types of

interactions. In MOD (movie-on-demand) or distance learning, for example, users

would most likely interact with the videos using VCR commands such as FF (fast-

forward) and RW (rewind). In home-shopping, point-and-select interactive com-

mands will most likely be characteristic. In video-authoring environment, functions

similar to \cut and paste" may have to provided.

iii) Frequency of interactions | Interaction frequency refers to how often a user interacts

with the video displayed. Di�erent applications may vary markedly in terms of the

interaction frequency. For example, the frequency in MOD would be lower (possibly

� 0.1 interaction/min.) than that of home shopping (� 1 interaction/min.).

iv) Locality of interaction | Locality of interaction refers to the time displacement in a

video sequence between an interaction command and the video display-point prior to

the interaction. Certain video, such as a movie or a lecture, is displayed in a certain

sequence if the user does not interact with it. Once a user starts to interact with

the video, the sequence is changed and the video is playbacked at a di�erent point in

the video length. An interaction is said to be \localized" if such new display point

is temporally close to the point prior to the interaction. Some applications, such

as MOD, are most likely characterized by localized interactions, while some others

(e.g., interactive news and home-shopping) are expected to exhibit low locality of

interaction.

Performance requirements: Di�erent applications have di�erent performance require-

ments. We list here �ve such requirements: i) start-up delay, ii) user interactions, iii)

streaming capacity, iv) low loss/blocking probability and v) others.
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i) Start-up delay | We de�ne \start-up delay," Dst, as the waiting time from the

moment when a user initially submits a video request until the moment when the user

begins to see the video. It is therefore the total waiting time before the requested

video is streamed. Obviously, Dst is a random variable whose value depends on where

the user is in the queue, what the user's priority class is, or even the video requested.

We distinguish here start-up delay from the response time of user interactions. While

start-up delay is the waiting time for a user before the requested video is displayed,

the response time of user interactions is the latency from the time of issuing a control

command to the actual scene change in an on-going video session. Therefore, start-up

delay can be longer than the response time of user interactions.

For performance evaluation, one sometimes would consider the average start-up delay

over all requests in the steady state, Dst, or for a certain request class i, D
(i)

st . A

bounded start-up delay or more deterministic delay (in which users are similarly

delayed) may also be of interest.

Di�erent VOD applications have di�erent minimum start-up delay requirements. The

requirement may depend on how long a user sees the video, i.e., the request's holding

time. For example, in MOD in which the holding time is relatively long (' 90 min.),

start-up delay as high as several minutes is acceptable. However, when a user is still

not sure what �le to be displayed and wants some kind of \preview" before making up

his/her mind, the start-up delay for these \preview" video clips should be much lower,

possibly in the range of seconds. For home-shopping or news-on-demand applications,

on the other hand, the start-up delay should be bounded to within several seconds.

While a long start-up delay is undesirable, generally users are willing to wait longer

under the following conditions:

{ Delay guarantee: Users may be more willing to wait if they are sure that they

can watch their videos at a particular time, even if the time is possibly minutes

(or even hours) later. This is the principle behind delay guarantee systems, such

7



as deterministic delay (in which users experience similar delay) or reservation

system, in which users reserve videos to be displayed at a certain later time.

{ Variance reduction and delay estimation: Generally, users are more willing to

wait if they know how long they have to wait, i.e., when the uncertainty in

waiting time is reduced. Providing a good estimate of how long a user would

wait before the display of his/her video is therefore valuable.

{ Delay discount service: Users in VOD are usually willing to pay for the quality

of service they receive, and hence they are more willing to wait if they can enjoy

some kinds of delay-dependent charges.

ii) User interactions | We list two such requirements here: response time of the inter-

actions and control granularity of the interactions.

{ Response time of the interactions: The time elapsed between a user's interactive

command (e.g., FF, RW, etc.) and the actual change of the display scene is

called the response time of the interaction. Di�erent applications have di�erent

requirement in the response time. For interactive news, the response time should

be rather low (in the range of a second or so) while for MOD, the response time

requirement can be more relaxed.

{ Control granularity of user's interactions: In some VOD applications, especially

for movie-on-demand or distance learning, the points at which users are al-

lowed to visit in the video sequence do not have to be exact. Such a coarse

interaction \granularity" may not be acceptable for some applications (such as

home-shopping). A system with very �ne interaction granularity allows users

to go to or pause at virtually any time, while a system with coarse granularity

gates the users to interact at some �xed, speci�ed points in time.

iii) Streaming capacity | Streaming capacity is the maximum number of concurrent

users or the maximum request rate that a server can handle. Di�erent applications
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have di�erent capacity requirement. A large VOD application, such as movie-on-

demand, may have hundreds or thousands of concurrent users, while a smaller local

VOD applications (for company training purpose) would have fewer users, e.g., 10{

100 concurrent users.

iv) Low loss/blocking probability | If an incoming video request cannot be served im-

mediately, the request is blocked. The blocking may be due to a lack of resources

(such as bandwidth or storage space). A blocked request may be rejected for service,

and hence is lost on arrival. A blocked request may also be put into a queue for later

service. Users may leave the system (i.e., renege) while they are waiting, and hence

are lost. Blocked calls or lost calls leads to service dissatisfaction, and frustrated

users may never visit the system again. A low loss/blocking rate is hence essential in

providing high quality of service to the users.

v) Others | A VOD system should o�er acceptable video quality. Di�erent services

may require di�erent video quality depending on the class of the users, application,

etc. Furthermore, the scheduling policies used in a server should be fair. For example,

in movie-on-demand, a user who happens to request an unpopular movie should not

be discriminated in favor of a user requesting a more popular movie, if both of them

are charged the same.

1.1.2 Performance goals in video server design

We state here four performance goals in designing a video server:

Meeting the applications performance requirements: Needless to say, the primary

goal of a video server design is to meet the speci�c applications requirements stated

above. Such requirements include start-up delay, user interactions, streaming capac-

ity, etc., as stated above.

Cost-e�ectiveness: The design of a video server involves trade-o�s among many system
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parameters, such as storage capacity and bandwidth. A video server should satisfy

speci�c application requirements with the lowest cost, i.e., it should be cost-e�ective.

The cost of a VOD server consists of many components such as storage cost (e.g.,

disks or tapes used), bandwidth/communication cost (e.g., disks/tapes drives, bus

bandwidth, etc.), software cost (e.g., the cost of software development), the cost of

the associated peripherals (e.g, interface units or other hardware), etc. Optimal server

design should minimize the cost while meeting the performance requirements.

Scalability: A server should be designed so that it can expand easily to accommodate

more users or video titles.

Ease of design and implementation: A server should not be too complex to design or

implement.

1.2 Prior Work in Server Design

Here we reviewed prior work pertaining to video server design. Most of the work focus on

video servers based on magnetic disks for video storage and streaming. To increase the

storage capacity and streaming bandwidth, more magnetic disks are added in the system.

Such a system hence does not scale well to large volume of storage in excess of terabytes.

In the cases that the server can support terabytes of storage, they are still too expensive

and complex to be used in video-on-demand. We will show how the scalability issue can

be economically addressed with the use of hierarchical storage systems in Chapter 2.

Disk array, also known as redundant array of inexpensive disks (RAID), plays important

role in high performance server system. It was originally proposed by Patterson et. al. in

[16, 17]. Since the disks are con�gured as a unit in RAID, failure in a disk would a�ect the

whole array of disks. The paper talks about how to increase the reliability by introducing

reduncdant data in the system, and discusses the bandwidth issues during R/W and re-

build processes. The strengths and weaknesses of di�erent RAID levels in terms of their
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reliabilities, R/W performance, data redundancy, etc. are further examined in [18, 19, 20].

Ng in [21] addresses the e�ect of the stripe size (on system response time and throughput

performance) and spindle synchronization (on bu�er size) in RAID.

Tetzla� and Flynn review many commercially available video servers or servers under

development in terms of their switch architectures (e.g., IBM Tiger Shark server, Oracle/N-

Cube media server, Microsoft Tiger, etc.) [22]. All systems are based on magnetic disks,

and need more disks or processing nodes when more storage or bandwidth is needed. We

brie
y describe them as follows.

� Microsoft Tiger Video Fileserver [23] | The Microsoft Tiger is a distributed, fault-

tolerant real-time �le server. In the system, a number of computers (\cubs") with the

same type and con�guration of disks are connected together by a high speed network.

Data is striped across all disks and all computers, and is retrieved in a round-robin

fashion according to a slotted schedule (disks walk down the slotted schedule in a

round-robin fashion). There is a central controller serving as the contact point for the

clients, as the system clock master, and as the book-keeper in the system. Reliability

in the system is achieved by data mirroring, in which a block of data having its

primary copy in a disk has its mirrored data declustered among a number of disks.

The measurement in terms of start-up latency with respect to the number of active

streams is presented in the paper.

Similar idea has been applied in server array, in which multiple servers are operated

in parallel to increase the system throughput (storage and streaming capacity are

hence increased by putting more servers in the system). The development of such a

system is discussed in [24, 25, 26], in which video data is striped across a number

of video servers and retrieved synchronously from the servers, which push the data

concurrently to the clients.

� Oracle nCube [27, 28, 29, 30, 31] | NCube is a massively parallel processing super-

computer based on hypercube architecture, scaling up to terabytes of storage with
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thousands of disks. The video server is technologically more advanced and sophis-

cated than the above, with thousands of interconnected processing nodes (each one

consisting of its own memory, I/O channels, caches and I/O channels), potentially

o�ering an aggregate I/O rate of more than hundreds GB/s. Oracle media server

is a multimedia server (handling both data and continuous medium) built on top of

the nCube platform, and hence able to serve a large number of concurrent users. A

connectionless client-server communication protocol is used, and reliability of data

transmission is implemented using positive acknowledgment with retransmission and

timeout.

� IBM Tiger Shark Video Server [32, 33] | The IBM Tiger Shark server system con-

sists of an authoring system, a video streaming unit capable of supporting hundreds

of concurrent users, and set-top boxes. In the system, user's control signals are trans-

mitted using the X.25 protocol, and video �les are delivered through high-speed DS-1

lines. To increase the system throughput, the server uses large disk blocks (256 KB)

which are striped across a number of disks. These servers have been used in �eld

trials by Bell Atlantic, HK Telecom, Cox Cable, and in Japan.

� Starlight's StarWorkTM [34, 35] | StarWorkTM is a digital video networking soft-

ware capable of supporting a wide range of video applications and tens to hundreds

of concurrent users. It uses software striping in which no special RAID hardware is

required. Central to it is the Streaming RAIDTM, a disk access scheduling software

which stripes video data on disks and schedules I/O requests. In [35], several I/O

service disciplines (FCFS, SCAN, Grouped sweeping) and their implications in terms

of memory requirements and user delay are discussed.

� HP AutoRAID [36] | HP AutoRAID is a hierarchical disk-based storage system

with two RAID levels: disk mirroring and RAID level 5. Popular �les are mirrored

for high throughput, while not so popular ones are economically stored as RAID 5.

Though \hierarchical" in nature, there is no data duplication between the two levels.
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Data is transparently and dynamically migrated between the two levels as its data

access pattern and disks utilization change.

Besides the above implementation/development e�orts, much research has also been

conducted on disk-based video servers, which would be used as one of the components in

our design. We brie
y review some of the work here.

The design issues of a multimedia storage server have been overviewed in [37, 38, 39, 40],

including real-time request scheduling, bu�er management, data placement on disks, data

striping, reliability, etc. Gemmell et. al. give some fundamental conditions and bounds in

the bu�er size used in order to guarantee continuous retrieval of data in [41, 42], for certain

retrieval scenarios. The features of a real-time operating system, such as request schedul-

ing, resource allocation and management, and memory management, are reviewed in [43].

Ramakrishnan describes in [44] how various tasks with diverse performance requirements

can be accommodated in a server (e.g., data, real-time �le access with di�erent rate or

quality requirement).

Barnett and Anido in [45] compare the cost of RAID3 and RAID5 in providing video

services. Two types of costs are considered: i) (�xed) system set-up cost (to meet a certain

streaming capacity); and ii) maintaining cost in case disks fail in the system (hence leading

to loss of revenue), for which they formulate as a Markov reward model. They show that

in general RAID5 achieves lower cost than RAID3. Vin et. al. study a predictive admission

policy for multimedia servers, in which a request is admitted only if the extrapolation from

the past server performance indicates that there may be enough resources available for the

request [46]. Mourad and Dan et. al. study in [47, 48] trade-o� issues between memory and

I/O bandwidth. In their schemes, video data is cached in memory for a certain amount

of time and hence future requests may retrieve the data directly from the memory, thus

relieving the load from the disk. Kunii et. al. and Vin et. al. in [49, 50] study how data

block and inter-block gap should be laid out on disks for e�cient real-time access.
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1.3 Highlights of Contributions

In this thesis, we address the provisioning of VOD services with scalable storage and stream-

ing capacities. We �rst study how storage scalability can be achieved by means of a hierar-

chical storage system, and then study how streaming scalability can be achieved by means

of request batching and multicasting. Both storage and streaming scalabilities can be am-

pli�ed in a distributed servers environment. We elaborate more on these contributions in

the subsections.

1.3.1 Hierarchical storage systems

We see from Sect. 1.2 that previous work in server design mainly focuses on systems based

on magnetic disks only. Magnetic disk technology is used due to its high throughput, low

access latency, random data access, and adequate storage capacity. However, magnetic

disks are still not ideal to store large volume of video �les (e.g., > 1000s video �les for

some applications) because of reliability and scalability issues. Furthermore, magnetic

disks nowadays still su�er comparatively high cost | currently, storing a single 90-minutes

movie (' 1 GB) in such a medium can cost more than a hundred dollars. As video �les

can also di�er markedly in their popularities, some of them can be infrequently accessed.

Storing all �les on-line regardless of their popularities is therefore not very cost-e�ective.

Video servers based on hierarchical storage systems provides a cost-e�ective solution.

They consist of both tertiary and secondary levels. Tertiary storage, commonly referred to

as library or \jukebox," is used to store all video �les. The �les are transferred or \staged"

on demand into the secondary level to be displayed. The secondary level in the hierarchical

storage system therefore acts as a \caching" or \staging" platform for video display. As

the media cost of tertiary storage can be orders of magnitude lower than that of secondary

storage, storing videos in the tertiary level is much cheaper. Furthermore, as a tertiary

library can shelve hundreds or even thousands of removable tapes or disks, with each tape

or disk o�ering high storage capacity (�10 { 100 GB), a tertiary system holds large storage
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capacity in the range of terabytes. Therefore, such a hierarchical storage system o�ers low

cost high capacity storage as compared with a system based on magnetic disks only.

In Chapter 2, we consider using a hierarchical storage system for video-on-demand so

as to achieve storage scalability. Our objective is to design such a storage system to meet

certain performance goals, taking into account the applications characteristics (such as �le

sizes and popularity, the requirements in user interactivities like fast-forward (FF), rewind

(RW), pause, etc). The design of a server based on a hierarchical storage system actually

involves many architectural parameters such as secondary level bandwidth, secondary level

storage capacity, tertiary level bandwidth, number of drives, etc., and many operational

procedures including admission control, request scheduling and replacement policies.

Previous work on hierarchical storage systems focuses on its operating schemes, justi-

fying its cost advantage over servers based on using magnetic disks only, and use request

rejection rate as a performance measure (the previous work will be reviewed in the chapter).

Our work di�ers from them in studying, given such cost advantages, how system param-

eters (bandwidth, storage and number of tertiary drives) should be dimensioned so as to

meet a certain performance objective. Our interest is in user start-up delay. We address

the design problem using both simulation and analysis. We have developed a simple model

which leads to e�cient design of such a system. The model can be extended to cover var-

ious operating schemes for di�erent levels of user interactive capability, and a distributed

storage system of the same nature. We have also addressed the in
uence of non-uniform

video popularity on system requirements.

1.3.2 Request batching and multicasting in near video-on-demand

In pure-VOD, each user is assigned its own dedicated unicast stream. Hence users enjoy

great 
exibility in interacting with the server while viewing their videos. However, pure-

VOD does not scale up well with the user population and becomes very expensive when a

large number of concurrent requests have to be accommodated.

In Chapter 3, we address the scalability in streaming capacity. Note that when the video
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content is popular, the use of a single multicast stream serving many users simultaneously

becomes more cost-e�ective. This is accomplished by grouping (i.e., batching) many re-

quests for a given content arriving over a period of time and serving them with a single

multicast stream. This is referred to as near-VOD. Today, request batching is practically

used in many satellite and cable network-based movie-on-demand services. However, the

bandwidth saving as compared to pure-VOD is achieved at the expense of user start-up

delay. Since each user no longer has a dedicated stream, such technique is e�ective when

user interactivity does not have to be 
exible or is not essential, as is the case with such

applications as movie-on-demand.

Three components constitute a near video-on-demand system:

� Video servers | The video servers store a number of movies (characterized by their

duration, popularity and streaming data rate) accessible by the users. Each server has

�nite storage and streaming capacities. Such resources are considered to be always

available and in a sense already paid for. The available streaming capacity may be

partitioned or shared among the movies. In a near VOD system, the main issue is to

appropriately assign the limited streaming capacity to the various requests by means

of batching.

� Network | The network is considered to o�er the multicast channels needed. In a

near VOD system, there may be a certain number of channels that are leased by the

service provider and always available (already paid for), in which case the issue is

the same as for the streaming capacity of the server. On the other hand, multicast

channels may be requested by the near VOD service provider on-demand at some

cost. This is the case when, for example, satellite channels are used or some tolls

are to be paid in order to use a multicast stream. In this case, the issue from the

service provider's point of view is to amortize the cost of the channels and guarantee

a certain level of pro�t.

� Users | The users make requests to view certain movies. These requests are charac-
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terized by the stochastic process representing the arrival in time of a request, which de-

pends on a number of factors (the time of the day, the occurrence of some news/events,

etc.), and the choice of movies, which depends on the movie's popularity (the proba-

bility of selecting the movie). What is important for the users is the waiting time, the

time from when the user places a request until the movie display is started. Depend-

ing on the waiting time incurred, a user may cancel its request and leave the system

(i.e., renege). The reneging behavior of the users is an important consideration in the

design of a near VOD system and the underlying request batching schemes. Many

user reneging models have been considered in the literature, in which the time a user

is willing to wait before reneging is distributed according to some cumulative distri-

bution functions; namely, an exponential function, a truncated Gaussian function, or

a linear function (uniform distribution). However, in practice, there is no real data

on the user's reneging behavior, and the use of any speci�c model has been either

arbitrary, or driven by the need to keep the analysis tractable. In the absence of any

information about user's reneging behavior, it may be appropriate to use a simple

model in which users are willing to wait for a certain amount of time, beyond which

they would not be satis�ed and may be considered reneging with very high probabil-

ity (i.e., reneging function is a step function with a delay limit). In some situations,

the delay limit may be a design choice that the service provider makes and advertises

for the service. A batching scheme in this case therefore should be designed so that

user's delay is bounded by this time.

Previous work on near video-on-demand concentrated on the streaming capacity of the

servers (which is given and already paid for), and therefore addressed the issue of how

the available server channels are to be assigned to requests so as to achieve maximum

throughput; more speci�cally, they considered a certain design goal pertaining to the loss

of requests such as minimizing the loss rate, guaranteeing that loss is uniform across all

movies, or some trade-o� between the two. These studies would be applicable to the case

where network channels are leased and therefore are available (in limited number) and paid
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for prior to service o�ering (previous work on nVOD will be reviewed in Chapter 3).

We consider a near VOD system in which the network channels are acquired on-demand.

Associated with the use of each channel is a certain cost. Under this circumstance, request

loss rate may no longer be the only measure of performance, and minimizing loss rate may

no longer be the only design goal. From the service provider's point of view, pro�t is an

important consideration; and maximizing pro�t while o�ering acceptable user delay (and

by the same token acceptable request loss rate) becomes the important design goal. In

Chapter 3, we primarily consider the case in which the number of on-demand channels that

can be acquired is unlimited. Accordingly, the servicing of requests pertaining to a given

movie is independent of the servicing of requests for other movies, and hence it is su�cient

to consider the single movie case. We do also consider the case in which the number of

available on-demand channels for a given movie is limited and study the e�ect of such

limitation on the system design and performance.

We �rst examine two well-known basic batching schemes, namely, the window-size based

schemes and the batch-size based scheme. We �rst analyze these schemes under the con-

dition that users do not renege and compare them in terms of the number of required

concurrent channels (also referred to as streams), the number of users served per stream

(which translates to revenue per stream), and the delay experienced by a user. In the

window-size based batching schemes, a maximum user delay is guaranteed. This maximum

delay is equal to the batching window size; conversely, if the user reneging behavior is a

step function, then the window-size based schemes with the window size equal to the de-

lay limit would lead to no user loss and thus maximum throughput. Obviously this also

corresponds to maximum pro�t. With the batch-size based scheme, per stream revenue

(and thus per stream pro�t) can be guaranteed. The performance characteristics of these

schemes without user reneging is useful to design a system with a certain delay or pro�t

objective. For example, providers may want to provide a service in which the probability

of the user delay exceeding a certain value d̂ is very low.

We then introduce a new adaptive scheme which combines the key advantage of the
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window-size based schemes (namely guaranteed delay) and the advantage of the batch-size

based scheme (namely guaranteed per stream revenue) by ensuring that when the arrival

rate is su�ciently high (and hence pro�t can be easily achieved), the system guarantees

fairly low delayDmin to the users by batching them according to a window size equal toDmin

(for service competitiveness); but when arrival rate is not so high, the system guarantees

a certain level of pro�t as long as users' delay does not exceed a certain bound Dmax.

The scheme therefore balances service quality (in terms of the user delay experienced) and

system pro�t adaptively.

We then examine the design of near VOD systems with user reneging, driven by the

goal to maximize the pro�t rate (which also corresponds to the pro�t achieved over a long

period of time). System pro�t depends on the length of the batching period: if the period

is too short, many network channels would be used with a few users per channel leading to

high usage cost; as the period increases, the batch size increases, but due to the reneging

behavior of the users, the batch size reaches a limit; thus if the batching period gets too

long, the pro�t rate decreases due to lost opportunities. We �nd the optimum values for

the parameters of the batching schemes to maximize the pro�t rate.

1.3.3 Distributed servers architecture

In Chapter 3, we discussed the use of request batching and multicast channels to limit the

streaming bandwidth required (as well as the communication cost) but at the expense of

user delay. Here we look at decreasing such delay by means of streaming servers which

cache the requested movies locally and stream them to the users. This has the advantage

of providing zero start-up delay to the users. This advantage, however, comes with the cost

of additional servers and storage. It is important to note that depending on the acceptable

user delay associated with request batching, it is possible that the total cost of a distributed

servers architecture be yet lower.

It is considered that a number of repository servers exist which store all the video

contents of interest to a large pool of geographically distributed users. To achieve large
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and scalable storage, repository servers may be tertiary libraries or jukeboxes which store

videos of a wide range of popularity. If users were to stream their videos directly from the

repository servers, then the number of users that could be served would be limited by the

streaming capacity available at those servers.

Streaming capacity can be increased by using a hierarchy of servers as mentioned in

Chapter 2, in which multiple streaming servers get the requested movies from the libraries,

and cache locally the movies and then stream them to the users. This in fact may introduce

some delay for movies of low popularity. If the streaming servers are co-located with the

central repository, the cost of the long distance channels needed to stream the requested

videos to the remote users may be high (e.g., through the use of some satellite links or

long-haul transmission lines). Therefore, streaming videos in this way to the users would

not be cost-e�ective.

To overcome the above limitation in channel usage cost and taking advantage of locality

of usage, the streaming servers may be placed closer to the users (or clusters thereof), thus

forming a distributed servers architecture. A number of repository servers (collectively

referred to as a central repository) storing all the video titles deliver the video to the local

servers through a communication network. The local servers cache movies locally, and

hence multiple requests for a movie may be served from the local cache rather than from

the central repository. In this way, the bandwidth requirement in the repository and channel

usage cost can both be reduced. Such a system in fact has been discussed previously in the

literature. By putting more repository servers and local servers, the system o�ers scalable

storage and streaming capacities.

We consider that there is a cost associated with storing a movie in a local server de-

pending on how much and how long the storage is used for. We also consider that there is

a cost associated with a central server using a network channel to stream a movie, which

depends on the distance and the type of network, e.g., through the use of internet, ATM,

or more expensive satellite channels. Such network channels more often provide multicast

capability.
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Accordingly, there is a trade-o� between the cost of storing a movie locally and the cost

of using expensive channels. It would pay to store a movie locally if the storage cost can be

o�set by a big saving in channel cost: if the demand for the movie is high, we should not

request it directly from the repository since it would incur too often the expensive long-haul

channel cost (we hence should store the movie locally); on the other hand, if the demand

is low, we should not store the movie locally since it would cause too high a storage cost

(we should hence request it directly from the repository servers).

Indeed, not all movies have identical popularity, some are popular while some are not,

and the popularity may change over time. There is hence a need to decide what to store

locally given the local request rates. It is important that such a decision be continuously

made over time to take into consideration the dynamic nature of video popularity. In

other words, the two systems (i.e., the central repository and local servers) should not

work independently and in parallel serving their respective users; instead, there should be

constant exchange of movies between the two. For example, the introduction of a recent

lecture, or a new or hot movie title can upset the popularity of some movies and make

some no longer worth storing locally.

A local server may not have global information about the video contents of the other

servers in the network. This may be due to, for example, limited processing capability (for

constant and frequent content exchanges and updates), network limitation (e.g., disjoint

networks or limited network capacity for frequent updates), or lack of incentive to exchange

content information (e.g., due to un-cooperating service providers or security issues). In

this case, the local servers can only request their data from the repository and they operate

independently from each other. For the case of a cable TV system, multiple head-end

servers may serve their local communities through coaxial local drops. The servers operate

independently from each other (since they may be run by di�erent providers). They get

their movies from the central repository through the use of unicast channels (via a satellite

system or through some low-cost channels such as internet). A certain number of network

channels may be leased by the video content service providers and always available (already
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paid for), in which case the issue is the same as for the limited streaming capacity of the

repository. Network channels may also be requested on-demand at some cost. This is the

case when, for example, satellite or ATM channels are used or some tolls are to be paid in

order to use a channel.

Suppose now a service provider operates a group of servers serving a number of regions.

If multicast network channels are available, a movie may be delivered to the local servers

using such a multicast channel in order to decrease channel requirement and save channel

cost. A local server can freely join any existing multicast groups (but they do not commu-

nicate with each other). Note that the local servers may be connected through a network

and are thus able to exchange their video contents with each other. Therefore, instead

of getting their data from the remote repository and incurring long-haul communication

cost, servers can exchange content information among themselves and get their data from

the other nearby servers. This is possible for servers co-located in a, for example, campus

network, entertainment network with cooperative servers/service providers, network with

low communication cost, high processing capability, etc. Video content may be streamed

from any local server in a group to any other servers through the network. If the streamed

data is not copied locally, the remote server would have to be capable of serving all the

requests for that movie in the server group. By making a copy of the streamed data lo-

cally, an immediate subsequent request in the local server can be served directly from itself

(instead of streaming from a remote server through the network); hence decreasing the

network bandwidth. The repository may multicast a movie to the group of servers, or it

may unicast the movie to a local server which in turn multicast the movie to the other

servers through the MAN.

In Chapter 4, we look at, given cost functions for storage and channels, the conditions

under which a movie should be stored in order to minimize the cost. We consider a number

of cases:

� Independent servers with unicast delivery | In this case, the local servers operate

independently of each other and communicate only with the central repository with
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each request made by a local server getting served by a unicast (dedicated) repository

stream to that local server alone. Under this condition, movies are likely to be either

entirely stored or not at all and the cut-o� point in the request rate for this is well-

known;

� Independent servers with multicast delivery | In this case, local servers still operate

independently of each other, but the repository multicasts movies to the servers so

that they can store them as appropriate for future use. The optimal strategy is no

longer to store a movie in its entirety or not at all; instead, a portion of the movie

should be stored (corresponding to a moving window). Multicast is able to lower the

cost compared with the unicast case, especially when the channel cost is relatively

cheap; and

� Communicating servers | In this case, the local servers can exchange video content

with each other, so that a movie not cached locally can be obtained from another

local server in the network where it is cached. We see that tremendous additional

cost reduction may be attained under this condition.

The local servers cache movies of interest to users and stream them to the users. A

local server can handle a certain maximum request rate. By putting in more local servers,

the streaming capacity can be increased.

A local server may cache a movie for possible future use. (Such bu�ering is also used

to achieve lower user start-up delay as compared to the case of request batching.) If a

local server has limited amount of storage, it would be of interest to devise some schemes

to make use of the available storage so as to minimize the stream cost.1 Here we consider

that storage comes with a cost depending on the size and length of its usage. Since the

service provider pays for the costs of the streams and storage, it is of interest to minimize

the total cost of both streams and storage.

1Obviously if movies can only be stored either completely or not at all, the optimal strategy is to store

the most popular movies in the local servers.
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We study a number of schemes in the local servers to cache movies. The schemes

allocate a certain amount of bu�er for a movie when the movie is brought in from the

repository; therefore all requests arriving before the beginning part of the movie is deleted

can be served directly from the local cache (known as a cache group), hence saving extra

repository streams. In this way, the caching scheme keeps a moving window and is able to

keep a portion of a movie locally (i.e., partial movie caching). Keeping a portion of movie

locally also provides interactive 
exibility to the users in viewing the movies.

The caching schemes we investigate cache a movie partially, thereof achieving the trade-

o� between channels and storage. We consider that the network channels can be acquired

on demand with a cost, and that the local servers have su�cient bandwidth to serve the

requests from the users. We will consider that the latency in the central repository is low

(and can be ignored).

Previous work in distributed servers architecture mainly focuses on either storing a �le

completely in a local server or not storing it at all (we review the previous in the respective

chapter). Here we consider schemes in which movie can be partially cached locally, and

hence is able to further decrease the system cost. We address in our study when and

how much to cache. We have considered using multicasting as a means to deliver data to

the local servers (so as to save network bandwidth), which has not been studied before

in this context. Note that this system is in fact very similar to the distributed storage

architectures discussed in Chapter 2. We consider here network channels can be acquired

on a demand basis (as supposed to the leased case there). Furthermore, we consider system

design meeting a certain user delay requirement in Chapter 2, while in here we study the

e�ect of costs in storage and streaming on system design and how the total system cost

can be minimized.

24



Chapter 2

Hierarchical Storage Systems

2.1 Introduction

Most video servers reported on in the literature or existing today use magnetic disks to

store and stream videos. Magnetic disk technology is used due to its high throughput,

low access latency, random data access, and adequate storage capacity. However, magnetic

disks are still not ideal to store large volume of video �les (e.g., > 1000s video �les for

some applications), because of reliability and scalability issues. Furthermore, magnetic

disks nowadays still su�er comparatively high cost | currently, storing a single 90-minutes

movie (' 1 GB) in such a medium can cost more than a hundred dollars. As video �les

can also di�er markedly in their popularities, some of them can be infrequently accessed.

Storing all �les on-line regardless of their popularities is therefore not very cost-e�ective

[51, 15].

Video servers based on hierarchical storage systems provides a cost-e�ective solution.

They consist of both tertiary and secondary levels. Tertiary storage, commonly referred to

as library or \jukebox," is used to store all video �les. The �les are transferred or \staged"

on demand into the secondary level to be displayed. The secondary level in the hierarchical

storage system therefore acts as a \caching" or \staging" platform for video display [52, 53].

Table 2.1 shows the typical performance characteristics in secondary and tertiary levels.
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Table 2.1: Typical performance characteristics for the secondary and tertiary storage levels

Secondary level Tertiary level

Magnetic disks Optical disks Tapes

Media cost ($/GB) $200{$300 $5 { $50 $5

Typical capacity � 100GB � 1TB � 1TB

Bandwidth (MB/s) 2 { 10 1 { 5 1 { 5

Total access timea 10 ms � 20 sec. � 1 min.

aIn the case of tertiary level, total access time includes the robotic exchange time.

From the table, we see that, as the media cost of tertiary storage can be orders of magnitude

lower than that of secondary storage, storing videos in the tertiary level is much cheaper.

Furthermore, as a tertiary library can shelve hundreds or even thousands of removable tapes

or disks, with each of which o�ering high storage capacity (�10 { 100 GB), a tertiary system
can hold large storage capacity in the range of terabytes. Therefore, such a hierarchical

storage system o�ers low cost high capacity storage as compared with a system based on

magnetic disks only.

In this chapter, we consider the design of a hierarchical storage system for video-on-

demand to meet certain performance goals, taking into account the application character-

istics (such as �le sizes and popularity, the requirements in user interactivities like fast-

forward (FF), rewind (RW), pause, etc). The design of a server based on a hierarchical

storage system actually involves many architectural parameters such as secondary level

bandwidth, secondary level storage capacity, tertiary level bandwidth, number of drives,

etc., and many operational procedures including admission control, request scheduling and

replacement policies.

We address our design problems using simulation and analysis. With simulation, we are

able to incorporate di�erent levels of complexity and details in our system so as to study

their e�ects in system performance. Analysis complements simulation in that it is able to

capture explicitly parameter interdependency, identify system bottlenecks and instabilities,
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and draw meaningful performance trends, asymptotes and limits. The model we develop

is simple and allows us to address many performance and design issues of a video server of

such kind.

Previous work on hierarchical storage systems has been on justifying its cost advantage

[54, 53, 55], or studying the possible operational procedures and their performance [56, 57,

58, 59, 60]. Our work di�ers in addressing how the system parameters in a hierarchical

storage system can be dimensioned so as to satisfy a certain user delay requirement. We

have developed a simple model which can be used to solve many design issues related to a

hierarchical storage system.

This chapter is organized as follows. We �rst brie
y describe previous work in Sect. 2.2.

In Sect. 2.3, we describe the hierarchical server architecture and its operational procedures.

In Sect. 2.4, we describe the design problem, and then discuss how bandwidth and storage

can be speci�ed to meet speci�c performance goals. Finally in Sect. 2.5, we present how

our model can be extended and used to address the design issues in di�erent hierarchical

storage systems. We conclude in Sect. 2.6.

2.2 Previous Work on Hierarchical Storage Systems

Tertiary storage is one of the system components. E�ciently using automated tertiary sys-

tems to deliver data has been discussed quite extensively in the literature. Nemoto et. al. in

[61] address load-balancing issues among multiple tape libraries, by using a migration wagon

which moves tapes among the libraries so as to relieve hot spots or drive contention. Video

popularity is measured by its access frequency, while the heat (temperature) of a library is

measured by the total of the access frequency of its tapes.

Drapeau and Katz extends the idea of RAID to tape drives in a library system so as

to improve the performance of a tertiary system [62]. They consider striping data among

the tapes so that tape bandwidth can be used in parallel, but with an increase in exchange

latency. They show that, given a certain stripe size, when the load is low and the requested
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data size is large, striping improves the performance of the system; while if the load is

high, striping would not improve much the performance of the system due to the exchange

overhead.

Ford et. al. introduce \Redundant Array of Independent Libraries (RAIL)," in which

multiple small and inexpensive libraries are con�gured as an array (similar to the RAID

concept) [63]. The paper discusses the reliability issues in such a system (time to failure

and server available time), and shows that (with 5 data library with 1 parity library) a

RAIL system can have very long mean-time-to-failure (more than 50 years).

Lau and Lui in [64] study using a tape library to deliver continuous media to the users.

Video �les are divided into equal-sized blocks and delivered to the users in a block-by-block

round-robin fashion. The main performance measure is the user's start-up delay. A system

with large �le size and low drive bandwidth is investigated. It is found that round-robin

scheduling as compared to �le-by-�le scheduling achieves lower delay when the arrival rate

is low, but much higher delay as the arrival rate increases.

Using hierarchical storage systems (consisting of tertiary libraries and staging disks)

as a cost-e�ective solution for data storage was discussed as early as in 1978 [54]. Early

analytic work on hierarchical storage systems focused on non-continuous medium (data

�les). Misra in [52] analyzes IBM 3850 hierarchical storage system. Using a machine

repairmen model, contention between resources (data paths, robotic arms, etc.) and various

delay paths are studied. Pentakalos et. al. in [65] modeled the Unitree mass storage system.

The model takes into account the workload based on actual measurements. The model

comprehensively takes into accounts various job classes (characterized by their �le sizes

and access frequencies), striping disks, and tape server. Our work di�ers from theirs in

addressing the dimensioning and optimization of the bandwidth and storage in the tertiary

and secondary levels to meet a certain user delay requirement. We are also dealing with

continuous media and much larger �le size (which in e�ect increases users' start-up delay

due to �le staging).

Using hierarchical storage system in VOD has been studied recently. Kienzle et. al. in
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[53] compare three operations for a VOD system: i) video �les are permanently stored

on disks, ii) video �les are directly streamed from the tertiary level (with no round-robin

request multiplexing), and iii) video �les are �rst staged onto and then streamed from

the disks. Using a cost function of storage and bandwidth, it shows that for low video

popularity, video should be directly streamed from the tertiary level, and for very popular

video, they should be permanently stored on disk.

Chervenak et. al. in [55] study three storage systems for movies-on-demand application:

i) one movie per disk, ii) striped disk farm, and iii) hierarchical storage system. Using

the metric as average cost per video stream achieving a certain criteria in the user start-

up delay, they �nd that striped disk farm performs the best due to load-balancing, and

streaming videos directly from the tertiary storage is likely to have the worst performance.

Suzuki et. al. in [66] consider a hierarchical storage system with some �les permanently

stored in the secondary level, some have to be streamed directly from the tertiary level,

while some have the initial \leading" parts resident in the disk (so as to decrease start-up

latency). The performance of concern is average user's start-up delay. Given a certain disk

size, if there are too many resident �les, then there would be too little space for leaders

and hence misses would experience longer start-up delay. If there are too few resident �les,

the high miss rate would load the tertiary level leading to high start-up delay. The paper

shows that there is an optimal number of resident �les to minimize the average start-up

delay. We di�er from the work in terms of system operation, and address how to size the

secondary level according to the user delay requirement (which was not addressed in the

work).

Merchant et. al. in [67] consider a design problem similar to ours here, and similar

observations are obtained. Their work is parallel and independent to ours (see [68, 69]), and

extended to the case of block-by-block round-robin staging. We have conducted extensive

simulation to validate our model, and applied the model in di�erent application areas (such

as distributed storage systems, di�erent staging schemes, and issues related to bandwidth

sharing and partitioning).
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Won and Srivastava in [56] consider a hierarchical storage system in which users are

rejected if they cannot be immediately served (either by the tertiary or secondary level).

The performance of interest is user rejection rate, and they study the replacement algo-

rithms in the system performance. The secondary level is assumed to be storage-bound

rather than bandwidth-bound. The authors �rst study that a video �le in the secondary

level is deleted once it �nishes display and �nd that it leads to high user rejection rate

since �les are deleted too soon. By imposing a minimum residence time for each �le in the

disk, user rejection rate is shown to be decreased. Our work di�ers in that we consider

a system in which requests are queued and consider user delay requirement. We are also

more interested in dimensioning system parameters than replacement schemes. We �nd

that the secondary level in the e�cient design should not be bound by either storage or

bandwidth. We also consider how the requirement in user interactivity a�ects the design

of the system.

Bianchi et. al. in [57] evaluate a number of replacement policies in a hierarchical storage

system consisting of local caches and a central server. The policies are stated as follows

(In some of these policies, the popularity of the �les is known): i) No release, in which the

cache only keeps the most popular set of video �les; ii) Lessprob overwrite, in which the

least popular �le in the cache is replaced; iii) random overwrite, in which the �le to be

replaced is chosen at random; iv) LRU overwrite, in which the least recently used �le is

replaced; v) mincall overwrite, in which the �le with the minimum number of requests in a

sliding window is replaced; vi) conditional LRU overwrite, in which a �le from the central

server is directly streamed to the users if the �le is less recently-used than all the �les in

the cache, or else the �le will replace the LRU �le in the cache; vii) conditional mincall

overwrite, in which a cached �le is replaced if its number of requests in a sliding window is

less than the requested video, or else the video would be directly streamed from the central

server. It is found that, in terms of hit probability, the no release policy performs the best,

and the random replacement policy performs the worst (their hit probabilities di�er by

about 10% in their examples).
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A pipelining mechanism to stage video �le from the tertiary level to the secondary

level is discussed in [58, 59] as a means to reduce user's start-up delay. In such a system,

video �les can be displayed while being staged onto the secondary level. Three data 
ow

sequences are examined in terms of their bu�er requirements, the disk space requirements,

and the conditions for continuity: i) sequential data 
ow in which the blocks of a video

�le are �rst transferred from the tertiary level to the memory, then from the memory to

the disk, from the disk back to the memory, and �nally from the memory to the user; ii)

parallel data 
ow in which the �le blocks are �rst transferred from the tertiary level to the

memory, then from the memory to the user and the disk simultaneously; iii) incomplete

data 
ow, in which the data 
ows directly from the tertiary level to the memory and then

to the user (without writing to the disks).

Wang and Hua in [60] study a pipelining mechanism for VOD in which the initial part

of the �les (leaders) are permanently stored in the disks (hence reducing the initial delay

to get the pipeline going). The displayed portion of a �le is immediately deleted. Video

popularity is assumed to be known. It shows that if the leader and staging bandwidth of

a �le is properly designed (with the result that the leader for a popular �le is larger than

that of a less popular �le, and its staging bandwidth as being lower), the requirements

in both tertiary bandwidth and disk storage can be reduced (under certain conditions, by

more than 2 orders of magnitudes) compared with the case in which staging bandwidth

and leader size are the same for all video �les.

Federighi and Rowe address in [70] the database issue in a hierarchical storage system:

the design of its �le manager, the structure of the �le system, search engine to locate and

load videos, and cache management algorithms.

Our study di�er from [56, 57, 58, 59, 60, 70] in that we focus more on dimensioning

architectural parameters than studying di�erent operational procedures.
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Figure 2.1: A hierarchical storage system for an on-demand video server.

2.3 The Architecture and Operation of a Hierarchical

Storage System

2.3.1 System architecture

Figure 2.1 shows a hierarchical storage system for an on-demand video server. The request

queue holds the users with their videos not displayed yet. The system control dispatches

the accepted requests to the respective levels for service. The levels are described as follows:

Secondary level: The secondary storage level consists of multiple magnetic disks, though

rewritable optical disks may also be used. The level is characterized by high through-

put and fast data access, and hence is particularly suitable for video streaming. A

number of disks in this level can be con�gured to form a single logical unit known

as a disk array, or RAID (Redundant array of inexpensive disks) [16, 18, 37]. In this

way, data can be accessed in the array as if it were a single disk volume. There are

di�erent RAID levels, each corresponding to how data is laid out and accessed in an
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application [20, 21, 19].

We characterize the secondary level by its total storage capacity, C2, and its total

aggregate \e�ective" bandwidth, B2. The bandwidth B2 has taken into account the

access overheads in the disks (which is related to assess latency and block size of the

disks), and hence the maximum number of streams that can be opened at any time

in the secondary level is,

s2 = bB2=b0c; (2.1)

where bxc denotes the largest integer less than or equal to x.

If a requested video is not in the secondary level, it has to be staged from the tertiary

level, during which or after which it can be streamed. At any particular time t, a

portion of B2 is hence used for video streaming (Bstrm
2 (t)), and another portion is

used for video staging (B
stg
2 (t)). Obviously, we must have,

B
stg
2 (t) +Bstrm

2 (t) � B2: (2.2)

B2 �B
stg
2 (t) +Bstrm

2 (t) is hence the idle bandwidth in the secondary level at time t.

Secondary bandwidth B2 can be either \partitioned" or \shared" for staging and

streaming purposes. In the \partitioned" case, a certain amount of secondary band-

width is permanently set aside for staging or streaming purpose. The bandwidth

allocated is therefore left unused if it is not used for the intended purpose. On the

other hand, in the \shared" policy, there is no such strict bandwidth partitioning

| the unused secondary bandwidth can be allocated for either staging or streaming

purpose. (We see that when B2 and B3 are not under-utilized, there is no much

di�erence between the shared and partitioned policies.)

As the secondary level has limited storage capacity C2, not all video titles can be

stored at this level simultaneously. Using �le replacement and staging mechanisms,

video �les are able to \share" the limited storage space in order to be displayed to

the users. We denote N2 the maximum number of video �les that can be stored in
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the secondary level, i.e.,

N2 =
C2

Cf

; (2.3)

and N3
�
= Nv �N2 the remaining number of �les in the tertiary level.

Tertiary level: Tertiary storage, also commonly known as the \automated library" or

\jukebox," is characterized by three components:

� A cabinet of removable media | A tertiary library shelves many (�� 100)

removable storage media, such as tapes (magnetic tapes or optical tapes) or

optical disks (e.g., CD, WORM disk, MO disk, or Phase-change disk, etc.). As

each tape or disk has high storage capacity (in the range of 10 { 100 GB), the

total storage capacity in this level can be greatly enhanced by shelving more

tapes or disks. Hence, the tertiary level can o�er highly scalable storage in

excess of terabytes.

� Drives | The tapes or disks in the library share a number of drives. This

number, N
(3)

dr , typically ranges from 2 { 16.

Each drive comes with a certain \e�ective" bandwidth (taking into account �le

access overhead and block size), b3; hence at any time the maximum bandwidth

the tertiary storage level can deliver is given by B3 = b3N
(3)

dr (B3 is called the

tertiary bandwidth).

� An automated mechanism | The tapes or disks in the library have to share

the limited number of drives by being swapped in and out of the drives. Such

swapping or exchange is done by some robotic or automated mechanisms. There

are Nrbt robots in the library. The total time it takes for an exchange is called

exchange latency, Tex. Note that Tex does not include �le seek time, which has

been taken into account when de�ning the e�ective drive bandwidth, b3.

All video �les are stored in the tertiary level. Video �les which need to be displayed

but are absent from the secondary level have to be staged from this level by using a
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certain amount of tertiary bandwidth B3 (B
stg
3 (t)) and also a portion of the secondary

bandwidth B2 (B
stg
2 (t)). We obviously must have

B
stg
3 (t) � B3; (2.4)

B
stg
3 (t) = B

stg
2 (t): (2.5)

Obviously, it is only necessary to consider, B3 � B2.

2.3.2 Operational procedures

Requests coming into the system are �rst put into a request queue waiting to be served.

If the requested �le is in the secondary level, the request is a hit and is served upon the

availability of a stream. Otherwise the request is a miss and the data has to be brought

from the tertiary level. Upon the availability of staging bandwidth and storage space in

the secondary level, the �le will be staged and streamed to the user.

There are a number of request-scheduling policies pertaining to how to schedule the

requests in the request queue and in the miss queue in the tertiary level. There are also

policies pertaining to which �le is to be replaced in the secondary level. From our simu-

lation study, we �nd that architectural parameters (B2, C2 and B3) are more crucial than

scheduling policies in determining the system performance. Therefore in this chapter we

will focus on the dimensioning of these parameters so as to achieve a certain user delay

goal.

There are in fact a multitude of schemes according to which a hierarchical storage

system can be operated. This is stated as follows:

� Staging | In terms of how �les can be staged from the tertiary level to the secondary

level, we may consider two modes of operations: i) File-by-�le staging, in which a �le

in a tertiary drive is staged to its completion before it is swapped out of the drive

and replaced by another �le (and hence incurring minimal exchange latencies); ii)

Round-robin staging, in which a tertiary �le is divided into blocks. Files take turns
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to be staged into the secondary level one block at a time (Despite more exchange

overheads, this potentially decreases user start-up delay [64]).

� Tertiary drives operation | The tertiary drives can be operated independently, hence

achieving high request concurrency (serving multiple requests at the same time) but

low bandwidth parallelism (using all the bandwidths at the same time). They can

also be con�gured as if they formed a single drive (similar to a disk array) through

�ne-grained striping [62, 63]. In this way, the bandwidth of the drives can be used in

parallel to deliver a �le and hence the delivery bandwidth of a �le is increased. As

the drives are no longer independent in this case, it is as if N
(3)

dr = 1. Such \parallel-

drive" con�guration achieves maximal bandwidth parallelism but minimal request

concurrency.

� Video display time | A video can be displayed once it is completely staged into the

secondary level (hence its user can interact with the video from its beginning to its

end), or it can be displayed once it starts to be staged.

� Video data deletion | We may keep the displayed portion of a video. We may delete

the displayed portion and keep only the portion to be displayed later, in which case

the user cannot revisit the previous part of the video. This is called \trail deletion."

Figure 2.2 shows for a given �le the total data delivered from the tertiary level to the

secondary level as a function of time, with di�erent combination of the operation schemes.

A miss arrival �rst wait for an available tertiary drive. After some time, the �le begins

to be staged. If a �le is displayed only after it is completely staged, the start-up delay

is the time from the request arrival until the total data delivered is equal to the �le size

Cf ; otherwise, the display time of the video is the time at which staging begins. In any

case, after the video �nishes displaying to the user, the �le can be deleted. Also shown in

the �gure is the data produced when round-robin staging is used. We also indicate in the

graph the total data consumed (i.e., displayed).
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Figure 2.2: Total data staged to the secondary level from the tertiary level, with di�erent

operation schemes

Note that with trail deletion, the di�erence between the data consumption line and the

data production line is the actual storage occupied by the �le in the secondary level. This

is shown in Fig. 2.3. We see that round robin staging can greatly decrease the storage re-

quirement of a �le, and with trail-deletion, such storage can be further decreased. However,

since a user can only interact with the data in the secondary level, the lower storage also

means that there is less 
exibility in interacting with the displaying video. Consequently,

combination of the operation schemes has implications in the storage requirement and user

interactivity o�ered.

2.4 Storage and Bandwidth Requirements

2.4.1 Design problem

We investigate the performance of the hierarchical storage system with the following ap-

plication characteristics:

� Demand characteristics:

37



File-by-file
(Trail deletion)

-----: Trial deletion

______: Without trial deletion

Dst

Cf

Th
(Start-up delay)

Round-Robin

Total storage on disks

Miss

Time

File deletion
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operation schemes

{ Poisson arrivals with rate � (requests/minute);1

{ Constant request holding time, Th (minutes);
2

{ All users are admitted and there is no balking or reneging, i.e., all arrivals wait

until their videos are displayed.

� Video characteristics:

{ Constant streaming bandwidth, b0, for all video �les at all times;

{ All video �les are of similar sizes Cf ;

{ All �les in the secondary level may be replaced;3 and

{ Unmodi�able �les, i.e., we assume read-only applications.

1Note that for presentation purpose, � is shown in our graphs as requests/hour.
2Through simulation, we �nd that a system with deterministic holding time has similar performance

as a system with arbitrary holding time distribution with the same mean. Therefore, the deterministic

condition here is not so restrictive as it appears. Deterministic holding time, however, lends itself to simpler

and tractable analysis.

3The extension of our analysis to the case where some �les can never be deleted is straightforward.
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Our design problem can be posed as follows: Given a certain target tra�c rate �0, how

should a hierarchical video server be designed (in terms of C2, B2, and B3) so as to satisfy

a certain delay requirement? The delay requirement can be average start-up delay for all

users (D̂), average start-up delay for all misses (D̂Miss), or according to some statistical

guarantees (e.g., no more than a certain percentage of requests su�er delay higher than a

certain value).

We summarize our design problem as follows:

Given: Application characteristics,

(user holding time, �le characteristics,

and interactive characteristics) and

target arrival rate �0 (We consider �0Th � Nv,

i.e., large video base);

Select appropriate: Operational procedures,

C2 (secondary level storage),

B2 (secondary level bandwidth),

B3 (tertiary level bandwidth), and

N
(3)

dr (number of tertiary drives);

In order to: Satisfy a delay requirement, e.g.,

(Start-up delay requirement) Dst � D̂, or

(Miss delay requirement) D
Miss � D̂Miss, or

(Delay guarantee) P (Dst > D̂) � ".

Note that there can be a range of parameter values satisfying the delay requirement. In

reality, speci�c value can be chosen if i) there is a cost associated with each value and the

total cost of the system is to be minimized; ii) the parameters may not take on continous

values and hence given today's technology, there is only a few feasible sets of values (For
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example, if a disk comes with a certain storage and bandwidth, the secondary storage and

bandwidth would then be scaled accordingly as the number of disks increases. A tertiary

drive may also have a certain amount of bandwidth, making B3 take on discrete values); or

iii) there is a \knee" in the trade-o� curve, making the point likely to be the appropriate

design choice.

There are many parameters to be speci�ed in the design formulation. Simulation may

be used to search for the appropriate parameter values, but it would be very slow and

ine�cient. To facilitate the design process, we have used analytic modelling. The model

developed is then validated with simulation.

We are also interested in the bandwidth utilization at both the tertiary and secondary

levels. We de�ne the utilization of the tertiary bandwidth, �3, as the time-averaged frac-

tion of the tertiary bandwidth used for staging purpose. If �3 is the miss request rate

at the tertiary level, and suppose that each new miss results in a new �le to be staged

(approximately true for Nv � �0Th), then

�3 =

�
Cf

B3

�
�3: (2.6)

In the secondary level, there are three measures for bandwidth utilization: i) the total

utilization for both streaming and staging, �2; ii) utilization for streaming, �strm2 ; and iii)

utilization for staging, �
stg
2 . Note that since each arrival would need a stream b0 and on

average there are �0Th concurrent users, �
strm
2 is given by,

�strm2 =

 
Thb0

B2

!
�: (2.7)

Obviously, by continuity, we must have

�
stg
2 = �

stg
3

B3

B2

: (2.8)

Hence,

�2 = �strm2 + �
stg
2 : (2.9)
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Figure 2.4: Request 
ow in a hierarchical storage system

2.4.2 System model

We show in Fig. 2.4 the system model of the hierarchical storage system external arrival

rate � (The design point is then given by � = �0). Each arrival independently chooses

movie i with probability pi (1 � i � Nv). For simplicity, we will �rst discuss the case with

uniform video popularity (hence pi = 1=Nv) and �le-by-�le staging. We extend our model

to cover non-uniform video popularity in Sect. 2.5; note that the performance with uniform

video popularity is pessimistic if video popularity is in fact skewed. Since we will consider

uniform video popularity �rst, it does not matter which replacement algorithm we use. For

concreteness, we choose the Least-Recently-Used (LRU) algorithm, in which we delete the

�le which has been closed for the longest time.

An arrival is put into the hit queue if it is a hit, and wait for an available stream to

be served. If it is a miss, it joins the staging-movie queue, which keeps track of the name

of movies to be staged. The movies are scheduled according to the First-Come-First-Serve

(FCFS) algorithm. After a certain waiting time, all the misses corresponding to a movie

will become hits and join the hit queue.

The secondary level allocates its bandwidth as follows: it �rst schedules the hits accord-

ing to their arrival order, by assigning a streaming bandwidth to each of them. If there is
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still unused bandwidth left (i.e., B2�Bstrm
2 (t) > 0 at that time t), it is assigned for staging

purpose. Note that the arrival of a hit may take away some bandwidths from an on-going

staging session.

Since the hit and miss events are state-dependent, the analysis of the hierarchical storage

system is di�cult. This is illustrated as follows: let N = fNres; Nstg; N
stg
v g, N � 0, be the

state of the system at any time, where Nres, Nstg and N stg
v are the number of resident �les

in the secondary level, �les being staged and total number of �les waiting to be staged

(including those being staged), respectively. Obviously, we have Nstg � minfN (3)

dr ; N
stg
v g,

Nres + Nstg � Nv, Nres � N2 and N stg
v � Nv � Nstg. With large Nv (typically the case),

the state space is large (of order O(N2
v ), with Nv typically greater than or equal to 100)

and the transitions can be very complex. Furthermore, since the staging time and waiting

time for a deletable �le are not exponential, the transition between states are not Markov.

These make the analysis di�cult.

Due to the above di�culties, we assume that the probability that an arrival �nding its

�le being staged is negligible (i.e., we assume N2 � N stg, justi�able when staging time

is much less than the movie length) so that hit and miss probabilities become constant

in time, i.e., �2 = N2=Nv and �3 = 1 � N2=Nv, respectively. This is in fact observed in

simulation. Therefore, a random arrival would enter the tertiary level with probability �3,

i.e., the tra�c of tertiary level is Poisson with rate �3
�
= �3�.

The tertiary level and the secondary level are coupled through the waiting time for a

deletable �le: it may happen that at a time all the �les in the secondary level are not

deletable. In this case, staging cannot proceed. This \all-�les-undeletable" phenomenon

may persist for a while until a �le is closed, and hence rendering it deletable. If C2 is small,

such waiting time can be rather long.

If B2 is shared between staging and streaming (i.e., the unused secondary bandwidth

can be freely allocated for either staging or streaming purpose), the staging process in the

tertiary level then depends on the excess bandwidth in the secondary level and hence the

two levels are coupled together (through the staging bandwidth B
stg
3 (t)): the maximum
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staging bandwidth from the tertiary level at any time t depends on the bandwidth used

for streaming in the secondary level by B
stg
3 (t) = minfB2�Bstrm

2 (t); B3g. Obviously, there
would be no such coupling if bandwidth is partitioned.

Note that coupling leads to staging ine�ciency and hence low performance (this is

later demonstrated in Fig. 2.15). Under the target arrival rate �0, such ine�ciency can be

relieved by having large enough C2 and B2. The resultant system is thus a \decoupled"

system in which the two levels operate independently most of the time. We show in Figs. 2.5

and 2.6 the resultant models for the two levels, namely the secondary sub-system and the

tertiary sub-system, respectively. Clearly, when � � �0, the system can be analyzed using

the decoupled models. However, when � > �0, the decoupling may no longer be true and

we have used simulation to obtain its performance.

The secondary level consists of a hit queue with request rate �, with a number s2 of

streams available. Under the condition of large video base (i.e., �0Th � Nv), each request

would hold a stream and a storage equal to Cf for duration Th before leaving the system.

The tertiary subsystem consists of N
(3)

dr drives (\server stations"), each with processing

time Cf=b3+Tex. Note that in general, Tex � Cf=b3 and hence, for clarity, we will consider

in the following that Tex can be ignored (our results can be easily extended to non-negligible

Tex). The arrival rate in the tertiary level is Poisson with rate �3 = �3� (at � = �0, �3 is
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Figure 2.6: Tertiary sub-system

hence given by �3�0). Since Nv is large, we may make the approximation that each miss

chooses a movie which is di�erent from the outstanding ones to be staged. Therefore the

system can be modeled as an M=D=N
(3)

dr system.

Note that the average delay for all users is,

Dst = D
Hit

st + �3D
Miss

; (2.10)

where D
Hit

st is the average delay in the hit queue, and D
Miss

is the average delay in the

tertiary subsystem.

Table 2.2 summarizes some of the important parameters we used in our study of the

hierarchical storage system.

2.4.3 Secondary subsystem design

The arrival rate in the secondary system is �. We show in Fig. 2.7 the interarrival time

of the requests in the secondary system, with the discrete points from simulation and the

continuous lines corresponding to an exponential distribution with the same rate �. Despite

the joining of the requests from the tertiary level (and hence making the aggregate arrival

process in the secondary level not Poisson), the arrival process in the secondary level can
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Table 2.2: Important variables considered in the chapter

Variables Remarks

� = External arrival rate to the server

�0 = Target arrival rate at which the server is operated under

�3 = Arrival rate in the tertiary level

DHit
st = Start-up delay for hits

Nv = Total number of video �les in the system

N2 = Total number of video �les that can be stored in the secondary

level

N3 = Nv �N2

�2 = Hit probability for an incoming request = N2=Nv

�3 = Miss probability for an incoming request � 1� �2

b0 = Streaming bandwidth for a video �le

Cf = Size of a video �le (GB)

Th = User's holding time (constant)

s2 = Maximum number of streams in the secondary level = bB2=b0c
C2 = Total storage capacity in the secondary level (GB) = N2Cf

B2 = Total bandwidth in the secondary level

B3 = Total bandwidth in the tertiary level

1=�3 = Average service time of the drives in the tertiary level (staging

time + exchange time)
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Figure 2.7: Cumulative distribution function (Cdf) for the interarrival time of the requests

into the hit queue. The discrete points come from simulation, and the continuous lines is

the cdf of a Poisson process with the same � (C2 = 78 GB, B2 = 35 MB/s, B3 = 19 MB/s,

N
(3)

dr =1, b0 = 1.5 Mb/s, Cf = 1 GB, Nv = 500, Th = 90 minutes)

be approximated by a Poisson process. Hence, the secondary level can be modeled as an

M=D=s2 system with holding time Th.

The delay of anM=D=s2 system has been extensively studied (See, for example, [71, 72,

73, 74]). We use here the approximation given in [74] for M=G=s2 systems. The average

start-up delay for hits, DHit
st , is therefore given by:

D
Hit

st � �s2E[T 2
h ](E[Th])

s2�1

2(s2 � 1)!(s2 � �E[Th])2
hPs2�1

j=0
(�E[Th])j

j!
+ (�E[Th])

s2

(s2�1)!(s2��E[Th])

i (2.11)

= Th
(�Th)

s2

2(s2 � 1)!(s2 � �Th)2
hPs2�1

j=0
(�Th)j

j!
+ (�Th)

s2

(s2�1)!(s2��Th)

i : (2.12)

Figure 2.8 shows the average waiting time as utilization �
�
= �Th=s2 increases, given s2

for Th = 90 minutes. We see that there is a rather sharp knee as � increases. As long as

s2 is not low (� 10) and for most � of interest (� 0:75), the start-up delay for the hits is
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Figure 2.8: Average waiting time (Average start-up delay) for an M=D=s2 system, with

Th = 90 minutes and �
�
= �Th=s2

negligible (compared with the holding time). For example, if B2 = 20 MB/s and b0 = 1:5

Mb/s (giving s2 = bB2=b0c = 106), there is hardly any hit delay even for � ' 0:9 (i.e.,

� = 64 req./hr)! Therefore, hits enjoy very low delay under most tra�c conditions; and in

reality, the tertiary level limits the performance of the server. We may hence approximate

the average delay for all users Dst in Equation (2.10) as,

Dst ' �3D
Miss

: (2.13)

We observe from Eq. (2.11) that even though the delay is expected to be higher for non-

uniform holding time (by an approximate factor E[T 2
h ]=(E[Th])

2), so long as s2 � 1 and �

is not too high (� 0:75), such di�erence is negligible compared with the delay incurred in

the tertiary level. Indeed, we show in Fig. 2.9 Dst versus � based on simulation, given the

following distribution of the holding time with the same mean: 1) Constant holding time

with Th = 90 min.; 2) Uniform holding time � U[60 min., 120 min.]; and 3) Exponential

holding time � exp[�], with 1=� = 90 min. (C2 = 100 GB, B2 = 20 MB/s, B3 = 10 MB/s,
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Figure 2.10: Average waiting time for a deletable �le vs. N2, given �0Th

Nv = 100, and uniform video popularity). Obviously, the holding time distribution does

not have much e�ect in Dst.

We now �nd the required C2 given �0 so that the average waiting time for a deletable

�le is negligible. We plot in Fig. 2.10 the waiting time against N2 (
�
= C2=Cf), for di�erent

values of �0Th (based on simulation). As �0 increases, the corresponding C2 has to be

increased so that the waiting time is negligible (say, �� 0:1 minute). Note that since on

average �0Th �les would be open (assuming that the staging time is negligible compared

with Th), we must have C2 � �0ThCf . Write C2 = (�0Th+n2)Cf , where n2 is the additional

number of �le spaces above the mean required so that the waiting time for a deletable �le

becomes negligible. We plot in Fig. 2.11 the waiting time against n2. We see that n2 can

be very small, in the range of only 8 { 18.

Note that the bandwidth needed for streaming in the secondary level can also be read

from the same �gures above, i.e., B2 has to be at least (�0Th+n2)b0 for streaming purpose.

Since B2 is also used for staging (with maximum bandwidth used B3), the total B2

required is B2 = (�0Th + n2)b0 +B3 +�, where � is the \sharing" term (if the bandwidth

B2 is partitioned, � = 0; while if the bandwidth is shared, � � 0). Normally B3 is well-
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Figure 2.11: Average waiting time for a deletable �les vs. n2, given �0Th

utilized and �0Th � n2. Therefore, the sharing term is small and B2 � (�0Th+n2)b0+B3.

This linear relationship and hard trade-o� are illustrated in Fig. 2.12, which shows the

trade-o� between B2 and B3 to achieve a certain Dst based on simulation, along with the

linear line B2 = B3 + �0Thb0:

Now the only parameter left to be determined is B3, which is obtained by examining

the tertiary subsystem.

2.4.4 Tertiary subsystem design

Fig. 2.13 shows the typical start-up delay distribution for the hierarchical storage system

in which a video is displayed after it has been completely staged into the secondary level

(with �le-by-�le staging). The impulse at the origin corresponds to the hits, which enjoy

very little delay. There is another impulse corresponding to those misses without queuing

time (and hence its start-up delay is given by Cf=B3) | the spread of the distribution is

due to the queueing time for an available drive in the tertiary level. Since user delay is

determined by the misses, B3 is chosen to satisfy user delay requirement.
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We hence may obtain B3 as follows (given a certain requirement in the average overall

start-up delay and �0). Recall that the tertiary subsystem can be modeled as anM=D=N
(3)

dr

queue with arrival rate �3 = (1�N2=Nv)�0 and service time 1=�3 = Cf=b3. In reality, there

would not be much di�erence if an M=M=N
(3)

dr model is used. In Fig. 2.14, we compare an

M=M=1 model with anM=D=1 model in terms of the B3 required to meet a certain average

system delay (2 minutes) [10, 9].4 We see that, as expected, B3 corresponding to an M=M

model is higher, but there is no signi�cant di�erence between the bandwidth required in

the two cases. For simplicity, we hence may use an M=M=N
(3)

dr model to �nd B3.

If a video has to be completely staged before it is displayed, the overall average delay

requirement is �rst translated to the miss delay requirement according to:

D̂Miss ' D̂=�3 (2.14)

4For the M=D=1 model, B3 is given by Cf=(2D
Miss

)(�3D
Miss

+ 1 +

q
�2
3
(D

Miss
)2 + 1), while for the

M=M=1 model, B3 is given by Cf (�3 + 1=D
Miss

).
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Miss

= D̂
Nv

Nv �N2

: (2.15)

We equate D̂Miss with the well-known average delay in an M=M=N
(3)

dr queue (see, for

example, [10, 9]) and solve for �3, i.e,

D̂Miss =
1

�3
+

PQ

N
(3)

dr �3 � �3
; (2.16)

where PQ is given by (�(3) is the tertiary level utilization given by �3=(N
(3)

dr �3)),

PQ = p0
(N

(3)

dr �
(3))N

(3)

dr

N
(3)

dr !(1� �(3))
; (2.17)

where

p0 =

2
64
N

(3)

dr
�1X

n=0

(N
(3)

dr �
(3))n

n!
+

(N
(3)

dr �
(3))N

(3)

dr

N
(3)

dr !(1� �(3))

3
75
�1

: (2.18)

While there is a closed-form expression for �3 when N
(3)

dr = 1, it has to be solved

numerically when N
(3)

dr � 2. Given �3, we can get B3 = N
(3)

dr Cf�3.
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If a �le can be streamed once it starts being staged, the average miss delay then becomes,

as opposed to Eq. 2.16,

D
Miss

=
PQ

N
(3)

dr �3 � �3
; (2.19)

2.4.5 Performance characteristics

Given our model, we present here some other performance aspects of the hierarchical storage

system.

� Marginal and elasticity of substitution: The marginal substitution and the elas-

ticity of substitution between B3 and C2 for �le-by-�le staging and complete staging

before display (given a certain average start-up delay D̂) are given by,

@B3

@C2

� �N
(3)

dr + D̂�0

D̂Nv

; (2.20)

@B3=B3

@C2=C2

� � N2

Nv �N2

; (2.21)

where D̂ is the average delay requirement in the system.

Marginal substitution refers to the rate at which two variables can be traded o� with

each other. In a hierarchical storage system, a higher tertiary bandwidth B3 can

generally be traded with a lower secondary storage C2, and vice versa. The marginal

substitution between these two variables is given by @B3=@C2.

Note that in a system with low waiting time (our case of interest), user delay is com-

parable with the tertiary staging time. Since the tertiary level may be approximated

by an M=M system, the delay is given by T
M=M=N

(3)

dr

is approximately N
(3)

dr TM=M=1

with service rate N
(3)

dr �3. If D̂ is the average delay of the system, we have

D̂ � N3

Nv

T
M=M=N

(3)

dr

(2.22)

� N3

Nv

N
(3)

dr TM=M=1 (2.23)

=
N3

Nv

N
(3)

dr

N
(3)

dr �3 � �3
; (2.24)
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which gives,

�3 =
1 + D̂�0=N

(3)

dr

D̂(Nv=N3)
: (2.25)

With B3 = N
(3)

dr b3 = N
(3)

dr Cf�3, we have

B3 ' Cf(N
(3)

dr + D̂�0)

D̂Nv

(Nv �N2) (2.26)

=
N

(3)

dr + D̂�0

D̂Nv

(CfNv � C2): (2.27)

Therefore, @B3=@C2 is given in accordance to Eq. (2.20). For illustrative purpose, we

show in Fig. 2.15 the trade-o� between C2 and B3 to achieve a certain Dst (based

on simulation) (�0 = 30 req./hr, B2 = 20 MB/s, N
(3)

dr = 1, Nv = 500, and uniform

video popularity). The linear region indicates the trade-o� between C2 and B3 (little

coupling between the two levels), with a slope given by @C2=@B3. There is a limit

to such trade-o� indicated by the horizontal asymptote due to con
ict of resources

(i.e., coupling between the two levels) | at low Dst (e.g., 1{2 minutes in the �gure),

such limit is due to insu�cient B2; while at higher Dst (e.g., more than 6 minutes in

the �gure), such limit is due to, as discussed earlier, the 
oor in C2 � (�0Th+n2)Cf .

We therefore see that when the two levels are coupled (through either bandwidth or

storage), ine�ciency and low performance result.

We note here that, since B2 and B3 cannot be traded o� with each other, we expect

the trade-o� curve between C2 and B2 would have similar trends. Indeed, this is the

case as shown in Fig. 2.16 (based on simulation) (with �0 = 30 req./hr, B3 = 10

MB/s, Nv = 500, N
(3)

dr = 1 and uniform video popularity). We show in Fig. 2.17 the

in
uence of video popularity on the trade-o� between C2 and B2 based on simulation

(with �0 = 30 req./hr, B3 = 10 MB/s, and Nv = 500). We have used the geometric

video popularity with 80/20 popularity model, i.e., 80% of the requests ask for 20%

of the videos (This gives � = 0:98405). We see immediately that non-uniform video

popularity is able to achieve the same delay requirement with markedly less storage

and/or bandwidth.
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The \elasticity" of substitution measures the rate of substitution between two vari-

ables in terms of their percentage change. For tertiary bandwidth and secondary

secondary, such elasticity is given by (@B3=B3)=(@C2=C2) = @ lnB3=@ lnC2. Using

Eq. (2.27), we get the elasticity of substitution according to Eq. (2.21). Note that

since usually N2 � Nv, the elasticity is low, meaning that a large percentage increase

in C2 only give a relatively small decrease in B3. Therefore the optimal operating

point for the hierarchical storage system is likely around the trade-o� knee. This is

evident by referring again to Fig. 2.15.

� Performance invariance: Two hierarchical storage systems with the same user

holding time have the same performance if the ratio of their parameters (b0(i), Cf(i),

C2(i),B2(i),B3(i)) (where i = 1; 2 is the index corresponding to the respective system)

scale as follows:

b0(2)

b0(1)
=
Cf(2)

Cf(1)
=
C2(2)

C2(1)
=
B2(2)

B2(1)
=
B3(2)

B3(1)
: (2.28)

First note that if b0 is scaled by a certain factor, the total secondary streaming

bandwidth would then be similarly scaled. If both Cf and C2 are scaled by the same

factor, the miss probabilities will be the same in both systems. If Cf and B3 are scaled

by the same factor, �3 will remain the same and hence is the miss delay. Now if B2 is

also similarly scaled, both systems will have the same performance. Figure 2.18 shows

Dst versus � based on simulation, for two systems with b0 changed from 1.5 Mb/s

to 3 Mb/s and the other parameters Cf , C2, B2, and B3 scaled accordingly (while

maintaining the same holding time Th = 90 minutes). Obviously the two systems

have the same performance, showing that if the streaming bandwidth b0 (and hence

the �le size) is changed, C2, B2, and B3 all have to be changed by the same factor in

order to maintain the performance.

Similarly, if Th changes while b0 remains unchanged, system performance will re-

main the same if Th(2)=Th(1) = Cf (2)=Cf(1) = C2(2)=C2(1) = B2(2)=B2(1) =
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Figure 2.18: Change in b0 (from 1.5 Mb/s to 3 Mb/s) in the performance of a hierarchical

storage system (for b0 = 1.5 Mb/s, we use C2 = 100 GB, B2 = 20 MB/s, B3 = 10 MB/s,

Ndr = 1, Nv = 500 and uniform video popularity.)
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Figure 2.19: Performance of the hierarchical storage system as Th is changed from 90

minutes to 45 minutes (for Th = 90 minutes, we use C2 = 100 GB, B2 = 20 MB/s, B3 = 10

MB/s, Ndr = 1, Nv = 500 and uniform video popularity)

B3(2)=B3(1): We illustrate in Fig. 2.19 the performance invariance (based on sim-

ulation) when Th is changed from 90 minutes to 45 minutes while Cf , C2, B2 and B3

are scaled accordingly (with b0 = 1.5 Mb/s).

� Number of robotic arms in the tertiary level: In order to minimize the waiting

time for a free robot, the number of robotic arms should satisfy,

Nrbt � (1� �2)�0Tex: (2.29)

Note that the utilization of the robotic arms in the tertiary level is given by �3T ex=Nrbt.

Hence, in order for a staging request to �nd a free robot whenever there is an idle

drive, we should have �3T ex=Nrbt � 1, hence the condition given above.
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2.5 Model Extensions and Design Examples

In this section, we extend our model to solve various design problems in a hierarchical

storage system. The simple nature of our model (just two independent queues without

computationally di�cult procedures) greatly facilitates the design process of such a system.

We also provide a number of design examples in this section.

2.5.1 Designing with di�erent staging schemes

In this section, we illustrate how our model is used in specifying the architectural parameters

so as to meet user delay requirement Dst � D̂. We consider here designing at the trade-

o� \knees," as these are the likely operating points if bandwidth and storage took on

continuous values independently. We �rst consider the case of �le-by-�le staging without

trail deletion, with complete staging before display, and then with stage-streaming (video

streaming while being staged). Finally we consider how trail deletion a�ects the bandwidth

and storage requirements.

Complete staging before display

Recall that if a �le is completely staged before it is displayed, users would have complete

freedom in interacting with the video from its beginning to its end. Figure 2.20 shows the

required B3 with respect to the target arrival rate �0. Here we show delay requirement

D̂ = 1 minute and D̂ = 3 minutes, with Nv = 500 (Cf = 1 GB, b0 = 1:5 Mb/s, Th = 1:5

hr., N
(3)

dr = 1 (n2 is chosen to be 15)). We see that the required B3 increases rather linearly

in �0. Though the required B3 is higher with D̂ = 1 minute than with D̂ = 3 minutes, it

is not three times as high.

We show in Table 2.3 the design to satisfy D̂ = 2 minutes. We consider two target

arrival rates: �0 = 20 req./hr and �0 = 50 req./hr, and Nv = 500 (Other parameters are

Cf = 1 GB, Th = 1:5 hr., b0 = 1:5 Mb/s, N
(3)

dr = 1, n2 = 15). We see that there is \economy

of scale" in terms of bandwidth and storage requirements | higher target arrival rate does
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Table 2.3: Design speci�cations to achieve D̂ = 2 minutes (Cf = 1 GB, b0 = 1:5 Mb/s,

Th = 90 minutes, N
(3)

dr = 1, n2 = 15)

�0 = 20 req./hr. �0 = 50 req./hr

C2 (GB) 45 90

�3 0.91 0.82

�3 (req./hr) 18.2 41

D̂Miss (minutes) 2.2 2.44

B3 (MB/s) 12.63 18.21

B2 (MB/s) 21.1 35.1
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Figure 2.20: B3 required to achieve D̂ = 1 minute and 3 minutes, with Nv = 500 (Cf = 1

GB, b0 = 1:5 Mb/s, Th = 90 minutes, N
(3)

dr = 1, n2 = 15)

not lead to a proportional increase in bandwidth and storage requirements.

We show in Fig. 2.21 the simulation results using the parameters speci�ed in Tab. 2.3.

Clearly, the delay requirements at �0 are met, showing that our model is accurate. Note

that the delay in fact is slightly lower than the requirement, since we have used the simpler

M=M model instead of an M=D model to obtain the architectural parameters.

Deployed servers designed for a particular target arrival rate �0 may be used at a

di�erent rate. Figure 2.21 shows how such an \optimized" design would perform as the

arrival rate changes. Though the server satis�es the delay requirement at the given arrival

rate, the delay increases rapidly as the arrival rate becomes higher than the target designed

rate. Therefore, in designing a hierarchical video server, it is important to design for

the maximum arrival rate �0 in order to prevent unacceptable delays should arrival rate

increases.

In Fig. 2.22 we compare our analytic model with simulation results, using the parameters
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Figure 2.21: Server design satisfying D̂ = 2 minutes, with �0 = 20 req./hr and 50 req./hr

(Nv = 500, Cf = 1 GB, b0 = 1:5 Mb/s, Th = 90 minutes, N
(3)

dr = 1, and n2 = 15)

satisfying D̂ = 2 minutes (Nv = 500, C2 = 45 GB, B2 = 21:1 MB/s, B3 = 12:63 MB/s,

Cf = 1 GB, b0 = 1:5 Mb/s, Th = 90 minutes, N
(3)

dr = 1, and n2 = 15). We show two

analytic curves, one based on theM=M model (exponentially-distributed staging time) and

another one based on the M=D model (deterministic staging time), with the total staging

bandwidth available at any time given by minfB2��Thb0; B3g (assuming negligible waiting
time for a deletable �le). Obviously, the M=D model is accurate up to the knee, beyond

which the two levels are coupled and hence performance deteriorates very rapidly. We see

that our decoupled model is indeed good up to �0. The performance of the M=M model

is apparently a bit pessimistic up to the knee, beyond which the performance is optimistic

(due to the decoupling assumption in the analysis).
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Figure 2.22: Simulation and analysis for a hierarchical storage system (Nv = 500, C2 = 45

GB, B2 = 21:1 MB/s, B3 = 12:63 MB/s, Cf = 1 GB, b0 = 1:5 Mb/s, Th = 90 minutes,

N
(3)

dr = 1, and n2 = 15)

Stage-streaming operation

Here, a video is displayed once it starts being staged. To ensure streaming continuity, the

total staged data of a displaying video at any time must be at least equal to the total

streamed data up to that time (i.e., b3 � b0, generally satis�ed with today's tertiary drive

technology). If the staging rate is higher than the streaming rate, eventually the whole �le

would be staged before the video �nishes displaying. Before the whole �le is completely

staged, a user can only jump/skip to any portion of the video �le having been staged at

that moment. Users entering the system �nding their videos being staged or completely

resident would enjoy no delay and better interactive capability. Misses in the system only

su�er queueing delay (without staging delay) in the tertiary level.

We �rst note that the storage capacity in the secondary level is not di�erent from the
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Figure 2.23: B3 required as N
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case of complete staging before display, and B2 � (�0Th + n2)b0 +B3. The only di�erence

is the required B3.

We show in Fig. 2.23 the required B3 as N
(3)

dr increases, given D̂Miss = 1 minute and 3

minutes and �3 = 20 req./hr and 50 req./hr (Cf = 1 GB). Since miss delay is the queueing

delay, we should operate the tertiary drives independently (as opposed to operate the drives

in parallel for the case of complete staging before display). The saving in bandwidth in

using independent drives is particularly marked for low delay requirement (< 3 minutes).

There is not much incremental bene�t in increasing the number of drives beyond a certain

point (' 8).

We now compare the bandwidth requirement between the operations of complete staging

before display and stage-streaming. We compare B3 and B2 required to meet D̂ = 1 minute

in Figs. 2.24 and 2.25, respectively, as a function of the target arrival rate �0, given N
(3)

dr

(Nv = 500, Cf = 1 GB, b0 = 1:5 Mb/s, and Th = 90 minutes). Clearly, as �0 increases,

the bandwidth requirements also increase (rather linearly). Stage-streaming has lower
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dr (D̂ = 3 minutes, Nv = 500, Cf = 1 GB, b0 = 1:5 Mb/s, Th = 90 minutes,

n2 = 15)

bandwidth requirement at the expense of some losses in user interactivity, and requires

lower bandwidth as the number of tertiary drives increases.

We show in Figs. 2.26 and 2.27 the similar plots but with a higher delay requirement

(D̂ = 3 minutes).

As D̂ increases, the di�erence between the two schemes decreases. This is because the

delay of the misses now mainly comes from the queueing time in the tertiary level, hence

yielding the staging time of a �le relatively insigni�cant in the total user delay.

Stage-streaming with trail deletion

We now consider stage-streaming with trail deletion, in which the streamed data in the

secondary level is deleted; i.e., the secondary level keeps only the future data of a displaying

video. (We see that if staging bandwidth for a video �le is comparable to streaming
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bandwidth, the required C2 would be very low). Users in the system hence can only

interact with the video through start/stop or some very localized operations. This design

can be applied in some VOD applications characterized by very low and localized user

interactivities (e.g., movie-on-demand). As portions of video �les are deleted once they are

displayed, all requests are misses. We will see that trail deletion can greatly reduce the

storage requirement of a video server (generally in the range of �50%, though a reduction

of up to 100% is possible5), at the expense of additional bandwidth due to the higher miss

rate.

Since all requests are misses, the arrival rate in the tertiary level �3 is the same as the

external arrival rate,

�3 = �0: (2.30)

As mentioned before, since �3 is higher than the previous cases, the required B3 would be

higher; while B2 is still related to B3 by B2 � B3+(�0Th+n2)b0. We compare in Fig. 2.28

the required B3 with and without trail deletion in order to achieve D̂ = 1 minute. Without

trail deletion, the hit rate increases as �0 increases; and hence the required B3 increase very

sub-linearly with �0. However, with trail deletion, B3 increases with �0 rather linearly. The

di�erence in the requirements widens as �0 increases.

In order to �nd the required C2, we need to know the process corresponding to the

start-of-staging. We show in Fig. 2.29 the hierarchical storage system with N
(3)

dr tertiary

drives, the time line for various processes. Requests arrive in the tertiary system at rate

�0. After queueing for some time, the video is loaded into a tertiary drive and starts to

be staged (start of staging process) and displayed. After a certain time, the video will be

completely staged and a new �le can be loaded. The storage requirement of each video �le

in the process of being displayed is shown, with the aggregate sum of which at any time is

the total secondary storage requirement at that time.

Note that the process of \start-of-staging" corresponds to service-entrance process in a

multi-server queue. We simulate the \service-entrance" process in M=D=R and M=M=R

5This corresponds to the case when the tertiary level directly streams videos to the users.
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Figure 2.29: Operation of a stage-streaming with trail deletion

queues, with R = 1, 4, and 8 and � � �0=(R�) = 0.2, 0.5, and 0.7. Let t be the inter-

entrance time. If the service-entrance process is Poisson, then P (t � T ) = 1� exp(��0T ),
or � ln (1� P (t � T )) = �0T = �(TR�). In Figs. 2.30 and 2.31, we present the inter-
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Figure 2.30: Service-entrance process in an M=D=R queue

entrance time t (normalized to 1=(R�)) based on simulation in discrete points, and the

lines corresponding to a Poisson process with the same rate. We see that the inter-entrance

process can be approximated by the Poisson process.

The storage requirement of the secondary level can then be found as follows. Figure

2.32 shows the storage occupied for each displaying video �le with time. The storage of a

�le �rst increases with rate (b3�b0) for a time Cf=b3 (when the whole �le is delivered), then

decreases with rate b0 for a period (1� b0=b3)Th. The maximum storage space occupied by

a displaying �le is

Cmax =

 
1� b0

b3

!
Cf : (2.31)

The total secondary storage required at any time t is the aggregate sum of the storage

of all open �les at time [t � Th; t]. The number of open �les in the time interval Th is

Poisson with rate �0.

Given that a start-of-staging event occurs in [t � Th; t], the time of its occurrence (the

\start" time) Ts is uniformly distributed within the range. If C is the storage space of the
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Figure 2.31: Service-entrance process in an M=M=R queue
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�le occupied at time t, then

P (C � c) = P

�
Ts 2 [t� c

b3 � b0
; t]
[
Ts 2 [t� Th; t� Th +

c

b0
]

�
(2.32)

=
c

(b3 � b0)Th
+

c

b0Th
(2.33)

=
c

Cmax

: (2.34)

Therefore, given a staging event occurs within [t� Th; t], the storage of a video �le at time

t is uniformly distributed between 0 and Cmax.

LetX be the total secondary storage space required at any time t. ThenX =
PN

i=1C(i);

where C(i) is the storage required for the ith opened �le (i = 1 : : : N). For large N (� 5{10)

(by central limit theorem),

1

N
X j N =

1

N

NX
i=1

C(i) j N (2.35)

� N (
Cmax

2
;
C2
max

12N
); (2.36)

where N (�; �2) is a normal distribution with mean � and variance �2. Therefore,

P (X � C2) = P (
NX
i=1

C(i) � C2) (2.37)

=
1X
n=1

P (
nX
i=1

C(i) � C2 j N = n)P (N = n) (2.38)

�
1X
i=1

8<
:1� �

0
@C2 � Cmaxn=2

Cmax

q
n=12

1
A
9=
; (�0Th)

n

n!
e��0Th (2.39)

=
1X
i=1

8<
:1� �

0
@C2=Cmax � n=2q

n=12

1
A
9=
; (�0Th)

n

n!
e��0Th ; (2.40)

where

�(x)
�
=

1p
2�

Z x

�1

e��
2=2d�; (2.41)

is the cumulative Gaussian distribution.

If C2 is the secondary storage capacity, P (X � C2) is the probability of running out

of storage space. We show in Fig. 2.33 such probability with respect to C2 (normalized to

Cmax), given �0 (Th = 1:5 hour). From the graph, we see that to keep the probability low
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Figure 2.33: Probability of insu�cient space in a non-interactive server if the secondary

storage space is C2, for �0 = 20 req./hr and 50 req./hr, and Th = 90 minutes

76



(i.e., 10�2 { 10�4), we need C2 � �(�0Th)Cmax, where � ' 0:7{1. Hence,

C2 = (��0Th)Cmax (2.42)

= (��0Th)(1� b0

b3
)Cf ;

and hence C2 � 0:5(�0ThCf ). For the case of b3 � 2b0, more than 50% reduction in C2 as

compared with the case of no trail deletion is possible.

2.5.2 Design examples given storage and bandwidth relationship

We have shown in Fig. 2.16 the trade-o� between C2 and B2 to achieve a certain delay

requirement (complete staging before display). From the �gure we see that given a certain

target arrival rate and B3, one can generally �nd a range of values (B2, C2) in order

to meet a certain average delay requirement. If disk capacity and disk bandwidth can

take on continuous values independently, a hierarchical storage system would be likely

operated around the trade-o� knee. Current storage technology, however, can only allow

some feasible combinations of bandwidth and storage. In this section, we will show how

speci�c parameter values can be chosen given current disk technology. We will see that

such consideration can lead to a design away from the trade-o� knee, leading to some excess

resources.

A magnetic disk comes with its storage capacity Cdsk and a certain e�ective disk band-

width Bdsk. Several magnetic disks can be put together to achieve a higher total capacity,

while at the same time increasing the total bandwidth (e.g., as in disk array). If we let

the total storage and bandwidth be proportional to the number of disks, and let B2 be the

total e�ective bandwidth required in the secondary level, we then have the following \disk

technology" relationship:

C2 =

�
B2

Bdsk

�
Cdsk: (2.43)

Consider that Bdsk = 2 MB/s, and given that currently Cdsk � 10 GB, we therefore

have C2 � (B2=2)10 = 5B2. The line is shown as the \disk technology" line in Figure
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2.34, reproduced from Fig. 2.16. The region below the line is the current \technologically

feasible" region. Clearly, we see that the feasible operating points of a server are not

necessarily around the knees of the trade-o� curves, after taking into account our current

storage technology.

We give examples of how a hierarchical storage system can be designed to satisfy a

certain delay requirement, say D̂ = 2 minutes or even 30 seconds, under arrival rate

�0 = 30 req./hr. We show in Figure 2.35 speci�cally the delay contours achieving the same

Dst = D̂. We have also considered that each tertiary drive comes with b3 = 2 MB/s,

and we show in the �gure three di�erent values of B3: 8 MB/s, 10 MB/s and 12 MB/s

(corresponding to 4, 5, and 6 drives, respectively).

From the interception between the \disk technology" line and the delay contours, we

can deduce the requirements of the secondary level in order to satisfy the average delay

requirement. Such requirements in terms of storage capacity and bandwidth are shown in

Tab. 2.4. For the case of D̂ = 2 minutes and B3 = 10 MB/s, since the \technology" line

intercepts the delay contour well into the horizontal asymptote region at (B2, C2) = (30
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Figure 2.35: The design of a hierarchical storage system with Dst = 30 seconds and 2

minutes, with �0 = 30 req./hr (Nv = 500 and uniform video popularity)

MB/s, 150 GB), we have a lot of excess B2. We also see that if B3 is increased to 12 MB/s,

the operating point becomes (B2, C2) = (22 MB/s, 80 GB), saving a total of 4 disks. To

decide between these two points, we have to take into consideration the cost of a tertiary

drive. If its cost is less than 4 magnetic disks, the second points would be of lower system

cost and would be the choice.

Note that given our current technology, the hierarchical storage system can hardly

satisfy D̂ = 30 seconds without incurring excessive storage and bandwidth.

How does non-uniform video popularity a�ect our design? Figure 2.36 shows the similar

plot as Fig. 2.35, but with non-uniform video popularity (80/20 geometric video popular-

ity). From the �gure, we can obtain the storage and bandwidth requirements as shown in

Tab. 2.4, in which the resources in excess (not at the knee) are highlighted.

From the table, we see that non-uniform video popularity can tremendously reduce

the requirements in both B2 and C2 compared with the uniform case. While designing a

hierarchical storage system with 30-seconds delay under uniform video popularity is almost

impossible, it is very feasible with non-uniform popularity. We see that when B3 = 12
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Table 2.4: Storage and bandwidth requirements for a server under a certain delay constraint

constraint (�0 = 30 req./hr, B3 = 10 MB/s, and Nv = 500)

Dst B3 Uniform popularity 80/20 video popularity

B2 C2 #disks GB/disk B2 C2 #disks GB/disk

(MB/s) (GB) (MB/s) (GB)

30 sec. 8 78 390 39 10 26 130 13 10

10 72 360 36 10 24 115 12 9.6

12 68 340 34 10 22 105 11 9.55

2 min. 8 44 220 22 10 18 60 9 6.7

10 30 150 15 10 18 55 9 6.1

12 22 85 11 7.73 18 �55 9 6.1
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MB/s, the C2 necessary with non-uniform video popularity is only about 20% of the total

storage. When Dst is increased to 2 minutes, under non-uniform popularity, we see that

there is no much gain in C2 and B2 as B3 is increased from 10 MB/s to 12 MB/s. Therefore,

using B3 = 10 MB/s is su�cient.

2.5.3 Non-uniform video popularity

Our model can be extended to design a hierarchical storage system with multiple video

popularity classes, and within each class video popularity is uniform. Let A be the number

of popularity classes, each of which have Nv;a videos, where 1 � a � A. Obviously, the

total number of videos is,

Nv =
AX
a=1

Nv;a: (2.44)

Let Pa be the probability of a random arrival choosing popularity class a, 1 � a � A (the

request rate for each class is hence �a = Pa�0). We have
P

a Pa = 1 and the popularity of

the ith movie in class a is pi;a = Pa=Nv;a, 1 � i � Nv;a.

The design of such a hierarchical storage system follows the same steps as given in the

previous section. For �le-by-�le staging without trail deletion, C2 required is still (�0Th +

n2)Cf . Since the extra n2 space in the secondary level is shared among the popularity

classes, the hit probability for class a (1 � a � A) can be estimated as,

�2;a =
�aTh + Pan2

Nv;a

: (2.45)

Therefore overall miss probability is,

�3 =
AX
a=1

Pa(1� �2;a); (2.46)

and the arrival rate to the tertiary level is given by �3 = �3�0. The required B2 is given

by B3 + (�0Th + n2)b0.

As an example, let's design a server meeting an average delay of D̂ = 2 minutes with

complete staging before display, for �0 = 20 req./hr or 50 req./hr. There are A = 3

popularity classes, with class popularities P1 = 0:05 (unpopular movies), P2 = 0:25, and
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Table 2.5: Design speci�cations to achieve D̂ = 2 minutes, with A = 3 popularity classes

(Cf = 1 GB, b0 = 1:5 Mb/s, Th = 90 minutes, N
(3)

dr = 1 and n2 = 15)

Nv = 500

�0 = 20 req./hr. �0 = 50 req./hr

C2 (GB) 45 90

�2;1 0.015 0.03

�2;2 0.05625 0.1125

�2;3 0.21 0.42

�3 0.8382 0.6764

�3 (req./hr) 16.76 33.82

D̂Miss (minutes) 2.39 2.96

B3 (MB/s) 11.64 15.03

B2 (MB/s) 20.07 31.9

P3 = 0:7 (popular movies), and number of movies in each class beingNv;1 = 150, Nv;2 = 200,

and Nv;3 = 150 (Nv = 500). Table 2.5 shows the bandwidth and storage requirements. Note

that the requirements in Tab. 2.5 is not much di�erent from the uniform popularity case

(ref. Tab. 2.3). This is expected for large number of video �les since each arrival would

likely request a di�erent movie to be displayed. We present in Fig. 2.37 the system delay

versus � given the above speci�cations, showing that the performance goal is met at �0.

2.5.4 Bandwidth partitioning

So far, we have considered a system in which B2 is shared between streaming and staging

and hits are scheduled at a higher priority than misses. Therefore we found that hits enjoy

negligible delay and hence the delay comes from misses.

If B2 is partitioned (i.e., a fraction of B2 is used solely for staging purpose, while
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Figure 2.37: Simulation results of designing a hierarchical storage system with non-uniform

video popularity (D̂ = 2 minutes, �0 = 20 req./hr and 50 req./hr, A = 3, Nv = 500, Cf = 1

GB, b0 = 1:5 Mb/s, Th = 90 minutes, and N
(3)

dr = 1)

the remaining is used solely for streaming), hits may now su�er delay due to insu�cient

bandwidth allocated to streaming. In fact, to satisfy an average overall delay requirement

of Dst � D̂, we may partition the bandwidth so that the start-up delay for hits is �D̂,

where 0 � � � 1, and the miss delay in the tertiary level is D
Miss

= (1� �)D̂=�3 (so that

the overall delay is still D̂). Since storage requirement is not expected to be much di�erent,

the question then becomes how the delay requirement should be \partitioned" between the

hits and misses so as to minimize the bandwidth requirements.

We show here that in fact to minimize the bandwidth requirements, it is most likely

that hits should enjoy minimal delay. Recall that (for N
(3)

dr = 1),

B3 = Cf

 
1

D
Miss

+ �3

!
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= Cf

0
@ �3

D̂ �D
Hit

st

+ �3

1
A

= �3Cf

 
1

(1� �)D̂
+ �0

!
; (2.47)

and hence,

@B3

@�
=

�3Cf

D̂(1� �)2
: (2.48)

Therefore, as � (corresponding to the hit delay) increases, B3 increases, �rst quite slowly

and then very quickly when � approaches 1. This point is illustrated in Fig. 2.38, in which

we plot the B3 required as a function of � given D̂ (Nv = 500 and �0 = 50 req./hr (Cf = 1

GB, �0 = 50 req./hr, n2 = 15, N
(3)

dr = 1, and b0 = 1:5 Mb/s). Note that an increase of a

minute or two in the hit delay (� = 0:5) leads to a saving of about 10 streams (ref. Fig. 2.11),

corresponding to about n2b0 = 2 MB/s. For D̂ = 2 minutes, this is lower than the increase

in B3 (which is about 5 MB/s in this case). Therefore, both B3 and B2 requirements are

increased when � is increased in this case. Due to the steep increase in B3 with respect to

�, the hierarchical storage system with partitioned B2 would be likely designed with little

hit delay (with miss delay meeting the delay requirement). As D̂ is increased, the increase

in B3 is no longer as steep and hence a partitioned B2 with non-negligible hit delay may

lead to a lower B2 (but with higher B3).

2.5.5 A hierarchical storage system for distributed video services

In order to serve a large number of users and further increase the storage capacity in the

system, video system can consist of multiple storage and streaming nodes as shown in

Fig. 2.39. Our model developed can be used to design such a distributed video system in

which S video servers serving local communities are connected through a switch or network

to L sites, where �les are stored. A video �le to be displayed can be obtained from one of

the L sites. The local servers cache and stream the �le to their respective users.

We want to specify the bandwidth and storage required to meet a certain user delay

requirement given a target aggregate arrival rate �0. Note that since out of the request
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rate in a library only a small fraction comes from a particular local server, using bandwidth

partitioning for each library and local server pair would not be economical. By the same

token, this also holds true for a local server: since it is unlikely for all the libraries concur-

rently deliver �les to a particular local server, partitioning bandwidth for each library in a

local server is not economical. Hence the library bandwidth should be shared among the

local servers, and the server bandwidth should be shared among all the libraries.

This is best illustrated by an example. Consider the design of a distributed video system

with Dst � D̂ = 2 minutes, �0 = 200 req./hr uniformly distributed among all the local

servers, L = 8, S = 10, and Nv = 4000 titles (uniform popularity) with each permanent

site storing 500 video titles (Cf = 1 GB, b0 = 1:5 Mb/s and Th = 90 minutes, N
(3)

dr = 1,

and negligible exchange time). Let's consider complete staging before display. Since each

local server stores (�0=S)Th+ n2 = 45 GB (yielding the required miss delay 2.02 minutes),

the local miss request rate is 19.78 req./hr and hence the corresponding request rate to
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a library from a local server is 2.47 req./hr. Since the average miss delay should be 2.02

minutes, if the library bandwidth were partitioned among the local the total required library

bandwidth is 89.3 MB/s! This is very large, and since the bandwidth is only less than 10%

utilized, much bandwidth is wasted. If a local server partitions its staging bandwidth for

each library, the total staging bandwidth needed locally is 71.4 MB/s, and again such

bandwidth is less than 10% utilized!

We hence should consider shared bandwidth, in which the library bandwidth is shared

among the local servers, and vice versa. We summarize the important notations in this

section in Tab. 2.6.

Denote B
(s)
2 and C

(s)
2 the secondary bandwidth and storage for server s (s = 1 : : : S),

and B
(l)
3 the bandwidth for site l (l = 1 : : : L). Let ps�0 be the request rate for server s,

with
PS

s=1 ps = 1. Further let �
(s)
2 be the hit probability for server s. With trail deletion,

�
(s)
2 = 0; while without trail deletion, we have

�
(s)
2 =

n2 + Th�0ps

Nv

(2.49)
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Table 2.6: Important variables considered in the distributed server environment

Variables Remarks

L = Number of libraries in the system, indexed l = 1; : : : ; L

S = Number of local servers in the system, indexed from s = 1; : : : ; S

�0 = Aggregate target arrival rate in the system

�
(l)
3 = Aggregate request rate for library l

ps = Fraction of the total arrival in local server s

�
(s)
2 = Hit rate for local server s

�
(s)
l = Fraction of misses in the local server s directed to library l

�
(s)
l = Fraction of staging �les in library l for local server s (related to

the above parameters through Eq. (2.54))

�(l) = Utilization of bandwidth for library l

C
(s)
2 = Total storage in server s

B
(s)
2 = Total bandwidth in server s

B
(l)
3 = Total bandwidth in library l

87



= a+ bps; (2.50)

where a
�
= n2=Nv � 1, and b

�
= �0Th=Nv � 1. Let �

(s)
l be the fraction of misses in server s

requesting a �le from site l. Obviously,
PL

l=1 �
(s)
l = 1.

The design procedure of the system is as follows. Let D
Miss

l be the average delay for

site l. The average delay for all misses is then

D
Miss

=

PS
s=1

PL
l=1 ps(1� �

(s)
2 )�

(s)
l D

Miss

lPS
s=1 ps(1� �

(s)
2 )

: (2.51)

As hit delay is negligible, the average start-up delay in server s is hence given by D
(s)

st '
(1� �

(s)
2 )D

Miss
, and the average overall delay is

PS
s=1

PL
l=1 ps(1� �

(s)
2 )�

(s)
l D

Miss

l .

Let �
(l)
3 be the rate of arrival of staging requests in the permanent site l given by,

�
(l)
3 =

SX
s=1

�
(s)
l (1� �

(s)
2 )(ps�0): (2.52)

The aggregate staging rate is given by �3 =
PL

l=1 �
(l)
3 : De�ne �

(s)
l as the fraction of staging

�les in site l delivered to server s. We have

�
(s)
l =

�
(s)
l (1� �

(s)
2 )(ps�0)

�
(l)
3

(2.53)

=
�
(s)
l (1� �

(s)
2 )psPS

s=1 �
(s)
l (1� �

(s)
2 )ps

: (2.54)

The distributed video system can be designed as follows (with homogeneous �le size

and holding time): We �rst obtain C
(s)
2 by (�0psTh + n2)Cf . Using Eq. (2.52), we obtain

�
(l)
3 . We then obtain B

(l)
3 satisfying the miss delay requirement.

Let �(l) be the resultant utilization of B
(l)
3 for site l (given by �

(l)
3 Cf=B

(l)
3 ), and hence

�
(s)
l �(l) is the utilization of B

(l)
3 to deliver �les to server s. Further denote Ba

3 =
PL

l=1B
(l)
3

the maximum aggregate bandwidth used for staging in the system.

What is left is to specify B
(s)
2 . We �rst �nd the bandwidth necessary in server s for

staging, B
(s)
� . Obviously B

(s)
� � Ba

3 . In fact, since concurrent video staging from all L

permanent sites to a certain server is highly unlikely, B
(s)
� can be much less than Ba

3 . We

design B
(s)
2 so that the total staging bandwidth exceeding such value almost never happens.
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B
(s)
� is obtained as follows: At any time, permanent site l is staging a �le to server s

with probability �
(s)
l �(l). Consider the following generation function for server s,

gs(y) =
LY
l=1

�
(1� �

(s)
l �(l)) + �

(s)
l �(l)yB

(l)
3

�
; (2.55)

�
2LX
i=0

c
(s)
i yB(i); (2.56)

where 0 = B(0) < B(1) < : : : < B(2L) = Ba
3 . The coe�cient c

(s)
i is the probability that

staging bandwidth in server s equals B(i). We can therefore take B
(s)
� = B(I), where

P2L

i=I+1 c
(s)
i � 1. B

(s)
2 is then obtained as (ps�0Th + n2)b0 +B

(s)
� :

Much bandwidth is saved with bandwidth sharing. Let's consider our previous example

again. We have ps = 0:1 (each server serves 20 req./hr) and note that �
(s)
l = 0:125

for any server s. With C
(s)
2 = 45 GB (which gives D

Miss

l = 2.0228 minutes), we get

�
(l)
3 = 24:72 req./hr. Given �

(l)
3 and D

Miss

l , B
(l)
3 = 15 MB/s, and hence �(l) = 0:4545.

The generator function for server s is therefore gs(y) = (1� 0:4545=10 + 0:4545y15=10)8 =

0:689 + 0:2626y15 + 0:04376y30 + 0:004167y72 + : : :, from which we take B
(s)
� = 15 MB/s.

Therefore, B
(s)
2 = 23:44 MB/s. Note that both B3 and B2 are greatly reduced compared

with the partitioned case.

2.6 Conclusions

Video-on-demand (VOD) encompasses services such as movie-on-demand, home-shopping,

news-on-demand, various distributed/interactive training programs, etc. Video servers

based on hierarchical storage systems o�er high-capacity, low-cost and scalable video stor-

age. The system consists of a secondary level (characterized by fast �le access and high

throughput) and a tertiary level (characterized by cheap and large storage). Video �les

stored in the tertiary level are staged into the secondary level to be displayed. The de-

sign of such system includes its architectural parameters (bandwidth and storage in each

level), and operational procedures (e.g., request scheduling and data replacement policies)

for di�erent level of user interactivities.
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There are two types of users in a hierarchical system, hits and misses. We �nd that

hits enjoy negligible delay; therefore the tertiary bandwidth should be designed to meet

user delay requirement. An e�cient tertiary level is very important in a high-performance

hierarchical storage system, and hence if a video �le is displayed after it is completely

staged, we should parallelize the drive bandwidth. On the other hand, if a video can be

displayed while it is being staged we should use multiple independent drives.

We have developed a simple model for a hierarchical storage system, from which we can

specify the required bandwidth and storage in both secondary and tertiary levels to meet a

certain user delay requirement, given speci�c application characteristics and a target request

rate. We �nd that user delay increases rapidly when the arrival rate increases beyond the

target arrival rate. Therefore, admission control should be used so that a hierarchical server

should not be operated beyond the arrival rate under which it is designed.

We have seen that the number of �les stored in the secondary level can be much lower

than the total number of �les in the system, and hence a hierarchical storage system is

able to achieve much lower system cost compared to a system with secondary storage

only. With large number of �les, the storage and bandwidth requirements do not depend

sensitively on the skewness of video popularity. The simple model we developed can also

be used to specify bandwidth and storage requirements in a distributed storage system,

in which multiple geographically-distributed servers get their video �les from some remote

repositories and streams the videos to their local users.
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Chapter 3

Request Batching and Multicasting

in VOD

3.1 Introduction

In pure-VOD, each user is assigned its own dedicated unicast stream. Hence users enjoy

great 
exibility in interacting with the server while viewing their videos. However, pure-

VOD does not scale up well with the user population and becomes very expensive when a

large number of concurrent requests have to be accommodated.

When the video content is popular, the use of a single multicast stream serving many

users simultaneously becomes more cost-e�ective. This is accomplished by grouping (i.e.,

batching) many requests for a given content arriving over a period of time and serving

them with a single multicast stream. This is referred to as near-VOD [75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87]. However, the bandwidth saving as compared to pure-VOD

is achieved at the expense of user start-up delay. Since each user no longer has a dedicated

stream, such technique is e�ective when user interactivity does not have to be 
exible

or is not essential, as is the case with such applications as movie-on-demand. Providing

interactivity in the multicast environment has been discussed in [88, 89, 90, 91].

Today, request batching is practically used in many satellite and cable network-based
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Figure 3.1: A near video-on-demand system

movie-on-demand services. It consists of having the same movie shown at speci�c pre-

scheduled points in time, with the time between consecutive showings (referred to as the

batching window) equal to some fraction of the movie's duration. Clearly, for a given

request arrival process, the larger the batching window is, the smaller is the number of

channels (and hence network bandwidth) used and the larger the batch size is (which, in

turn, translates to higher revenue per channel), but the longer is the delay experienced by

a user.

In Fig. 3.1, we show the three components constituting a near video-on-demand system:

� Video servers | The video servers store a number of movies (characterized by their

duration, popularity and streaming data rate) accessible by the users. Each server has

�nite storage and streaming capacities [35, 34, 32, 33, 29, 30, 31, 26, 15, 37, 38, 50, 49].

Such resources are considered to be always available and in a sense already paid for.

The available streaming capacity may be partitioned or shared among the movies. In
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a near VOD system, the main issue is to appropriately assign the limited streaming

capacity to the various requests by means of batching.

� Network | The network is considered to o�er the multicast channels needed. In a

near VOD system, there may be a certain number of channels that are leased by the

service provider and always available (already paid for), in which case the issue is

the same as for the streaming capacity of the server. On the other hand, multicast

channels may be requested by the near VOD service provider on-demand at some

cost. This is the case when, for example, satellite channels are used or some tolls

are to be paid in order to use a multicast stream. In this case, the issue from the

service provider's point of view is to amortize the cost of the channels and guarantee

a certain level of pro�t.

� Users | The users make requests to view certain movies. These requests are charac-

terized by the stochastic process representing the arrival in time of a request, which de-

pends on a number of factors (the time of the day, the occurrence of some news/events,

etc.), and the choice of movies, which depends on the movie's popularity (the proba-

bility of selecting the movie). What is important for the users is the waiting time, the

time from when the user places a request until the movie display is started. Depend-

ing on the waiting time incurred, a user may cancel its request and leave the system

(i.e., renege). The reneging behavior of the users is an important consideration in the

design of a near VOD system and the underlying request batching schemes. Many

user reneging models have been considered in the literature, in which the time a

user is willing to wait before reneging is distributed according to some cumulative

distribution functions; namely, an exponential function [75, 76, 78, 82], a truncated

Gaussian function [77] or a linear function (uniform distribution) [76]. However, in

practice, there is no real data on the user's reneging behavior, and the use of any

speci�c model has been either arbitrary, or driven by the need to keep the analysis

tractable. In the absence of any information about user's reneging behavior, it may
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be appropriate to use a simple model in which users are willing to wait for a certain

amount of time, beyond which they would not be satis�ed and may be considered

reneging with very high probability (i.e., reneging function is a step function with

a delay limit). In some situations, the delay limit may be a design choice that the

service provider makes and advertises for the service. A batching scheme in this case

therefore should be designed so that user's delay is bounded by this time.

Previous work on near video-on-demand concentrated on the streaming capacity of the

servers (which is given and already paid for), and therefore addressed the issue of how

the available server channels are to be assigned to requests so as to achieve maximum

throughput; more speci�cally, they considered a certain design goal pertaining to the loss

of requests such as minimizing the loss rate, guaranteeing that loss is uniform across all

movies, or some trade-o� between the two [75, 76, 77, 78, 79, 92]. These studies would

be applicable to the case where network channels are leased and therefore are available (in

limited number) and paid for prior to service o�ering.

We consider a near VOD system in which the network channels are acquired on-demand.

Associated with the use of each channel is a certain cost. Under this circumstance, request

loss rate may no longer be the only measure of performance, and minimizing loss rate may

no longer be the only design goal. From the service provider's point of view, pro�t is an

important consideration; and maximizing pro�t while o�ering acceptable user delay (and

by the same token acceptable request loss rate) becomes the important design goal. In

this chapter, we primarily consider the case in which the number of on-demand channels

that can be acquired is unlimited. Accordingly, the servicing of requests pertaining to a

given movie is independent of the servicing of requests for other movies, and hence it is

su�cient to consider the single movie case. We do also consider the case in which the

number of available on-demand channels for a given movie is limited and study the e�ect

of such limitation on the system design and performance. (However, we do not consider

the case where there is a limited number of on-demand channels that are shared among

multiple movies, but simply note that the performance of a system with sharing is always
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better than that in which the available bandwidth is partitioned among the movies.)

We �rst examine two well-known basic batching schemes, namely, the window-size based

schemes and the batch-size based scheme. We �rst analyze these schemes under the con-

dition that users do not renege and compare them in terms of the number of required

concurrent channels (also referred to as streams), the number of users served per stream

(which translates to revenue per stream), and the delay experienced by a user. In the

window-size based batching schemes, a maximum user delay is guaranteed. This maximum

delay is equal to the batching window size; conversely, if the user reneging behavior is a

step function, then the window-size based schemes with the window size equal to the de-

lay limit would lead to no user loss and thus maximum throughput. Obviously this also

corresponds to maximum pro�t. With the batch-size based scheme, per stream revenue

(and thus per stream pro�t) can be guaranteed. The performance characteristics of these

schemes without user reneging is useful to design a system with a certain delay or pro�t

objective. For example, providers may want to provide a service in which the probability

of the user delay exceeding a certain value d̂ is very low.

We then introduce a new adaptive scheme which combines the key advantage of the

window-size based schemes (namely guaranteed delay) and the advantage of the batch-size

based scheme (namely guaranteed per stream revenue) by ensuring that when the arrival

rate is su�ciently high (and hence pro�t can be easily achieved), the system guarantees

fairly low delayDmin to the users by batching them according to a window size equal toDmin

(for service competitiveness); but when arrival rate is not so high, the system guarantees

a certain level of pro�t as long as users' delay does not exceed a certain bound Dmax.

The scheme therefore balances service quality (in terms of the user delay experienced) and

system pro�t adaptively.

We then examine the design of near VOD systems with user reneging, driven by the

goal to maximize the pro�t rate (which also corresponds to the pro�t achieved over a long

period of time). System pro�t depends on the length of the batching period: if the period

is too short, many network channels would be used with a few users per channel leading to
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high usage cost; as the period increases, the batch size increases, but due to the reneging

behavior of the users, the batch size reaches a limit; thus if the batching period gets too

long, the pro�t rate decreases due to lost opportunities. We �nd the optimum values for

the parameters of the batching schemes to maximize the pro�t rate.

The chapter is organized as follows. We �rst describe previous related work in Sect. 3.2.

In Sect. 3.3, we �rst describe the two basic batching schemes, and analyze their performance

in terms of the batch-size, number of concurrent streams, and user delay experienced. We

then present the adaptive scheme; and �nally, we address the minimum number of channels

required to meet a certain user delay requirement.1 In Sect. 3.4, we �nd the optimum values

for the parameters of the batching schemes to maximize the pro�t rate with user reneging.

We conclude in Sect. 3.5.

3.2 Previous Work

Gelman and Hal�n consider that channels are partitioned for the movies (so that each

movie is assigned a number of channels), and analyze user loss rate (because it re
ects the

throughput of the system, i.e., rate of the requests served per unit time) for a particular

movie with the following three batching schemes [75]:

� An arrival �nding an idle channel would be served immediately, otherwise it would

join a queue waiting to be served. Users may renege while they are waiting in the

queue. Whenever a channel is available, it is assigned to all the requests in the queue.

The paper analyzes the multiple channels case in which users can wait inde�nitely

(i.e., no reneging) or cannot wait at all (i.e., an M=D=n=n queue). With user's

reneging function being exponential, it considers the single channel case, and shows

that as users become more patient, the throughput increases.

� The movie is displayed once M or more requests are collected (the batch-size based

1Part of the work in this section has appeared in [84, 85].
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scheme, with M = 1 as the special case of the above scheme). The paper analyzes

the single channel case with exponential reneging function, and shows that there is

an optimal M to achieve minimal loss rate.

� The movie is scheduled at regular intervals (�xed scheduling). Multiple channels

and exponential user reneging function are considered. It shows that as users are

more willing to wait, an increase in the number of channels does not bring much

improvement in the loss rate.

Asit Dan et. al. consider multiple server channels in [76], with the channels shared

among multiple movies (of �xed length) of non-uniform popularity (Zipf distribution with

parameter 0.271). The performance measures considered are user loss rate, unfairness (in-

dicated by the variance of the loss rates across the movies) and average user delay. Users

in the system are willing to wait for at least a �xed amount of time, beyond which their

waiting time is exponentially distributed (only in one case that they consider user's reneg-

ing time as uniformly distributed). Using simulation, they study the following batching

schemes:

� FCFS: Incoming requests are time-stamped. Whenever a server channel is released,

the oldest request in the system, along with all the requests of the same movie, is

served.

� FCFS-n: The most popular n movies are schduled according to the �xed scheduling

(all with the same window size). For these nmovies, users are assumed never reneging.

The remaining server channels are shared among the remaining movies according to

FCFS batching scheme.

� MQL (Maximum queue length): Incoming requests join seperate queues according to

the movies they request. Whenever a channel is released, the longest queue is served

�rst.
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It is shown that MQL achieves lower user loss rate than FCFS when server channels

are very limited (by starving some of the requests for non-popular movies). However, when

there are plenty of channels, MQL may have higher loss rate since it pays no regards of how

long each user has been waiting in the system while FCFS serves the the one most likely to

renege (the oldest request) �rst. The examples also show that MQL also has less fairness

and lower mean average delay. Concerning FCFS-n, they �nd that there is an optimal n

such that user loss rate is minimized. They also study the minimum number of channels

required in order to achieve a certain loss rate (5%), for the schemes studied, and �nd that

FCFS-n, if designed properly, potentially saves much bandwidth compared with FCFS or

MQL schemes.

Aggarwal et. al. in [77] follow up on [76] and propose the maximum-factored-queue

(MFQ) batching scheme, which tries to balance the fairness of the FCFS with the low

loss rate of the MQL. In their scheme, the movie queue-length is weighted by a factor

biased against its popularity, and an idle channel is assigned to the queue with the highest

factored queue length. The weighting factor was estimated to be inversely proportional to

the square-root of the movie popularity. The authors proposes two heuristics to assess video

popularity, one based on counting the number of requests for a particular movie in a past

�xed period of time, and another based on the number of arrivals since the last showing

of the movie. They simulate the system assuming that the user reneging behavior is a

truncated (on the left) Gaussian distribution, with multiple movies (of the same length) of

non-uniform popularities (according to the Zipf distribution with parameter 1). It is shown

that the scheme strikes a balance between the performance of FCFS and MQL, in terms of

user loss rate, fairness, and average user delay.

In [78], Almeroth et. al. consider non-stationary arrival process and examine the adaptibil-

ity of a number of batching schemes in terms of the loss rates and average user delay. They

simulate a system with multiple server channels, and multiple movies (with movie length

uniformly distributed between 105 minutes and 135 minutes) of non-uniform popularity

(according to the Zipf distribution with parameter 0.271). A user is willing to wait for a
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certain amount of time, beyond which its waiting time is a truncated exponential distri-

bution. Incoming requests join a single queue, and whenever a channel is allocated, the

request at the head of the queue, along with all the requests of the same movie, will be

served. The following channel allocation policies are simulated:

� FCFS | as in [76]. It is found that when there is a temporary burst in the request

arrival, the idle channels are exhausted too quickly (and hence channels are run out

too fast). This leads to high user loss rate, especially when the arrival rate is high.

The variance of the user delay is expected to be quite large in this scheme.

� Forced wait (Auto-gating) | The request at the head of the queue has to wait for

at least a certain amount of time (window size W ) before it is served (W = 0 is the

FCFS case). Channel assignment is hence regulated. For a given arrival rate, it is

shown that there is an optimal window size to achieve minimum loss rate.

� Rate control schemes | In this scheme, the time is slotted into regular intervals, and

a certain maximum number of channels can be assigned within each interval. In this

way, the channel assignment is paced (so that channels would not be allocated too

quickly). Channel assignment is accelerated if there are still many channels unused

towards the end of an interval. The authors study two ways of pacing the channel

allocation and show that such schemes are able to dynamically adapt to load changes

to keep the loss rate low.

As in [76], the paper also speci�es the minimum number of channels in order to achieve

a certain low loss rate (5%), for the cases of the FCFS, forced wait, and pure rate control

schemes. It is shown that if the arrival rate and user reneging behaviour are known, the

forced wait is able to achieve similar bandwidth requirement as the rate control schemes.

In [79], Abram-Profeta and Shin consider the minimization of user loss rate given that

the user's reneging time is exponentially distributed. They study the following two batching

schemes:
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� Fixed scheduling | Movies are scheduled at regular intervals. They consider the

optimization problem of how a certain �xed number of channels can be partitioned

among a number of movies (of the same length) with non-uniform popularity (Zipf

distribution with parameter 0.271). They solved the problem by integer programming.

They have also considered other assignment policies such as assigning each movie a

number of channels proportional to its popularity or square-root of its populariy, or

in such a way to minimize the average window size, and compared them in terms of

throughput, average window size, and the standard deviation of the window size. The

paper also analyzes the throughput with non-stationary arrival process (with arrival

rate being sinusoidal).

� Batch-size based scheme | Using simulation on a single movie with a certain number

of multiple channels, they found that there is an optimal batch size to minimize user

loss rate.

The paper compares the throughput of the �xed-scheduling and optimized batch-size

based scheme for one movie title, and shows that when channels are not so limited and

users are quite patient, the throughput of the �xed-scheduling and batch-size based scheme

are similar.

Gelenbe and Shachnai consider channel assignment problem in which arrivals join seper-

ate queues corresponding to the movies requested [92]. The objective is to maximize the

throughput of the system given a �xed number of server channels. They compare two

batching schemes. In the �rst scheme, the time is slotted at regular interval Th=N , where

Th is the movie length and N is the total number of server channels in the system. Queues

are examined in a round-robin fashion in each slot, and a maximum of one queue is served

in each slot (If all the queues are empty in a slot, no channel would be assigned). In the

second scheme, the N server channels is partitioned for each movie according to its popu-

larity, with the slot time for movie i equal to Th=Ni, where Ni is the number of channels

assigned. By choosing Ni optimally, throughput can be maximized. The maximum waiting
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time of a user in the system is exponentially distributed.

The authors model the system based on G-network (i.e., with \positive" and \negative"

customers corresponding to arrival and reneging), and show the close agreement between

analysis and simulation. They �nd that the partitioned scheme has a higher throughput,

but requires knowledge in video popularity.

Tsiolis and Vernon consider in [93] a batching scheme (group-guaranteed server ca-

pacity) which permanently assigns certain numbers of channels to groups of movies in the

system, and the channels are used by these movies according to the FCFS batching scheme.

The authors �rst estimate the number of server channels assigned to each group of movies

so so as to achieve minimum average user delay under the condition of no user reneging,

given the total server channels, the number of movies and their respective popularities.

Then they study the performance of such a scheme with user reneging (through simula-

tion), and compare it with other proposed schemes (FCFS, FCFS-n, MFQ). It is shown

that there is no much di�erence between the scheme and FCFS.

While all the above work consider �xed number of channels, this work considers on-

demand channels with a cost incurred each time a multicast channel is used. Under this

circumstance, minimizing request loss rate may no longer make sense since it would mean

serving each request with a dedicated stream, and hence leading to low pro�t or unpro�table

services. A more important issue is how batching can be done so that channel cost is

amortized. We analyze a number of schemes in this light, and derive many measures

related to system pro�tability, such as batch size, number of concurrent streams, and user

delay distribution. We also consider the optimization of the schemes in order to ensure

high pro�t, while satisfying user delay requirement or a certain low user loss rate.

When channels can be acquired on-demand, some of the batching schemes mentioned

above are no longer applicable (e.g., FCFS, MQL, and MFQ). While the window-based

schemes and batch-size based scheme have been mentioned previously [75, 78, 79, 86], we

present a comprehensive analysis on the schemes, deriving all the important pro�tability

and delay measures.
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There is some other previous work on more advanced batching techniques. Golubchik

et. al. consider in [80] that video frames can be repeated or dropped, so that adjacent

streams can catch up with each other and merge into a single multicast stream (\adaptive

piggybacking"). They study three schemes of merging adjacent streams in terms of their

bandwidth saving. Aggarwal et. al. in [81] formulate a stream merging scheme as a dynamic

program and explore its performance and complexity issues. Sheu et. al. study bu�ering

part of the videos in the client sites so that video data can be streamed directly from the

clients (instead of from the servers); hence decreasing the bandwidth requirement of the

server [82]. They study, in terms of the measures such as throughput and average user

delay, two ways to do such \chaining" operation | in the standard chaining, new arrivals

may be served immediately while in the extended chaining, new arrivals are forced to wait

for a period of time (so as to batch more users) before they are served. Yu et.al. and Liao

et. al. study using additional memory in the server to cache some of the streamed data,

so that the requests closely following each other can retrieve their data directly from the

memory instead of from the disks [88, 83]. Our work can be combined with theirs to achieve

higher system pro�t and lower user loss rate.

3.3 Batching Schemes and Their Analysis Without

User Reneging

In this section, we describe the two basic batching schemes considered in this chapter and

analyze them assuming users do not renege. We derive the number of channels required,

the batch-size, and the delay experienced by a user. We compare the two schemes with

each other. We then introduce the adaptive scheme and present its performance. We

also consider what should the minimum number of streams be for a video �le so that the

probability of a user's delay D exceeding a certain value d̂ is less than ", i.e., P (D > d̂) < ".

102



Movie

displayed

Display time

dropped

Movie

displayed

Movie

displayed

Display time

dropped TimeW

Batching Window

Requst arrivals

Figure 3.2: Fixed gating

3.3.1 Scheme description

A. Window-size based schemes

Consider a movie of duration Th (minutes). The �xed scheduling scheme is the simplest

of all window-size based batching schemes whereby a movie is shown once every exactly

W minutes (W � Th). The number of required concurrent streams is deterministic and is

simply given by dTh=W e. A user which makes a request to view the video between two

such showings (the batching window) is served by the next showing following the request.

If the average rate of arrival of requests is � requests/minute, then the average number of

users served by a stream is simply �W .

In the �xed scheduling, a stream is used even if no request has been made in the batching

period preceeding it. As shown in Fig. 3.2, it is possible to omit a showing if no user has

requested the movie in its corresponding batching window. This scheme is referred to here

as �xed gating. The number of concurrent streams is no longer deterministic, and depends

on the arrival process. In both �xed scheduling and �xed gating, the user delay is bounded

by W , and the show time may be published ahead of time.

A third batching scheme which also guarantees a delay bound ofW is shown in Fig. 3.3,

in which the batching window is started with the �rst arrival in a batch and extends for

a duration equal to W . We refer to this scheme as the auto-gated scheduling. While in

this scheme, the show time cannot be announced ahead of time, each such show time

is determined and may be advertised as soon as the start of the corresponding batching
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window is determined.

B. Batch-size based scheme

In general, the concern of service providers is to have as many users in a batch as

possible, since the system pro�tability is directly related to the average batch size. Let

PV (dollars) be the pay-per-view for a movie, and the total cost in using a channel be the

sum of a �xed cost C (dollars) and a variable cost proportional to the number of users in

the batch (with the proportionality constant � dollars/user). If N is the average number

of users in a batch, the average per-batch pro�t is given by NPV � (C + �N). De�ne

P
�
= PV � � (the provider's net revenue per user). A batching scheme is pro�table if,

N � C

P

�
= K; (3.1)

i.e., the average batch size has to be no less than a number K.

Note that in the auto-gating scheme, the number of users in a batch is high when the

arrival rate is high. However, when the arrival rate is low, system pro�tability su�ers. In

the batch-size based scheme, we secure the pro�tability by batchingM � K users together

before multicasting the movie, regardless of how long it takes to collect the M users. Note

that with such a scheme, users su�er uncertain waiting time; i.e., the time at which the

movie is displayed cannot be advertized to the users when they request service.

C. Moving-average scheme

This scheme addresses the objective of satisfying a certain average user delay require-

ment D̂. Such a requirement may be met by dynamically adjusting the batching window

so that the mean delay of the users in each batch is equal to D̂. Given a set of known

request arrival times A1; A2; : : : ; Ai in a batch (counted from the time of the �rst arrival in

the batch, and hence A1 = 0), in order to keep the average delay in the batch equal to D̂,

the (future) tentative display time TD has to satisfy,

1

i

iX
j=1

(TD � Aj) = D̂; (3.2)
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which gives,

TD = D̂ +

Pi
j=1Aj

i
; (3.3)

i.e., the video display time is the average delay requirement D̂ plus the average arrival time

in the batch. Therefore the show time of a video has to be re-calculated at each arrival in

a batch.

3.3.2 Analysis

Let again Th denote the duration of a movie in minutes. We consider the request's arrival

process to be Poisson with rate �. In evaluating the various batching schemes, we are

interested in the following closely-related performance measures:

� The required number of concurrent streams, both its distribution fS(s) and its mean

value S: Let S(t) be the number of concurrent streams used at time t. We are

interested in the average number of concurrent streams allocated for the video �le,

de�ned as S
�
= limT!1

1

T

R T
0 S(t)dt: Since the average number of concurrent streams

required in pure-VOD is �Th, the bandwidth saving � is given by � = 1� S=(�Th):

� The batch size (the number of users served together in a batch) N , both its distribution

fN(n) and its mean N : N is related to S by �Th = S N . Indeed, by the Little's

formula, the average number of user requests which arrive during the video display

time Th is simply �Th, which is also equal to S N .

� The delay D of a user, both its distribution fD(t) and its mean D.

A. Window-size based schemes

Fixed scheduling: The distribution of the batch size is Poisson with mean N = �W ; we

also have S = Th=W and � = 1� 1=(�W ). D is uniformly distributed between 0 and W ,

and D =W=2.
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Fixed gating: The probability that there are i (i � 1) requests in a batch is given by

(�W )ie��W=(i!(1� e��W )); hence, N = �W=(1� e��W ),

S =
Th

W
(1� e��W ); (3.4)

and � = 1 � (1 � e��W )=(�W ): As expected, when � ! 0, S ! �Th (the number corre-

sponding to pure-VOD); and S � Th=W with lim�!1 S = Th=W .

Given that there is an arrival within a batching windowW , its arrival time is uniformly

distributed within the window; hence, fD(t) = 1=W , for 0 � t �W , and D =W=2:

Auto-gated scheduling: The distribution of the batch size is P (N = i) = (�W )i�1

e��W=(i� 1)!, for i � 1. Hence N = 1+ �W (which is exactly one more than that of �xed

scheduling), and

S =
�Th

1 + �W
; (3.5)

and � = �W=(1 + �W ). The normalized pro�t rate is given by �̂ = �(1�K=(1 + �W )).

In terms of the delay distribution, since the �rst user in each batch has a delay of W

while the remaining ones in the batch have a delay uniformly distributed between 0 and

W ,

fD(t) = 1

1+�W
�(t�W ) + �

1+�W
for 0 � t �W , (3.6)

where �(t) is the usual impulse function with �(t) = 0 for t 6= 0 and
R
1

�1
�(t)dt = 1. D is

hence given by,

D =
�W + 2

2(1 + �W )
W: (3.7)
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We derive the (approximate) expression of the stream distribution for the auto-gated

scheduling. Refer to Fig. 3.4. Consider an arbitrary time t, and denote S the (random)

number of concurrent streams at that time (we assume that S is stationary and hence drop

the subscript t). The event of S = s (s � Ŝ
�
= dTh=W e) means that exactly s movies have

started their showings in [t�Th; t]. Consider the period [t�Th�W; t], and assume that at

time t�Th�W , no batching window has been started (and hence the �rst arrival after time

t�Th�W would start a batching window. Note that the assumption is good if �W is not

high2). Denote Xi the interarrival time from the last showing of a movie to the arrival of

the next request in time [t�Th�W; t]. Obviously, Xi is exponentially distributed with rate

�. Note that the condition for S � s is (X1+W )+(X2+W )+: : :+(Xs+W ) � Th+W , i.e.,

Ps
i=1Xi � Th� (s� 1)W: Since W =

Ps
i=1Xi is the sum of s exponentials, its distribution

is,
sX
i=1

Xi � gW (x; s) =
�(�x)s�1

(s� 1)!
e��x; (3.8)

and hence, P (S � s) =
R Th�(s�1)W
0 gW (x; s)dx: Therefore,

P (S = s) = P (S � s)� P (S � s+ 1)

=

8><
>:
R Th�(s�1)W
0 gW (x; s)dx� R Th�sW

0 gW (x; s+ 1)dx; for s < Ŝ,R Th�(Ŝ�1)W
0 gW (x; Ŝ)dx; for s = Ŝ:

(3.9)

B. Batch-size based scheme

The movie is displayed each time a new batch of M requests is collected. Therefore, N

is deterministic and equal to M , S = �Th=M , and � = 1� 1=M . Clearly, for a given �, the

largerM is, the smaller S is; and in contrast with what we have seen for the window-based

schemes, S keeps increasing as � increases. Therefore, if M is �xed, when � gets large, the

batch-size based scheme in fact consumes more bandwidth than the window-based schemes.

Let W denote the batching period; it is a random variable equal to the sum of (M � 1)

2Note that if �W is high, then the stream distribution would be so skewed towards the maximum stream

Th=W that S � Th=W and the stream distribution would not be as interesting.
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exponential variables, and its distribution gW (w) is given by,

gW (w) =
�(�w)M�2

(M � 2)!
e��w: (3.10)

The user delay distribution may be obtained by conditioning on W . Given W = w, the

�rst user in the batch has delay w, the last user has delay equal to 0, and the remaining

M � 2 users have a delay uniformly distributed between 0 and w, i.e.,

fD(xjw) = 1

M
�(x� w) + M�2

M
1

w
+ 1

M
�(x); for 0 � x � w. (3.11)

By removing the condition on w, the user delay distribution is given by (x � 0),

fD(x) = 1

M
gW (x) + M�2

M

R
1

x
gW (w)

w
dw + �(x)

M
; (3.12)

and D = (M � 1)=(2�); which is equal to half of the average batching period.

C. Moving-average scheme

The analysis for this scheme has proven to be rather di�cult. Accordingly, we have

used simulation to study its performance.

3.3.3 Numerical results and comparisons

Window-based schemes

The auto-gated scheduling is chosen as a representative of window-based schemes. We

consider Th = 90 minutes.

In Fig. 3.5, we plot S versus W , given �. Also shown in the �gure is the maximum

Th=W which is attained when � ! 1, and corresponds to the number required in the

�xed scheduling case. In Fig. 3.6, we plot S versus �, given W . Given �, when W = 0,

S = �Th corresponds to pure-VOD. AsW increases, S decreases from �Th, �rst rapidly and

then slowly; most of the bandwidth reduction as compared to pure-VOD is attained for a

relatively low value of W , in the range of 6{8 minutes, and beyond this range the rate of

reduction becomes relatively small. Furthermore, this gain is signi�cantly more important
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Figure 3.5: S versus W for the auto-gated scheduling

for larger � than for smaller �. We also note from both �gures that the bandwidth reduction

as compared to the �xed schedule (Th=W ) is more signi�cant for smaller W and smaller �.

Indeed, the average number of streams which can be expressed as Th=(W + 1=�) is small

compared to Th=W when (W + 1=�) is large as compared to W ; this is the case when W

is small given �, and it is more pronounced when 1=� is large.

The average batch size N = 1 + �W is linear in both W and �. In Fig. 3.7, we plot N

versus W given �. In order to achieve pro�tability, we need N � K, i.e., �W � K � 1;

thus given �, pro�tability is achieved as long as W is greater than (K�1)=�. For example,

when K = 5, for � = 120 req./hr, W can be as low as 2 minutes to maintain pro�tability;

however, if � = 25 req./hr, W has to be increased to 12 minutes.

In Fig. 3.8, we plot the delay distribution for the auto-gated scheme for various combi-

nations of (�;W ). By comparing Fig. 3.8(a) and 3.8(b), we note that as � increases, there

results a decrease in the impulse at W and an increase in the probability density from 0

to W , indicating that the delay distribution gets closer to the uniform distribution and

the average delay decreases. Figure 3.8(c) as compared to Fig. 3.8(a) shows how the delay
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distribution changes as W increases; both the impulse and the density level decrease, and

there is an increase in the average delay.

We now examine D and plot in Fig. 3.9 D versus W for given �. From Eq. (3.7), D

can be re-written as

D =
W

2
+

1

2(1=W + �)
� W

2
+

1

2�
: (3.13)

The upper bound is reached when W gets large so as 1=W gets small as compared to �;

for large �, this is the case for even small value of W (e.g., for � = 120 req./hr, W � 5

minutes).

In Fig. 3.10, we plot D versus �, given W . The user delay at � = 0 is equal to W with

probability 1 (each batch would only have one user). As � increases, D decreases from W ,

reaching asymptoticallyW=2. We observe that the drop in D as � increases is sharper with

larger values of W than with smaller value of W . This is expected since more users can be

batched with a larger window. It is encouraging to note that for window size of only 12

minutes, the users experience an average delay of 8 minutes for an arrival rate as low as 10

req./hr., and an average delay close to 6 minutes for an arrival rate equals to 40 req./hr.

We consider now that W is selected appropriately for a given � so as to guarantee a

given average batch size M , and thus a given level of pro�tability (where M is selected to

be larger than K). (Clearly, this assumes that the rate � of the arrival process is known a

priori and remains constant over relatively long periods of time.) In Fig. 3.11, we plot the

minimum window size W necessary to guarantee 1 + �W = K, and the resulting average

delay incurred, as a function of �. Clearly, for a given K, larger values of � require smaller

values of W , and the higher K is, the larger W must be. For � = 40 req./hr and K = 10,

W has to be 14 minutes in order to maintain pro�tability; and if K is now 2 as opposed to

10, W may be decreased to 1.5 minutes.

Consider now that there is a certain level of pro�tability M � K that needs to be

guaranteed, and that the maximum delay requirement needs not be lower than a certain

value D(0)
max. Then for � > �0 where �0 is such that K = 1+�0D

(0)
max, one may use the value

W = D(0)
max and for � < �0, W is selected so as to guarantee the batch size M = K. We
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show in Fig. 3.12 the case of D(0)
max = 12 minutes and K = 10 (and hence �0 = 45 req./hr).

We see from the �gure that as � increases but remains less than 45 req./hr, W is decreased

just to maintain pro�tability. When � increases beyond 45 req./hr, W does not have to be

decreased further. From there on, the window size is kept at 12 minutes, thereby achieving

higher pro�t. The result of such a choice is that the user delay when � < �0 is larger than

D(0)
max.

One may achieve both pro�tability and a maximum delay guarantee if one were to charge

users an additional fee over the delivery cost per movie (P = PV ��) chosen appropriately

as a function of �. P should be such that K � C=P = 1+�W , and thus the fee normalized

to C is given by P=C = 1=(1+�W ). We plot in Fig. 3.13 P=C versus � given W . For very

low arrival rates, when there is most likely only 1 user in a batch, the fee to be charged is

equal to the stream cost. As � increases, the fee to be charged drops quickly; for example,

for W = 6 minutes when � = 40 req./hr, the charge needs to be 0:2C.

We now compare pure-VOD, �xed scheduling, �xed gating and auto-gated scheduling

in terms of S and N for given values of � and W . Since in all cases S is expressed in
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terms of the product �W , we plot in Fig. 3.14 S normalized to Th=W as a function of �W .

Obviously, the auto-gated scheme consumes less bandwidth than �xed gating. In fact, given

the expressions derived for S (Eqs. (3.4) and (3.5)), it is easy to show that �xed gating

consumes up to 30% more streams than auto-gating (attained at �W = 1:7934), while the

maximum di�erence in S between the two is 0:2036Th=W (attained at �W = 2:51276).

Fixed scheduling always consumes on average Th=W streams no matter what the arrival

rate is, and both the �xed gating and the auto-gated schemes consume less bandwidth

than �xed scheduling. However, as �W gets large, �xed scheduling is as good as �xed

gating, and ultimately, the auto-gated scheme will asymptotically reach the same value.

Note also that for � � 1=W , even pure-VOD performs better than �xed scheduling. For

completeness, we plot in Fig. 3.15 S as a function of W given �.

We plot in Fig. 3.16 N for the various window-based schemes as a function of �. We

note that the batch sizes for all window-based schemes di�er by at most one.

With respect to delay, for the same W , all window-based schemes guarantee the same

maximum delay W . The average delay however is �xed at W=2 for both �xed scheduling
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and �xed gating, while that of the auto-gated scheme is between W=2 and W depending

on the intensity of � (see Fig. 3.10).

Batch-size based scheme

We plot in Fig. 3.17 S = �Th=M versus M for various values of �. Clearly, for a given

�, the larger M is, the smaller S is; S drops very rapidly as M is increased from zero,

but then 
attens out as it reaches asymptotically the value zero. S versus � given M is

plotted in Fig. 3.18. Clearly, S is linear in �, and in contrast with what we have seen for

window-based schemes in Sect. 3.3.3, S keeps increasing as � increases, and does not settle

to a limiting value. Therefore, if M is to remain �xed, when � gets large, the batch-size

based scheme in fact consumes more bandwidth than window-based schemes.

Since each batching period is extended until exactly M users have been collected, the

delay in the batch-size based scheme is not bounded from above as is the case with the

window-size based schemes. The distribution of delay is shown in Fig. 3.19 for given

combinations of � and M . There is an impulse at the origin of magnitude 1=M since
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one user out of the M in a batch (the last one in a batch) enjoys zero delay. Figure

3.19(a) corresponds to (�;M) = (25 req./hr, 5). We see that the distribution has a tail

indicating that some users have long delay. Figure 3.19(b) shows the distribution when � is

increased (to 50 req./hr). The impulse at the origin does not change, but the distribution

is \squeezed" towards the origin, indicating that the user delay decreases when � increases.

Comparison between Figs 3.19(c) and 3.19(a) shows how an increase in M causes the

impulse in the origin to shrink and the tail to spread out. The average user delay is hence

increased.
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From Sect. 3.3.2, the average delay is D = (M � 1)=(2�). We plot D versus M for

given � in Fig. 3.20. D increases linearly with M for a given �; given � the choice of a

certain value M (greater than K) to achieve pro�tability comes at the expense of higher

user delay. In Fig. 3.21, we show D versus �, given M . D decreases with increasing values

of �. Note the sharp knee behavior of the curves in Fig. 3.21 which indicates that in the

low range of M , a signi�cant decrease in the average delay is achieved for a relatively small

increase in �, and the decrease in D beyond the knee is rather insigni�cant.

The maximum delay for auto-gated scheduling is W , while the distribution of delay for

the batch-size based scheme has in�nite tail. To compare them, we design both systems

so as to satisfy a certain average delay D̂ (in the auto-gated scheme, we select W while in

the batch-size scheme, we select M so as to achieve D̂), and then �nd the probability that

the user delay D in the batch-size based scheme is higher than W . Given an average delay

requirement D̂, W is given by (from Eq. (3.7)),

W =
1

�

�
D̂�� 1 +

q
1 + �2D̂2

�
: (3.14)

Note that as � increases from zero, W increases from D̂ to 2D̂. For the batch-size based

scheme, in order to achieve the required average delay D̂, we need

M = 1 + 2D̂�: (3.15)

In Fig. 3.22, we show the probability that the user delay in the batch-size based scheme

exceeds W as a function of �. We see that when the arrival rate is low, this probability is

high. However, as the arrival rate increases, this probability decreases.

We now consider the design of both systems so as to satisfy a given pro�tability K and

compare their average delay. We plot in Fig. 3.23 the average delay as a function of � for

given K. We see that both schemes have average delays that are fairly close (with the

batch-size based scheme having slightly lower delay).

Finally, it is interesting to note that for the same average batch-size, the average batch-

ing period for the batch-size based scheme and auto-gated scheduling are the same. How-
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ever, the auto-gated scheduling o�ers delay bound to the users and eliminates user's un-

certain wait. Furthermore, for a given �, the maximum number of concurrent streams is

Th=W , while the maximum number of concurrent streams for the batch-size based scheme

can be very high. This makes auto-gated scheduling the most attractive among all the

schemes considered.

Moving-average scheme

In the moving-average scheme, the movie show-time is pushed forward in time each time

there is a new arrival in the batch. Therefore we are interested in the user delay distribution

given that a certain average delay requirement D̂ is to be satis�ed. In Figs. 3.24(a) and

3.24(b), we show the user delay distribution with low arrival rate (� = 10 req./hr) and high

arrival rate (� = 120 req./hr), respectively, for D̂ = 1 minute, 3 minutes, and 10 minutes.

We see that most users actually enjoy a delay equal to the averages, and almost no user

su�ers a delay higher than 2D̂. It is encouraging to see that even though the batching

window keeps lengthening with each user arrival, users are not delayed inde�nitely. In fact,

as � increases, the average arrival time approaches the mid-point between the �rst and

the last arrival of a batch (the batching period). Therefore, with the use of Eq. (3.3), we

have lim�!1W = 2D̂, and the delay distribution approaches � U [0; 2D̂]. This is actually

apparent when � = 120 req./hr. Hence, as the arrival rate increases, S settles to a limiting

value of Th=(2D̂).

In Fig. 3.25, we show the batch-size distribution for the moving-average scheme, with

low arrival rate (Fig. 3.25(a)) and high arrival rate (Fig. 3.25(a)). For each arrival rate, we

see that the distribution spreads as the targeted average delay increases. As arrival rate

increases, the distribution becomes more and more \bell-like." Indeed, since the window

size approaches 2D̂ as � gets larger, the batch size distribution is expected to approach a

Poisson distribution with mean batch size 2�D̂ + 1 (the one is due to the �rst arrival in

the batch).

We show in Fig. 3.26 S versus D̂ given �. Also indicated is the case when � =1 (i.e.,
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S = Th=(2D̂)). For high arrival rate (� � 30 req./hr), S decreases, �rst sharply and then

more slowly, with D̂. We see that most of the bandwidth saving is achieved when D̂ is low

(D̂ � 3 minutes).

In Fig. 3.27, we show S versus � given D̂. As expected, as � increases, S increases and

approaches the limiting values Th=(2D̂). For an average delay of as low as 5 minutes, only

9 streams is su�cient to serve hundreds of requests per hour.

In Fig. 3.28, we compare S as a function of �, among the moving-average scheme, auto-

gated and batch-size based schemes, given a certain average delay requirement (D̂ = 3

minutes). We see that the batch-size based scheme consumes the least bandwidth among

all the schemes. In fact (from Eqs. (3.5), (3.14) and (3.15)), it is not hard to show that

auto-gated scheduling consumes up to 25% (at �D̂ = 0:75) more bandwidth than the batch-

size based scheme, while the maximum di�erence in S between the batch-size based scheme

and the auto-gated scheme is 0:082Th=D̂ (at � = 1:15=D̂). Note that in all schemes, the

limiting value of S as � increases is Th=(2D̂). We see that only 15 streams is needed to

provide D̂ = 3 minutes.
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In Fig. 3.29, we compare N as a function of � given a certain D̂. We see that there is

not much di�erence in the batch sizes among all the schemes.

3.3.4 Adaptive scheme

Description

We now introduce a new adaptive scheme which combines the key advantage of the window-

size based schemes (namely guaranteed delay) and the advantage of the batch-size based

scheme (namely guaranteed per stream revenue) by ensuring that when the arrival rate

is su�ciently high (and hence pro�t can be easily achieved), the system guarantees fairly

low delay to the users; but when arrival rate is not so high, the system guarantees a

certain level of pro�t as long as user's delay does not exceed a certain bound. The scheme

therefore balances service quality (in terms of the delay user experienced) and system pro�t

adaptively.

We consider that user satisfaction is high if the delay experienced is below a certain value
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Dmin. We also consider that there is a delay Dmax > Dmin beyond which user satisfaction

is very low and, for all practical purposes, the probability of user reneging is high. Delays

between Dmin and Dmax are tolerated and within this range no reneging is likely, but the

user satisfaction is not high. As an example, Dmin may be in the range 3{7 minutes while

Dmax may be in the range 15{40 minutes.

According to this user satisfaction model, the adaptive scheme is shown in Fig. 3.30.

The scheme has three parameters: M � K,Wmin = Dmin, andWmax = Dmax, and operates

as follows: IfM users arrive withinWmin, the system keeps batching untilWmin is reached,

thereby increasing the pro�tability beyond the minimum M ; if Wmin is reached before M

users are batched, the batching window is extended until either M or Wmax is reached,

whichever occurs �rst. Thus, when the arrival rate drops, the system tries to maintain

pro�tability by using batch-size based scheme with M � K; but since users may renege

if they wait higher than Dmax, a maximum batching window of Wmax is imposed (even if

there are fewer than M users arriving within the window of size Wmax, the movie is shown

anyway). Users, in this system, may not know the exact video show time; however the

show time is guaranteed to be in the range (Wmin, Wmax) following the �rst arrival in the

batch.

Analysis of the scheme

Let W denote the batching period. It is a random variable with range [Wmin;Wmax]. Let

� be the probability that W = Wmin; it is equal to the probability that more than M � 1
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users (excluding the �rst one in the batch) arrive within Wmin, and is then expressed by:

� = P (W =Wmin) = 1�
M�1X
m=1

(�Wmin)
m�1

(m� 1)!
e��Wmin : (3.16)

Let � be the probability that W =Wmax. It is equal to the probability that fewer than

(M � 1) requests arrive (excluding the �rst request in the batch) within Wmax, and is then

expressed by,

� = P (W =Wmax) =
M�1X
m=1

(�Wmax)
m�1

(m� 1)!
e��Wmax : (3.17)

Let 
 be the probability that Wmin < W < Wmax. It is equal to the probability that

the batch size of M is reached at W = w, Wmin < w < Wmax, and is then expressed by,


 =

Z Wmax

Wmin

gW (w)dw; (3.18)

where gW (w) is given in Eq. (3.10). Clearly, 
 is also given by 
 = 1� �� �:

The distribution of N is given by,

P (N = i) =

8>>>>><
>>>>>:

(�Wmax)
i�1

(i�1)!
e��Wmax for 1 � i �M � 1,

(�Wmin)
M�1

(M�1)!
e��Wmin + 
 for i =M ,

(�Wmin)
i�1

(i�1)!
e��Wmin for i �M + 1,

(3.19)

which can be used to �nd N .

N may also be calculated by conditioning on W . Let N� = E[N jW = Wmin], N� =

E[N jW = Wmax], and N
 = E[N jWmin < W < Wmax]. Then N = �N� + �N� + 
N
,

where

N� =
1X

m=M

m
(�Wmin)

m�1

�(m� 1)!
e��Wmin ; (3.20)

N� =
M�1X
m=1

m
(�Wmax)

m�1

�(m� 1)!
e��Wmax ; (3.21)

N
 = M: (3.22)

We get the user delay distribution by again conditioning on W . Given that W =Wmin

and there are m (m �M) requests in the batch, one (the �rst one in the batch) would have
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delay Wmin, and the remaining (m� 1) of them would have a delay uniformly distributed

� U [0;Wmin]. Therefore, for x �Wmin, the user delay distribution is given by,

fD(xjW =Wmin) =
1

N�

1X
m=M

(�Wmin)
m�1

�(m� 1)!
e��Wmin �

�
(m� 1) 1

Wmin
+ �(x�Wmin)

�
: (3.23)

Similarly, given that a batching window is of size Wmax, user delay distribution is (x �
Wmax),

fD(xjW =Wmax) =
1

N�

M�1X
m=1

(�Wmax)
m�1

�(m� 1)!
e��Wmax �

�
(m� 1) 1

Wmax
+ �(x�Wmax)

�
: (3.24)

Given that W = w, Wmin < w < Wmax (and hence the batch size is M), a user would

have delay w, (M � 2) users would have delay � U [0; w], and a user will have zero delay.

Therefore, for 0 � x � w,

fD(xjWmin < w < Wmax) =
1

M
�(x� w) +

M � 2

M

1

w
+

1

M
�(x):

Removing the condition on w, for x � Wmin, the delay distribution is given by

fD(x) =
1

N

n
�N�fD(xjW =Wmax)+

�N�fD(xjW =Wmin) +


M

Z Wmax

Wmin

fD(xjWmin < w < Wmax)
gW (w)



dw

)

=
1

N

(
M�1X
m=1

(�Wmax)
m�1

(m� 1)!
e��Wmax(m� 1)

1

Wmax

+

1X
m=M

(�Wmin)
m�1

(m� 1)!
e��Wmin

�
m� 1

Wmin

+ �(x�Wmin)

�

+(M � 2)

Z Wmax

Wmin

gW (w)

w
dw + 
�(x)

)
: (3.25)

For Wmin < x � Wmax, the distribution is,

fD(x) =
1

N

(
1X

m=M

(�Wmin)
m�1

(m� 1)!
e��Wmin(m� 1)

1

Wmin

+
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Figure 3.31: S versus � for the adaptive scheme

M�1X
m=1

(�Wmax)
m�1

(m� 1)!
e��Wmax

�
m� 1

Wmax

+ �(x�Wmax)

�

+gW (x) + (M � 2)

Z Wmax

x

gW (w)

w
dw

)
: (3.26)

D may be obtained by
RWmax

0 xfD(x)dx. D may also be calculated by conditioning onW .

Let D� = E[DjW = Wmin], D� = E[DjW = Wmax], and D
 = E[DjWmin < W < Wmax].

We have D = (�N�D� + �N�D� + 
MD
)=N; where

D� =
1

N�

1X
m=M

�
(m� 1)

Wmin

2
+Wmin

�
(�Wmin)

m�1

�(m� 1)!
e��Wmin ;

D� =
1

N�

M�1X
m=1

�
(m� 1)

Wmax

2
+Wmax

�
(�Wmax)

m�1

�(m� 1)!
e��Wmax ;

D
 =
1

M

Z Wmax

Wmin

gW (w)



M

w

2
dw:

Numerical results

We plot in Fig. 3.31 S versus �. We also show (in light dotted lines) the corresponding S

for the batch-size based scheme (with M set to the value used in the adaptive scheme) and
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Figure 3.32: Batch-size distribution for the adaptive scheme (M = 8, Wmin = 4 minutes,

Wmax = 20 minutes)

for the auto-gated scheme (with W set to the various values of Wmin and Wmax used in the

adaptive scheme). We see that as � increases, the average number of concurrent streams

�rst behaves as in the auto-gated scheme with window size Wmax, then it switches over to

the batch-size based scheme (shown as the straight line), and then �nally, as the arrival

rate increases further, it behaves as in the auto-gated scheme with window size Wmin.

In Fig. 3.32, we show the batch size distribution for three values of �'s: low value

(� = 10 req./hr), intermediate value (� = 40 req./hr) and large value (� = 150 req./hr).

We see that when � is small, the distribution is similar to the Poisson distribution (as in the

auto-gated scheme), and when � =40 req./hr, most of the batches are of size M , and when

� is further increased to 150 req./hr, the probability of a batch size equal to M decreases,

and the distribution spreads to values larger than M .

In Fig. 3.33, we show the average batch size N as a function of �; we also show in light

dotted lines the same curves for the auto-gated scheme with the corresponding parameters.

Similar to S, we see that as � increases, N follows the auto-gated scheme curve with
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window size Wmax, and then the batch-size plateau with the corresponding parameter of

M , and �nally the auto-gated scheme again with window size Wmin. Note that the portion

of the graph lying above N = M corresponds to the pro�table region. For a time varying

arrival rate, the total system pro�tability depends on how often the process visits the upper

portion (with N �M) and the lower portion.

We now examine the distribution of the user delay. In Fig. 3.34, we show the distribution

for various values of the arrival rate. We see that when the arrival rate is low (Fig. 3.34(a)),

the distribution bears great resemblance with that of the auto-gated scheme with window

sizeWmax. Figure 3.34(b) shows the distribution when the arrival rate is at an intermediate

value. We see that there are more users with zero delay (those ending the batching process

by having accumulated M users) and Wmin; on the other hand, the number of users with

delayWmax decreases. In Fig. 3.34(c), we show the distribution for relatively high �. We see

that more users have delayWmin, but the number of users having zero delay (the batch-size

based case) and Wmax decreases greatly.

In Fig. 3.35, we show as a function of � the probability that the batching window is of
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size Wmax (i.e., a batch size < M), of size Wmin (i.e., batch size �M) and the probability

that it is in between (i.e., batch size equal to M). We see that as the arrival rate increases,

the window size changes from being mainly of sizeWmax, to being betweenWmin andWmin,

and �nally to being equal to Wmin.

In Fig. 3.36, we plot the average delay as a function of �. We see that when the arrival

rate is low, the average delay is that of auto-gated scheme with window size Wmax, and as

the arrival rate increases, it switches to that of auto-gated scheme with window size Wmin.

3.3.5 Minimum bandwidth to meet a certain user's delay require-

ment

We note from the above discussion that the window-based scheme has the distinct feature of

guaranteeing a maximum user delay (and thus �ts the step function model of user reneging

behaviour). Thus if the users expect a delay bounded by a maximum value d̂, then a
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window-based scheme with W = d̂ meets the delay expectation. The number of streams

required S, however, varies over time in the range between 0 and dTh=d̂e, and can reach the
maximum N̂ = Th=d̂, albeit with very small probability. This is illustrated in Figs. 3.37

and 3.38, in which we show the stream distribution for the auto-gated scheduling � = 10

req./hr and 50 req./hr, with W = 3 minutes and 6 minutes respectively. (The discrete

points are from the simulation data and continuous lines are from analysis.)

Since in some cases, the total number of available channels may be limited (e.g., leased

channels or server's streaming capacity), the question arises as to what should the minimum

number of streams N�

s allocated to a movie be in order to meet a certain user delay require-

ment? More speci�cally, we seek to design the system such that the probability of a user's

delay D exceeding a certain value d̂ to be less than a small values ", i.e., P (D > d̂) < ".

Since we are designing a system meeting user's delay expectation, we limit ourselves to

window-based schemes and consider the reneging probability to be negligible (or equiva-

lently, if the reneging behaviour is modelled by a step function with a delay limit equal to
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d̂, then " would represents the probability that a user reneges).

We again consider a movie of duration Th minutes, to which Ns streams are allocated.

The arrival process of the requests is Poisson with rate �. In this study, we use simulation.

Bandwidth planning

As an example, we consider Th = 90 minutes, d̂ = 6 minutes and " �1%. In this case,

N̂ = 15 streams. Clearly, if Ns is set to 15, then P (D > d̂) = 0. However, when Ns < 15,

it is probable that at the end of a batching window, all the channels are already occupied

and users have to wait longer than d̂.

We begin by comparing two window-based schemes: �xed-gating and auto-gating. In

Fig. 3.39, we show the complimentary delay distribution P (D > d) for the auto-gating

and �xed-gating, with Ns = 10 and W = 6 minutes. As expected, we see that the auto-

gating has a much lower tail than the �xed gating, clearly establishing that it o�ers better

bandwidth utilization. Hence, we consider only the auto-gating in the following.

We �rst look at how W a�ects P (D > d) given Ns < N̂ . Thus, we show in Fig. 3.40
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P (D > d) versus d, with Ns set to a �xed value (namely Ns = 10) and various values of

W when � = 10 req./hr; the dotted line represents P (D > d) for Ns = 15 and W = 6

minutes (for which again P (D > d̂) = 0). We see that for each value of W , there is an

impulse at d = W (as the �rst user in a batch incurs a delay equal to W ), followed by a

tail (indicating that users have to wait for an available stream). We observe from Fig. 3.40

that W has a strong e�ect on the user delay distribution, and that when Ns is set to a

certain value below N̂ , P (D > d̂) is minimized when W is set equal to d̂; also in this case

(Ns = 10), P (D > d̂) � 10�2, meaning that for a small value of " (" � 10�2), the number

of streams required can be reduced from the maximum of 15 to 10.

Note that the area under the graph is the average delay D of the users. User delay D is

the sum of the gating delay DG (the time waiting for the batching window to end) and the

time waiting for an available stream Ds. As W decreases, DG decreases while Ds increases

(since streams are more likely to run out). In Fig. 3.41, we show D versus W , given Ns.

Also shown is the average delay with in�nite bandwidth according to Eq. (3.7). We see

that indeed, as W decreases from Th=Ns, D �rst decreases (due to the decrease in gating
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delay), and then increases (due to the waiting time for an available stream). For Ns = 10,

we see that at minimal D (corresponding to W = 4 minutes), the delay distribution has

an undesirable high tail (ref. Fig. 3.40).

We show in Fig. 3.42 how P (D > d̂) varies with d̂ given Ns. We see that as d̂ decreases,

P (D > d̂) increases �rst sharply then gradually. We can also read from the graph the

minimal expectation d̂ one should target given certain Ns and ".

To see the e�ect of Ns on P (D > d), we show in Fig. 3.43 P (D > d) versus d for di�erent

values of Ns, considering two cases for d̂ (d̂ = 6 minutes and 15 minutes) and settingW = d̂

in each case. Clearly, we see that to meet smaller value of ", the system requires larger

value of Ns. We also see that when d̂ is equal to 15 minutes, the bandwidth saving is quite

low, since for d̂ = 15 minutes, N̂ = 6 and the bandwidth is already well-utilized. We show

in Fig. 3.44 P (D > d̂) versus Ns, from which given " and d̂, N�

s can be directly read.

We show in Fig. 3.45 N�

s versus d̂ given ", still for � = 10 req./hr. Also shown is

the maximum number of streams required. We see that for d̂ � 6 minutes, N�

s can be

markedly lower than N̂ . However, as d̂ increases, such saving decreases quickly. When
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d̂ � 12 minutes, the saving becomes insigni�cant.

We show in Figs. 3.46 and 3.47 the in
uence of an increase in � on P (D > d) and

P (D > d̂), respectively by considering � = 30 req./hr. Obviously, as � increases, the delay

tail increases and hence we require more streams to satisfy the same delay expectation.

With the same d̂, there is no longer as much saving as before.

The above results pertain to a relatively low value of �, namely 10 req./hr. As � gets

larger, the saving decreases since the average number of streams S required to meet a

maximum delay requirement d̂ approaches the maximum (Th=d̂). To illustrate this fact,

we show in Fig. 3.48 how N�

s increases with � when P (D > d̂) is to be kept constant, for

the case d̂ = 6 minutes. We see that as � increases, N�

s also increases to a value close to

N̂ = 15.

In summary, the saving is only signi�cant when both � and d̂ are relatively low, but

as one or the other gets larger, then the saving diminishes. Note that when considering

movies seperately, a low value of � for a movie means that the movie is not popular and the

saving in question becomes of interest. By allowing the sharing of channels among multiple
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movies, additional saving may be achieved.

In Fig. 3.49, we show W versus � so that P (D > d̂) (d̂ = 9 minutes) is kept constant,

given a certain Ns. We see that as � increases, W �rst increases rapidly and then more

slowly. Note that W would not go beyond Th=Ns. Figure 3.49 can be used in the multiple

movies case to plan the window size for a movie given its request rate and its assigned

bandwidth.
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Approximate expression for P (D > d̂)

In this section, we derive the approximate expression for for P (D > d̂), with W = d̂. Refer

to Fig. 3.50. Consider a random arrival at time t. Its delay expectation is not met if it is

not served by time t+ d̂. Such event occurs when all Ns streams are used at time t and no

stream is freed between time [t; t + d̂], which in turns means that all the Ns streams have

to be allocated between [t�Th; t]. Let S be the number of concurrent streams used at time

t (S is assumed stationary and hence the subscript t is dropped). To derive P (D > d̂),

we �rst assume in�nite bandwidth and then approximate the probability by P (S � Ns)

(This approximation is obviously good when P (S � Ns) is low, which is our case of general

interest). The delay expectation is not met when
PNs

i=1Xi � Th �Nsd̂. Therefore,

P (D > d̂) � P (S > Ns) (3.27)

=

Z Th�Nsd̂

0

gNs
(x)dx

� [�(Th �Nsd̂)]
Ns

Ns!
e��(Th�Nsd̂): (3.28)

In Figs. 3.51 and 3.52, we show P (D > d̂) versus Ns given d̂, with � = 10 req./hr and 30

req./hr respectively. We see that our analysis follows very well with the simulation points,

especially for low P (D > d̂) (P (D > d̂) < 0:1), the case of practical interest). We see from

the �gures that the lower bound (Eq. (3.28)) may be used to approximate P (D > d̂). Note

that P (D > d̂) decreases very fast with Ns, especially when Nsd̂ is close to Th.

3.4 Achieving High Pro�t in Providing Near Video-

on-Demand Services

In this section, we consider how high pro�t can be achieved with the batching schemes

mentioned above. We are interested in the following closely-related measures:

� The per-batch pro�t: The average per-batch pro�t is given by (N �K)P , where N

denotes again the average batch size;
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� The pro�t rate �: Pro�t rate refers to the pro�t per unit time (dollars/minute).

Denote T the average time between channel assignment to display a movie. Then �

is given by,

� =
NPV � (C + �N)

T
(3.29)

=
NP � C

T
; (3.30)

De�ne �̂ as the normalized pro�t rate with respect to P . Then Eq. (3.30) becomes,

�̂
�
=

�

P
=
N �K

T
: (3.31)

� The system throughput �
0

: The system throughput represents the number of accepted

requests served per unit time, which is given by,

�
0

=
N

T
; (3.32)

and the associated request loss rate pL is given by,

pL = 1� �
0

�
(3.33)

= 1� N

�T
: (3.34)

� The average number of streams used S: S is given by,

S =
�
0

Th

N
(3.35)

=
Th

T
: (3.36)

Note that once we derive N and T , �
0

, pL and S are also known.

We �rst discuss the reneging model we used in our study.

3.4.1 User's reneging behavior

We assume that requests arrive according to a Poisson process with rate �. We consider that

each user is independently willing to wait for a period of time U such that if its requested

154



movie is not displayed by then, it reneges. U is a random variable with a cumulative

distribution R(u) = P (U < u) with mean U . R(u) is referred to as the reneging function.

For concreteness and illustrative purposes, we have considered the following three reneging

functions in this paper; note that our study is not necessarily limited to these funtions:

� Exponential function | Users are always willing to wait for a minimum time Umin �
0; the additional waiting time above Umin is exponentially distributed with mean �

(the time waiting tolerance), i.e.,

R(u) =

8><
>:

0; if 0 � u � Umin,

1� e�(u�Umin)=� ; otherwise.
(3.37)

Therefore, the average time the users are willing to wait is U = Umin+ � . The larger

� is, the more willing are users to wait.

� Linear function | Users are willing to wait for a time Umin minutes, after which

their waiting time is uniformly distributed between Umin and Umax. Letting �
�
=

Umax � Umin, the reneging function is hence,

R(u) =

8>>>>><
>>>>>:

0; for u � Umin,

(x� Umin)=�; for Umin < u � Umax,

1; otherwise.

(3.38)

In this case, U = Umin +�=2.

� Step function | Here we consider a step reneging function in which users are willing

to wait for a time U0, beyond which they renege with probability 1:

R(u) =

8><
>:

0; for u � U0,

1; for u > U0.
(3.39)

In this case, U = U0. Note that this function is the limiting case of exponential

function with � ! 1 with Umin = U0. Owing to its simplicity, it can also be

considered as an alternative approximation for any arbitrary reneging function R(u)

by setting U0 to some appropriate value (such as U0 = U).
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3.4.2 Auto-gated scheduling

In this scheme, the �rst user of a batch is forced to wait W (the window size) before it

is served, and hence the scheme o�ering a delay bound W to the users. Note that since

the �rst user in a batch may renege (and hence the batching window may be advanced to

the next request), the show-time of the movie can no longer be advertised at the user's

request. Obviously, W should be less than the maximum tolerable waiting time of the

users; otherwise, a batch could not be successfully formed.

The probability p1 that the �rst user in a batch reneges before the batching window

W �nishes is obviously given by p1 = R(W ): Hence, the average time between consecutive

service times T is given by,

T =
1X
i=1

pi�11 (1� p1)
i

�
+W (3.40)

=
1

(1�R(W ))�
+W: (3.41)

Let ~p be the probability that a request arriving within a batch stays till the end of the

batching window. By conditioning on the amount of time left at its arrival until the

batching window ends, ~p is given by,

~p =

Z W

0

(1� R(x))
dx

W
: (3.42)

Including the �rst user in the batch, the average batch size is hence given by,

N = 1 + �W ~p: (3.43)

Note that

dN

dW
= �(1� R(W )) � 0: (3.44)

Therefore, N is a non-decreasing function inW , and attains its maximum when R(W ) = 1.

Hence, to maximize the per-batch pro�t (N � K)P , W should be chosen equal to the

maximum delay tolerance of the users, and the corresponding maximum per-batch pro�t

is (1 + �U)P � C. We thus note that maximizing per-batch pro�t makes no sense when
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the reneging function is exponential, since then W = T = 1, and thus pL = 1. It makes

no sense when the reneging function is linear since T = 1 and thus pL is also 1. It only

makes sense for the step function for which W = U0 and the result is quite clear. A more

interesting measure of pro�t is the pro�t rate, which examines the system pro�t over the

in�nite time horizon.

We now derive �̂ with the speci�c users' reneging functions.

� Exponential function | The loss probability for the �rst user is given by,

p1 =

8><
>:

0; for W < Umin,

1� e�(W�Umin)=� ; otherwise.
(3.45)

Hence, the average time between stream allocation T is given by (Eq. (3.41)),

T =

8><
>:

1

�
+W; for W < Umin,

1

�
e(W�Umin)=� +W; otherwise.

(3.46)

The average batch size N is given by (Eq. (3.43)),

N =

8><
>:

1 + �W; for W < Umin,

1 + �Umin + ��(1� e�(W�Umin)=� ); otherwise.
(3.47)

Hence, N approaches asymptotically to 1 + �Umin + �� .

Applying the above expressions for N and T , we obtain the following expression for

the normalized pro�t rate:

�̂ =

8><
>:

�
�
1� K

1+�W

�
; for W < Umin

1+�Umin+��(1�e
�W=� )�K

e(W�Umin)=�=�+W
; otherwise.

(3.48)

Clearly, for a given W , �̂ � 0 if K satis�es,

K �
8><
>:

1 + �W; for W < Umin

1 + �Umin + ��(1� e�(W�Umin)=� ); otherwise.
(3.49)
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Note that the service is not pro�table if K > 1 + �(Umin + �); if K < 1 + �Umin,

the system is pro�table whenever W � W0 = (K � 1)=�; and if 1 + �Umin � K �
1 + �Umin + �� , the system is pro�table when

W � W0 = Umin � � ln

 
1� K � �Umin � 1

��

!
: (3.50)

Note also that �̂ approaches 0 as W !1. Therefore, for any K < 1 + �(Umin + �),

there is an optimal window size W � 2 [W0;1) which achieves the maximum pro�t

rate (or pro�t over the in�nite time horizon). The optimal window size is obtained

by setting d�̂=dW � = 0, i.e.,

1 + �W �e�(W
�
�Umin)=� �

 
1 +

e(W
�
�Umin)=�

��

!
�

h
1 + �Umin �K + ��(1� e�(W

�
�Umin)=� )

i
= 0: (3.51)

Clearly, W � � Umin.

We now address user delay and derive its distribution. For W < Umin, fD(x) and D

have already been derived in Sect. 3.3.2. We now consider the case W � Umin. Note

that the �rst user in a batch always has delay W , and the requests arriving in the

last Umin minutes of a batch have delay uniformly distributed between [0; Umin], and

the remaining ones in the batch would have delay Umin < x < W with probability

(1� R(x)). Hence, the delay distribution fD(x) is,

fD(x) =
1

N
�

8>>>>><
>>>>>:

(�Umin)
1

Umin
; for 0 � x � Umin,

�e�(x�Umin)=� ; for Umin < x < W ,

�(x�W ); otherwise.

(3.52)

where �(x) is the usual delta function with �(x) = 0 for x 6= 0 and
R
1

0 �(x) = 1. The

average delay D is hence given by
RW
0 xfD(x)dx:

D =
1

1 + �Umin + ��(1� e�(W�Umin=� )
�

"
�
U2
min

2
+ ��

�
Umin + �(1� e�(W�Umin)=� )�We�(W�Umin)=�

�
+W

#
:

(3.53)
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� Linear function | In this case, if W � Umin, pL is obviously 0 and �̂ is �(1�K=(1+

�W )). If W > Umax, since all users renege before a batch can be successfully formed,

pL = 1 and �̂ = 0.

For Umin < W � Umax, the �rst user in a batch would renege before the batching

window �nishes with probability p1 given by p1 = (W � Umin)=�. Hence, the mean

interval between consecutive channel allocations is,

T =
1

1� (W � Umin)=�
� 1
�
+W: (3.54)

The average batch size is given by,

N = 1 + �Umin +
�

2�

�
�2 � (Umax �W )2

�
: (3.55)

� Step function | Obviously, when W > U0, since none of the users can stay until the

end of a batching window, pL = 1 and �̂ = 0. When W � U0, no users would renege

(pL = 0) and hence T is given by,

T =
1

�
+W: (3.56)

Therefore, �̂ = �
�
1� K

1+�W

�
:

3.4.3 Fixed-gating

In this section, we consider optimizing the batching window for �xed-gating with user

reneging. As mentioned in Sect. 3.3, in this scheme, the movie is scheduled at regular

intervals every W minutes (the batching window). If there are outstanding requests at the

end of a batching window, the movie is shown; otherwise the show-time is dropped. In this

scheme, movie show-time can be advertised to the users beforehand.

Let ~p be the probability that a request would stay till the end of a batching window.

By conditioning on the amount of time left at its arrival until the end of the window, we

have,

~p =

Z W

0

(1� R(u))
du

W
: (3.57)

159



Hence, the probability of no request at the end of a batching window is given by e��~pW ,

and the average interval between consecutive streams is hence T = W=(1 � e��~pW ). The

average batch size is given by N = �~pW=(1� e��~pW ), from which we see that N increases

(asymptotically to �U=(1� e��U )) as W increases.

For the exponential reneging funtion, we hence have,

~p =

8><
>:

1; for W � Umin,

Umin
W

+ �
W

�
1� e�(W�Umin)=�

�
; otherwise.

(3.58)

For the linear reneging function, we have,

~p =

8>>>>><
>>>>>:

1; for W � Umin,

1� 1

2W�
(W � Umin)

2; for Umin < W < Umax,

Umin+Umax
2W

; for W > Umax:

(3.59)

For the step reneging function, we obviously have,

~p =

8><
>:

1; for W � U0,

U0
W

otherwise.
(3.60)

3.4.4 Batch-size based scheme

Here the system constinues to batch request until a certain number M of requests are

collected. The system is aware of users reneging and does not count users that have reneged

when counting requests. If M is low, then the pro�t is low due to too small a number of

users served by a channel and too high the frequency of channel allocation; on the other

hand, if M is high, then the pro�t is low due to users reneging. Therefore, we expect that

there is an optimal value of M which maximizes the pro�t rate.

The analysis of such a scheme if users do not renege at all has been studied above. The

analysis of the scheme when the reneging function is exponential with Umin = 0 is tractable;

by following [75], the average time between consecutive channel assignment is,

T =
1

�

M�1X
i=0

"
i!

(��)i

iX
n=0

(��)n

n!

#
; (3.61)
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and therefore, the normalized pro�t rate is �̂ = (M �K)=T : The mathematical analysis for

other reneging functions discussed in this chapter is more di�cult; we resort to simulation

for these cases.

3.4.5 Numerical examples and comparisons

Auto-gated scheduling

A. Exponential reneging function

We �rst study the in
uence of W on the pro�t rate �̂, request loss rate pL, batch size

N and user delay, with Umin = 0. Then we study the in
uence of �, K, � and Umin.

We show in Fig. 3.53 R(u) versus u given � . The reneging probability �rst increases

rather linearly with u, then in a more gentler manner, indicating that most users renege

at low delay (indeed expected for the exponential distribution). Users are more willing to

wait when � increases. With � = 15 minutes users are not very patient (almost 30% of the

users cannot wait beyond 5 minutes and more than 60% of the users cannot wait beyond

15 minutes), while with � = 120 minutes users are quite patient (almost 80% of the users

can wait more than 30 minutes).

We consider in the following � = 45 minutes (moderately patient users) and � = 100

req./hr. We show in Fig. 3.54 �̂ as a function of W . For a given K(= C=P ), as W

increases, �̂ �rst increases sharply to reach a maximum, and then decreases slowly. There

is an optimal window sizeW � which maximizes �̂. The sharp increase in �̂ (especially when

K is low) indicates that high pro�t can be achieved with low values of W . As K increases,

more users have to be batched in order to amortize the channel cost and hence W � also

increases. Clearly, for K � 1, the system is always pro�table no matter what W is, and

for K > 1, there is a minimal window size beyond which the system is pro�table. We note

that the interesting case is typically K > 1, perhaps even greater than 10, indicating that

the cost of a channel is only recovered if 10 paying users are served by it.

The user loss rate increases with W as shown in Fig. 3.55, in which we plot pL versus
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Figure 3.53: R(u) vs. u for the exponential reneging function
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Figure 3.56: �̂ vs. pL given K

W for various value of � and � . We see that pL is rather linear with W , and shows little

dependence on �. For a given pL, the necessary window size does not depend much on �.

Thus, there is no incentive to use values for W above W �. In fact, it may be preferable to

choose values for W below W � and thus achieve a lower pro�t rate than the maximum in

order to keep pL low. To illustrate this point, we plot in Fig. 3.56 �̂ versus pL (that is the

trade-o� between �̂ and pL) for � = 45 minutes and � = 100 req./hr. Note that the shape

of the curves is very similar to those of Fig. 3.54. Consider, for example, K = 2; we may

chooseW = 4 minutes (�̂ = 70/hr) instead of the optimumW � = 10 minutes (�̂� = 78/hr),

achieving a loss rate of 5% instead of 12%, respectively; with larger K = 10, we may choose

W = 12 minutes (�̂ = 40/hr) instead of W � = 27 minutes (�̂� = 51/hr), achieving a loss

rate of about 12% instead of 26%, respectively.

In Figs. 3.57 and 3.58, we plot �̂ versus W and �̂ versus pL, respectively, for a lower

value of �. We see that both curves follows the same trends as that of � = 100 req./hr.

However, since arrival rate is decreased, �̂ also decreases. The \break-even" window sizeW0

and the optimal window size W � increases so that more users can be batched to amortize
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Figure 3.57: �̂ versus W , given K for � = 40 req./hr

the channel cost. As � decreases, the loss rate for a given window size increases. At low

�, if we want to keep the loss rate below a certain value, the system may no longer be

pro�table. For example, for K = 10 and pL � 15%, the system is pro�table when � = 100

req./hr, but otherwise if � = 40 req./hr. To remain pro�table, a lower K should be used,

by either using a cheaper channel or charging a higher pay-per-view.

In Fig. 3.59, we show the system throughput as a function of W , given � and � . The

case with W = 0 is the pure-VOD case. As W increases, more users are lost and hence

�
0

monotonically decreases. As � decreases, �
0

decreases very rapidly. For a given � , the

decrease in throughput is more marked with high �.

We show in Fig. 3.60 N versusW , given � and � . We see that N monotonically increases

from 1, �nally settling to a limiting value (1 + �� , from Eq. (3.47)). The limiting value is

achieved much faster with lower � .

In Fig. 3.61, we plot S versus W . Also shown is the case in which users never renege

(� = 1). S does not depend much on � given �. Furthermore, there are only slight

di�erences in S when � is high enough (i.e., � > 40 req./hr).
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Figure 3.58: �̂ versus pL, given K for � = 40 req./hr
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In Fig. 3.62, we show the delay distribution for � = 100 req./hr with W = 5 minutes

(pL � 5%), W = 15 minutes (pL � 15%) and W = 30 minutes (pL > 25%). Also shown is

the case where users never renege (� = 1). Due to user loss, the impulse at W minutes

is higher for the case with � = 1; the distribution is also skewed towards lower delays;

however, overall, there is not much di�erence between the two distributions, even when pL

is high.

We show in Fig. 3.63 the average delay D versus W . There is not much di�erence even

up to very high W (and hence high loss rate). Therefore for most of our interest, the user

delay distribution can be approximated by the simpler case with � =1. Note that at low

W , the average delay with �nite � is higher, since user reneging causes more users having

delay W . At larger W , D is lower since the user distribution is biased towards lower delay.

We show in Fig. 3.64 D with a lower � (� = 40 req./hr). Similar trend is observed.

We now study the in
uence of the load � on W �, W0, pL and �̂. In Fig. 3.65, we show

W � and W0 as a function of �, given K. (The region below � = 0 (W < W0) is unpro�table

while the region above �̂� (W > W �) leads to high pL with lower pro�t.) To achieve

pro�tability, we must haveW0 � W � W �. As � increases, both W � and W0 decrease, �rst

quite sharply and then more gradually. In Fig. 3.66, pL is plotted against �, with W =W0

and W =W �. We see that pL decreases as � increases, quite rapidly at �rst and then more

gently. We also see that for high K, pL resulting from maximizing the pro�t can be fairly

high and hence undesirable. However, there is a wide range of W for which pL can be kept

low and the system is pro�table. In Fig. 3.67, we show �̂� as a function of � given K. The

maximum attainable pro�t increases somewhat linearly with �. Furthermore, for a given

K, there is a minimal value of � for which the system is pro�table (given by 1 + �� = K.

See Eq. (3.49)).

We now examine the in
uence of K on W � and W0, on pL and on �̂� in Figs. 3.68,

3.69 and 3.70, given �. As K increases, W �, W0 and the corresponding pL increase almost

linearly with K. Once again, we see that it is not always desirable to have W = W � since

it leads to high pL. As K increases, �̂� decreases quite rapidly due to larger W � and hence
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c) W = 30 minutes

Figure 3.62: Delay distribution fD(d) for the auto-gated scheduling with exponential reneg-

ing function
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Figure 3.63: D versus W , given � with � = 100 req./hr
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Figure 3.64: D versus W , given � with � = 40 req./hr
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Figure 3.65: W (W � and W0) vs. �, given K
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Figure 3.66: pL vs. �, given K
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Figure 3.67: �̂� versus �, given K

172



0 5 10 15 20 25 30
0

10

20

30

40

50

60

K

W
 (

m
in

ut
es

)

100 req./hr

λ = 40 req./hr

minutesτ = 45

λ =

Auto-gated scheduling

W*
W*

Wo

Wo

Figure 3.68: W � and W0 versus K, given �
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Figure 3.69: pL versus K, given �

higher user loss.

We now examine the e�ect of the user delay tolerance � on the system pro�tability. We
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Figure 3.70: �̂� versus K, given �
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Figure 3.71: W (W � and W0) versus � , given K

show in Fig. 3.71W � andW0 versus � . From Eq. (3.49), we note that given K � 1+�Umin,

� has to be larger than a certain value (= (K�1)=��Umin) to ensure pro�t (otherwise users

would be reneging too soon). This indeed is seen in the �gure by the asymptotic behavior

of W � and W0 as � approaches the minimum tolerance from above. As � increases from

its lower limit, W � �rst decreases very sharply from a high value to a low value, following

which W � increases with user delay tolerance. W0, however, decreases with � , �rst sharply,

and then very slowly showing that W0 is not sensitive to � . In Fig. 3.72 we show pL versus

� . As � increases, pL decreases, �rst sharply and then more gradually. To keep pL low,

� should be at least larger than the \knee." We show in Fig. 3.73 that �̂� increases with

� . Note the sharp knee when K is low, indicating that beyond the knee which there is no

much increase in �̂� as � increases.

We now examine the e�ect of Umin. Figure 3.74 shows pL versus W given Umin. We

see that for a certain W , the higher Umin is, the lower pL is. The family of curves are also

remarkably parallel to each other.

We show in Fig. 3.75 how W � and W0 are a�ected by Umin, given K. We see that
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Figure 3.72: pL versus � , given K
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Figure 3.73: �̂� versus � , given K
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Figure 3.74: pL versus W given Umin
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Figure 3.75: W � and W0 as a function of Umin given K

W � does not change much especially for low Umin; and as Umin increases, W � also slightly

increase, keeping W � � Umin. There is not much change in W0 as Umin increases (W0 =

(K � 1)=� as Umin > (K � 1)=�). In Fig. 3.76, we show pL as a function of Umin. As Umin

increases, pL decreases quite signi�cantly. We show in Fig. 3.77 �̂� versus Umin. Clearly,

the pro�t rate increases with Umin as pL decreases.
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Figure 3.76: pL as a function of Umin given K
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Figure 3.77: �̂� as a function of Umin given K

In Figs. 3.78, 3.79 and 3.80, we show the corresponding graphs with a lower � (= 40

req./hr). Though the pro�tability is lower, similar trends are observed.
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Figure 3.78: W � and W0 as a function of Umin given K
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Figure 3.79: pL as a function of Umin given K
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Figure 3.80: �̂� as a function of Umin given K
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Figure 3.81: �̂ and pL versus W , given K

B. Linear reneging function

We now consider the linear reneging function. We show in Fig. 3.81 �̂ and pL as a

function of W , with Umin = 10 minutes and Umax = 20 minutes. When W � Umin, �̂

increases monotonically. When W is further increased, �̂ �rst increases (as a larger W

potentially batches more users) and then decreases rapidly (due to user reneging). For low

K, W � is extremely close to Umin, while for larger K, W � is somewhat larger than Umin.

In all cases, �̂� is achieved with low pL (� 10%).

As a comparison with the exponential reneging function, we plot in Fig. 3.82 �̂ versusW ,

with U chosen to be the same as in Fig. 3.54 (Umin = 0 minutes and Umax = 90 minutes).

Also shown in dashed line is the corresponding pL. From the remarkable resemblance

between the two �gures, we see that whether it is the linear or the exponential reneging

function does not a�ect �̂� and W � much, so long as they have the same mean. Since the

exponential distribution is skewed towards lower delay values than the uniform distribution,

W � and the corresponding �̂� are slightly lower.

C. Step reneging function
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Figure 3.82: � versus W with the linear user reneging function
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Figure 3.83: �̂ versus W given K with the step reneging function

We show in the following the pro�tability with step reneging function. In Fig. 3.83,

we plot �̂ versus W given K, with U0 = 10 minutes. Obviously, �̂ increases monotonically

when W � U0 (with pL = 0). As W > U0, no batch can be successfully formed and hence

�̂ = 0. For low K, the \knee" shows that most of the pro�t can be gained at a lower W

than U0.

We show in Fig. 3.85 how �̂� varies with U0, given K. For a given �, there is a minimum

U0 for which the system is pro�table. As U0 increases, �̂
� gradually increases, approaching

to the value �. We also see that, for low K, most of the pro�t is attained at low U0 (4{6

minutes).

We �nally show in Fig. 3.85 �̂� as a function of �, given K. The pro�t is very close to

being linear in �, bounded from below by ��K=W . Given U0 and K, there is a minimum

arrival rate (= (K � 1)=U0) above which pro�t is possible.
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Figure 3.84: �̂� versus U0 given K
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Figure 3.85: �̂� versus � given K
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Figure 3.86: �̂ vs. W for the �xed-gating, with the exponential reneging function

Fixed-gating

We show in Fig. 3.86 �̂ versus W with the exponential reneging function (Umin = 0 and

� = 45 minutes) and � = 100 req./hr. Note the remarkable similarity in �̂ between the

scheme and that of the auto-gating (Fig. 3.54). Fixed-gating, however, comes with another

advantage: it o�ers users certain waiting time.

We show in Fig. 3.87 the case with the linear reneging function. Comparing with

the auto-gated case (Fig. 3.81), we again see the remarkable resemblance in �̂� and W �.

However, �xed-gating is more forgiving when the window size is larger than the maximum

delay tolerance of the users (W > Umax): while in the auto-gating case, no users can

be served (pL = 1) and �̂ drops to zero, �xed-gating has a relatively gentler roll-o� in

performance

We show in Fig. 3.88 the case with the step user reneging function. By comparing with

that of auto-gating (Fig. 3.83), we see again the similarity in W � and �̂� (though auto-

gating, due to its higher average batch-size, has slightly higher �̂�, as apparent when K is

high), and the slower decrease in �̂ when W > U0.
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Figure 3.87: �̂ vs. W for the �xed-gating, with the linear reneging function
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Figure 3.88: �̂ vs. W for the �xed-gating, with the step reneging function
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We see that there is not much di�erence between �xed-gating and auto-gated scheduling

in terms of the maximum pro�t achievable. However, in auto-gated scheduling, the window

size should not be larger than the maximum delay tolerance of the users since system

performance drops o� very quickly beyond that; while in the �xed-gating, the performance

rolls o� more gently.

Batch-size based scheme

In this section, we study the pro�tability of the batch-size based scheme.

First we consider the exponential reneging function, with Umin = 0. We show in Fig. 3.89

�̂ as a function of batch-sizeM , given K (� = 45 minutes and � = 100 req./hr). Also shown

in the dashed line is the user loss rate pL. We see that once M > K, the system becomes

pro�table, and there is an optimal batch-sizeM� achieving the highest pro�t rate �̂�. Note

the remarkable resemblance in �̂ and pL at the optimal operating point between this �gure

and Fig. 3.54 (the auto-gated case). We also �nd that M� is very close to the N obtained

withW � in the auto-gated scheduling! We show in Fig. 3.90 the case with lower �, in which

the same resemblance is observed. We found that so long as both schemes are pro�table,

the optimal operating points are similar.

There is a slight di�erence between the schemes, however. While the auto-gated schedul-

ing does not discriminate between pro�table and unpro�table batches and serves the re-

quests once the batching window �nishes, the batch-size based scheme is able to selectively

pick those arrival patterns which lead to pro�t (with M � K). Therefore, when � is low

(i.e., � < (K � 1)=�), auto-gated scheduling would not be pro�table but the batch-size

based scheme can be pro�table, albeit with high user loss rate. We illustrate this point in

Fig. 3.91, in which we show �̂ and pL as a function of M , with � = 10 req./hr and � = 45

minutes. The auto-gated scheduling would not be pro�table in this case (Fig. 3.67); the

batch-size based scheme maintains pro�tability, but with a high loss probability (> 50%!).

We plot in Fig. 3.92 �
0

versus M , given �. The case for M = 1 is the pure-VOD case.

Due to user reneging, �
0

monotonically decreases with M . The rather linear decrease in �
0
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Figure 3.89: �̂ vs. M given K, with � = 100 req./hr
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Figure 3.90: �̂ vs. M given K, with � = 40 req./hr
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Figure 3.91: �̂ vs. M , with K = 10
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Figure 3.92: �
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versus M given �

indicates that pL is quite linear in M , as readily seen from Figs. 3.89 and 3.89.

We show in Fig. 3.93 S versus M , with � = 45 minutes and � = 1. As M increases,

more users can be batched and hence S decreases. We also see that most of the decrease in

S occurs at low M . As � decreases, users are more likely to renege and hence S decreases.

However, there is no signi�cant di�erence in S between � = 45 minutes and the case in

which users do not renege.

We now study linear user reneging function. In Fig. 3.94, we plot �̂ versus M with

Umin = 10 minutes and Umax = 20 minutes. We again see the similarity in the optimal

operating point between this plot and Fig. 3.81. We plot in Fig. 3.95 the case with Umin = 0

and Umax = 90 minutes, once again showing its similarity with auto-gated scheduling

(Figs. 3.54 and 3.82). Therefore, as long as both systems are pro�table, the optimal pro�t

rates and the corresponding pL and N in the batch-size based scheme and the auto-gated

scheduling are similar.

We show in Figs. 3.96 and 3.97 �̂ versus M with step reneging function, with U0 = 5

minutes and 10 minutes, respectively. �̂� are similar in both schemes. However, it is
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Figure 3.94: �̂ versus M with linear reneging function

192



0 5 10 15 20 25 30 35 40 45 50 55

0

10

20

30

40

50

60

70

80

90

100

M

θ/
P

 (
/h

r)

0.1

0.2

0.4

0.8

0.9

1

0.7

0.6

0.5

0.3

0

L
os

s 
pr

ob
ab

ili
ty

λ = 100 req./hr
Umin = 0
Umax = 90 min.

K = 2

K = 10

Batch-size based scheme

Figure 3.95: �̂ versus M with linear reneging function
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Figure 3.96: �̂ and pL versus M given K

worthwhile to note that, while pL can be zero at �̂
� in the auto-gated scheduling (Fig. 3.83),

there is some user loss at the optimum in the batch-size based case. Note that for K = 10

and U0 = 5 minutes, auto-gated scheduling would not be pro�table while the batch-size

based scheme is pro�table, but with a high pL.

Loss-dependent arrival rate

So far, we have considered that � is independent of pL. In reality, since unsatis�ed users

(i.e., those reneged users) may never visit the system again, � can be considered a function

of pL. In this section, we address how the window size or batch size can be speci�ed to

maximize per-batch pro�t or pro�t rate under such condition.

We �rst study maximizing per-batch pro�t. Recall that if � were independent of pL, we

would always use a window size as large as the maximum delay tolerance of the users in

the auto-gated scheduling, or an arbitrary large batch size in the batch-size based scheme.

In Fig. 3.98, we show how the optimal solution would be changed if � is dependent on

pL. First we show in solid lines the contours for constant batch size. For a particular �,
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Figure 3.98: Maximizing per-batch pro�t with loss-dependent arrival rate

the x-axis corresponds to the pure-VOD case (pL = 0 and N = 1), and N increases with

pL, reaching its maximum at pL = 1. Since for a given pL, N increases with �, the iso-N

contours increases value as one moves outwards as shown in the �gure. Supposed now �

depends on pL. The dashed line is an arbitrary loss-dependent arrival rate (we show here

that a user would not use a system at all if its loss rate is higher than pmax, and � = �max

if pL = 0). The optimal operating point to maximize the per-batch pro�t is where the

contour line touches the dashed line. We see that at the optimum, 0 � pL � pmax and

0 � � � �max.

We may similarly obtain the optimal operating point to maximize �̂. We plot in Fig. 3.99

pL versus �; we show in solid lines the contours achieving constant pro�t rate �̂ (such

contours may be obtained from Fig. 3.66). Note that the iso-�̂ contours increases outwards

as shown, since the higher � is, the higher the achievable pro�t. The dashed line is an

arbitrary loss-dependent arrival rate | we show here that a user would not use a system

at all if its loss rate is higher than pmax, and � = �max if pL = 0 (loss-independent arrival
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Figure 3.99: Maximizing �̂ with loss-dependent arrival rate

rate is hence a verticle line). The optimal operating point is hence at which an iso-�̂ lines

touches the dashed line for the loss-dependent arrival rate. Note that if � is dependent on

pL, the optimal �̂ is lower, and the loss rate is always less than pmax.

3.4.6 A combined scheme

Note that we may optimize the batching parameters (i.e., W in the window-based schemes

andM in the batch-size based scheme) for a movie with a certain request rate � in mind. In

reality, the request rate may 
uctuate around �. In the auto-gating scheme, the number of

users in a batch is higher when the arrival rate gets higher, leading to high pro�t. However,

the auto-gated scheduling cannot guarantee every batch to be pro�table. Therefore, when

the arrival rate 
uctuates and drops to a low value, the batches are more likely served at

a loss, and the system pro�t su�ers greatly. Batch-size based scheme amends this problem

by making sure each batch is pro�table no matter what the arrival rate is (by preferentially

serving those requests arriving closely together). However, since the batch size is �xed, the
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scheme may allocate a channel sooner than necessary when arrival rate gets higher.

Therefore we study a combined scheme which operates according to the window-based

auto-gated scheduling when arrival rate gets high, and according to the batch-size based

scheme when arrival rate drops. (Such scheme is very similar to the adaptive scheme given

in [84].) This scheme keeps batching requests until the batch size is no less than a parameter

M � K (so as to ensure pro�t) and the batching period (the time between the �rst request

in the batch and the movie show-time) is no less than a parameter W (so as to safeguard

against under-sized batches).

The parametersM andW are chosen from the respective batching scheme optimized for

a certain request rate � (the pro�t rate of the combined scheme is hence at least the higher

of the two \constituent" schemes). We have used simulation to study the performance of

this scheme, since it is quite di�cult to obtain analytically its performance.

We show in Fig. 3.100 �̂ versus � for the combined scheme based on simulation, with

W = 10 minutes, M = 15 and exponential user reneging function (Umin = 0, � = 45

minutes and K = 10). Also shown are the auto-gated scheduling with the same W and the

batch-size based scheme with the same M . The parameters are almost optimal for each of

the scheme at the target arrival rate � 100 req./hr (ref. Figs. 3.56 and 3.89). We see that

as � goes higher than the target rate, auto-gating achieves higher pro�t; and when it drops

below it, batch-size based scheme achieves higher pro�t. The combined scheme traces out

the outer \envelops" of the two basic schemes.

We show in Fig. 3.101 pL versus � of the same system. The combined scheme traces out

the outer envelops of pL of the basic schemes, settling to a limiting loss rate as � increases.

Note that the auto-gating o�ers a rather desirable low pL with �, while in the batch-size

based scheme pL can vary greatly with �.

We plot in Fig. 3.102 �̂ versus � when � is increased to 150 minutes, for the combined

scheme and the two basic schemes. Here W and M are chosen close to the optimal values

of the basic schemes at the targetted arrival rate � = 100 req./hr (W = 30 minutes and
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M = 50).3 With the parameters considered, the system is highly pro�table and there is not

much di�erences in �̂ among the three schemes. The combined scheme is able to increase

pro�t when it is low (due to, for example, high K or low user tolerance in delay). For the

auto-gating, the minimum � for �̂ � 0 greatly decreases.

We show in Fig. 3.103 the corresponding pL. Even though there is not much di�erent

in �̂, pL for both the combined scheme and the batch-size based scheme increases quite

rapidly as � falls below the targetted � (= 100 req./hr). Therefore, if the arrival rate is

unlikely to fall much below the targetted � at which �̂ is already high, the auto-gating is a

good choice.

3Note that for the auto-gating, W � = 46 minutes, �̂� = 73.09 req./hr, and p�L = 14.15%; with W = 30

minutes, �̂ = 70.9 req./hr and pL = 9.57%. For the batch-size based scheme, M� = 68, �̂� = 73.32 req./hr,

and p�L = 14.04%; with M = 50, �̂ = 71.9 req./hr and pL = 10.12%.
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3.5 Conclusions

A near video-on-demand system achieves streaming scalability by batching requests for a

particular video and serving them with a single multicast stream. We have considered

providing such a service when there is a cost associated with using a multicast channel.

Batching has then to be designed so as to amortize such channel cost.

We have studied a number of batching schemes. In the window-based batching schemes,

user delay is bounded by a certain maximum value W ; and in the batch-size based scheme,

revenue can be maintained in each batch by allocating a stream whenever a certain number

M of users are collected. We have analyzed and compared these schemes in terms of user

delay experienced, the number of concurrent streams used, the number of users in a batch,

etc. When the arrival rate is high, it is advantageous to use window-based scheme due to

its bounded delay and high pro�t, but when the arrival rate is not high, it is advantageous

to use batch-size based scheme to maintain pro�tability. We therefore proposed a com-

bined adaptive scheme in which system pro�t and service quality (in terms of user delay

experienced) can be balanced.

We have also studied the minimum number of channels required to satisfy a certain user

delay requirement, and we �nd that when the delay requirement is low and the request rate

is not high, the number of channels required can be quite low.

We have considered how pro�t can be maximized in providing near VOD services, given

a certain user reneging behavior. We �nd that maximizing pro�t per-batch generally leads

to long batching period and high user loss rate. Maximizing pro�t rate, on the other hand,

encourages more frequent smaller returns. However, the loss rate may still be undesirably

high, and hence a shorter batching period should be used in reality. Generally, the higher

user delay tolerance is, the longer the batching period is. Our results also show that the

optimal operating point also does not depend very much on the reneging function besides

its mean. We �nd that the maximum pro�t rate for the window-based scheme and the

batch-size based scheme are very similar, if both schemes are pro�table. However, the
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batch-size based scheme is able to always maintain pro�t even when the arrival rate is

low. We have therefore studied how the batch-size based scheme can be combined with

the window-based scheme so that the window size can be dynamically adjusted to improve

pro�t. We have shown that such a scheme is able to adapt to 
uctuating request rete and

still achieves high pro�t.
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Chapter 4

Distributed Servers Architecture

4.1 Introduction

In Chapter 3, we discussed the use of request batching and multicast channels to limit the

streaming bandwidth required (as well as the communication cost) but at the expense of

user delay. Here we look at decreasing this delay by means of streaming servers which

cache the requested movies locally and stream them to the users. This has the advantage

of providing zero start-up delay to the users. This advantage, however, comes with the cost

of additional servers and storage. It is important to note that depending on the acceptable

user delay associated with request batching, it is possible that the total cost of a distributed

servers architecture be yet lower.

It is considered that a number of repository servers exist which store all the video

contents of interest to a large pool of geographically distributed users. To achieve large

and scalable storage, the repository servers may be tertiary libraries or jukeboxes which

store videos of wide range of popularity. If users were to stream their videos directly from

the repository servers, then the number of users that could be served would be limited by

the streaming capacity available at those servers. For example, if the central repository is a

disk farm consisting of many independent disks, the number of concurrent users for a movie

in a disk would be limited by the streaming capacity of that disk. Striping may be used to
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increase the streaming capacity, but there is generally a limit on how many disks a movie

can be striped across (due to issues in access overheads, complexity in data management,

disk synchronization, reliability, etc.). Movies can certainly be duplicated in a disk farm to

increase the streaming capacity, but this would lead to additional storage cost. To increase

the storage capacity, we may use tertiary storage systems such as libraries or jukeboxes,

which consist of a large number of removable, high capacity medium such as optical disks

or tapes sharing a number of drives. A robot is used to automate the loading and unloading

of the disks/tapes into and from the drives. This exchange latency incurred can be quite

low, in the range from several seconds to tens of seconds (if optical disks is used, this is the

latency of accessing a �le). In any case, the streaming capacity at a library is limited by its

drives. Such limitation can be partially solved by striping data across several disks/tapes

or multiple libraries [62, 63].

Streaming capacity can be increased by using a hierarchy of servers as mentioned in

Chapter 2, in which multiple streaming servers get the requested movies from the libraries

and then stream them to the users. This in fact may introduce some delay for movies of

low popularity. If the streaming servers are co-located with the central repository, the cost

of the long-distance channels needed to stream the requested videos to the remote users

may be high (e.g., through the use of some satellite links or long-haul transmission lines).

Therefore, streaming videos in this way to the users would not be cost-e�ective.

To overcome the above limitation in channel usage cost and taking advantage of locality

of usage, the streaming servers may be placed closer to the users (or clusters thereof), thus

forming a distributed servers architecture. A number of repository servers (collectively

referred to as a central repository) stores all the video titles and deliver them to the local

servers through a communication network. The local servers cache movies locally, and

hence multiple requests for a movie may be served from the local cache rather than from

the central repository. In this way, the bandwidth requirement in the repository and channel

usage cost can both be reduced. Such a system in fact has been discussed previously in the

literature [3, 94]. By putting more repository servers and local servers, the system o�ers
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Table 4.1: Values of � and 
 (based on 1 GB of disk of $200, amortized over a year with 6

hours/day usage; and b0 = 5 Mb/s)

� ($/(channel�minute)) 0.3 0.03 0.003


 ($/minute) 2�10�4 2�10�3 2�10�2

scalable storage and streaming capacities.

We consider that there is a cost associated with storing a movie in a local server depend-

ing on how much and how long the storage is used. Suppose that a 1 GB of disk (which

costs about $200 today) has to be amortized over a year and in use for a number of hours

in a day, say 6 hours. The storage cost per hour is hence $200=(365�6) = $0:09=(GB�hr.).1

Consider the streaming rate of a movie to be b0 = 5 Mb/s (MPEG-II quality), then each

minute of video storage costs $3.42�10�3/minute. Therefore the longer we store a movie,
the more expensive it is.

Consider that there is a cost associated with a central repository streaming a movie. The

cost depends on the distance and the type of network, e.g., through the use of internet,

ATM, or more expensive satellite channels. Such network channels more often provide

multicast capability. In Table 4.1, we show the cost of using a channel per minute � and

the corresponding ratio 
 between the storage cost given above (in $/min. per minute of

video) and �. (With � = 0:03, the cost of delivering a 100-minutes movie from the central

servers would be $3.) For on-demand video services, 
 in general would range from around

10�4 (relatively expensive channels) to 10�2 (relatively cheap channels).

Accordingly, there is a trade-o� between the cost of storing a movie locally and the cost

of using expensive channels. It would pay to store a movie locally if the storage cost can be

o�set by a big saving in channel cost: if the demand for the movie is high, we should not

1Note that if redundant storage is used for fault tolerance (e.g., through mirroring), the cost of storage

would be higher.
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request it directly from the repository since it would incur too high the long-haul channel

cost (we hence should store the movie locally); on the other hand, if the demand is low, we

should not store the movie locally since it would cause too high a storage cost (we should

hence request it directly from the repository servers).

Indeed, not all movies have identical popularity, some are popular while some are not,

and the popularity may change over time. There is hence a need to decide what to store

locally given the local request rates. It is important that such a decision be continuously

made over time to take into consideration the dynamic nature of video popularity. In

other words, the two systems (i.e., the central repository and local servers) should not

work independently and in parallel serving their respective users; instead, there should

be constant exchange of movies between the two. For example, the introduction of a

recent lecture, or a new or hot movie title can upset the popularity of some movies and

make some no longer worth storing locally. As an example, consider a geometric video

popularity model, i.e., the access probability of the movies in the system follows a geometric

distribution [14, 15]. We show in Fig. 4.1 the request rate of movie i in a system of 500

movies with the total request rate of 4000 req./hr, given a certain video popularity (r/m

video popularity means that r% of the requests ask for m% of the movies). We see that

the request rate of a movie can di�er quite widely (by many orders of magnitudes). The

more skewed the video popularity is, the wider the discrepancy in the movie request rates.

A local server may not have global information about the video contents of the other

servers in the network. This may be due to, for example, limited processing capability (for

constant and frequent content exchanges and updates), network limitation (e.g., disjoint

networks or limited network capacity for frequent updates), or lack of incentive to exchange

content information (e.g., due to un-cooperating service providers or security issues). In

this case, the local servers can only request their data from the repository and they operate

independently from each other. We show in Fig. 4.2 an example of which for a cable

TV system. Multiple head-end servers serve their local communities through coaxial local

drops. The servers operate independently from each other (since they may be run by
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Figure 4.2: A cable system with unicast video delivery from the repository through a

satellite

di�erent providers). They get their movies from the central repository through the use of

unicast channels (via a satellite system or through some low-cost channels such as internet).

A certain number of network channels may be leased by the video content service providers

and always available (already paid for), in which case the issue is the same as for the limited

streaming capacity of the repository. Network channels may also be requested on-demand

at some cost. This is the case when, for example, satellite or ATM channels are used or

some tolls are to be paid in order to use a channel.

Suppose now a service provider operates a group of servers serving some regions. If

multicast channels are available, they may be used to deliver a movie to the local servers

in order to decrease the channel requirement and channel cost. We show in Fig. 4.3 an

example of such a system, in which a provider pays for the multicast channels used in

the system. A local server can freely join any existing multicast groups (but they do not
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Figure 4.3: A cable system with the repository multicasting movies to the local servers

communicate with each other).

We show in Fig. 4.4 a cable video system in which the local servers are connected

by a network. Therefore, instead of getting their data from the remote repository and

incurring long-haul communication cost, servers can exchange content information among

themselves and get their data from the other nearby servers. This is possible for servers

co-located in, for example, a campus network, an entertainment network with cooperative

servers/service providers, a network with low communication cost, etc. Video content may

be streamed from any local server in a group to any other servers through the network.

If data is not copied locally, the remote server would have to be capable of serving all

the requests for that movie in the server group. By making a copy of the streamed data

locally, an immediate subsequent request to the local server can be served directly from

itself (instead of streaming from a remote server through the network); hence decreasing

the network bandwidth. The repository may multicast a movie to the group of servers, or
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it may unicast the movie to a local server which in turn multicast the movie to the other

servers through the network.

In this chapter, we investigate the conditions under which a movie should be stored in

order to minimize the cost, given cost functions for storage and channels. We consider a

number of cases:

� Independent servers with unicast delivery | In this case, the local servers operate

independently and communicate only with the central repository which serves the

servers by unicast (dedicated) streams. Under this condition, movies are likely to be

either entirely stored or not at all and the cut-o� point in the request rate for this is

well-known;

� Independent servers with multicast delivery | In this scheme, the local servers still

operate independently, but the repository multicasts movies to the servers so that
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they can store them for future use. The optimal strategy is no longer to store a

movie in its entirety or not at all; instead, a portion of the movie should be stored

(corresponding to a moving window). Multicast is able to lower the cost compared

with the unicast case; and

� Communicating servers | Much bandwidth can be saved if the local servers can

exchange video contents with one another, so that a movie not cached locally can be

obtained from another local server in the network where it is cached.

The local servers cache movies of interest to users. If a local server has limited amount

of storage, it would be of interest to devise some schemes to make use of the available

storage so as to minimize the stream cost.2 Here we consider that storage comes with a

cost depending on the size and length of its usage. Since the service provider pays for the

streams and storage, it is of interest to minimize the total cost of both streams and storage.

We study a number of caching schemes which allocate a certain amount of bu�er for

a movie when the movie is initially brought in; therefore all requests arriving before the

beginning part of the movie is deleted can be served directly from the local cache (the

group of requests will be called a cache group), hence saving extra repository streams. In

this way, the caching scheme keeps a moving window and is able to keep a portion of a

movie locally (i.e., partial movie caching). Keeping a portion of movie locally also provides

interactive 
exibility to the users in viewing the movies.

Since movies can be cached partially, the schemes achieve trade-o� between channel

cost and storage cost. We consider that the network channels can be acquired on demand

with a cost, and that the local servers have su�cient bandwidth to serve the requests from

the users. We will consider that the latency in the central repository is low (and can be

ignored).

Previous work in distributed servers architecture mainly focuses on either storing a

�le completely in a local server or not storing it at all [14, 13, 95, 96, 97, 98, 94]. Here

2Obviously if movies can only be stored either completely or not at all, the optimal strategy is to store

the most popular movies in the local servers.
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we consider schemes in which movie can be partially cached locally, and hence is able to

achieve better trade-o�. We address in our study when and how much to cache. We have

considered using multicasting as a means to deliver data to the local servers, which has not

been studied before in this context. Previous work has been reviewed in Sect. 4.2. Note

that this system is very similar to the distributed storage architectures as discussed in

Chapter 2. The di�erence is that, while we consider leased channel case there, we consider

here network channels can be acquired on a demand basis. Furthermore, in Chapter 2 we

consider sizing system storage and bandwidth to meet a certain user delay requirement,

while in here we study sizing the system parameters to minimize the on-going total system

running cost.

This chapter is organized as follows. After a brief review of the previous work in

Sect. 4.2, we describe in Sect. 4.3 the caching schemes we study in this chapter. In Sect. 4.4,

we analyze the schemes in terms of their storage and channel requirements, and how cost

can be minimized given the trade-o� conditions. In Sect. 4.5 we provide some numerical

results, and in Sect. 4.6 we compare the cost of the distributed servers architecture with

that of a batching system and shows its cost advantage. We conclude in Sect. 4.7.

4.2 Previous Work

Prior work related to storage scalability and streaming scalability has been respectively

reviewed in chapters 2 and 3. We discuss here the work related to distributed servers

architecture, in which multiple servers in a network serves a pool of users and a movie may

be duplicated or cached in order to satisfy some performance objectives. (The work related

to hierarchical storage systems in a distributed environment has been reviewed in Chapter

2.)

Barnett and Anido in [94] compare a centralized video system with a distributed system

in terms of their storage and streaming costs. In their centralized model, a number of

repository servers serve a large pool of users, while in the distributed system, a number
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of front-end servers serve their respective local users; the local servers store permanently

the most popular video titles and the repository servers is used to stream the unpopular

movies. Given that the total cost of a server in the system is proportional to the product of

the number of streams and the amount of its storage, they show that an optimally designed

distributed system may achieve lower cost than a centralized system.

Giovanni et. al. consider a hierarchical storage system in which local servers get their

videos from a central repository through a network. They minimize the total cost of the

system given a certain network bandwidth cost and local storage cost, in order to meet a

certain level of user blocking probability [14]. The popular movies may be replicated in

the local storage in order to serve all the requests. If the local storage is large, storage cost

is too high; while if the local storage is too low, network transmission cost is high. They

show that there is an optimal local storage to achieve minimal cost.

Scha�a and Nussbaumer study a VOD system in which servers are con�gured as a

hierarchical balanced tree [13]. All video �les are replicated at a certain level in the tree.

The trade-o� between the cost in bandwidth and storage in a server is studied. If the

bandwidth cost is negligible, all the video �les should be at the root; while if the storage

cost is negligible, all the video �les should be at the leaves and hence each client store the

whole video bases. It is found that given a certain (nonlinear) cost function in bandwidth

and storage, there is an optimal replication level to minimize the total cost.

Wang et. al. consider in [99] transmitting movies with constant bit rate. By storing

part of the \bursty" movie frames in a local servers, the requirement in network bandwidth

can be reduced. There is hence a trade-o� between the network bandwidth and the local

storage. The paper discusses such trade-o�, and o�ers a number of heuristics in how much

a movie should be stored given certain constraints in local storage and bandwidth.

Papadimitriou et. al. in [95] consider a VOD system in which a central repository has to

deliver the videos to its users through a series of storage (caching) nodes. The storage cost

in the storage nodes depends on how close the node is to the users and how long a �le is

stored there (the �le transmission time from node to node is negligible and there is a certain
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transmission cost in each network link). Users reserve movies for viewing in a future time

and the scheduler has to deliver the movies to the users with minimum storage cost. By

examining the display schedule of the movies, the scheduler can optimally determine when,

where and how long a �le should be stored in a storage node, so that the storage cost can

be minimized. The paper formulates the problem using a dynamic program (which proves

to be not run-time e�cient) and proposes a more e�cient greedy heuristic which achieves

less than 10% deviation from the optimum in most of the cases.

Little and Venkatesh consider in [96] a system in which multiple servers serve a large

pool of users through a switching fabric. Video �les can be replicated in the servers in

order to satisfy user requests. Users are rejected if there is no available bandwidth. To

minimize such rejection probability, they �nd that load should be balanced among all the

disks in the system.

Lie et. al. study a distributed VOD system in which multiple servers are used to serve

user demands [98]. Each server has �nite storage and bandwidth, and movies are dy-

namically replicated and deleted to achieve load balancing among the servers. The main

performance measure is user rejection rate. The authors consider a number of policies on

how a movie can be replicated (such as parallel replication). They have also studied algo-

rithms in selecting the source nodes and target nodes, the triggering threshold to replicate

and delete a movie in the servers, the in
uence of movie popularity, etc. It is shown that

there is a trade-o� between the complexity of the replication and replacement schemes and

the system performance.

Gha�r and Chadwick in [97] study a hierarchical VOD system in which a central repos-

itory serves a number of servers, which in turn serve a large pool of users through a

switch. Files are transferred from the repository to the servers (in no time) before they are

streamed. They compare a pure VOD system with a near VOD system in terms of their

storage and bandwidth requirements so that user rejection probability is negligible. Users

only interact with the videos through pause/resume and cancel (in the case of near VOD,

a separate stream is allocated to the user interacting with the movie). Popular movies may
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be replicated in the local servers to increase system bandwidth. They show that substan-

tial saving in storage and bandwidth is possible in both VOD system, especially when the

movie popularity is very skewed.

Dan et. al. in [100] consider a server with a number of independent disks. To achieve

load-balancing, a movie stored in a disk is divided into a number of segments each of which

are dynamically replicated to one of the other disks depending on the load. The replicated

segment can be deleted when storage space runs out. Though partial movie storage is

considered in the paper, network bandwidth issues (its requirement and cost) have not

been addressed.

Among all the aforementioned previous work, [94, 14, 13, 99] are the most relevant to

this work and hence we will discuss them here. In [94], the cost of setting up a video

system (consisting of a central server and some local servers) is discussed while we discuss

the running cost of the system (in which users are charged on a per-usage basis), in which

network channels are acquired on-demand to satisfy users' requests. Their objectives and

cost functions used are also di�erent from ours. In [14], the channels are assumed to be

�xed and leased, while our work discusses on-demand channels. Our work bears great

similarity to [13] (for which the server tree has only two levels). While in [13], user tra�c

to the servers forms a balanced tree and channel cost is a function of the distance between

a local server and the users, we consider here that the arrival rate to a local server may

di�er from each other and the local servers are close to the users and hence the cost of

streaming from a local server to its users is low. (The star topology we consider is hence a

special case of [13].) In [99], the bandwidth pro�le of a movie (i.e., the size of each frame)

has to be known beforehand in order to do the optimization and movies are transmitted

with CBR, while no such assumptions are needed in our work. Furthermore, while video

data is statically stored in a local server in [99], in our work video data is dynamically

deleted or stored to achieve the channel-storage trade-o�.

Almost all previous work mentioned above treat a video �le as a single unit, and hence

is either completely stored (or replicated) in a local server or not at all. We consider here
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movies can be partially stored locally, hence achieving lower system cost. We address when

and how much to cache in our study. We have also considered on-demand network channels

with a cost assoicated in using them, which has not been discussed in the previous work

above. We have also studied using multicasting as a means to deliver data to the local

servers, which has not been studied before in this context. Most of the previous work also

focuses on multiple serving nodes being co-located and serving a large pool of users through

a switch (with the servers being able to communicate with each other, and transfer movies

among themselves). We have considered a distributed servers environment as a means to

reduce network channel usage, in which multiple geographically-distributed servers serving

their local users may or may not be able to communicate with each other.

4.3 Caching Schemes

In this section, we describe the caching schemes we study, �rst for the local servers operating

independently, with and without multicast network channels. We then describe a scheme

for communicating servers.

4.3.1 Independent servers

Unicast delivery from the repository

We consider a system in which local servers are operating independently from each other,

and the central repository delivers the movies using unicast streams (e.g., Fig. 4.2). We

focus on a central repository-local server pair, and describe the following caching schemes:

Lifetime caching: Let's �rst consider that initially there is no user being served in a

local server and no movie is cached. An arrival to the local server requires a stream

from the repository. Movie data is cached locally for a time W minutes before it is

deleted (W is therefore the data lifetime). Users for the same movie arriving within

the window W after the movie is streamed hence form a cache group (in other words,
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Figure 4.5: Lifetime caching with and without bu�er release after a movie is displayed for

time W

an arrival more than W from the �rst arrival in the cache group would have to start

a new cache group and require another stream from the repository.)

Obviously, bu�er requirement can be reduced if, after a movie has been displayed for

W minutes, we \trim the bu�er" and keep only the amount of data just enough to

serve the �rst and the last arrival in the cache group. We show in Fig. 4.5 the bu�er

size used for lifetime caching with or without such trimming. With trimming, the

bu�er size corresponding to W video minutes is trimmed to T (the inter-arrival time

between the �rst arrival and the last arrival in the cache group) after time W .

Regenerative-lifetime caching: In lifetime caching, a request arriving more than W

minutes from the �rst user in a cache group will have to start a new stream from the

repository. The regenerative-lifetime caching take into account of temporal locality

of the requests: Data �rst brought into a local server initially has a lifetime W if

there were no request arriving within this window. However, if a new request arrives

within this time, the data lifetime is reset to W (and hence regenerated). Here, the

more popular a movie is, the longer it will stay in the server.

We may of course consider bu�er trimming as above, in which once we know that
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there is no arrival withinW , we keep the bu�er corresponding to the interarrival time

between the �rst and last arrival in a group served by a repository stream.

Multicast delivery from the repository

We now consider that a service provider operates a group of servers serving a number of

regions in which multicast delivery channels can be used (e.g., Fig. 4.3). We consider the

following caching schemes in this environment:

Pre-caching: In this scheme, the central repository multicasts the movies to the local

servers and a local server decides if it should cache the data in advance (i.e., pre-

caching) or not. If data is cached, future requests can be served from the local cache;

the bu�er, however, is wasted if there is no arrival within the caching period. If

the data is not cached, the local server would request streams from the repository

on a request-by-request basis (i.e., the repository will stream-through the movies to

the users). We consider the following two pre-caching schemes: periodic multicasting

with pre-caching, and on-demand pre-caching.

In the periodic multicasting with pre-caching, there is a periodic multicast schedule

for each movie, in which the repository multicasts a movie at regular intervals every

T minutes. If data is cached, it would be cached for a lifetime W = T minutes (the

maximum cache size allocated for the multicast stream). If there is any arrival in the

pre-caching servers within W minutes from the beginning of a multicast (as known

from the presence of a server request to continue a multicast stream), the multicast

channel from the repository would be held for the length of the movie; otherwise,

the multicast stream would be aborted at the end of W . If there is no arrival in a

pre-caching server at the end of W minutes, the local cache would be 
ushed.

On-demand pre-caching is very similar to the above. However, the multicast is now

initiated on-demand by a local server. Other servers pre-cache the data if decided

to do so, in which case if there is no request within W , the bu�er will be 
ushed,
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otherwise lifetime caching will be used.

Latching: A local server in the pre-caching scheme pre-bu�ers data in anticipation of

its use within W minutes after a movie multicast. Bu�ering space is hence wasted

if there is no user arriving within that time. In latching, a server caches a movie

by joining it multicast group (if any) once it is requested, and transient streams are

used to recover the \time lag" between requests so that requests can catch up with

one another and �nally be served with a single multicast stream. Therefore this

technique trades o� bu�er space with the use of additional transient streams. Since

in this scheme a server has to process multiple incoming streams for a movie, this

scheme takes advantage of the current processing power of a computer.

We will consider two kinds of latching: periodic multicasting with latching and on-

demand latching. In periodic multicasting with latching, a movie is multicast at

regular intervals of T minutes. For each multicast stream, there is a maximum bu�er

size W = T minutes allocated in a local server (hence data is cached for at most W

minutes). Supposed that initially there is no movie cached in the system. An arrival

comes to a server, which requests a (transient) stream from the repository to supply

the missing (beginning) portion of the movie, while at the same time it latches on

(i.e., joins) the current multicast stream for the movie. Both streams will be cached,

so that any arrival of the same movie from the arrival time of the �rst request to

the next multicast time can be served directly from the local cache. After a period

of time (equal to the time from the the start of the current multicast interval to the

arrival time of the �rst request in the interval), the missing data would be supplied

and the transient stream relinquished. In this scheme, if there is no request at the

end of a multicast interval, the multicast stream would be aborted and a new one

started; otherwise, the multicast stream will be held for the movie duration.

On-demand latching is similar to the above, except that there is no regular multicast

schedule in that streams are allocated on a demand basis. Supposed that initially
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there is no on-going request and no movie is cached. An arrival �rst comes to a local

server, which requests a multicast stream from the repository to stream the movie

(The server may then cache the movie for a time W in anticipation of future local

arrivals). Such multicast stream is called the basic stream, to be held for the movie

duration. If another arrival for the same movie comes at a di�erent server within W

minutes, a transient stream is allocated to supply the beginning portion of a movie,

while at the same time, the local server joins the basic stream and starts bu�ering

both streams (W is hence the cache size used for the cache group). After a period of

time of at most W minutes, the requests will be served solely by the basic stream.

A new basic stream would be started for the �rst arrival more than W minutes from

the previous basic stream.

Certainly transient streams do not have to be unicast streams | they can also be

multicast. If so, a local server can then latch on multiple on-going multicast groups;

in this case the transient multicast streams can be dropped faster, leading to lower

repository bandwidth requirement. We illustrate this scheme in Figs. 4.6 and 4.7. We

show in Fig. 4.6 the sequence of requests in three local servers and the corresponding

bu�er content on their arrivals. Initially, user 1 comes in, starting a multicast stream

from the repository (the basic stream). We show the movie display line (with movie

length Th minutes), with the left end of the bu�er corresponding to the position at

which the movie is displayed. User 2 then comes in another local server. It �rst

receives a (transient) multicast stream while it joins the multicast group of user 1

and starts bu�ering its data. User 3 arriving to yet another local server can now join

the multicast groups of both users 1 and 2, while it receives its own transient stream

supplying the missing portion of the movie. We show in Fig. 4.7 the result when the

transient streams of users 2 and 3 are relinquished. Also shown are the display points

of the movies. We see that except for user 1, both users 2 and 3 display movie at an

earlier point than its receiving end.

A local server, due to its �nite processing capacity, may only latch on a maximum
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Figure 4.7: Result when all the users are �nally served by the basic stream corresponding

to the multicast stream of user 1

223



of R multicast streams in addition to its own initial stream (R � 0). Clearly, R = 0

corresponds to lifetime caching, and R =1 corresponds to the case in which a server

can latch on all the on-going multicast streams simultaneously. For �nite R and

on-demand latching, a local server would latch on, in addition to its own stream, a

maximum of R oldest on-going streams within W minutes from a basic stream.

Periodic multicasting and on-demand latching are quite similar to the schemes men-

tioned in [101, 83]. While [101, 83] focuses on o�ering user interactive capabilities for an

on-going movie, we are interested in o�ering virtually no initial start-up delay here. We

also consider the case R > 1 in our study. Simulation studies are conducted in [101, 83];

here we provide the analysis for the schemes.

4.3.2 Communicating servers

We now consider a caching scheme as used for communicating servers (e.g., Fig. 4.4), in

which data is copied locally from a remote server so that future requests for the movie can

be served directly from the local cache.

Chaining: Each local server uses lifetime or regenerative-lifetime caching with data life-

time W minutes. If within W minutes from the start of a movie another request of

the same movie arrives at a di�erent server, the data is copied to the server with a

lifetime of W (and the movie is streamed to the user from the server). Therefore, the

beginning of a movie is relayed among the local servers in the network, and hence

servers are \chained." A chain is broken when successive requests from two di�erent

servers are separated by more than W minutes, in which case the later arrival will

start a new chain by requesting a new stream from the repository. This scheme is sim-

ilar to that mentioned in [82]. In [82], the saving in bandwidth using this technique

has been studied using simulation; we quantify such saving using analysis here.
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4.4 Analysis

We study the amount of storage and stream requirement for each caching scheme. We con-

sider that the network channels can be acquired on a demand basis with a cost. Accordingly,

the servicing of requests pertaining to a given movie is independent of the servicing of re-

quests for other movies, and hence it su�ces to consider the single movie case. In the

following, we consider a movie of length Th, with its request process being Poisson and its

streaming rate being b0 Mb/s. We are interested in the following performance measures:

� Average number of channels (or concurrent streams) required for the movie from the

repository;

� Average storage for the movie in a local server (in minutes of video time), which may

be calculated as follows: If B(t) is the amount of storage (in minutes of video time)

used for the movie at time t, then B
�
= limT!1(1=T )

R T
t=0B(t)dt. Equivalently, if B(t)

is a regenerative process with average cycle time Tc, and de�ne B̂ as the time-integral

of the bu�er used in a cycle, then B is given by (1=Tc)E[B̂]. B may also be obtained

by �Thb, where b is the time-average of the storage allocated to each request; and

� Cost: We are interested in the total system cost comprising the channel cost and

local storage cost (the cost in streaming from the local servers to their users is com-

paratively negligible). A service provider sets up either a local server or a group of

servers in providing video services, and pays for the total number and duration of the

streams used, and the amount of storage used over time. Therefore his/her interest

is to minimize such cost.

Note that the storage and channel costs may be any arbitrary function in terms of

the total storage used and the total streaming time. For illustration purpose, we

consider linear cost functions, though our study is not limited to that (note that

concave function means economy of scale). Let � be the cost per minute in using a

network channel ($=(minute�channel)), and � be the (linear) storage cost per minute
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for each MB used ($=(minute�MB)).

Consider independent servers. Let S be the average number of channels used for the

movie, B be its average storage, then the average cost per minute is �(60=8)b0B +

�S. De�ning Ĉ as the (dimensionless) normalized cost with respect to � and 

�
=

(60=8)b0�=�, the system cost is therefore,

Ĉ = 
B + S: (4.1)

If a provider operates a group of servers, the total system cost is the sum of the local

storage cost in all the local servers and the channel cost (a multicast channel cost is

only incurred once when serving multiple servers at the same time.) Let S be the

average number of multicast channels used in the repository. Given that there are Ns

local servers, each of which using bu�ers Bi, the total normalized system cost then

becomes,

Ĉ = 

NsX
i=1

Bi + S: (4.2)

Given Ĉ, the average cost per user is then �Ĉ=�.

4.4.1 Independent servers with unicast delivery

Lifetime caching

Let � be the request rate for a movie at a local server. We �rst consider that the bu�er

is not trimmed at the end of W minutes after serving the �rst user in a cache group.

The average time between successive stream allocations from the repository (and hence

successive cache group) is given by W + 1=�, and hence the average number of channels is

S =
Th

W + 1=�
: (4.3)

Since each bit of the movie is held in the local server for a time equal to W , the average

bu�er size is B = ThW=(W +1=�) (we consider that bu�er can be acquired in small chunk),
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i.e.,

B =
�W

1 + �W
Th: (4.4)

Therefore, S = �Th � �B. Hence, Ĉ = 
B + S = (
 � �)B + �Th. Therefore, to minimize

Ĉ, we either don't cache at all (the case when 
 > �, making B = 0) or store the whole

movie in the local server (the case with 
 � �, making B = Th).

Let's now consider the case in which bu�er is trimmed by the end of W � Th after

serving the �rst user in the cache group. Refer to Fig. 4.5 again. Let T be the inter-

arrival time between the �rst and the last request in the cache group. Note that B̂ =

W 2=2+(Th�W )T+T 2=2, where the �rst term corresponds to the �rst portion of the graph

in which the beginning portion of the movie is being cached, the second term corresponds

to the \
at" portion of the graph right after trimming, while the last term corresponds

to the last portion of the graph in which bu�er space is being released. Hence, E[B̂] =

W 2=2+(Th�W )E[T ]+E[T 2]=2. Given that there are n � 0 arrivals in timeW , all of them

would be uniformly distributed over W ; hence P (T � tjn) = (t=W )n (for 0 � t � W ).

Therefore, E[T jn] = nW=(n+1) and E[T 2jn] = nW 2=(n+2). After removing the condition

on n and noting the time between successive repository stream allocations as W +1=�, we

have,

B =
1

W + 1=�

"
ThW (1� 1� e��W

�W
) +

1� e��W � �We��W

�2

#
: (4.5)

For W � Th, we have E[B̂] = T 2
h=2+(W �Th)Th+E[T 2]=2, where E[T 2jn] = nW 2=(n+2)

as given above. We hence have,

B =
1

W + 1=�

"
WTh � Th

�

 
1� 1� e��Th

�Th

!#
: (4.6)

S is the same as the un-trimmed case.

Regenerative-lifetime caching

Let � be the request rate for a movie in a local server. We �rst consider the case without

bu�er trimming. An arrival will reset its lifetime if its arrival time is within W minutes
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from the previous request, i.e., with probability p = 1 � e��W . Therefore, the expected

inter-arrival time, given that successive requests are within W , is,

Ta =
1

p

Z W

0

�x��xdx (4.7)

=
1

�
� W

e�W � 1
: (4.8)

The average time data stays in the local server is hence L = W +
P
1

i=0 p
i(1 � p)iTa =

W + Ta=(1� p) = W + Tae
�W : The average time between successive requests of a stream

is Ts = L+ 1=�; and hence the average number of concurrent streams is S = Th=Ts, i.e,

S =
�Th

(1� �W=(e�W � 1)) e�W + �W + 1
: (4.9)

The average amount of bu�er used for a user is given by Tap+W (1�p) = (1�e��W )=�.

Since there are on average �Th concurrent users, the average storage used is

B = Th(1� e��W ): (4.10)

The cost is hence Ĉ = 
B + S:

We now consider the case with bu�er trimming. Note that, for W � Th, the average

bu�er size for each request is Ta if it is not the �rst request in the cache group, and

W 2=(2Th) if it is the �rst request in the group. Therefore,

B = �Th

 
Tap+ (1� p)

W 2

2Th

!
(4.11)

= Th(1� e��W )� �W

�
Th � W

2

�
e��W : (4.12)

4.4.2 Independent servers with multicast delivery

Pre-caching

Obviously, if a server does not pre-cache multicast streams, the average number of reposi-

tory streams used is given by the movie request rate times Th, and the bu�er requirement is

zero. We concentrate on the pre-caching servers in the following. Let Ns be the number of

pre-caching local servers in the system, with the request rate for a movie in server i being

�i (i = 1 : : : Ns) and the aggregate request rate among them � =
PNs

i=1 �i.
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Periodic multicasting with pre-caching

In this scheme, if there is no arrival withinW minutes in a local server (with probability

e��iW ), an average bu�er space W=2 minutes gets used; on the other hand, if there are

arrivals, a bu�er space of the movie size is used. Hence, average storage used is,

Bi = e��iW
W

2
+ (1� e��iW )Th: (4.13)

With Ns servers caching the movies at the same time, total bu�ering is given by
PNs

i=1Bi.

When there is not any request among all the servers within W , the multicast stream

would be used for only W minutes before it is aborted; otherwise it would be used for a

time Th. Hence the average number of concurrent streams is

S =
1

W

�
We��W + (1� e��W )Th

�
: (4.14)

We formulate the cost optimization problem as follows. Let N be the total number

of local servers in the system, with the request rate in server i (i = 1 : : : N) given by �i.

Associated with each server i is an pre-caching index xi with xi = 1 indicating that the

server pre-caches a multicast stream and xi = 0 otherwise. We then solve the following

programming for the optimal multicasting schedule W � and caching strategy xi:

Minimize 

PN

i=1

�
W
2
e��iW + (1� e��iW )Th

�
xi+

e�
PN

i=1
�ixiW (1�QN

i=1(1� xi))+

(1� e�
PN

i=1
�ixiW )Th

W
+

PN
i=1 �iTh(1� xi),

With respect to W;x1; x2; : : : ; xN ;

Subjected to W � 0,

xi 2 f0; 1g, for i = 1; : : : ; N .

Note that for uniform load (i.e., �i = �=N), either all xi = 0 (all servers do not cache)

or xi = 1 (all servers pre-cache). The solution in this case is then simpler.
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On-demand pre-caching

In this scheme, the average time between successive channel request is given byW+1=�,

and hence,

S =
�Th

1 + �W
: (4.15)

In a local server, a pre-cache data is 
ushed at the end of W minutes after a multicast

has started if there is no request within the time (with probability e��iW ) and the multicast

is not initiated by the local server (with probability 1��i=�). Such probability occurs with
probability,

�0 = e��iW (1� �i

�
): (4.16)

Therefore, using the regenerative property of the multicast request, the average bu�er size

used in local server i is given by,

Bi =
1

W + 1=�

"
�0
W 2

2
+ (1� �0)ThW

#
: (4.17)

Using S and Bi, the total cost function can then be formulated (similar to the case of

periodic multicasting).

Latching

We will analyze periodic multicasting with latching and on-demand latching for R = 1, and

study the performance using simulation for R > 1. We let W (= T ) the bu�er size used to

cache a movie in a local servers, � be the aggregate request rate for the movie.

Periodic multicasting with latching

The average number of streams used in this scheme will be the average number of

streams in the pre-caching case (given in Eq. 4.14) plus an additional term due to transient

streams, Strans. Let the request rate at local server i is �i, with � =
PNs

i=1 �i. Given that

n � 1 requests arrives in the server within W , the earliest arrival would be on average

W=(n + 1) minutes from the start of a multicast, which is also the time needed for a
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transient stream to supply the missing data for all the n users. Therefore, removing the

condition on n, the average number of transient streams used for server i is given by

(1=W )
P
1

n=1W=(n + 1)(�W )n=n!e��iW = (1 � (1 + �iW )e��iW )=�iW . Summing over the

Ns servers, the average number of streams in this case is therefore given by,

S =
NsX
i=1

1

�iW

�
1� (1 + �iW )e��iW

�
+ e��W + (1� e��W )

Th

W
: (4.18)

Since W is typically much smaller than Th, and transient streams are used shorter than

W , the additional storage requirement due to latching is therefore negligible compared with

the total used, and hence B is given by,

B =
NsX
i=1

(1� e��iW )Th: (4.19)

Note that as Ns !1 (and hence �i � �), S = �W=2 + e��W + (1� e��W )Th=W and

B = �ThW , as expected.

On-demand latching

Let A be the time at which a transient stream is allocated to a new request. The

corresponding local server also simultaneously latches on M multicast streams (M � R),

with their start-time being ordered increasingly as A1; A2; : : : ; AM (A1 is the start-time of

the basic stream). In order for the new request to be �nally served by the basic stream,

we only need to consider A � A1 � W (otherwise a new basic stream will be started).

The transient stream serving the new request will be initially scheduled to end at time

E = A + (A � AM) = 2A � AM . Since the existing M multicast streams have to be

long enough to deliver the missing data to the new request and it takes (Am � Am�1)

minutes for the mth stream to catch up with the (m � 1)th stream in the bu�er for the

new request (m = 2 : : :M), the ending time for the mth stream has to be updated to at

least A + (Am � Am�1). Hence the updated ending time E
0

m for the mth stream from its

previous value Em right before the arrival of the new request is

E
0

m = max(Em; A+ Am � Am�1): (4.20)
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Let S(R) be the average number of concurrent streams used given R and W (Clearly,

the pure-VOD case corresponds to S(0) = �Th). Since the repository is serving many local

servers, we will consider that each new request comes from a local server not currently being

served with a multicast stream (i.e, number of servers � �W ). The analysis for R � 2 is

di�cult, and hence we have used simulation to study its performance. However, S(1) can

be readily obtained by conditioning on the number of requests N eventually served as a

group. Given that N = n + 1, the �rst user would hold the (basic) stream for a time Th

while the remaining n users would have arrival time uniformly distributed between 0 and

W ; hence the average total time of stream usage in this group is Th + nW=2. The average

total stream-time for each group is then Th + �W 2=2. Since the time between successive

stream allocation is given by W + 1=�, the average number of concurrent streams used is,

S(1) =
1

W + 1=�

 
Th +

�W 2

2

!
(4.21)

=
�Th

1 + �W

 
1 +

�W 2

2Th

!
: (4.22)

Note that S(1) �rst decreases and then increases with W . This is expected since when

W increases from zero, more users can be latched to a stream and hence S(1) decreases.

However, when W further increases, the transient streams becomes longer (due to the later

arrivals in a group). Hence total stream time increases, leading to high S(1). Therefore,

W should not be increased beyond Ŵ given by dS(1)=dŴ = 0, i.e., �Ŵ 2 +2Ŵ � 2Th = 0.

A lower bound on S(R) may be obtained by observing that S(R) achieves its minimum

when R!1, in which each new request requires an additional stream time of at least its

inter-arrival time. By conditioning on N = n (with P (N = n) = pn = (�W )ne��W=n!),

the average inter-arrival time is W=(n+ 1) and hence,

S(R) � S(1) (4.23)

� Th

W + 1=�
+

1

W + 1=�
�W

"
1X
n=1

pn
W

n+ 1

#
(4.24)

=
�Th

1 + �W

�
1 +

W

Th

�
1� e��W � �We��W

��
: (4.25)

In terms of the storage used, the average number of concurrent requests is �Th, each of
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which holds a bu�er of size � W . Hence B � �ThW . The total system cost function is

hence Ĉ = 
�ThW + S(R).

4.4.3 Communicating servers

Chaining

Let � be the request rate of a movie in the system. The average number of concurrent

streams has already been given in Eq. (4.9), with �i = �. By considering that the repository

serves Ns local servers with Ns large (and hence each new request comes from a di�erent

local server from the servers already chained, i.e., the pessimistic case), the average bu�ers

in the system is given by B = �ThW . The cost is hence 
�ThW + S.

4.5 Numerical Examples

In this section, we will study, for each caching scheme, the trade-o� between S and B,

followed by discussing how much data should be cached in order to minimize system cost.3

4.5.1 Independent servers with unicast delivery

Lifetime caching

We �rst discuss lifetime caching without trimming. We show in Fig. 4.8 S versus data

lifetime W , given � (Th = 90 minutes). Also shown in the �gure is the maximum number

of streams Th=W attained when � ! 1. When W = 0, S = �Th corresponds to the

stream-through case from the repository to the local server. As W increases, S decreases

from �Th. The advantage in bandwidth is more important for larger � than for smaller �.

We plot in Fig. 4.9 S versus � for W = 60 minutes (Th = 90 minutes). For comparison,

we have also shown the stream-through case from the repository to the local users. As �

increases, S �rst increases and then settles slowly to a limiting value Th=W . Compared with

3Note that � is shown in req./hr in all our plots.
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the stream-through case, We see that a bu�er size of a few tens of minutes can achieve

remarkable saving in S, especially when � is not lower; this is because more and more

requests will �nd their requested movies cached, leading to great reduction in S.

We show in Fig. 4.10 the trade-o� between S and B given �. The trade-o� is linear with

slope ��, beginning at S = �Th for B = 0 and ending at S = 0 for B = Th. Also shown

is a line indicating the combination of S and B to achieve the same cost (iso-cost line);

with the line moving outwards indicating increasing cost. Note that the point at which the

cost line touches the trade-o� curve minimizes the cost for the video (with request rate �).

With arbitrary stream and storage cost function, the cost line may touch any point on the

trade-o� curve. However, with linear cost function (i.e, Ĉ = S + 
B), the optimal point is

either B = 0 (corresponding to W = 0) or B = Th (corresponding to W =1), depending

on � < 
 or not. This condition is shown in Fig. 4.11. We see that when 
 is low (storage

is cheap) or � is high (popular title), the entire movie should be stored locally.

We plot in Fig. 4.12 the normalized cost Ĉ with respect to W (� = 0:5 req./hr, Th = 90

minutes). Also indicated are the components of storage cost and stream cost. As W
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increases, the main component in the total cost changes from stream cost to storage cost.

To minimize cost, indeed we should have either W = 0 (stream through) or W = 1
(storing the entire movie in the local server).

We now study the e�ect of bu�er trimming. We show in Fig. 4.13 B versus W for

caching with or without trimming (� = 0:50 req./hr and Th = 90 minutes). Clearly, bu�er

trimming leads to good saving in bu�er. We show in Fig. 4.14 the trade-o� between S

and B with bu�er trimming. Due to its reduction in the storage requirement, the trade-o�

curve is no longer linear but \bends" slightly downwards, and hence we expect slightly

lower cost with trimming.

We show in Fig. 4.15 the W � required in order to minimize cost as a function of �,

given 
. As � increases, W � increases quite linearly until a point beyond which W � =1.

While in the un-trimmed case W � = 0 is zero when � < 
, in the trimmed case there is a

non-zero and �nite W � to minimize cost. For a given �, as 
 decreases, W � increases (a

larger portion of the movie is stored locally).

We plot in Fig. 4.16 the corresponding S and B versus � when W = W � (
 = 0:002
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and Th = 90 minutes). As video popularity increases, video storage space increases, �rst

slowly and then more quickly, until the point it is completely stored. S increases rather

linearly with �, and then dropped to zero as B reaches Th.

We show in Fig. 4.17 the minimal normalized cost Ĉ� versus � (achieved whenW =W �),

with and without bu�er trimming (
 = 0:002 and Th = 90 minutes). (Recall that in the

case of no trimming, when � < 
, the movie should be streamed through from the central

repository; and when � � 
, the movie should be completely stored in the local server.)

We see that despite that trimming achieves lower bu�er requirement, due to the low bu�er

cost, the cost reduction does not turn out to be great. Trimming only slightly lowers the

total system cost, with the maximum di�erence being at � = 
. Such saving is increased

as 
 increases.

In Figs. 4.18, 4.19 and 4.20, we show W �, the corresponding S and B, and Ĉ� versus �,

respectively, when 
 is increased to 0.01/minute. We see that, given �,W � is now decreased

(since storage is now relatively more expensive) and hence S increases. With an increase

in 
, trimming leads to more saving in system cost.
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Figure 4.17: Ĉ� versus �, with or without bu�er trimming

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

110

λ (req./hr)

W
*  (

m
in

ut
es

)

Lifetime caching with trimming

Th = 90 minutes

/min.γ = 0.01

Figure 4.18: W � versus � with 
 = 0:01

241



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

λ (req./hr)

A
vg

. #
 c

on
cu

rr
en

t s
tr

ea
m

s 
or

 A
vg

. s
to

ra
ge

 (
m

in
ut

es
) /min.γ = 0.01

Th = 90 minutes

Lifetime caching with trimming

100 x Streams

Storage

Figure 4.19: S and B versus � with optimal W

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ (req./hr)

M
in

im
um

 c
os

t

/min.γ = 0.01
Th = 90 minutes

Lifetime caching

Trimming

Without trimming
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Regenerative-lifetime caching

We show in Fig. 4.21 S with respect to W for regenerative-lifetime caching, given �. As W

increases, S decreases, �rst quite sharply and then quite slowly. Great bandwidth saving

is achieved when W � 2=� (note that the data lifetime is likely regenerated by a successive

request with this W ). We show in Fig. 4.22 S versus �, given W . As � increases, S �rst

increases (due to the increase in request rate) and then decreases (since data lifetime is

likely to be regenerated). Given W , there is a maximum S as � increases (attained when

there is a request every W , i.e., � � 1=W ).

We show in Fig. 4.23 the trade-o� between S and B given �. The trade-o� line is quite

linear (with slope � ��), beginning at S = �Th for B = 0 (W = 0) and ending at S = 0 for

B = Th). To minimize cost with linear cost function, therefore, we either stream through

the video or store it completely in the local server depending on if � < 
 or not (as in the

lifetime caching case). Fig. 4.11 can hence be used for the regenerative-lifetime caching to

determine when to cache.
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, along with the components of storage cost and stream

cost

We show in Fig. 4.24 Ĉ with respect to W given 
, along with the components of

storage cost and stream cost. As W increases, the total cost shifts from mainly stream cost

to mainly storage cost. We see that either we should have the movie streamed-through

from the repository (W = 0) or completely store the movie (W =1), depending on if 
 is

higher than � or not.

4.5.2 Independent servers with multicast delivery

Pre-caching

Periodic multicasting with pre-caching

We now consider periodic multicasting with pre-caching. We show in Fig. 4.25 S versus

W given �. We see that S decreases with W , �rst quite fast and then quite slowly. Most

of the saving in S is achieved when W is low (10{30 minutes). This is so especially when �

is high. Note that when W � 0, S � �Th + 1 (ref. Eq. (4.14)). The one additional stream
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Figure 4.25: S versus W given � for the periodic multicasting with pre-caching scheme

compared with �Th is due to the wastage in streaming time when there is no request in all

the local servers within W .

In Fig. 4.26, we show S as a function of � givenW . Compared with the stream-through

case (the linear line), periodic multicasting with pre-caching generally achieves much lower

S, especially when W is high. As � increases, S settles to a limiting maximum value

(Th=W ) while the S for the stream-through case increases inde�nitely.

From Fig. 4.26 we observe that given W and when � is low, S for the stream-through

case is lower since multicasting time would not likely be wasted (stream-through achieves at

most 1 stream lower than the pre-caching scheme). We show in Fig. 4.27 the combination

of � and W so that the caching scheme achieves lower S than the stream-through case (by

setting S � �Th in Eq. (4.14)). We see that most of the time periodic multicasting with

pre-caching consumes fewer streams; only under very low W or � would stream-through is

likely better.

Recall that in a distributed servers architecture, multiple local servers may be used to

increase the streaming capacity. Since these servers cannot share storage, total storage cost
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will be increased. We show in Fig. 4.28 the trade-o� curve with Ns = 20, given � (with

uniform load �i = 5=Ns req./hr). The trade-o� curve is convex, indicating that with linear

cost function W does not have to take on extreme in order to minimize cost. We plot in

Fig. 4.29 the total cost Ĉ versus W when Ns = 20. There is indeed an optimal window

W � to minimize Ĉ. When 
 is relatively high, W � is low and the optimal cost would not

be much di�erent from the stream-through case. When 
 decreases, W � increases and Ĉ

is quite 
at at the optimum, indicating that W do not have to be preciously W �.

We plot in Fig. 4.30 W � versus 
 given that Ns = 20 (�i = 5=Ns req./hr and Th = 90

minutes). When 
 is below a certain low value, we haveW � =1 indicating that the movie

should be replicated among the local servers to take advantage of the low storage cost. As


 increases beyond this point, W � decreases. From the rather linear slope, we can deduce

that W � decreases exponentially with 
. As 
 further increases, there is a point at which it

is too expensive to do any caching at all (W � = 0), and stream-through operation becomes

cheaper.
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We show in Fig. 4.31 W � as a function of Ns ( 
 = 0:002, � = 5 req./hr and uniform

load). When Ns is below a certain number, the local request rate is quite high and hence the

movie should be completely stored. When Ns increases beyond this value, W � decreases.

When Ns further increases, the local request rate for the movie becomes low and the total

storage cost increases. A point is reached beyond which the movie should be streamed-

through to the users directly.

We show in Fig. 4.32 the optimal W � as a function of � given 
 (with uniform server

load �i = �=Ns). There is a minimum � below which pre-caching is not worthwhile due

to high storage cost. As � increases beyond this point, W � increases very sharply and

then remains quite constant. As � further increases, the movie should be stored locally

(W � =1).

We show in Fig. 4.33 the corresponding Bi in each local server and S as a function of

� when W = W �. As � increases, the storage for a movie increases, and jump to Th when

the movie is completely stored. As regards to S, as � increases, S �rst increases with slope

Th (stream-through case), and then drops (due to local caching); it remains quite constant
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Figure 4.33: Bi and S versus � when W =W �

until the point when the movie is completely stored locally, at which S dropped to zero.

We show in Fig. 4.34 Ĉ� versus �, with or without using multicast channels (we assume

that unicast channels are charged the same as multicast channels here). We see that

multicast channels can decrease system cost for a range of �, and there is slight cost

reduction.

We show in Fig. 4.35, 4.36 and 4.37 theW �, the corresponding S and Bi, and Ĉ
� versus

� as 
 is increases to 0.01/minute. Since the channel cost is relatively less expensive, given

a �, W � decreases (so that Bi decreases) while S increases. Since more movie deliveries can

take advantage of the multicast channels, multicasting leads to signi�cant cost reduction

compared with the unicast case. We therefore see that as channel cost becomes less and

less expensive, multicasting will lead to more and more cost advantage over unicasting.

On-demand pre-caching

We now study on-demand pre-caching. We show in Fig. 4.38 S versus W given �. We

see similar trend as compared with the periodic multicasting case (Fig. 4.25). However,
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on-demand caching achieves lower S since it does not need to abort a multicast stream.

We show in Fig. 4.39 the trade-o� between S and B (average total system storage),

given � (Ns = 20 and uniform load). We see that there is rather strong trade-o� between

S and B. It is again worthwhile to compare it with the case of periodic multicasting

(Fig. 4.28), and note the similarity between the two graphs. Since the trade-o� curve of

on-demand pre-caching lie below that of the periodic multicasting case, we expect that,

given certain cost functions of storage and channels, on-demand pre-caching has a lower

cost.

We show in Figs. 4.40, 4.41 and 4.42 W �, the corresponding S and Bi, and Ĉ� versus

�, for 
 = 0:002/minute (Ns = 20 and uniform load). As expected, there is an arrival rate

below which W � = 0 (the movie is directly streamed through from the central server), and

an arrival rate above which the movie should be completely stored. For the intermediate

value of �, the movie would be partially stored locally. W � �rst increases quite sharply, and

then remains quite constant before it shoots up to 1 (stored locally). Compared with the

periodic multicasting case, on-demand pre-caching shows similar trend, but at optimum it
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achieves both lower storage and lower streams, and hence more signi�cant cost reduction

compared with the unicast case. It is therefore a better choice.
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Latching

In this section, we consider latching. We �rst consider the periodic multicasting case, and

then the on-demand case. First we study the in
uence of Ns with R = 1, and then study

the in
uence of R. Since the performance of the on-demand latching is better, we will then

focus in it in the later part of this section.

Periodic multicasting with latching

In this section, we study periodic multicast with latching, for R = 1. We show in

Fig. 4.43 S versus W given Ns, with � = 5 req./hr and �i = �=Ns for all i (uniform load).

S �rst decreases with W , and then for high Ns increases again. Most of the bandwidth

saving is achieve for low W (W � 10{30 minutes). As Ns increases, S also increases since

it is less likely for an arrival to share a cache. Note that for high Ns, S actually increases

beyond a certain W due to long transient streams. Therefore the system will be likely

designed with W less than such point. In this range, there is no much di�erence in S for

di�erent Ns.

In Fig. 4.44 we show the average total storage B versus W given Ns, again with �i =

�=Ns for all i (� = 5 req./hr and Th = 90 minutes). As W increases, B approaches NsTh.

Note that for large Ns, B increases quite linearly for a large range of W (with the initial

slope being �Th).

We show in Fig. 4.45 the trade-o� between S and B, given � (Ns = 10 and R = 1).

S �rst decreases with B; however, as B further increases, the large W leads to more and

longer transient streams and hence S increases. In minimizing system cost, the optimal

point is hence likely below the turning point in the trade-o� line.

On-demand latching

We now study on-demand latching. We have done simulation to study its performance.

As evident in Fig. 4.43, the performance with Ns =1 is not much di�erent from �nite Ns

(if the system is designed properly) and is also the pessimistic case (in terms of Ĉ, S and

B); therefore, the case will be considered here.
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We show in Fig. 4.46 S versusW for latching, givenR (� = 50 req./hr, Th = 90 minutes).

As W increases, more on-going streams can be latched on, and hence S decreases initially,

�rst quite sharply and then very slowly. For low R, however, as W increases beyond a

value Ŵ , S increases again due to more transient streams with longer length (Note that

the case of R = 1 in this �gure with the case of the periodic multicasting with latching

in Fig. 4.43 with Ns = 1 di�ers by at most one stream, showing that the two schemes

are very similar). As R increases, S decreases (as more on-going streams can be latched).

However, there is not much decrease in S as R increases beyond 3 or 4.

We show in Fig. 4.47 Ŵ versus � for for R = 1 (Th = 90 minutes). Ŵ �rst decreases

quite sharply with � and then more slowly.

We show in Fig. 4.48 S versus � given W , for R = 2. As � increases, S increases, �rst

quite linearly (because of no latching) and then slowly (due to latching). Compared with

the stream-through case, there is substantial saving in S with latching.

We show in Fig. 4.49 S versus R, given W (� = 5 req./hr). We see that there is a

marked decrease in S when R is increased from 0 (corresponding to the stream-through
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case) to 1; afterwards the decrease is very little. Therefore in reality, there is no need to

latch on more than 1 or 2 streams.

Note that the bu�ering cost can be completely eliminated if users are willing to wait

for their video: users arriving within a time W can be grouped (i.e., batched) together and

served with a single multicast stream. Hence a maximum user delay of W is incurred. If

the �rst user in a batch always experiences a delay of W , it can be easily shown that the

average number of streams used is �Th=(1 + �W ) (the auto-gated scheduling in chapter

3). In latching, therefore, bu�ering and streams are used to trade o� user delay. Fig. 4.50

shows the number of additional streams compared to �Th=(1 + �W ) so as to provide an

on-demand video services, given R (� = 50 req./hr, Th = 90 minutes). Only very little

additional streams are required compared with the batched case.

Since B � �ThW , the trade-o� between S and B follows the same shape as S versus

W . In Fig. 4.51 we show Ĉ versus W given 
 (R = 1, � = 50 and Th=90 minutes). We see

that there is an optimal W � to achieve minimum cost Ĉ�. As 
 increases, W � decreases,

Ĉ� becomes sharper and the total cost increases.
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We show in Fig. 4.52 W � versus 
 given � (R = 1). As 
 increases, W � �rst stay pretty

constant at Ŵ , and then drops sharply. There is a 
 beyond which W � = 0, showing that

the storage cost is too high and movie should be streamed through from the repository.

Such 
 decreases as � decreases, showing that unpopular movie is more likely not to be

cached in the local servers.

We show in Fig. 4.50 W � versus � ((R = 1 and 
 = 0:002. There is a minimum value

of � (at W = 0) below which the movie should be streamed through from the central

repository; after which W � �rst increases very sharply and then decreases very gradually

with �.

We show in Fig. 4.54 the S and the total storage at W = W �. We see that both S

and B increases with �. We show in Fig. 4.55 Ĉ� versus �. As expected, the cost increases

with � (since both S and B increases with �). There is a signi�cant cost advantage over

the stream-through case. For �nite Ns, since the cost is pessimistic, we expect lower cost

(by a little amount), and the movie will be completely stored (i.e., W � = 1) at � when

the cost curve intercepts with the horizontal line Ns
Th. It is also worthwhile to note the
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remarkable resemblance in the cost of latching with that of pre-caching (Fig. 4.42), showing

that the simpler pre-caching scheme may be preferred in reality.

4.5.3 Communicating servers

Chaining

Note that S in chaining is the same as that of the regenerative-lifetime case (ref. Figs. 4.21

and 4.22), while B is linear in W . Since B = �ThW , the trade-o� between S and B follows

the same shape as S versus W in that �gure. We hence will focus in this section its cost

optimization (we consider Ns = 1 since it is a pessimistic case). We show in Fig. 4.56

Ĉ versus W given 
. There is a clear W � at which Ĉ is minimized. As 
 decreases, W �

decreases and the minimum becomes less marked. We show in Fig. 4.57W � versus 
, given

�. W � decreases rather exponentially with 
 at the beginning and more slowly at the end.

There is a 
 beyond which stream-through operation becomes more cost-e�ective.

We plot in Fig. 4.58 Ĉ� versus 
, whenW =W �, given �. Ĉ� increases with 
, �rst quite
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quickly then more slowly, and reaches �Th as 
 ! 1 (i.e., W � = 0, the stream-through

operation).

We plot in Fig. 4.59 W � versus � given 
. We see that there is a request rate below

which stream-through from the repository should be used. W � �rst increases very sharply

with � and then decreases more slowly. We show in Fig. 4.60 the corresponding S and total

storage B. We see that while storage keeps increasing, S remains quite constant.

We show in Fig. 4.61 Ĉ� versus �. As � increases, Ĉ� also increases, �rst quite fast and

then more slowly. We see that chaining achieves substantial cost saving compared with the

stream-through case. For �nite Ns, Ĉ
� follows the same trend (since we would not expect

much di�erence), but W � takes on 1 at � for which the cost line intercept the horizontal

line Ns
Th (storing the movie completely).
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4.6 Cost Comparison Between A Batching System And

A Distributed Servers Architecture

Consider a system in which a central repository is used to served all the requests. To

increase the streaming capacity, request batching can be used. If users can tolerate a

maximum of Dmax minutes beyond which they very likely leave the system, the batching

period should be no more than Dmax. We may consider a window-based batching scheme

as follows: the �rst user after a movie showing starts a batching window of sizeW = Dmax,

at the end of which the movie is multicast to all the requests arriving within the window. It

can be easily shown that, given that the request rate for a movie is �, the average number

of streams required, and therefore the normalized total system cost, is,

S =
�Th

1 + �Dmax

: (4.26)

Let's now consider a distributed servers architecture with lifetime caching. Let Ns be

the number of servers in the system, with the arrival rate of server i for a movie being �i

(
PNs

i=1 �i = �). Then the normalized minimum cost is given by,

Ĉ� =
NsX
i=1

[
Thu(�i � 
) + (1� u(�i � 
))�iTh] ; (4.27)

where u(x) is the unit-step function of which u(x) = 1 for x � 0 and u(x) = 0 otherwise.

We show in Fig. 4.62 the minimum cost for the distributed servers system and the

batching system versus � given 
, with Dmax = 6 minutes and �i = �=Ns (we have consid-

ered that the costs for unicast channels and multicast channels are the same). For values

of Ns
 higher than a certain value (= 1=Dmax), distributed servers architecture de�nitely

has a higher cost than a system with request batching (hence trading o� system cost with

low user delay). However, with low Ns
, by taking advantage of the low storage cost,

distributed servers architecture is able to achieve lower cost than request batching, while

at the same time o�er zero start-up delay to the users! Note that the two lines cross at �
0

,

where

�
0

=
Ns


1�Ns
Dmax

: (4.28)
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We see from the �gure that to minimize system cost, when � < �
0

, we should use request

batching, and when � > �
0

, we should store the movie locally.

We show in Fig. 4.63 �
0

versus Ns
 (Dmax = 6 minutes). When Ns
 is high, movies

are less likely stored locally and request batching is generally used. However, when Ns
 is

low, many movies would be stored locally to take advantage of the low-cost storage.

As an illustrative example in how much cost a distributed system can save, let's consider

a system with 80/20 movie popularity as shown in Fig. 4.1 (the total request rate in the

system � is 4000 req./hr), with the column corresponding to � = 0:03/minute in Tab. 4.1.

We consider six systems: 1) an on-demand video system in which the central server is solely

used to serve all the requests (VOD); 2) a system in which Ns = 20 local servers storing

all the movies are used to server all the request, with each server serving 200 req./hr; 3)

a system with a central server using request batching to serve all the requests (Dmax = 6

minutes); 4) a system with a central repository and Ns = 20 (uniformly loaded) local

servers, with 20% of the most popular movies stored in a local server; 5) a system same in

(4), but using lifetime caching with optimal caching strategies (i.e., either we completely
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Table 4.2: The total cost (in $/minute), cost per user and the request rate in the central

repository for di�erent systems (
 = 0:002, Ns = 20, � = 4000 req./hr for 6 hours a day,

number of movies = 500, 80/20 video popularity, Dmax = 6 minutes, and Th = 90 minutes)

Cost (Cost per user) Repository request rate

$/minute ($) req./hr

VOD 180 (2.7) 4000

All stored locally 54 (0.81) 0

Request batching 56.05 (0.84) 4000

20% local movies 46.75 (0.7) 800

Optimal cachinga 28.73 (0.43) 148.79

Combined schemeb 27.85 (0.42) 196.02

aEach local server stores 204 most popular movies at optimum.

bEach local server stores 187 most popular movies at optimum.

store a movie or not at all depending on its request rate); 6) a system same in (4), but

with caching and batching combined | movies are stored in the local servers if � � �
0

,

and request batching is used in the central server if � < �
0

(Dmax = 6 minutes). We show

in Tab. 4.2 the system cost in $/minute (along with the cost per user, i.e., the minimum

charge to a user in order to break even the system cost) and the request rate presented to

the central repository.

We see from the table that by taking advantage of the nowadays low storage cost,

optimal caching can achieve great saving compared with request batching. There is not

much cost reduction if caching and request batching are combined (this is because the

repository requests are for the not-so-popular movies, rendering request batching in that

level not e�ective). The naive way of storing 20% most popular movies in a local servers

does not achieve much cost saving compared with either request batching or storing all the

movies locally, showing indeed there is an optimal number of movies to achieve minimal

277



cost. More saving in cost is achieved when videos are more skewed in popularity.4 If

multicasting or server communication is possible, the cost can be further reduced. We also

see from the table that the request rate in the central repository is greatly reduced through

caching.

We show in Fig. 4.64 C versus the total request rate �, for the six systems considered

above, and the multicasting (on-demand precaching) and chaining schemes. We have also

shown the case Ns = 2 for optimal caching. By comparing the cases of VOD and storing

all movies locally, we see that when � is low, we should use VOD, and when � is high,

we should stored all the movies locally. Request batching can be used to reduce the cost

substantially compared with the VOD case, but when � is high, its cost can still be higher

than storing all the movies locally. Storing 20% of the movies locally, so that 80% of the

requests can be directly served from the local servers, achieves good cost saving for a certain

range of �, indicating that this \one size �ts all" approach does not always lead to good

decision. The cases of optimal caching and combined scheme achieves low cost, though

they themselves do not di�er much from each other. With multicasting, there is a slight

decrease in cost. However, chaining is able to reduce system cost greatly, due to the fact

that there is much less storage duplication and stream cost in the scheme (and hence lower

storage and stream cost). When Ns is decreases, there can be more sharing in storage, and

hence the cost is decreased.

We show in Fig. 4.65 the optimal number of movies that should be stored locally versus

�, for the optimal caching and the combined scheme (We also show the case with Ns = 2

for optimal caching). We see that as � increases, the number of movies stored locally also

increases (�rst quite sharply and then very slowly) and approaches the number of movies

in the system (i.e., storing all movies locally). There is also not much di�erence between

the optimal caching and the combined scheme. As Ns is decreased, the number of movies

4For 90/10 video popularity, cost per user for batching is $0.435, for optimal caching is $0.189 (94

movies in each local server with the repository request rate being 52.73 req./hr), and for the combined

scheme is $0.183 (88 movies in each local server with the repository request rate being 69.51 req./hr).
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stored locally increases; and when � increases beyond a value, all the movies should be

duplicated locally to take advantage of the low storage cost (since stream cost would be

too high beyond such request rate).

4.7 Conclusions

A distributed servers architecture is able to achieve both storage and streaming scalability.

In such a system, a number of repository servers store all the video contents of interest to a

large pool of geographically distributed users. Due to the limited server bandwidth and the

likelihood of high transmission cost from the repository to the users, using the repository to

directly serve the users would not be e�ective. Using a number of local servers can increase

the streaming capacity while lowering the network transmission cost. We have investigated

such a video system for on-demand services, in which a number of local servers cache the
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video contents assessed from a repository server. We have studied a number of caching

schemes, depending on whether the local servers are able to exchange their video contents

among themselves or not, and whether the repository unicasts or multicasts the contents

to the local servers. We have addressed the trade-o� between the number of streams used

and the storage requirement. Given a certain storage cost and streaming cost, we have

studied when (i.e., under what conditions) and how much to cache a video �le locally in

order to minimize the system cost. We have also shown the cost advantage a distributed

servers architecture can bring compared with a batching system.

Our caching schemes are e�ective in reducing the network bandwidth from the repos-

itory to the local servers. Generally, for unpopular movies, we should stream it from the

central repository, and for the popular ones, we should store it locally. For intermediate

popularity, we should partially store it in the local servers, with its storage requirement

increases with its popularity. Multicasting is found to be able to reduce system cost; and

in some cases it can be quite signi�cantly. If the local servers can communicate with each

other, the cost can be further reduced. We have shown that given that the current storage

cost is so low, distributed servers architecture can trade-o� storage cost with communica-

tion cost e�ectively. Compared with a request batching system, it can achieve both lower

overall system cost and lower delay. The more skewed video popularity is, the more saving

in cost a distributed servers architecture can achieve.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Video-on-demand (VOD) refers to video services in which a user is able to request from

a server any video content at any time. VOD encompasses many applications important

in entertainment, education and advertising, such as movie-on-demand, news-on-demand,

distance learning, home shopping, various interactive training programs, information kiosks,

etc.

In order to provide VOD services accommodating thousands of video titles and thou-

sands of concurrent users, a VOD system has to be scalable { scalable in storage and

scalable in streaming capacity. We have considered in this thesis how such scalable services

can be provided using hierarchical storage systems, request batching and multicasting, and

distributed servers architecture. Our goal is to design such a system so as to o�er high

service quality with low cost and complexity.

Video servers based on hierarchical storage systems o�er high-capacity, low-cost and

scalable video storage. The system consists of a secondary level (characterized by fast �le

access and high throughput) and a tertiary level (characterized by cheap and large storage).

Video �les stored in the tertiary level are staged into the secondary level to be displayed.

The design of such system includes its architectural parameters (bandwidth and storage
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in each level), and operational procedures (e.g., request scheduling and data replacement

policies) for di�erent level of user interactivities.

There are two types of users in a hierarchical system, hits and misses. We �nd that

hits enjoy negligible delay; therefore the tertiary bandwidth should be designed to meet

user delay requirement. An e�cient tertiary level is very important in a high-performance

hierarchical storage system, and hence if a video �le is displayed after it is completely

staged, we should parallelize the drive bandwidth. On the other hand, if a video can be

displayed while it is being staged we should use multiple independent drives.

We have developed a simple model for a hierarchical storage system, from which we can

specify the required bandwidth and storage in both secondary and tertiary levels to meet a

certain user delay requirement, given speci�c application characteristics and a target request

rate. We �nd that user delay increases rapidly when the arrival rate increases beyond the

target arrival rate. Therefore, admission control should be used so that a hierarchical server

should not be operated beyond the arrival rate under which it is designed.

We have seen that the number of �les stored in the secondary level can be much lower

than the total number of �les in the system, and hence a hierarchical storage system is

able to achieve much lower system cost compared to a system with secondary storage

only. With large number of �les, the storage and bandwidth requirements do not depend

sensitively on the skewness of video popularity. The simple model we developed can also

be used to specify bandwidth and storage requirements in a distributed storage system,

in which multiple geographically-distributed servers get their video �les from some remote

repositories and streams the videos to their local users.

A near video-on-demand system achieves streaming scalability by batching requests for

a particular video and serving them with a single multicast stream. We have considered

providing such a service when there is a cost associated with using a multicast channel.

Batching has then to be designed so as to amortize such channel cost.

We have studied a number of batching schemes. In the window-based batching schemes,

user delay is bounded by a certain maximum value W ; and in the batch-size based scheme,
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revenue can be maintained in each batch by allocating a stream whenever a certain number

M of users are collected. We have analyzed and compared these schemes in terms of user

delay experienced, the number of concurrent streams used, the number of users in a batch,

etc. When the arrival rate is high, it is advantageous to use window-based scheme due to

its bounded delay and high pro�t, but when the arrival rate is not high, it is advantageous

to use batch-size based scheme to maintain pro�tability. We therefore proposed a com-

bined adaptive scheme in which system pro�t and service quality (in terms of user delay

experienced) can be balanced.

We have also studied the minimum number of channels required to satisfy a certain user

delay requirement, and we �nd that when the delay requirement is low and the request rate

is not high, the number of channels required can be quite low.

We have considered how pro�t can be maximized in providing near VOD services, given

a certain user reneging behavior. We �nd that maximizing pro�t per-batch generally leads

to long batching period and high user loss rate. Maximizing pro�t rate, on the other hand,

encourages more frequent smaller returns. However, the loss rate may still be undesirably

high, and hence a shorter batching period should be used in reality. Generally, the higher

user delay tolerance is, the longer the batching period is. Our results also show that the

optimal operating point also does not depend very much on the reneging function besides

its mean. We �nd that the maximum pro�t rate for the window-based scheme and the

batch-size based scheme are very similar, if both schemes are pro�table. However, the

batch-size based scheme is able to always maintain pro�t even when the arrival rate is

low. We have therefore studied how the batch-size based scheme can be combined with

the window-based scheme so that the window size can be dynamically adjusted to improve

pro�t. We have shown that such a scheme is able to adapt to 
uctuating request rete and

still achieves high pro�t.

A distributed servers architecture is able to achieve both storage and streaming scal-

ability. In such a system, a number of repository servers store all the video contents of

interest to a large pool of geographically distributed users. Due to the limited server band-
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width and the likelihood of high transmission cost from the repository to the users, using

the repository to directly serve the users would not be e�ective. Using a number of local

servers can increase the streaming capacity while lowering the network transmission cost.

We have investigated such a video system for on-demand services, in which a number of

local servers cache the video contents assessed from a repository server. We have studied

a number of caching schemes, depending on whether the local servers are able to exchange

their video contents among themselves or not, and whether the repository unicasts or multi-

casts the contents to the local servers. We have addressed the trade-o� between the number

of streams used and the storage requirement. Given a certain storage cost and streaming

cost, we have studied when (i.e., under what conditions) and how much to cache a video

�le locally in order to minimize the system cost. We have also shown the cost advantage a

distributed servers architecture can bring compared with a batching system.

Our caching schemes are e�ective in reducing the network bandwidth from the repos-

itory to the local servers. Generally, for unpopular movies, we should stream it from the

central repository, and for the popular ones, we should store it locally. For intermediate

popularity, we should partially store it in the local servers, with its storage requirement

increases with its popularity. Multicasting is found to be able to reduce system cost; and

in some cases it can be quite signi�cantly. If the local servers can communicate with each

other, the cost can be further reduced. We have shown that given that the current storage

cost is so low, distributed servers architecture can trade-o� storage cost with communica-

tion cost e�ectively. Compared with a request batching system, it can achieve both lower

overall system cost and lower delay. The more skewed video popularity is, the more saving

in cost a distributed servers architecture can achieve.

5.2 Future Work

The work done in this dissertation can be extended in the following directions:

� In
uence of user arrival processes | Most of our results are derived based on station-
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ary, quasi-stationary, or in some cases, non-stationary Poisson arrival. While Poisson

arrival is generally assumed in literature on server design, the impact of non-Poisson

arrival processes on system design should be studied. Such processes may include

periodic arrivals, batch arrivals, Markov-modulated processes, etc.

� Estimation of video popularity | Video popularity may be time-dependent or event-

driven. A good video system should be able to adapt to both short-term and long-term

variation of the popularity of a �le. We have shown that knowing video popularity can

bear great e�ects on system decision and hence pro�ts. Estimating such popularity

becomes important in system performance.

� Round-robin staging in a hierarchical storage system | So far, in the hierarchical

storage system, we have considered �le-by-�le staging mechanism, in which a �le has

to be completely staged from the tertiary level before another �le can replace it in

a tertiary drive. We may also consider round-robin staging, in which a video �le is

partitioned into several blocks and staged on the block-by-block basis. Once a video

�le starts to be staged, it can then be displayed (continuity hence has to be satis�ed).

Since �les can now be staged in a multiplexed manner, this scheme potentially o�ers

lower start-up delay. Since more exchanges are involved in staging a �le, it incurs

more overheads. For example, if exchange time is negligible, round-robin staging

would have lower start-up delay; however, if the library exchange time is high, �le-

by-�le staging would be better. Therefore conditions under which round-robin staging

achieves better delay performance can be established.

� Channel allocation and assignment in nVOD | So far we have considered that net-

work channels can be acquired on a demand basis. Network channels may also be

leased to a server, hence putting an upper limit on how many channels a server may

use at any one time. The limited number of channels then have to be shared among

all the movies. We have studied the planning issue for a single movie, and here we are

interested in multiple movies and address the minimum number of channels necessary
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to meet a certain user delay or loss requirement.

Given a certain limited number of channels, we would also like to consider assignment

policies when channels are about to run out. Since di�erent movies may have di�erent

lengths, pay-per-view, and popularities, for limited channels, the decision on which

movie requests to be served would bear in
uences in system performance (e.g., system

pro�t or user loss rate).

� Comparison of batching schemes in nVOD | There have been a number of batching

schemes proposed and studied in literature (see previous work in Chapter 3). Various

batching schemes are studied under di�erent objectives or assumptions. There has

not been a uniform way to compare them, in terms of their batch sizes, stream

consumptions, user delay and fairness issues.

� Web servers | So far our study has focused on video applications. Our research

results and e�orts can be extended to the web servers environment, in which multiple

sites serving various kinds of contents (data, graphics or continuous media) with

users accessing these contents/pages through a network. As di�erent from video

applications, web data is smaller and tend to be more heterogeneous in size and

lifetime than video data. Therefore sophisticated batching schemes, caching schemes

and hierarchy would have to be studied.

Some contents in a web servers environment have to be delivered reliably and updated

very frequently (e.g., stock information). The issues then become what batching,

caching and delivery schemes should be used so as to minimize network or server

bandwidths and to guarantee timely delivery, and how to measure the popularity of

a page and incrementally update local pages instead of downloading the whole pages

again each time a piece of information is needed.

� Limited storage in distributed server architecture | In the caching schemes we stud-

ied, we have considered that the storage comes with a cost depending on the size and
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length of storage. Another interesting problem is that under the condition of limited

storage, how should the storage be shared among the �les through caching so as to

minimize the network cost while meeting the performance requirement? The caching

schemes would depend on the �le size among others. For example, a large �le may be

less likely to be cache unless it is extremely popular; and a small �le would be more

likely to be locally cached. We will study caching and replacement schemes here.

Both static policies (policies independent of the system states) and dynamic policies

(policies dependent on the current system states) can be investigated. dependent on

the current system states) can be derived.
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