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Abstract

This report describes the ARGOS project at Stanford CRC.  The primary goals of

this project are to collect data on the errors that occur in digital integrated circuits in a space

environment, to determine the tradeoffs between fault-avoidance and fault-tolerance, and to

see if radiation hardening can be avoided by using fault tolerance techniques.  Our

experiments will be carried out on two processor boards on the ARGOS experimental

satellite.  One of the boards uses radiation-hardened components while the other uses only

commercial off-the-shelf (COTS) parts.  Programs and data can be uploaded to the boards

during the mission.  This capability allows us to evaluate different software fault-tolerance

techniques.

This report reviews various error detection techniques.  Software techniques that do

not require any special hardware are discussed.  The framework of the software that we are

developing for error data collection is presented.

Key Words and Phrases: ARGOS, fault tolerance, control flow error detection,

software error detection, COTS in space.
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 1. INTRODUCTION

Space missions require systems that can operate reliably for long periods with little or

no maintenance.  In the harsh environment of space [Ritter 90], this is only possible if the

systems are designed to either (1) prevent the occurrence of failures by using shielding,

radiation-hardened components, highly-reliable parts, etc., or, (2) tolerate failures so that

the system operation continues undisturbed in their presence.  The decision of which

strategy, or combination of strategies, to adopt for a particular design is presently made

very informally.  We hope to contribute to improving this decision-making process.  The

objective of the research described here is to gather data (1) on the occurrence of

disturbances in electronic equipment in actual space missions as well as the effects of these

disturbances and (2) on the efficacy of various fault-tolerance techniques.

Our general approach focuses on space missions involving equipment that combines

the two basic approaches of fault avoidance and fault tolerance along with facilities to detect

and record the occurrence of any errors.  Very little data on the effectiveness of fault

tolerant computing in the space environment currently exists, and without data it is difficult

to make decisions about the appropriateness and effectiveness of various fault-tolerance

schemes.  What types of disturbances actually occur, and how often do they occur, in a

space environment?  Which schemes detect those errors?  These are the types of questions

that need to be answered if reliable systems are to be designed.

The terms used in this report in relation to fault tolerant computing are defined as

follows.  A defect is the physical anomaly present in a device that may or may not cause a

failure.  A failure is the deviation of a device from the specified characteristic.  A fault

models the effect of failure on logical signals.  An error is the manifestation of a fault

within a program or data structure.  Transient errors occur in the system temporarily and

are usually caused by interference.  Permanent errors happen when a part fails for good and

needs to be replaced.  Fault-tolerant computing is the correct execution of a specified

algorithm in the presence of failures [Siewiorek 92].  The errors that are caused by these

failures can be overcome by the use of redundancy.

Redundancy can be either temporal (repeated in time) or physical (replicated hardware

or software).  The redundant information that is produced in either method can be used to

detect and possibly correct errors in the outputs of the system.  By observing an

inconsistency among the outputs, we can detect errors.  With enough redundancy, errors

can be corrected, the system can be reconfigured or the errors can be masked and correct

operation can be continued.  Redundancy translates to more cost.  In addition, more
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components consume more power, which can be a scarce resource (e.g., in space

applications).

There are different strategies in designing a reliable system (Fig. 1.1) [Siewiorek 92]:

1- Fault-avoidance Ð attempts to reduce the probability that a fault occurs by using

conservative design practices, parts with high reliability, special fabrication

techniques, radiation hardening, and shielding,

2- Error-detection Ð attempts to detect the errors so that the system can be stopped

from producing erroneous outputs and a repair procedure can be initiated,

3- Fault-tolerance Ð attempts to add enough redundancy to keep the system

operational.  It either masks the results of faults and simply ignores their

occurrence (masking-redundancy), or reconfigures itself to bypass the faulty part

(dynamic-redundancy).

Even with the most thorough fault-avoidance schemes, a system can still experience

faults.  Many systems are designed with a combination of the three approaches.

Redundant
systems

System
reliability

Nonredundant
systems

Fault-tolerant

Masking
redundancy

Dynamic
redundancy

Error
detection

Fault
intolerance/avoidance

systems

Figure 1.1 Strategies in designing a reliable system.

This report presents an overview of the CRC ARGOS project and our objectives in

this project, plus a summary of the studies and some of the work done during two years of

research.  The CRC ARGOS project involves fault tolerance experiments conducted on a

couple of processor boards on board the ARGOS experimental satellite.  The goal of this

project is to collect data on the errors that occur in microprocessors in a space environment,

to determine the tradeoffs between fault-avoidance and fault-tolerance, and to see if

radiation hardening can be avoided by using fault tolerance techniques.

In Sec. 2, we will talk about the ARGOS project in detail.  In Sec. 3, we review

some error detection techniques with emphasis on control flow error detection using
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signature analysis.  Some software error detection techniques that are suitable for our

project are presented.

One way to evaluate the fault tolerance techniques implemented in a system is fault

injection Ñ as opposed to putting the system in its real environment and waiting for a real

fault to happen.  Disturbing the signals on the pins of the ICs, radiation, power supply

disturbance, and logic simulation are the main fault injection methods.  These methods are

briefly reviewed in Sec. 4.  Section 5 summarizes the report.
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 2. THE CRC ARGOS PROJECT

This project is an experiment that will be carried out as part of the NRL-801:

Unconventional Stellar Aspect (USA) experiment on the Advanced Research and Global

Observations Satellite (ARGOS).  The USA Experiment, one of the eight experiments that

will fly on the ARGOS satellite, is primarily a low-cost X-ray astronomy experiment.  The

opportunity to perform some experiment in fault-tolerant computing has evolved out of

both the need for a processor to analyze the X-ray data on-board and autonomous

navigation Ñto make the navigation of the space vehicle independent of the ground station.

With processor boards available on board the satellite, the opportunity to gather data on

faults and fault-tolerance is excellent.

Section 2.1 explains the experiment setup.  In Sec. 2.2, we will discuss the goals of

our research in ARGOS.  The specifications of the processor boards are presented in detail

in Sec. 2.3.  Section 2.4 presents the software that we plan to develop and run on the

processor boards for collecting error data.

2.1 Experiment Setup

The objective of the computer testbed in the USA Experiment on ARGOS is the

comparative evaluation of approaches to reliable computing in space, including radiation

hardening of processors, architectural redundancy and fault tolerance software technology.

These goals are met by flying processors and comparing performance on orbit during the

ARGOS mission.  The experiment utilizes two 32-bit processors, the RH3000 and the

IDT3081.  Each of the processor modules is integrated as one double-sided 6U VME board

containing the processor chip set, EEPROM, and 2M bytes of RAM.  The Hard board,

built around the Harris RH3000 radiation-hardened chip set, features a self-checking pair

configuration [Harris 93].  The COTS board, built around the 3081 microcontroller from

IDT, uses only Commercial Off-the-Shelf (COTS) components.  Both boards have access

to the full downlink science telemetry stream, and the COTS board has a direct connection

to the raw science data collected from the X-ray detector.  Data can be downloaded and

uploaded on both boards during the mission.  The indications are that there will be

sufficient power to operate both the COTS board and the Hard board simultaneously on

orbit.  This means that we will be able to carry out the first example of a so-called

"McCluskey test", i.e., the simultaneous operation of commercial and hardened processors
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of the same class in the same orbital environment.  It will be possible to uplink software

and test fault tolerance technology in either of the processors.

Earlier experiments to gather fault-tolerance data have been limited in their scope.

They either implemented only one fault-tolerance technique and collected very limited data

[Takano 91], or they artificially injected faults [Miremadi 95b] [Shaeffer 92] [Kaschmitter

91] [Kaul 91] [Worley 90] [Hass 89] [Berger 85] [Koga 84] that may not fully represent

the condition in an actual space environment (these artificial techniques are briefly

discussed in Sec. 4).  ARGOS has a Sun-synchronous, 450 mile altitude orbit with a

mission life of three years.  A variety of radiation environments are encountered during this

mission, providing a rigorous test.

Radiation Ñsuch as alpha-particles, cosmic rays and solar wind fluxÑ is a major

cause of transient faults in electronic systems used in space.  For example, an alpha-particle

can change the logic value of a node inside an integrated circuit [Lantz 96].  Such errors are

called single-event upsets (SEUs) [Messenger 91].  SEUs are the main type of errors that

we are expecting to see in ARGOS.

The boards will be running programs and collecting data on the errors that occur

during the mission.  The programs will have software fault-tolerance techniques added to

them.  In this research, we will implement multiple techniques, with the ability to modify

some techniques in flight, and will gather data in an actual space environment thereby

avoiding the necessity of relying on questionable fault injection.  The data gathered from

this experiment will help in making decisions about the effectiveness of various fault-

tolerance techniques.

We can not change any hardware feature of the boards before or during the mission

(except for limited changes in an FPGA), but the software routines can be modified during

the mission, allowing us to adapt techniques to the data received.  Hence, despite the fixed

hardware of the boards, there is still much room for experimentation with the software

fault-tolerance techniques.  The hardware on the Hard board uses many circuit level and

system level error detection methods.  Our effort is to use the available methods as well as

introduce additional software techniques and compare their effectiveness.  The COTS board

does not have any hardware fault-tolerance features.  Therefore, software techniques will

be used for detecting errors.  We will be able to determine the tradeoffs between fault-

avoidance and fault-tolerance by comparing the behavior of these two boards.

Further explanation of our research and its goals are presented in Sec. 2.2.
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2.2 Goals

Our goal in this project is to collect as many in-flight transient errors as possible,

exercise different error detection techniques and finally come up with an efficient blend of

techniques suitable for space applications.  To reach this goal, we have studied available

hardware and software fault tolerance techniques and we plan to come up with some new

techniques along the way.  There are many features incorporated into the processor boards

and we plan to take full advantage of them.  The programs that we will run on the boards

will have additional error detection techniques, e.g., Stutter-Step Mode execution

(executing pieces of code two or more times), assigned signature control flow checking,

and assertions (checking the validity of data at different points), to name a few.  These

programs will try to exercise all the circuitry on the processor board, collect information on

the errors, store them in a redundant format and use the telemetry system of the satellite to

send them to the ground.  A local program will receive this data and put it in a database for

analysis.

Some of the areas in which we hope to gather data are discussed below.  This is not

an exhaustive discussion, but it should give an idea of the experiment's goals.

Logging of disturbances and SEUs detected during flight: Correlation

may be made between the type and frequency of the detected anomalies with the orbital

position, the position in the magnetic and radiation belts of Earth, and solar flares that will

occur during the mission.

Occurrence of common-mode failures: Many fault-tolerant schemes detect

errors by using a self-checking pair (SCP): two processors running in lock-step and

comparing outputs (implemented in the Hard board).  This method assumes that common-

mode errors do not occur, i.e., a fault will not cause the same error in both processors or in

the comparison circuitry.  By using fault-tolerance schemes that do not depend on this

assumption (examples given in Sec. 3.3), faults missed by the SCP may be detected.

Effectiveness of radiation-hardened hardware in a space environment:

It is currently believed that by using special fabrication processes, susceptibility to SEUs is

eliminated.  Error detection techniques can be used to collect data on the effectiveness and

necessity of radiation-hardening.

Effectiveness of software fault-tolerance schemes: By employing both

hardware and software fault-tolerance schemes in a redundant manner, comparisons may

be made on the relative effectiveness of different techniques.

Effects of SEUs on microprocessors: It is known that SEUs do affect

hardware systems in space.  By using multiple methods to detect errors, data can be
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collected on what errors SEUs cause in microprocessors.  A better understanding of the

mechanisms involved will benefit the design of fault-tolerance techniques.

Reconfigurable Logic: FPGAs will be another part of our project.  The COTS

board has a Xilinx 4003 FPGA [Xilinx 96] that can be reprogrammed during the mission.

We will use this feature for testing the FPGA, testing other parts of the system if possible

and tolerating the faults occurring in the FPGA.  Using FPGAs adds a lot of flexibility to

the system, and in the meantime, it will be a good opportunity to test these devices in a

space environment.

2.3 Features of the Processor Boards

Here is a summary of the configuration of the processor boards.  In Sec. 2.3.1, the

hardware components on the boards are described.  Section 2.3.2 presents the interface

specification of the boards to the rest of the satellite.  Fault-tolerance features of the Hard

board are summarized in Sec. 2.3.3.  Finally, Sec. 2.3.4 talks about the operating system

of the boards and some of its useful features.

2.3.1  Components

The major components used in the RH3000 processor module are (Fig. 2.1) [STI 94]

[Harris 93]:

I-Cache Bus

D-Cache Bus

CPU FPA MD

I-RHSC D-RHSCI-Cache
32KB

D-Cache
32KB

OSC

P1 P2

RAM
2 MB

ROM
128 KB

Dual Port
RAM

8K * 16

M Bus

Figure 2.1 Block diagram of the RH3000 processor module (Hard board).

- RH3000 CPU which runs at 10MHz and is software compatible with the MIPS

R3000 microprocessor.
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- RHFPA (Floating Point Accelerator) and RHMD (Multiplication and Division).

- RHSC cache controller.  There are separate controllers for the instruction cache (I-

Cache) and the data cache (D-Cache).

- 32KB I-Cache, 32KB D-Cache made out of 32K´8 SOI (Silicon On Insulator)

SRAM.  Due to some unresolved design bugs, these caches are currently disabled.

- Memory is composed of 2MB of SRAM for local memory and 128KB of EEPROM

that stores the boot program and the operating system in a compressed format.  An

IDT7025 provides 16KB of I/O implemented as a dual port RAM, and 16 bytes of

I/O for semaphores.  The EEPROM has a parallel programming interface via an

external test adapter interface module that connects to the P2 connector.  It contains

power-on/reset initialization routines and diagnostic routines for the CPU functional

test, FPU functional test, and tests for memory, wait-state, EDAC, cache

refill/invalidate, timers and rollback buffers.  The 28C256 is used for the

EEPROM.  It has an internal timer for write (program) time (~10ms) and auto-

erase-before-write features.

Figure 2.2 shows the block diagram of the COTS board.  All the components on this

board are commercial off-the-shelf, so they are not radiation-hardened.

OSC

P1P2

RAM
2 MB

Dual Port
RAM

8K * 16

FPUCPU core

D-CacheI-Cache

FPGAs

buffers

processor

ROM
256 KB

Figure 2.2 Block diagram of the IDT3081 processor module (COTS board).

The IDT3081 microcontroller contain an R3000 CPU core, an R3010 FPU, 8KB of

instruction cache and 8KB of data cache with the corresponding controllers.  There is the

same amount of memory on this board as there is on the Hard board.  It also uses the
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IDT7025 for the dual-port memory.  This board contains a Xilinx XC4003 FPGA that can

be reprogrammed during the mission.

2.3.2  Interface

Each processor module has the following interface specification for communicating

with the rest of the system:

It has a VME bus that interfaces through a 16KB dual-ported RAM.  It complies with

the IEEE 1014 backplane standard that has two 96-pin connectors (P1 and P2 in Fig. 2.1

and 2.2).  However, it does not use the VME bus pin assignment.  It has a read/write rate

of 666KB/s.

The dual ported RAM (IDT7025) provides 16KB of addressable space for buffering

data messages, plus eight 16-bit semaphore locations.  It also provides an interrupt signal

from bus master to the processor.  The VME bus controller can send an interrupt signal to

the processor by writing to a fixed address in the dual-port memory.  The processor resets

it by reading a similar fixed address.

The reads are partial (16-bit) word.  The writes are implemented as a read-modify-

write operation.

2.3.3  Fault Tolerance Features

Several fault tolerance techniques have been implemented in the Hard board.  The

processor chip set (RH3000 CPU, RHFPA, RHMD, I-RHSC and D-RHSC) is radiation-

hardened.  These chips are duplicated and act as self-checking pairs.  They run in lock-

step.  There is a master/slave control line on one of the connectors to set the active unit in

the self-checking pair (a reconfiguration capability); 0=active, 1=shadow.  The active chip

(master) drives the outputs and the shadow chip (slave) reads them and compares them to

the outputs it has produced.  The outputs from the slave are suppressed and do not go on

the bus.  On error, a 2-rail miscompare signal is generated; the miscompare signals merge

in the RHMD chip and the RHMD drives a 2-rail signal to the I-RHSC, which generates a

restart event (module reset and microboot).  Finally, software initiates a recovery operation

in response to a restart event.  The miscompare signals are encoded in 2-rail format.

Therefore, a single error on these lines will not cause an erroneous miscompare signal.

Main memory is protected with a single-byte-error-correcting  double-byte-error-

detecting (SBC-DBD) code, where each byte is 4 bits.  A spare column is also provided

such that an area of memory can be deselected in case of a permanent failure.
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Interfaces between chips are checked by parity bits, generated at the outputs and

checked at the inputs every clock cycle.  A parity error results in an ÒabortÓ event that is a

maskable high priority exception.

Rollback buffers are provided to store old data and the address being written by a

store instruction to help with error recovery (ÒrestoreÓ operation).

There is a set of diagnostic tasks in the EEPROM for testing various parts of the

system (Sec. 2.3.1).  They are executed on power-up and can be called by the programs

running on the board.

Several user-programmable timers, as well as a watchdog timer, are provided to do

time checking.  There are eight user programmable timers used as four pairs.  Each pair can

have three modes: 32-bit counter, 2´16-bit counter or 16-bit counter with auto-reload.  In

addition, a 32-bit watchdog timer generates a reset event (microboot) on time-out.

There are several health and status semaphores: heartbeat (indicates that system is up

and running), SEU (Single Even Upset) counter, task switching and task exception

counter, and a counter for the number of messages sent and received.

A memory scrubbing technique has been implemented in the system.  It acts similar to

the refresh mechanism in DRAM memories and scans all memory locations periodically but

passes the contents through the error detecting and correcting (EDAC) logic before writing

it back to memory.  Therefore, single errors are corrected and the probability of double

errors is reduced.

There is no hardware fault tolerance technique implemented in the COTS board.

Therefore, we are restricted to software techniques on this board.  It is our goal to

implement software fault tolerance techniques on the two boards and compare their

performance in the same radiation environment.

2.3.4  Operating System

A customized version of the VxWorks operating system is used in both processor

boards.  Several system routines have been provided for memory load, checksum and

dump that are used for uploading data or program and downloading the telemetry data.

VxWorks and the existing flight software provide task management routines, e.g.,

exception handling, task control (running and aborting different tasks), link and unlink of

object codes, and task response telemetry.  As explained in Sec. 2.3.1, there is a set of

diagnostic tasks that run on power-up.  Each test can be masked to stop it from executing.

For memory tests, the test area can be changed.  At the end of the diagnostic tasks, results
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of the tests are sent to the ground.  On reboot, a self-test program is run to see why the

system was rebooted.

Synchronization of tasks is done by using flags and by synchronous and

asynchronous message passing using mailboxes.

The operating system provides dynamic linking capability both for library functions

and for user functions.  That means new versions of functions and libraries can be

uploaded on the boards, on-the-fly.  By linking the programs again, the programs will start

using the new functions without having to upload the programs.  We intend to make full

use of this feature as will be explained in Sec. 2.4.

With the above background on the hardware and the operating system, we now look

at our plans for the software that we are going to implement and run on the boards to

enhance the error detection coverage and to collect error data.

2.4 Fault-Tolerance Software

A set of programs is being written to exercise the two processor boards and collect

data on the errors that occur in them.  The collected data should be safely stored along with

the corresponding diagnostic information.  One constraint on our program is the amount of

memory available to us.  There is only 2MB of memory on each board.  This memory is

shared by the operating system's code and programs that are run by other researchers

involved in the ARGOS project.

The other constraint is the communication bandwidth between Earth and the satellite.

The uplink bandwidth is 1.1 kbps (kilo bits per second).  The downlink bandwidth is

switchable between 40kbps and 128kbps, which will be selected depending on the

atmospheric conditions.  As mentioned before, the satellite has a Sun-synchronous orbit.  It

rotates around Earth once every 101.6 minutes, out of which only 8 minutes can be used

for transmissions (when it is above the ground station).  This translates to about 64KB of

uplink per rotation that is shared between the satellite command and the researchers.

As explained in Sec. 2.3, the operating system provides dynamic linking facilities.

We have designed the framework of our programs such that they can be upgraded

incrementally.  If a new version of a function is written or one function needs to be

uploaded because an error has corrupted its code, there will not be any need to load the

whole program again.  That function will be temporarily disabled and the memory assigned

to it will be freed.  Once the code is uploaded, it is linked properly and enabled again.

Here are the classes of onboard programs that are being written:
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- Main Control: The main program will control all the programs that are explained

below.  It will have a command interpreter that will process the commands sent

from Earth for adding or deleting functions, changing the parameters of the

program, and requesting a re-transmission of download data.

- Collector: This is the program that will collect all the errors detected by hardware

detection mechanisms and by the software mechanisms that we will add.  This data

along with its diagnostics information will be safely stored (multiple copies or error

correcting codes) and given to the Telemetry program for transmission.  This

program may have to do some data compression during the periods of time that

telemetry can not be done due to the position of the satellite.

- Diagnostic: Upon error detection, a program will try to diagnose the error to find

the source that caused it and the mechanism that detected it.  This complete

information will be given to the Collector to be stored and sent to the ground.

- Profiler: A program will keep track of the time slots spent in each program.  This is

needed because the operating system, as well as the programs from other

researchers, will be running on the boards at the same time.  This data will be

provided by the operating system of the module and will be organized here and

given to the Telemetry program for transmission.  This information will be used in

the analysis of the data gathered by the Collector program.  The errors detected

during the execution of other programs will be reported to ground independent of

our programs, but will be included in our error data analysis.

- Telemetry: All of our uploads and downloads will be done through this program.  It

will use system routines for the actual communications.  It will be able to add some

extra error correction codes to the data if necessary.

- Computation: Vulnerability of each functional unit can be estimated if we exercise it

so that a possible fault will manifest itself as an error and appear at a point that can

be detected by one of the detection mechanisms.  Several SPEC benchmarks,

Power-On Self-Test (POST) codes, and sample codes from DSP applications, e.g.,

FFT algorithms, are being put together to exercise all functional units of the system.

This program will incorporate all the previously mentioned detection techniques.

Most of the time slots allocated to us will be spent in this set of programs.

The software explained above will be run on the two boards simultaneously.  We will

try to keep the programs on the two boards identical so that the test conditions are as close

as possible.

In addition, a program will be written that will run on the ground.  Its job will be

receiving all the transmitted data, checking their integrity, logging them and putting them in
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appropriate format to be fed into a database or spreadsheet for analysis.  We assume that

the programs needed for remotely reconfiguring the FPGA on the COTS board will be

available as system maintenance software.

Our plan is to implement as many software fault-tolerance techniques as possible and

compare the effectiveness of the different techniques.  There are two basic steps in adding

software fault-tolerance to a program: determining what information is going to be checked

for correctness and determining how that information is going to be checked.  In order to

achieve fault-tolerance in a program some redundancy must be added to it.  This

redundancy can be in the form of some information about the program that is obtained and

stored along with the program during compilation.  As the program is executed, the same

information is recalculated and compared to the stored values.  Information that can be

checked includes control flow, reasonableness of data values, address and execution time,

and stability.  We will present several techniques for each case in Sec. 3.

The second step is determining how to check the information.  These are some of the

techniques that we are planning to use:

- Hardware duplication detects all the single faults but it fails to detect identical faults

that happen in both units (common-mode failures).  Time-redundancy will be added

to the present physical-redundancy by executing each program segment twice.  This

will help with detecting transient common-mode failures that escape the hardware

duplication technique.

- Different control-flow checking techniques will be added.  The program can be

modified so that it is self-checking, or a separate task can be run on the same

processor to monitor the program of interest [Ersoz 85].  We will use the

multitasking capability of the VxWorks operating system to run a watchdog task.

- Timers will be used to check the timing behavior of the program [Madeira 93].

This will check that each piece of code will execute within a certain amount of time.

- The watchdog timer will be used to verify that the system is up and running and not

stuck in a piece of code.  The program should reset this timer periodically.  If it fails

to do so, we assume that there has been an error in the execution.

- Assertions will be added to each function to check the validity of the input and

output parameters.

Since the main goal in this project is to collect data on the occurrence of faults,

coverage will have the highest priority in enhancing the error detection capabilities of the

system.  The memory and performance overhead will not be important in selecting different

techniques.  This gives us flexibility in fine tuning the techniques to our purpose.

In the next section, several error detection techniques are discussed.
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 3. ERROR DETECTION TECHNIQUES

Error detection methods are divided into two classes [Mahmood 88]:

1- Circuit level  (hardware), e.g., parity codes, SEC/DED (Single Error Correction

/ Double Error Detection) codes, residue codes and self-checking circuits.

2- System level  (software and/or hardware), e.g., watchdog timer, capability-

based addressing, duplication, N-version programming and watchdog

processors.

As mentioned in Sec. 2.4, one method for system level error detection is to gather

some information about the program during compilation and compare it with the

information gathered during execution.  The question here is what information can be

checked and how it can be checked.  Examples of things that can be checked are: control

flow of the program, control signals coming out of different units, memory access

behavior, and reasonableness of results.  This checking can be done by writing self-

checking programs [Lala 91], running a separate task to do the checking [Ersoz 85], or

having a watchdog processor [Mahmood 88] to minimize the performance overhead.  A

watchdog processor is a small and simple processor that sits on the busses, passively

observes the bus transactions generated by the main processor, and detects errors by

monitoring the behavior of the system (Fig. 3.1).

Main Memory

Main Processor Watchdog
Processor

Data Bus
Address Bus

Figure 3.1 A system with watchdog processor.

We have done a survey of different system-level error-detection techniques.  The

following section gives a brief explanation of each of them.  Only on-line error detection

(error detection while the system is up and running) is discussed.  Both permanent and

transient errors are considered.  Many of the techniques presented in the following sections

use special hardware for error detection.  We reviewed these techniques in this report

because, even though these hardware are not available on the processor boards on
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ARGOS, the concepts of these techniques are very useful in developing new pure software

techniques for our project.

3.1 Control Flow Error Detection

By control flow error detection, we mean checking the correct sequencing of the

instructions.  The program is divided into basic blocks.  A basic block is a branch-free

sequence of instructions, i.e., there should be no jumps to any instruction of the block

except for the first instruction and there is no jump out of the block except for the last

instruction of the block.  A directed graph is constructed for the program with the nodes

representing the basic blocks and the edges representing the possible transitions between

the blocks.  This graph is called the control flow graph.  Control flow error detection

assures that blocks are executed in an allowed sequence (interblock), the sequencing of the

contents of a block is correct (intrablock), or a mixture of both.  The most popular

techniques do signature analysis, but execution time and address information have also

been used.  Signature analysis is a method in which a signature (a specific bit pattern)

associated with a block of instructions (one or more nodes in the control flow graph) and

saved somewhere at compile-time.  Then during run-time, the same calculation is done and

the generated signature is compared with the saved one.  A miscomparison indicates an

error in the flow of the program.  There are two types of signatures: assigned and derived.

In the assigned signature method, each node is given an arbitrary number (with least

correlation between the numbers).  One technique that uses this method is called Structural

Integrity Checking (SIC) [Lu 82].  It recognizes the high-level control flow structures

(e.g., if-then-else, for and while structures) during compile-time and labels them with

signatures or labels, and checks for integrity of these structures at run-time using a

watchdog processor.  One advantage is that the watchdog processor program is generated

directly from the high-level language program by replacing the computations in the main

program by Òreceive-labelÓ and Òcheck-labelÓ instructions.  The control structures remain

the same.  Another advantage is that the two processors (main and watchdog) can operate

asynchronously without making the watchdog complex.  The disadvantages are that the

signatures have to be explicitly transferred to the watchdog and it only does interblock

checking.

In the derived signature method, the signature is derived from the binary code of the

instructions.  This method assumes that the program is not run-time modifiable.  Most

signature analysis methods use derived signatures because it has higher error detection

coverage and it can do both inter- and intra-block checking.  It should be mentioned that



16

semantics or correct execution of instructions can not be directly checked by this analysis.

For example, an ALU may become faulty and produce wrong sums and this will not be

detected by these methods unless it affects control flow.

Path Signature Analysis (PSA) is a derived signature method for control flow error

detection [Namjoo 82].  In the basic form of PSA, a signature is derived for every basic

block.  Let us assume that the binary codes of the instructions in a basic block are W0, W1,

..., Wn-1 .  The initial signature, the signature at the first location in the block, is set to S0

(usually all zeros).  The intermediate signature formula after instruction k-1 is: Sk = f (Sk-1,

Wk-1), i.e., the signature at location k (Sk) is a function of the signature at location k-1 (Sk-

1) and the binary bit pattern of instruction k-1 (Wk-1).  Examples of the function (f) are

ÔxorÕ and ÔadditionÕ.  The signatures are calculated at compile-time and inserted at the

beginning of each basic block (Fig. 3.2).  Two tag bits are used to differentiate signatures

from the rest of the instructions in the code.  During program execution, the same signature

is generated by a watchdog processor based on the same instruction stream as it is fetched

from the memory.  The watchdog monitors the data bus and captures the signatures.  When

a signature is reached, the main processor executes a NOP instruction.  A special tag

signals the time to compare the computed signature with the embedded one.  A mismatch

generates an interrupt that initiates a recovery procedure.  The time between the occurrence

of the error and when the error is detected (mismatch signal in this case) is called error

detection latency.

NOP for CPU  à 01 Signature

00 1st instruction

00

00

Signals time to compare  à 11 last instruction

Figure 3.2 PSA signature embedding.

One way to simplify the checking circuitry is to add signatures to the node

(representative of the basic block in the control flow graph) so that the correct computed

signature at the end of the node is all-one [Sridhar 82].  This will reduce a comparator to a

single gate.

Since a basic block is 7 to 8 instructions long on average [Hennessy 96, Sec. 4.1],

the memory overhead of this scheme is high.  In generalized PSA [Namjoo 82], signatures

are computed for sequences of nodes, i.e., paths rather than a single node.  Paths are

grouped into sets (paths starting from the same block) and each set has a single signature.
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To do this, justifying signatures may have to be added to some paths in a set so that the

ending signature will be the same.  The left diagram in Fig. 3.3 shows the control flow

diagram of three basic blocks 1, 2 and 3, each having a signature at the beginning and a

checkpoint at the end.  To reduce the overhead, the checkpoints at the end of blocks 1 and 2

as well as the signature at the beginning of block 3 are removed.  Then the signature at the

beginning of block 2 is adjusted so that the signature for path 1-3 is the same as the

signature for path 1-2-3 (the right diagram in Fig. 3.3).

S

C

JS

1

2

3
S

C

S

C

S
1

2

3
C

S = signature ,  C = check point ,  JS = justifying signature

Figure 3.3 Adding justifying signature to reduce memory overhead in PSA.

We should note that as the number of signatures reduces, the distance between the

checkpoints increases, and consequently, the error detection latency increases.

In another derived signature method, called Signatured Instruction Streams (SIS), a

cyclic code (signature) is generated for every basic block at assembly time (Fig. 3.4) [Shen

83].  The signatures are inserted at the end of each block.  During execution, the same

signature is generated by the monitoring hardware as the instructions are fetched.  When

the embedded signature is reached, it is compared with the generated signature, resulting in

a recovery interrupt in case of a mismatch.
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last instr.

1st instr.

Basic
Block

cyclic
code

signature

branch in

branch out

Figure 3.4 Embedding a signature for a basic block.

This basic scheme has a high memory overhead, just as the basic form of PSA.  In

order to reduce the number of signatures embedded in the code, a technique called Branch

Address Hashing (BAH) can be used.  Instead of embedding a signature before each

branch instruction (as shown in Fig. 3.4), at compile time, the target address of the branch

instruction is hashed with the signature accumulated up to that location (Fig. 3.5),

producing an incorrect target address in the code.

hashed
branch
address

merge point

explicit
signature

Figure 3.5 Branch Address Hashing (BAH).
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At run time, when a branch instruction is encountered (recognized by the monitoring

hardware), the target address of the branch is inverse hashed or rehashed using the

generated signature to get the correct target address back.  In case of an error, the branch

address would be wrong and execution would continue from an erroneous destination.

This error will be caught by the next embedded signature with some latency penalty.  When

a branch is not taken, the final signature calculated up to that branch is used for the initial

signature of the next basic block and this procedure is continued until a merge point is

reached.  A merge point is the beginning of a basic block whose corresponding node in the

control flow graph has more than one predecessor.  Explicit signatures are inserted right

before the merge points.  When a branch is taken, BAH sets the current signature to S0,

i.e., the initial signature after all the merge points is S0.  Thus if a branch is taken but the

processor jumps to an incorrect merge point, the error is undetectable.

Figure 3.6 shows an implementation of BAH.  The branch instructions are decoded

and the decode signal selects between the signature calculated by a Linear Feedback Shift

Register (LFSR), or all zeros, to be XORed with the address part of the branch instruction.

main
processor

XOR

mux

LFSR
branch
decode

main
memory

Figure 3.6 Implementing BAH.

BAH can reduce the number of signatures by 50% comparing to simple SIS, but an

incorrect branch to a merge point will not be detected.  A program bound detector is also

needed to detect jumps to the areas in memory that are not part of the program.  In systems

with no memory protection scheme, a simple way to do this for the areas which are not data

segments of the program (unused space), is to fill the memory with instructions that will

cause an exception or interrupt [Miremadi 92].  We will look at this in Sec. 3.3.  However,

in modern microprocessors, hardware facilities are provided for bound detection and

modern operating systems take advantage of that for memory protection.

We should also notice that in BAH the distance between the signatures (checkpoints)

is increased.  That increases the average error detection latency.  For more details on the

SIS method see [Schuette 87].  For the implementation discussed there, this approach had

10 percent hardware overhead for error detection, plus 10 percent more for error recovery.
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The performance penalty was expected to be less than 10 percent.  A fault injector (Fig.

4.1) was used to inject faults on the external data, address, and control busses of an

MC68000 microprocessor system.  SIS showed an error coverage of 98 percent for

instruction-type errors (errors that changed the bit pattern of the instructions).  The overall

coverage for all the errors was 82 percent, which is the combined coverage of the error

detection mechanisms of the MC68000 and SIS.

The asynchronous SIS method was presented in [Eifert 84].  It differs from the SIS

scheme in the use of a watchdog type processor (referred to as Roving Monitoring

Processor - RMP) and is capable of concurrently monitoring multiple processors in a

system.

The effectiveness of a signature monitoring technique can be characterized by five

properties: (1) error detection coverage, (2) memory overhead, (3) processor performance

loss, (4) error detection latency, and (5) monitor complexity [Wilken 90].  Several

techniques to improve these properties over the basic SIS scheme are discussed in [Wilken

89] and [Wilken 90].  In Continuous Signature Monitoring (CSM), signatures are derived

for paths rather than each basic block to reduce the memory overhead.  To reduce the error

detection latency in this scheme, horizontal signatures are added to the instructions.

Horizontal signatures give us low latency while vertical signatures give us high coverage.

The word ÒcontinuousÓ in CSM comes from the fact that the horizontal signatures are

checked continuously and justifying signatures maintain vertical continuity among maximal

paths.  When horizontal signatures are combined with SEC/DED bits, transient errors in the

monitor are detected.  This combination has some big drawbacks.  It requires generating

and storing the SEC/DED code with the program and the meaning of this code will be

different for data and code segments in memory.  Therefore, it requires a new compiler,

linker, loader and memory system [Saxena 90].

The Extended-Precision Checksum is another derived signature method that uses a

watchdog coprocessor with explicit extended instructions defined for it [Saxena 90].  With

n-bit instruction words, a simple n-bit checksum code is calculated by adding the

instruction words modulo 2n.  In order to have the checksum and the opcode in one word,

the instructions are space compacted (number of bits is reduced, as explained in [Saxena

90]) and the extended-precision checksum (addition without any loss of precision) is

calculated from this compacted code.  This method has a big advantage on a sequence of

errors.  For other signature-based method discussed above, the sequence error coverage

remains relatively constant (2-L, L being the length of the signature), and the latency

increases as the number of errors grows.  For this method, coverage approaches unity
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(because we get closer and closer to zero as we are always subtracting) and latency remains

bounded by the average block length (when a zero check is signaled).

The On-line Signature Learning and Checking (OSLC) is another method that uses

special hardware to eliminate any compiler or assembler modifications [Madeira 92].  Block

identification and reference signature generation are done in a normal program execution

called the learning phase.  Having the hardware calculating the signatures instead of the

compiler, has a significant advantage.  Operand size, address and control signals can be

included in the signatures very easily.  Including these extra inputs requires considerable

complexity on the compiler side because they will have to be simulated.  These extra inputs

to the signature function will uncorrelate the signatures, increase the type of errors that can

be detected and hence increase error detection coverage.

3.2 Execution Time and Address Methods

The time it takes to execute a piece of code is another property we can check for

detecting errors.  This timing can be exact, an estimate or an upper bound like a time-out.

Address information can also be checked.  For example if the size of a basic block is

known, the exit address should be the sum of the start address and size of the block.

[Miremadi 95a] explains different timing and address checks.  In his paper, the

program is divided into two types of blocks.  Protected basic blocks (BB) are basic blocks

(a branch-free sequence of instructions) with extra instructions added to the beginning and

the end of them in order to send information to a watchdog processor.  To keep the

memory and performance overhead low, basic blocks with fewer than a certain number of

instructions are left unprotected.  Instruction blocks appearing between protected basic

blocks are called partition blocks (PB).  There are several time checks:

- BB-timer: Exact execution time of a BB is checked by inserting store instructions at

the beginning and at the end of the BB to start and stop a timer.

- PB-timer: PBs are checked for an upper bound of execution time because they

contain conditional branches and it is either hard or impossible to determine their

exact execution time at compile time.  The timer is started and stopped by the same

store instructions used above.

- WL-timer: A traditional watchdog timer is used to check for hang-ups caused by

infinite loops.  This timer should be reset by the program at regular intervals,

otherwise it is counted as a sign of error.

To detect the errors missed by the above timing checks, the following checks can be

added:
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- BB-address: Uses the address and the size information to create a unique tag for

each basic block.  The size is sent to the watchdog processor upon entry to the basic

block and the watchdog processor checks for Òexit_address=start_address + sizeÓ

as mentioned earlier.  This technique checks for illegal jumps between BBs.

- Phase: Entering and exiting a basic block should always occur in the correct order

(entry followed by exit).  A simple state machine checks for correct sequencing of

these events.

- CRC: This is a checksum on instructions of basic blocks.  The checksum is sent to

the watchdog processor at the entry to a basic block.

- BB-OP-counter: This mechanism uses a counter to count the number of instructions

executed in a basic block.  Initialization of the counter is performed by the same

store instruction that sends the precalculated signature to the watchdog processor.

More detailed implementation issues are explained in [Miremadi 95a].  Two

combinations of the above techniques are compared by experiments: TTA (Time-Time-

Address) and STA (Signature-Time-Address) as shown in Table 3.1.

Mechanisms Included in the Schemes

Schemes BB-timer PB-timer WL-timer BB-address Phase CRC BB-OP-
counter

TTA ü� ü� ü� ü� ü� - -

STA - ü� ü� ü� ü� ü� ü�

Table 3.1 Techniques used in TTA and STA.

The TTA method can be adapted for external monitoring of processors with internal

caches and nondeterministic execution time.  However, STA can not be used for external

monitoring of processors with internal caches.

3.3 Pure Software Methods

If the hardware is fixed and cannot be changed, software methods have to be

developed to detect errors.  Two software techniques are proposed in [Miremadi 92].

These techniques are described in Sec. 3.3.1.  There are other techniques that we are going

to use in our project and they are explained in Sec. 3.3.2 and 3.3.3.

3.3.1  Block Signature Self-Checking & Error Capturing Instructions

Block Signature Self-Checking (BSSC) is an assigned signature technique [Miremadi

92].  The program is divided into basic blocks and partition blocks as described in Sec.
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3.2.  Each basic block is assigned a signature.  The signature is the address of the first

instruction of the basic block.  In this method, the job of the monitoring hardware or the

watchdog processor is done by a monitoring subroutine (Fig. 3.7).  The signature is sent to

the monitoring subroutine at the beginning of the block (entry call) and stored in a local

variable.  At the end of the block, the same signature Ñwhich is embedded after the exit

call instructionÑ is sent to the monitoring subroutine for comparison with what was stored

in the local variable by the entry call.  A miscomparison will indicate a control flow error.

A drawback to this technique is that the code becomes position-dependent as the embedded

signature consists of an absolute address.  This technique was further improved in

[Miremadi 95b] to check the control flow both on entry and on exit to a basic block.  The

Block Entry Exit Checking (BEEC) improves the detection coverage and has a position-

independent code.

entry CALL  à save address of Ôinstruction 1Õ

instruction 1

instruction 2

.

.

instruction n

exit CALL  à compare with embedded signature

embedded sign.  à address of Ôinstruction 1Õ

Figure 3.7 Signature embedding in BSSC.

Error Capturing Instructions (ECI) is a very simple technique to detect erroneous

jumps to locations of the memory that are not used during normal execution of the program

[Miremadi 92].  It simply fills those locations with error capturing instructions, e.g., a

divide by zero or some special software interrupt.

3.3.2  Executable Assertions

Executable assertions are known to be very effective in program testing, validation

and fault tolerance [Andrews 79] [Ersoz 85].  Assertions are added to programs mainly for

debugging during software development.  For example, a null pointer may be produced

because of a bug in the program.  The programmer may add an assertion statement before

the pointer is used to check that it is not null.  During program execution, if the assertion

fails the programmer can use that information to trace the bug.  As another example, at

some points in the program after a result is calculated, the reasonableness of that result can
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be checked, e.g., checking that it is within an acceptable range.  An out-of-range result

indicates that either the specification or the implementation is wrong.

Assertions can be used for concurrent error detection, too.  The difference is that they

target different errors.  The debugging assertions target programming errors.  Most of these

assertions are taken out in the final program to reduce the performance overhead.  In

concurrent error detection, the goal is to detect run-time errors due to hardware

malfunctions.  Therefore, while keeping the debugging assertions, more assertions are

added to the program to detect the hardware errors.

In a "for" loop structure, the value of the loop counter can be checked after the loop

finishes to make sure there was not a false jump out of the loop.  Similar checks can be

done for the "while" constructs on their loop conditions.  In addition, some variables

remain unchanged during the execution of a loop.  These variables are called loop

invariants.  After the execution of a loop, assertions can be added to check that these values

have remained unchanged.

As a range check example, the variable that is used to index into an array can be

checked for being within the size of the array.

Some assertions may be application dependent: (1) After sorting a list, a quick

traverse of the list can make sure that the sort algorithm was executed correctly [Saxena

94],  (2) After encoding some data, the decoding function can be run on the result to see if

we get the original data back.  A mismatch will indicate an error in execution of either the

encoding or the decoding function.  In either case, an error has occurred and been detected.

Assertions can also be added to ensure that the results of calculations are within valid

range.

The first three examples represent cases that can be done automatically by running a

preprocessing program on the source code or by modifying the compiler to add the

necessary code.  The application dependent examples represent cases where the assertions

should be added manually by the programmer.  Algorithm-Based Fault Tolerance (ABFT)

is another example of application specific techniques where the extra computations added

for error detection/correction use the special properties of the main algorithm [Huang 84].

For a discussion on writing self-checking programs using assertions see [Mili 82]

[Mili 90].
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3.3.3  Stutter Step Mode

In Stutter Step Mode (SSM) execution, each group of instructions is executed twice

or more and the results are compared, i.e., temporal redundancy is used as opposed to

structural redundancy to provide extra information for detecting errors [Ignatushchenko

94].  This software technique has, of course, a big disadvantage in performance (at least

twice the normal execution time plus comparison time).  It may also have memory overhead

if we duplicate the data structures (as we will see in some implementations later in this

section).  When the primary goal is to detect the errors missed by other techniques (as is the

case of our project), stutter step mode has its advantages.  It can detect transient errors that

do not affect the control flow of the program, e.g., ALU miscalculations.  It can check for

correct execution of the data transformation instructions (instructions that change the data,

e.g., addition, rather than instructions that change the control flow of the program).  It will

also detect common mode errors when used in a dual system (which is what we have in the

Hard board).  Note that this technique will not detect permanent faults.

The size of the blocks of instructions that are repeated is a parameter to be chosen.  At

source code level, the block can be the instructions that evaluate an expression.  For

example, if we have:

x = (a´b)+(c´d);

in the source code, we can convert it to:

x1 = (a´b)+(c´d);

x2 = (a´b)+(c´d);

if (x1<>x2) error();

The same thing can be done when calling a function.  For example:

x1 = f(a, b, c);

x = f(a, b, c); à x2 = f(a, b, c);

if (x1<>x2) error();

It should be noted that function f should not write to the memory addresses that it

reads from, otherwise the second execution will have a different result.  This simple

scheme can be applied to a const function (a function that does not modify anything other

than its own local variables) in C language.  If the function does modify some non-local

variables, it should be duplicated, with each instance having its own copy of the memory.

This method can be applied instruction by instruction.  Fig. 3.8 (a) shows a single

ALU operation that can be duplicated with a different destination register followed by

compare and branch (Fig. 3.8 (b)).  To be more careful, we should make sure that the
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initial values of registers A and A' are different.  This can be done by loading A' with the

bitwise complement of A.

A ß B op. C A ß B op. C
A' ß B op. C

cmp A, A'
bne err_handler

(a) (b)

Figure 3.8 SSM applied to one instruction: (a) original code, (b) SSM code.

The overhead of this example is 300% if a compare and branch is added for every

instruction.  To reduce this overhead, the duplication can be extended to a basic block

(defined in Sec. 3.1).  The instructions inside each basic block are duplicated, excluding its

possible final branch which will remain as a single copy.  Fig. 3.9 (a) shows a series of

computation Ñonly two operations shown here for the sake of simplicityÑ which can be

duplicated, followed by a comparison of their final results (shown in Fig. 3.9 (b)).  Notice

that registers that are used as the operands of the instructions should not be overwritten by

the first set of computations.  This has been shown for register A in Fig. 3.9.

C ß A op. B C ß A op. B
A ß C op. D A' ß C op. D
br label_10 C ß A op. B

A ß C op. D
cmp A, A'

bne err_handler
br label_10

(a) (b)

Figure 3.9 SSM applied to a basic block: (a) original code, (b) SSM code.

There is a pitfall that can reduce the error detection coverage.  When the size of the

blocks that are duplicated is extended, errors can be masked and hence escape detection.

Fig. 3.10 shows two examples where errors can be masked.  In Fig. 3.10 (a), the second

operation is a logical operation.  Register A is ANDed with a binary number whose least

significant bit (lsb) is zero.  Since the logical AND of zero with any value yields zero,

regardless of the value of the lsb of register A, the lsb of register D will be zero (assuming

there is no error in the second operation).  Therefore, if the results of the two duplicates of

the first operation (instructions 1 and 3) differ in that bit due to some error, this error will

be masked (same final values in D and D') and won't be detected.
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A ß B op. C A ß B add C
D ß A and x..x0 D ß A div 5

A ß B op. C A ß B add C
D' ß A and x..x0 D' ß A div 5

cmp D, D' cmp D, D'
bne err_handler bne err_handler

(a) (b)

Figure 3.10 Error masking in SSM: (a) masking in a logical operation, (b) masking in an arithmetic

operation.

The second example (Fig. 3.10 (b)) is a similar sequence of instructions but with

arithmetic operations.  Assume the values of registers B and C are 10 and 7, respectively.

In case of no error, registers A and D will have the values 17 and 3, respectively.

However, the result of dividing any number between 19 and 15 by 5 is 3.  Hence, if one of

the duplicated addition operations produces an erroneous result that lies in this range, the

error will not be detected.  This kind of error masking is not important for correct operation

of the system, but the goal of our project is to detect all the errors that happen so that we

can get an estimate of the frequency of SEUs that occur in space.  Therefore, we need to be

careful in selecting the error detection techniques for our research.

To apply the SSM method, the compiler should be modified.  The additional

procedures in the compiler will identify the basic blocks, duplicate the instructions and add

the comparison code.  A liveness analysis should be done in the compiler to handle operand

overwriting cases (Fig. 3.9 (b)).  The register allocation algorithm can also be modified to

use different registers for the intermediate and final results in the duplicated block so that

permanent faults in the register file can be detected.

Similar to the function call example, we have the problem of memory being modified

by the first copy of instructions.  By duplicating the data segment of a program, two copies

of data will be available for the two executions of instructions.  This can be done by

running two instances of the same program in a multitasking operating system.  VxWorks

is a multitasking operating system.  By running two instances of a program, the code

duplication and memory problem will be solved and only the comparison code has to be

added.  This comparison can be done by calling a function.  This function will get the

calculation results as its input, send the results to the other copy of the program, receive the

duplicate results, do the comparison, and return true or false in case of a match or a

mismatch, respectively.  An error may happen in the execution of a program and it may

hang (get stuck in an infinite loop) or skip a transmission, keeping the other program
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waiting forever.  Therefore, a timer should be used during reception to put a bound on the

waiting time and detect this error.

The exchanged results can be a copy of the CPU registers plus the data written to the

memory.  The general comparison function will receive the written data or their addresses

and create the packet to be sent.  A number can also be assigned to each checkpoint and

sent to this function to be added to the packet.  This number can be used for control flow

checking as in assigned signature methods.

In this method, the two copies of the program will run in a synchronized fashion.

Each copy will execute up to a checkpoint and wait for the other to catch up, do a

comparison and then continue.  The flags or mailboxes available in the system (Sec. 2.3.4)

can be used for this synchronization.

All programs produce outputs unless they are run only to exercise the functional units

(e.g., some benchmarks).  For example, the output of a program may be a set of bits that

open or close a set of switches.  For each switch, one bit should be written to a particular

memory location.  With two copies of a program running at the same time, the output of

one should be suppressed just as the output of the slave processor in a self-checking pair is

suppressed.  In order to do this, there can be a flag in the program which is set according to

a parameter passed to the program by the operating system when the program is started.

This flag can make that copy of the program master or slave.  The produced results will be

checked between the master and slave before the master sends them out.  The master will

generate the actual output and the slave program will simply discard its results.

Another issue is that reading input from I/O may be destructive.  Reading from an I/O

may change the state of the system.  The input data may be time dependent and hence the

next time it is read it may be a different value.  In these cases, the slave program should not

read from the I/O.  The master program should make a copy of the data for the slave

program.

By adding the checkpoints manually or by doing some preprocessing on the source

code, SSM can be implemented without modifying the compiler.  The disadvantage of this

method is that it has a high error detection latency because of large number of instructions

between the checkpoints.

Another disadvantage is the loss of detection coverage due to error masking as

explained before.  By doing SSM both at instruction level and in a multitasking fashion, we

can estimate the percentage of errors that are masked.
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3.4 Summary

Most of the control flow error detection techniques discussed above use some

dedicated hardware.  In the processor boards in ARGOS, the hardware is fixed and there is

no watchdog processor or special hardware to generate signatures.  Still, the ideas in those

techniques can help in developing new software techniques.  Some pure software

techniques were also discussed that can be added to ARGOS to enhance the error coverage

of its current hardware error detection mechanisms.  Common-mode failures and errors in

the unduplicated components of the system are some of the errors that the software

techniques will try to detect.

In the next section, we will look at some fault injection techniques that are used to

evaluate the efficiency of error detection techniques.
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 4. FAULT INJECTION

One way to validate the fault-tolerance mechanisms of a system is to inject faults into

either a prototype or a software simulation model of the system [Schmid 82].  Designers

and researchers disturb the signals on the pins, put the chip under radiation, disturb the

power supply, or flip bit values during a logic simulation, to inject faults into the system.

The extra advantages of fault injection are flexibility, controllability, and predictability,

which are not available in a real environment.  Moreover, it is a way to accelerate time

because faults can be injected at a much higher frequency than they would occur in the real

environment.  However, whether the injected faults are a good representation of the faults

that happen in the real environment is questionable.  The unique opportunity that we have

in ARGOS is that we will have the system tested in space; in the environment that it is

intended operate.  This opportunity is rarely provided to the designers and researchers.

Fault injection is done for different purposes.  It can be used for removing faults in

fault tolerance mechanisms.  By observing the system responses, designers can debug and

fine-tune a design before the actual system is built.

Fault injection can also be used for increasing software test coverage [Bieman 96].

During testing, it is hard to run all the statements or branches of a program.  This is

especially true for code used in handling exceptions, e.g., the error recovery code.  This

untested code will tend to be an error prone part of a system.  However, it can be exercised

and tested using fault injection.

There are several different approaches to fault injection in electronic systems.  A

detailed discussion can be found in [Iyer 93].  In this section we will briefly look at some

methods:

Disturb the signals on the pins of the IC: This is the simplest way to introduce

errors in a chip.  For example, The signals can be controlled by a general purpose fault

inserter (GPFI) [Scheutte 87].  The signal values can be changed at random or according to

a defined sequence and timing, based on several parameters.  This method was used for

evaluation of SIS in [Scheutte 87].  It has the best control over the injected faults and can

evaluate the response of system to several kinds of errors, but it has no control over the

internal nodes of the chips.

Radiation: To induce faults inside the chips and simulate a space environment, the

chip can be put under heavy-ion radiation or a high energy proton beam.  The angle of

incidence can be changed but it is usually 90 degrees for maximum penetration.  For

example, heavy-ion radiation has been used to evaluate error detection schemes [Gunneflo
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89] [Karlsson 94].  Two CPUs were run in lock step and one of them was subjected to

radiation.  The output signals were compared and logged by a monitoring computer.

One parameter that is of concern for chips that are used in a space environment is

their total dose hardness: the total dose of radiation that the chip can receive before it stops

functioning correctly.  High energy protons have been used to measure the total dose

hardness of commercially available MIPS R3000 microprocessors [Kaschmitter 91]

[Shaeffer 91] [Shaeffer 92].  The researchers looked at proton-induced SEUs in

unhardened R3000s from four different vendors and also observed the total dose response.

Two processors functioned at about 1 Mrad and all others, except one, remained functional

above 40 krad.  According to these papers, the anticipated total dose for a well-shielded

processor in low Earth orbit (LEO) at 600km and 60 degree inclination is about 200 rad per

year.  The experiment results show that the processors are suitable for multi-year operation

at LEO altitude in space with 300 mils of aluminum shield.

In this technique, the beam can be focused on only one chip, so that the chip is

isolated from the errors happening in other chips.  The behavior of the chips can be

observed one at a time to measure their hardness and to see which chips need more

hardening.

Of course, this technique does not represent all sorts of radiation that the system will

be subject to in a space environment.

Power supply disturbance: Another simple way to cause errors in the system is

to disturb the power supply [Cortes 86].  This actually models some of the errors

happening on Earth due to power surges and disturbances common in industrial

applications.  This method was used in [Miremadi 92] and [Miremadi 95b] in conjunction

with heavy-ion radiation on a MC6809E processor.  Short voltage drops were caused at the

power supply pin of the CPU using an MOS power transistor.  A test CPU and a reference

CPU were run in lock-step and the external buses were compared while the power supply

pin of the test CPU was being disturbed.

When doing fault injection using radiation or power supply disturbance, we do not

know where the fault is going to happen.  Therefore, all parts of the chip should be

exercised by using all the functional units, e.g., floating-point as well as integer units.  If

we fail to do this, a fault may happen somewhere and never show up as an error.  If we use

all parts and read the results back, we can detect errors happening almost anywhere on the

chip and come up with an estimate for its sensitivity to radiation.

Logic simulation: Using the HDL (hardware description language) model of a

system, e.g., VHDL or Verilog, errors can be introduced in the source code, and the

system can be simulated to see if the detection mechanisms will detect the error.  This error
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can be in the form of a change in the functionality of a module or in the stimulus to the

system.  The same thing can be done with the netlist generated from the HDL or any other

netlist at the gate-level or transistor level.  Stuck-at faults can be simulated by slight

modifications in the netlist; connecting nodes to power or ground.  This technique is limited

to the accuracy of fault models used.  Some techniques for injecting non stuck-at faults are

discussed in [Cortes 87].

Simulation can also be used at higher levels of abstraction for fault injection studies.

DEPEND [Goswami 97] is an integrated design and fault injection environment that does

simulation at system level.  It uses functional fault models to simulate the system level

manifestation of gate-level faults such as stuck-at faults.
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 5. SUMMARY

Our goal in this project is to collect as many in-flight transient errors as possible,

exercise different error detection techniques, determine the tradeoffs between fault-

avoidance and fault-tolerance techniques, and finally come up with an efficient blend of

techniques suitable for space applications.

To reach this goal, we have studied available hardware and software fault tolerance

techniques and we plan to come up with some new techniques along the way.  There are

many features incorporated into the processor boards and we plan to take full advantage of

them.  The program we will run on the boards will have additional error detection

techniques, e.g., stutter step mode execution, control flow checking and assertions, to

name a few.  This program will try to exercise all the circuitry on the processor board,

collect information on the errors, store them in a redundant format and use the telemetry

system to send them to the ground.  A local program will receive this data and put it in a

database for analysis.

With an FPGA on one of the processor boards, we plan to take the opportunity to

survey their behavior in a space environment and use their unique features in fault tolerance

techniques.  In this regard, we studied the testing techniques of FPGAs.  We can

reconfigure them on the fly into a BIST mode, locate the faulty cells and upload a new

configuration which isolates the faulty cells and uses spare cells on the chip.
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