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Abstract

The tightly-coupled multiprocessor (TCMP), where specialized hardware maintains the image of
a single shared memory, offers the highest performance in a computer system. In order to deploy
a TCMP in the commercial world, the TCMP must be fault tolerant. Researchers have designed
various checkpointing algorithms to implement fault tolerance in a TCMP. To date, these
algorithms fall into 2 principal classes, where processors can be checkpoint dependent on each
other. We introduce a new apparatus and algorithm that represents a 3rd class of checkpointing
scheme. Our algorithm is distributed recoverable shared memory with logs (DRSM-L) and is the
first of its kind for TCMPs. DRSM-L has the desirable property that a processor can establish a
checkpoint or roll back to the last checkpoint in a manner that is independent of any other
processor. In this paper, we describe DRSM-L, show the optimal value of its principal design

parameter, and present results indicating the performance under simulation.
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|. Introduction

The tightly-coupled multiprocessor (TCMP), where specialized hardware maintains the image of asingle
shared memory, has the highest performance among the various types of computer systems. In order to facilitate the
use of such TCMPs in the commercia environment, we must build fault tolerance into them. The dominant method
of fault tolerance is roll-back recovery. It has 2 principal aspects. First, a processor establishes occasional
checkpoints; a checkpoint is a consistent state of the system. Second, if the processor encounters a fault, the
processor rolls back to the last checkpoint and commences execution from the state saved in that checkpoint. The
first aspect, the establishment of checkpoints, is the more important one as it is a cost that the TCMP regularly
experiences even if no fault arises. The second aspect, the actual rolling-back, is less important as faults tend to
occur infrequently. Hence, much of the research in roll-back recovery for TCMPs has focused on developing
efficient algorithms for establishing checkpoints.

In this paper, we present the first apparatus and algorithm enabling a processor to perform roll-back or
checkpoint establishment in away that is independent of any other processor in a TCMP. Our agorithm is called
distributed recoverable shared memory nith logs (DRSM-L). In section I, we discuss the basic issue of
dependency. In section 111, we present our assumptions. We then describe DRSM-L in section IV. In Section V,
we discuss the principal design parameter of DRSM-L. In section VI, we describe our simulation environment and

methodology. In section VII, we present our experimental results. We conclude the paper in section VIII.

I1. Background

A. Dependencies

The basic idea of roil-back recovery is the following. In a uni-processor computer, the processor periodically

establishes a checkpoint, a consistent state of the system. If it encounters a fault, the processor rolls the system back

to the state in the last checkpoint.



This simple scheme becomes complicated in a TCMP. Processors access shared memory blocks, and this

interaction causes dependencies to arise. There are 4 possible types of interactions on the same shared memory

block.

dependency: none

dependency: none

rol | -back dependency: P -> Q

checkpoi nt dependency: Q -> P

rol | -back dependency: P <-> Q

checkpoi nt dependency: P <-> Q

1. read — read: A read by processor P precedes a read by processor Q

2. read — write: A read by processor P precedes a write by processor Q.

3. write — read: A wite byprocessor P precedes a read by processor Q.

4. write — write: A wite by processor P precedes a wite by processor Q.

Only the last 2 interactions cause dependencies to arise. We shall examine how they arise. In our presentation, we

assume that a memory block and the highest-level-cache line are identical in size and that the TCMP uses a write-

back cache policy. To minimize the cost of the system, we assume that it can hold only 1level of checkpoint.

checkpoint for P
checkpoint for Q

P: write(1) Q:read(1)

. fault for P
@ . ,( Q> ¥ = time
]

memory/cache block
(write-back policy)

roll-back: P => Q checkpoint: Q => P

Figure 1. Roll-back Dependency for Write-Read Interaction

Figure I illustrates the roll-
back dependency that arises for the
write-read interaction. After
processor "P" writes the value of |
into aword of the memory block,
processor "Q" reads that value of 1.

Then, processor "P" experiences a




fault and rolls back to the last checkpoint. "Q" must also roll back to the last checkpoint because “ Q" read avaue, |

in this case, that "P" produced. When "P" resumes execution from the last checkpoint, "P" may not necessarily

reproduce the vaue of 1. Thus, we have the roll-back dependency of "P > Q".

checkpoint for P

checkpoint for Q checkpoint for Q

P: write(1) Q: read()) ' faultfor P
@ o @ Poxo- tme

A

memory/cache block
(write—back policy)

roll-back P => Q checkpoint: @ => P

Figure 2. Checkpoint Dependency for Write-Read Interaction

Figure 2 illustrates the
checkpoint dependency that arises
for the write-read interaction. After
processor "P" writes the value of 1
into aword of the memory block,
processor "Q" reads that value of |.
Then, processor "Q" establishes a

checkpoint. In figure 2, "Q"

establishes 2 checkpoints. the 1st checkpoint occurring before "Q" reads the value of 1 and the 2nd checkpoint

occurring after "Q" reads the value of 1. Subsequently, processor "P" experiences a fault and rolls back to the last

checkpoint. The roll-back dependency dictates that "Q" must roll back to the Ist checkpoint, but by the time that

"P" experiences a fault, "Q" has aready established the 2nd checkpoint and can only roll back to it. The state saved

in the 2nd checkpoint depends on the value of 1 produced by “P”. Since "P" may not necessarily reproduce the

value of 1 after resuming execution from the last checkpoint, the state saved in the 2nd checkpoint can be invalid.

Therefore, if "Q" establishes a checkpoint after the write-read interaction, then "P" must also establish a checkpoint.

In this way, we ensure that "P" does not “ m-do” the vaue of 1that was read by "Q". Thus, we have the checkpoint

dependency of "Q > P”.

The write-write interaction has 2 cases. one where the processors write into different words of the same

memory block and one where the processors write into the same word of the same memory block. Each case results

in a different direction of the dependency (i. e. a different direction of the dependency arrow in the above list). The

combined effect of both casesis a2-way dependency for both the roll-back dependency (“P <> Q") and the

checkpoint dependency (“P <-> Q").



checkpoint for P
checkpoint for Q

P:write(1) Q: write(5) Q:read(1)
( P -~ time

memory/cache block
(write-back policy)
roll-back: P => Q checkpoint: Q => P

Figure 3. Roll-back/Checkpoint Dependency for Write-
Write Interaction with Writes to Different Words

Figure 3 illustrates the roll-
back dependency and the checkpoint
dependency for the write-write
interaction where the processors write
into different words of the same
memory block. Since the cache-
policy is write-back, after "Q" writes

the vaue of 5 into the block, "Q"

holds it in the cache. "Q" can potentialy read the value of 1 written by “P". Hence, a write-read interaction arises.

We have dready analyzed this interaction in figures 1 and 2. Thus, we have aroll-back dependency of "P > Q" and

a checkpoint dependency of "Q > P”.

checkpoint for P
checkpoint for Q

P: write(1) Q: write(5)
P

TF N T

memory/cache block
(write—back policy)

fault for Q
> +~ time

roll-back: Q => P checkpoint: P => Q

Figure 4. Roll-back Dependency for Write-Write Interaction
with Writes to the Same Word

Figure 4 illustrates the roll-
back dependency for the write-write
interaction where the processors write
into the same word of the same
memory block. Processor "P" writes
the value of 1 into the memory block,
overwriting the original value of “6”.

Then, processor "Q" writes the value

of 5 into the same word, overwriting the value of 1. Subsequently, "Q" experiences a fault and rolls back to the last

checkpoint. "Q" undoes the value of 5 and must replace it with the value of 1, but there is no convenient way to

retrieve the value of 1 since it was destroyed by "Q" writing the value of 5. The only value that the TCMP can use

to replace 5 isthe original value of 6. In order to ensure that the state of the TCMP is vdid, "P" must roll-back to

the last checkpoint as well in order to un-do the value of 1. Hence, we have aroll-back dependency of "Q -> P".



Figure 5 illustrates the

checkpoint for P

checkpoint for Q checkpoint for P
P:write(1) Q: write(5) | gt for checkpoint dependency for the
X » time

write-write interaction where the

EE processors write into the same word

memory/cache block of the same memory block.
(write-back policy)

Processor "P" writes the value of 1
roll-back: Q => P int P =

Q= checkpoint: P=>Q into the memory block, overwriting

Figure 5. Checkpoint Dependency for Write-Write

Interaction with Writes to the Same Word the original value of “6”. Then,

processor "Q" writes the value of 5 into the same word, overwriting the value of 1. Next, "P" establishes a
checkpoint. In figure 5, "P" establishes 2 checkpoints: the 1st checkpoint occurring before "P" writes the vaue of 1
and the 2nd checkpoint occurring after "P" writes the value of 1. Subsequently, "Q" experiences a fault and rolls
back to the last checkpoint. The roll-back dependency dictates that "P" must roll back to the 1st checkpoint, but by
the time that "Q" experiences a fault, "P" has aready established the 2nd checkpoint and can only roll back to it.
The state of the TCMP can become invalid since (1) it assumes that the value of 1 is stored in the pertinent word of
the memory block but (2) "Q" can un-do the value of 5 by only replacing it with 6. There is no convenient way to
retrieve the value of 1 and to use | to replace 5. Hence, to solve this problem, if "P" establishes the 2nd checkpoint,
"Q" must also establish a checkpoint. Then, "Q" will not roll back past the 2nd checkpoint and will not need to un-
do the value of 5. Thus, we have a checkpoint dependency of "P > Q"

Therefore, the write-write interaction causes bi-directional dependencies to arise. The roll-back dependency is

"P <> Q". The checkpoint dependency is "P <-> Q" as well.

B. Classes of Algorithms

Checkpointing algorithms must deal with these dependencies. How the algorithms deal with them resultsin a

natura partition of the types of algorithms that exist.
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Figure 6 illustrates the
approaches for dealing with the
dependencies. Dependencies arise
because a dirty value written by a
processor "P" (and possibly read by
another processor “Q") is not
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Figure 6. Dependencies to Classes of Checkpointing Algorithms resumes execution from it. If an

algorithm can ensure that dirty values written by a processor "P" after roll-back are identical to those dirty values
written by "P" before encountering the fault (that resulted in the roll-back), then the algorithm is a member of the
class called the unsynchronized method (USM). In a USM-type agorithm, a processor can establish a checkpoint
(or perform a roll-back) that is completely independent of any other processor.

If an algorithm cannot guarantee that dirty values produced by "P" after roll-back are identical to those dirty
values produced by "P" before encountering the fault, then the algorithm can simply record the dependencies. Such
an agorithm is a member of the class called the loosely synchronized method (LSM). In a LSM-type algorithm, if
any checkpoint dependency (or roll-back dependency) arises, the TCMP simply records the dependency. At some
point in the future, if a processor establishes a checkpoint (or performs aroll-back), then that processor queries the
records of dependencies to determine all other processors that must establish a checkpoint (or perform aroll-back)
as well.

Findly. if the checkpointing algorithm cannot guarantee reproduction of dirty values after roll-back and if the
algorithm does not record dependencies, then the agorithm must do following. A processor "P" must establish a
checkpoint whenever "P" ddlivers dirty data to another processor or to the memory system (via the eviction of a
dirty cache line). Such an agorithm is a member of the class called the tightly synchronized method
(TSM).

For a TCMP, researchers have developed algorithmsin 2 classes, TSM and LSM. An example of a TSM-type
algorithm is the one proposed by Wu [ 13]. An example of a L SM-type agorithm is the one proposed by Banatre

{2]. In this paper, we present DRSM-L, the first USM-type agorithm for a TCMP. Before DRSM-L, no such



algorithm for a TCMP existed athough Richard [6] and Suri | 11] have proposed USM-type agorithms for a loosely-

coupled multiprocessor like a network of workstations. The DRSM-L described in this report is an improved

version of DRSM-L originally contrived by Sunada [10].

I11. Assumptions
processor module processor module

processor

t ]
Ist-level 1st—level
cache cache

The TCMP into which we shall incorporate DRSM-L
is a multi-node multiprocessor like that shown in Figure 7.
Each node has a processor module and a memory module.

The nodes are connected by a high-speed dedicated network.

t t
\f—level [ nd-Tlevel |
h . - .
cache |_cache | We make the following specific assumptions about our
TCMP.
Cmo. memo
l:‘lnolgulrg H@H modulrg
Network and memory are fault-tolerant.
Figure 7. Tightly-Coupled M ultiprocessor
(TCMP)
1. Each componentin our TCMP is fail safe. If the component fails,

it smplystops and does not enmt
2. The TCWP suffers at npbst a single point of failure.

3. Each nenory nodule is fault tolerant.

spurious data.

The network connecting the nodes in our TCMP is fault tolerant.
Specifically, between any 2 nodes are 2 independent paths, and each
nenory nodul e i s dual - port ed.

The virtual nmachine nonitor (VM) is fault-tol erance aware.
Specifically, if conmunication occurs between a processor and the
envi ronnent outside of the TCWP, then the VMM will invoke the

processor to establish a checkpoint.




The firgt 4 assumptions are commonly found in research papers proposing checkpointing algorithms for a TCMP.
The last assumption can be re-phrased by replacing VMM with operating system (OS) for those systems without a
VMM. We believe that building fault tolerance into the VMM is superior to building fault tolerance into the OS
since a fault-tolerant VMM enables us to run any non-fault-tolerant OS while the entire TCM P remains fault-
tolerant. The TCMP views the OS as simply another user application running on top of the VMM [3].

The gist of our assumptions is that the memory module and network are fault tolerant but that the processor
module (including the processor and associated caches) are not fault tolerant. DRSM-L is an apparatus and

algorithm that enables the TCMP to recover from afailure of the processor module.

V. Distributed Recoverable Shared Memory with Logs (DRSM-L)

Distributed recoverable shared memory with logs (DRSM-L) is a USM-type agorithm and apparatus to

establish checkpoints for fault tolerance. DRSM-L enables a processor to establish a checkpoint (or to roll back to

the last checkpoint) in a manner that is independent of any other processor.

A. Apparatus

. ﬁ:: ot /o Figure 8 illustrates the apparatus of
tag oflnedata cownter § 2-hit status
DRSM-L. It consists of new structures in both
Ind-level
T [ an cache the 2nd-level cache and the local memory
f * fndex CB_ module. Each line of the 2nd-level cache has
— the traditional fields: tag, status (SHARED,
ng " memory
" cache Bne] " divectory : module . )
controller ! EXCLUSIVE, and INVALID) of line, and line
' ' 2-hit status
' b of data. Each line has 3 additional fields:
: _ : 5 T g counter, instruction/data flag (IDF), and 2-bit
I 7 LI 17 [
eented  Jne  extended comter hankor; status flag (SF). The SF assumes any 1 of 4
Ine buffer counter buffer
vaues. “N” (no event), “R” (remote read),
[index LB [ndex CB| [csB |
: “E” (gjection), “V” (counter overflow). The
Figure 8. Distributed Recoverable Shared Memory
with Logs (DRSM-L)




cache also has 2 index registers that mirror 2 index registers in the local memory module.

The local memory module has the traditional directory controller and bank of memory. The module also has a
line buffer and a counter buffer. Each buffer has an accompanying index register that points at the next free entry in
the buffer. The module also has a checkpoint-state buffer (CSB). We will describe how the new structures function
as we describe how DRSM-L logs incoming cache data, how DRSM-L establishes checkpoints, what triggers the
establishment of checkpoints, and how DRSM-L facilitates recovery from a fault.

In the following discussion, we assume that the TCMP (1) prohibits self-modifying code and (2) requires
instructions and normal data to reside in separate memory blocks (i. e. cache lines). In section IV-C, we explain

how this assumption allows us to use the IDF.

B. Audit Trail
DRSM-L isalJSM-type
£

& algorithm and guarantees that a

g o fault

incoming data Processor resuming execution
¥
Slaie L state \ state state v state from the last ChECprI nt (afte' a
, , . roll-back due to afault)
clean dirty remotedirty

eviction/invalidation eviction/invalidation read reproduces the exact same dirty

Figure 9. Transition of State of Both Processor and 2nd-Level

Cache values that the processor

produced before encountering a fault. Figure 9 illustrates the strategy that DRSM-L uses to provide this guarantee.
In figure 9, the “state” is the combination of the processor state and the 2nd-level-cache state; the cache state refers
only to 3 fields -- tag, status of line, line of data, and the IDF. The transition of the processor-cache state depends on
4 events: incoming data in the form of memory blocks, clean evictions (or invalidations), dirty evictions (or
invalidations), and dirty reads by a remote processor. During recovery after a fault, the processor will reproduce the
dirty values delivered by the dirty eviction (or invalidation) and by the remote dirty read if the processor-cache state
repeats the transitions (that occurred prior to the fault) past the point where the processor sent the last dirty value to
the rest of the TCMP. In figure 9, the last dirty value sent by the processor occurs during the remote dirty read.

Furthermore, the processor-cache state will repeat the transitions (that occurred prior to the fault) if the recovery
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apparatus reproduces the 4 events at the right time relative to the last checkpoint and to the data accesses.
Therefore, to ensure that a processor "P" can reproduce the exact same dirty values that it produced prior to a fault,
"P" must record (1) data values that arrive in its 2nd-level cache and (2) the number of times that “P” accesses each
2nd-level-cache line of data until the next event that occurs on the cache line. Events that occur on a cache line are
clean eviction/invalidation, dirty eviction/invalidation, and remote dirty read.

"P" logs the incoming cache lines (or memory blocks) into the line buffer in figure 8. The line buffer has 2
fields: extended tag and line of data. The extended tag is the regular 2nd-level-cache tag appended with the index of
the exact cache line into which the incoming cache data is destined. The “line of data’ is the cache dataitself. The
logging of the incoming cache line into the line buffer can be performed in parallel with forwarding the line to the
2nd-level cache, so the logeing does not cause additional delav.

Merely recording the incoming cache line is not sufficient to guarantee that "P" will reproduce the exact same
dirty values that it produced prior to a fault. "P" must also record the number of times that “P” uses datain a 2nd-

level-cache line before an event occurs on it. Below are the 3 possible events.

1. The datus of the Iline transitions from EXCLUSIVE to SHARED due to a
read by a remote processor.

2. The status of the line transitions from SHARED or EXCLUSIVE to | NVALID
due to an eviction or invalidation.

3. The counter overflows.

To count the number of accesses to datain a2nd-level cache prior to these events, "P" performs the following.
"P" forwards the address of the access to both the 1 St-level cache and the 2nd-level cache. Regardless of whether
the access hitsin the 1st-level cache, if the access hitsin aline of the 2nd-level cache, it increments the counter of
the matching line. The counter of alineis reset to 0 whenever incoming cache data arrives in the line.

If avalid 2nd-level-cache line experiences any 1 of the above 3 events, then the cache writes the counter of
that cache line into the counter buffer in figure 8 and resets the counter (in the cache line) to 0. The counter buffer

has 3 fidlds: extended tag, counter, and 2-bit status flag (SF). The directory controller setsthe SFto“R",“E’, or
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“V”if event #1, #2, or #3, respectively, occurs. For events #1 and #2, logging the counter into the counter buffer is
performed in parallel with the usual cache-coherence activity, so the logging does not cause additional delay.

The line buffer and counter buffer effectively record an audit trail of data accessed by a processor "p". After
"P" encounters a fault, "P" rolls back to the last checkpoint and resumes execution. "P" uses the audit trail to satisfy
all read or write misses until recovery is complete. The information stored in the line buffer and the counter buffer
is sufficient and necessary to ensure that "P" will reproduce the exact same dirty values that it produced prior to a
fault. We illustrate how recovery works in section IV-F.

If an upgrade miss (i. e. awrite “hit” on a2nd-level-cache line with its state being SHARED) occurs in the
2nd-level-cache, it obtains permission to upgrade the affected cache line in the same way that the 2nd-level cache of
a base TCMP without DRSM-L would handle the upgrade miss. Upgrading a 2nd-level-cache line involves
changing its status from SHARED to EXCLUSIVE. After the 2nd-level cache upgrades the affected cache line, the
cache retries the data-write. The cache then processes the write hit in the usua fashion for maintaining an audit

trail.

C. Optimizations

For the 2nd-level cache, figure 8 shows 2 optimizations: the instruction/data flag (IDF) and the index
registers which mirror those in the local memory module. If the TCMP both (1) prohibits self-modifying code and
(2) requiresinstructions and normal data to reside in separate memory blocks (i. e. cache lines), then we can
distinguish between cache lines holding instructions and cache lines holding data. If the incoming cache line
satisfies an access miss for regular data, then the 2nd-level cache sets the IDF of the cache line (satisfying the access
miss) to 1. The incoming cache line and its associated counter are handled in the usual manner for maintaining an
audit trail. On the other hand, if the incoming cache line satisfies an instruction miss, then the cache line is not
saved in the line buffer. Further, the 2nd-level cache sets the IDF of the cache line (satisfying the instruction miss)
to 0. Subsequent instruction fetches that hit in the cache line do not cause the counter to increment. In this way, we
avoid using space in the line buffer and the counter buffer to store the instructions and the number of instruction

fetches, respectively.
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If the TCMP either (1) alows self-modifying code or (2) alows instructions and normal data to reside in the
same memory block (i. e. cache ling), then we cannot distinguish between cache lines holding instructions and cache
lines holding data. We omit the IDF flag and must handle al incoming cache lines in the usual manner for
maintaining an audit trail.

The second optimization is the index registers that mirror those in the local memory module. In the memory
module, the index register of each buffer points to the next free entry in the buffer. “index-LB” is the index register
of the line buffer, and “index_CB” is the index register of the counter buffer. “index_LB_" and “index_CB_"
mirror “index-LB” and “index_CB”, respectively. When the directory controller saves an incoming cache line (for
a data access) into the line buffer and forwards the line to the 2nd-level cache, the directory controller increments
“index-LB”. The 2nd-level cache ingtalls the incoming cache data into a cache line and increments “index_LB_".
In addition, when the 2nd-level cache writes a counter into the counter buffer, the cache increments “index_CB_".
When the directory controller saves the counter into the counter buffer, the directory controller increments
“index_CB”.

When the line buffer or the counter buffer becomes full, the local processor must establish a checkpoint,
Establishing a checkpoint clears both buffers and resets all the index registers to 0. The index registers in the 2nd-
level cache itself enable the processor module to determine whether the line buffer or the counter buffer is full

without incurring the cost of querying the index registers in the local memory module.

D. Checkpoint Establishment

The checkpoint-state buffer (CSB) assists the local processor to establish a checkpoint. The CSB has 3
separate units (which are not shown in figure 8): checkpoint flag (CF), tentative-checkpoint area, and the permanent-
checkpoint area. The CF indicates 1 of 3 checkpointing phases: "CHECKPOINT_IS_NOT_ACTIVE",
"TENTATIVE_CHECKPOINT_IS_ACTIVE", and "PERMANENT_CHECKPOINT_IS_ACTIVE". The tentative-
checkpoint area holds both (1) the processor state (of the local processor) and (2) the contents of the 2nd-level cache
for the current checkpoint. The permanent-checkpoint area holds both (1) the processor state and (2) the contents of
the 2nd-level cache from the last checkpoint. At the end of the establishment of the current checkpoint, the local

processor switches the designation of the tentative-checkpoint area and the permanent-checkpoint area. In other
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words, the tentative-checkpoint area becomes the permanent-checkpoint area, and the permanent-checkpoint area
becomes the tentative-checkpoint area.

DRSM-L enables a processor "P" to establish a checkpoint in 2 phases: tentative checkpoint and permanent
checkpoint. "P" first updates the CF of the CSB to "TENTATIVE_CHECKPOINT_IS_ACTIVE", indicating that
“P"isin phase 1, the tentative checkpoint. Then, "P" waits until all its pending memory accesses are complete (or
negatively acknowledged). "P" negatively acknowledges al cache-coherence messages from the directory
controllers until the establishment of the checkpoint is complete. Next, "P" downloads both its internal registers (i.
e. the processor state) and all 2nd-level-cache lines (saving only the ta;, status of line, line of data, and IDF) into
the tentative-checkpoint area of the CSB (while preserving the previous permanent checkpoint in the permanent-
checkpoint area). At the end of phase 1, "P" updates the CF of the CSB to
"PERMANENT_CHECKPOINT_IS_ACTIVE", indicating that "P" is now in phase 2 (i. e. the permanent
checkpoint). "P" resets all the index registers in both the processor module and the local memory module. "P" then
tellsthe CSB to invalidate the old permanent checkpoint in the CSB and to designate the processor state and cache
lines saved in the tentative-checkpoint area as the nen permanent checkpoint. Finally, "P" updates the CF of the

CSB to "CHECKPOINT_IS_NOT_ACTIVE", indicating that phase 2 (and the entire checkpoint) is finished.

E. Triggers of Checkpoint Establishment

Any 1 of the following 4 conditions can trigger the establishment of a checkpoint.

1. A timer expires. The timer determ nes the maximum temporal interval between
checkpoi nts.

2. The line buffer overfl ows.

3.  The counter buffer overfl ows.

4,  Communi cation occurs between the processor and the environnent outside of

t he TCMP.

F. Recovery from a Fault
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Fault-tolerance schemes generaly involve 2 aspects. (1) logging data or establishing periodic checkpoints
prior to the occurrence of any fault and (2) rolling the system back to the last checkpoint and recovering the state of
the system prior to the fault. We now show how DRSM-L may recover from a fault. We assume that the TCMP
operates with a fault-tolerance-aware virtual machine monitor (VMM). (The following comments apply as well to a
TCMP that executes a fault-tolerance-aware operating system without a VMM). We consider the following simple
scheme for rolling back from a fault experienced by a processor. We arrange for a special recovery logic circuit
(RLC) on the memory module to periodicaly send “ Are you dive?’ messages to the local processor. If it does not
respond within a specified timeout period, RLC assumes that the processor experienced a fault. If the fault is
permanent, RLC replaces the failed processor with a spare processor. Then, RLC resets the processor, say "P", and
directs it to begin the recovery activity. "P" invalidates all entries in both the Ist-level cache and the 2nd-level
cache. "P" negatively acknowledges al cache-coherence messages from the directory controllers until recovery is
complete.

If "P" failed during the establishment of the permanent checkpoint, according to the CF of the CSB, then "P"
completes the establishment of the permanent checkpoint that was in progress when the fault occurred. "P" queries
all the memory modules to find messages which were sent to "P" just prior to the fault; "P" negatively acknowledges
them. Then, “P” loads both the processor state and all 2nd-[evel-cache lines saved in the permanent-checkpoint area
of the CSB. “P” installs each line saved in the CSB into a 2nd-level-cache line and resets its counter to 0. "P"
resumes normal processing.

If "P" did not fail during the establishment of the permanent checkpoint, then "P" must perform the following
procedure. "P" queries al the memory modules to find messages which were sent to "P" just prior to the fault; "p"
negatively acknowledges them. Then, "P" reads the entire line buffer and the entire counter buffer and groups their
entries according to the cache index of the extended tag so that an entry can be easily fetched on amissin the 2nd-
level cache. "P" saves these sorted entries in a separate memory area reserved for the VMM for the purpose of this
discussion, we assume that they reside in the sorted line buffer (SLB) and the sorted counter buffer (SCB). Then,
"P" invalidates al entries in both the Ist-level cache and the 2nd-level cache and loads both the processor state and
all 2nd-level-cache lines saved in the permanent-checkpoint area of the CSB. “P” ingtalls each line saved in the

CSB into a2nd-level-cache line, resets its counter to 0, and sets SFto “V".
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"P" resumes execution in recovery mode. In this mode, if a data-read or data-write misses in the 2nd-level
cache, atrap occurs to the VMM. It finds the next matching line (of data) and counter from the SLB and SCB,
respectively, and places the line and counter into the cache. The VMM sets the IDF of the affected cache lineto "1".
The VMM ds0 sets the SF in the cache to the value stored in the SF of the SCB.

If adata-read or a data-write hits on a2nd-level-cache ling, its counter is decremented. Once a hit causes the
counter to underflow (below 0), the hardware must interpret the SF. If the SF is "N", then the counter is not
decremented but remains at 0, and satisfying the access hit proceeds. On the other hand, if the SF is not "N", then
execution traps to the VMM. It must interpret the SF. If it is“ R”, then the VMM re-loads the counter and SF with
the next matching entry in the SCB and aso transitions the status of the line from EXCLUSIVE to SHARED. If the
SFis“E”, then the VMM re-loads the cache line with the next matching entry in the SLB and also re-loads the
counter and SF with the next matching entry in the SCB. If the SFis“ V", then the VMM re-loads the counter and
SF with the next matching entry in the SCB. Regardless of whether the SFis"R", “E”, or "V", if the next matching
entry in the SCB does not exist, then the VMM sets the counter and the SFto 0 and "N*, respectively.

Also, if an upgrade miss (i. e. awrite “hit” on a2nd-level-cache line with its status being SHARED) occursin
the 2nd-level cache, it immediately upgrades the affected cache line by changing its state from SHARED to
EXCLIJSIVE. The 2nd-level cache then retries the data-write and processes it in the usual fashion for recovery.
We specificaly note that the 2nd-level cache does not handle the upgrade miss by submitting a cache-coherence
message to the directory controller.

In the recovery mode, “P” handles instruction misses by fetching the instruction from main memory into the
cache in the usual fashion. “P” sets the IDF (of the 2nd-level-cache line receiving the incoming memory block that
satisfies the instruction miss) to "0". For data misses (due to data-reads and data-writes), the processor sets the IDF
to"1" but uses the SLB and the SCB to satisfy them.

Eventually, “P” achieves the following 2 conditions: (1) the SCB has no entry with a SF of “E” or “R" and
(2) the countersin al valid cache datalines (i. e. with IDF being “1") with a SF of “E” or “R” are 0. When both
conditions arise, recovery for "P" is close to completion. We say that “P” has reached the state of “imminent
completion of recovery”. Execution traps to the VMM. It updates the status of al valid cache lines with a SF of
“E” or “R”. If the SFis“E” or “R”, then “P” changes the status of the lineto INVALID or SHARED, respectively.

Then, the VMM invokes “P” to establish a checkpoint, which clears both the line buffer and the counter buffer.
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To ensure that the contents of the cache are consistent with the information stored in the directory of each
memory module, the VMM reads each dirty 2nd-level-cache line from the permanent-checkpoint area of the CSB
and writes the line back into main memory. The VMM changes the status of each 2nd-level-cache line saved in the
permanent-checkpoint area (of the CSB) to INVALID. Then, the VMM tells the directory controller of each
memory module to change the status of any memory block (i. e. cache line) held by the 2nd-level cache (of “P”) to
indicate that the 2nd-level cache no longer holds the memory block. The VMM aso changes the status of each line
in the 2nd-level cache to INVALID.

Finaly, recovery is complete. The VMM then places “P” in the norma mode of execution where the counter
increments on each hit.

We note that DRSM-L has the extremely desirable property of no roll-back propagation. If a processor
experiences afault, the processor (or the spare processor) must roll back to the last checkpoint to resume execution.

Thisroll-back does not require that other processors aso roll back to their last checkpoints.

G. Precise Description of DRSM-L

Below, we use C-like code to precisely describe how the various pieces of DRSM-L work. For the sake of
brevity, we label the 2nd-level cache as Smply “cache”.

Also, we try to restrict our description to only those activities that occur in a TCMP with DRSM-L but that do
not necessarily occur in abase TCMP without DRSM-L. For example, we do not describe the updating of the fields
in the 2nd-level-cache line when an upgrade miss (i. e. write “hit” on aline with status being SHARED) is
processed.

Finaly, we do not explicitly identify the activities that can occur in parallel for increased performance. The
parallel activities should be obvious from the context. For example, when the cache installs an incoming memory
block (satisfying a data access) into a2nd-level-cache line, both (1) resetting the counter to 0 and (2) setting the IDF

to 1 can occur in parallel.



expl anatory notes

States of cache line are I NVALID, SHARED, and EXCLUSI VE.

Nunber of entries in line buffer is 8192 (which can be changed).
Nunber of entries in counter buffer is 8192 (which can be changed).

Wdth of counter is 32 bits (which can be changed).

execution node: nor mal

/*
/*
/*
/*

/*
/* Data-wite stalls until "cache_line.status of |ine"
/* becomes EXCLUSIVE in response to upgrade-niss.
/*
/* After local processor retries stalled data-wite,
/* it then will hit in cache data line and w |
/* generate "data access-hits-in-cache-data-Iine"
/* as next event. -
/*
br eak;
}
/*
/*  Access misses in cache data |ine.
/*
data_access nisses_in_cache data line: ¢
if (index LB_ == 0x2000) {
/* 8192-entry line buffer is full,
stall data access;
establish_checkpoint();
retry data access;
}
br eak;
}
menory- bl ock-arrives: {
if (original access is data access) {

Upgrade miss occurs in cache data line.

Upgrade niss occurs when data-wite "hits" in cache

line with status bei ng SHARED.

SO enpty it.

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
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| og- menory- bl ock-into line buffer();
install memory block_into cache_data_line();

}
el se {
install memory block into_cache_instruction_line();

br eak
}
[ R —————————————————————————————
/* Access hits in cache line
/) e e

data_access _hits in_cache data-line: {
if (cache line.counter == 0x0FFFFFFFF) {

/* 32-bit counter overfl ows.

stall data access;
if (index_cB_ == 0x2000) ¢

K -
/* B8l192-entry counter buffer is full, so enpty it
R -
establish checkpoint();

}

el se {

index CB_++
log counter_into counter_ buffer(cache_ line, "V");

}
retry data access;

}
el se {
cache_line. counter ++;

}

br eak
}
/K e e
/* Eviction or invalidation of cache |ine occurs.
[ K ——————————————————— -

evict cache line
inval i date_cache_line: {
if (index_cB_ == 0x2000) {

/*  8192-entry counter buffer is full, so enpty it

stall event, which is "evict-cache-line" or "invalidate cache |
establish_checkpoint(); . .
retry event, which is "evict-cache-line" or "invalidate_cache |i

}
el se {
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*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

ne";

ne";



}

K e e */
/* No additional delay is incurred. */
K m e e e */
index CB_++
log_counter_ into_counter_buffer(cache line, "E");
}
br eak
}
/e e e */
/* Renote processor reads local dirty cache line. */
/e e */

renotely read-local-dirty-cache-line: {
if (index_CB_ == 0x2000) {

/e ————————— e ———— */
/* 8192-entry counter buffer is full, so enmpty it. */
/* */
/* Wite-back is response by local processor to renpte */
/* processor reading local dirty cache line. */
/e ————— e —————— */

stall wite-back
establish _checkpoint();
retry write-back;

}
el se {
K e */
/* No additional delay is incurred. */
S */
index CB_++
log_counter_into_counter buffer(cache line, "R");
}
br eak
}
/e e */
/*  Timer expires, or I/0O occurs. */
/e */

timer-expires: . .
communi cation_between _cpu_and_environment _out si de_TCMP_occurs: {
establish _checkpoint();

br eak;
}
defaul t: {

do not hi ng speci al
}

log memory block_into_line buffer()

{
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line_buffer[index LB].extended tag <= extended-tag(menory- bl ock);
line_buffer[index_ LBj].line of data <= data(memory block);

i ndex _ LB++;
}
install_memory block into_cache data line()
{
J
/*  Update cache
J F e e e
i ndex_LB_++;
e e
/* Update cache |ine
S
cache-line.tag <= tag(memory block);
if (data access == read) ¢
cache line.status_Of |ine <= SHARED
el se {
cache line.status_Of |ine <= EXCLUSI VE;
}
cache_line.line of data <= data(memory block);
cache_|ine-counter <= 0;
cache line.IDF <= 1;
cache-1line. SF <= "n";
}
available cache line()
{
 F e o
/* Get cache line (from set of set-associative cache) to
/* hol d incom ng data
/e e
if (set has cache-line where cache-line.status of-line == INVALID) {
get cache-line where cache_line.status of line == | NVALID;
}
else if (set has cache |ine where cache line.IDF == 1 and
cache-1line.counter == 0 and
cache-line. SF == “E") {
get cache-line where cache-line.IDF == 1 and
cache line.counter == 0 and
cache-line. SF == "E"

}

else if (set has cache line where
cache-line.IDF == 1 and
cache-line.counter == 0 and



cache line.SF == »v~ and
sorted-counter-buffer[entry].counter == 0 and
sorted-counter-buffer[entry].SF == ~#E~ and
extended_tag(cache line) ==
sorted counter_buffer[entry].extended tag
for next matching entry in sorted counter buffer) {

/K e e e * /
/*  Set can have cache-line where */
/* */
/* cache line.IDF == 1, */
/* cache-1ine-counter == 0, */
/* cache-line. SF == »y~, */
/* sorted-counter-buffer[entry].counter == 0, * /
/* sorted-counter-buffer[entry].SF == «~g~, and */
/* extended tag(cache line) == */
/* sorted-counter-buffer[entry].extended_tag */
/* */
/* for next matching entry in sorted counter buffer. */

/* */
/* Situation can arise, for exanple, if imediately after */
/* establ i shing checkpoint, processor resumes nornal */
/* execution and issues data access that experiences */
/* conflict miss, which evicts cache |ine. */
/e ———————— e ——————— */
get cache-line where

cache line.IDF == 1 and

cache line-counter == 0 and

cache line.sF == »v~ and

sorted-counter-buffer[entry].counter == 0 and

sorted-counter-buffer[entry].SF == =g~ and

extended_tag(cache_line) ==
sorted _counter_buffer(entry].extended tag
for next matching entry in sorted counter buffer

e ———————— */
/* Retrieve and discard matching entry mentioned */
/* in directly preceding statenent. */
/& e e e */

retrieve and discard next entry from sorted counter buffer
whi ch matches cache i ne;

el se {
get cache-line where cache-line.|DF == O;
}
return cache _line
}
install_memory block_into_cache_instruction line()
{
/R e o */
/* Update cache line. */



cache-line-tag <= tag(memory_block);
cache_line.status_of |ine <= SHARED;
cache_line.line of_data <= data(memory block);

cache line.counter <= 0;
cache-line. | DF <= 0;
cache-line. SF <= "N";
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}

log_counter_into_counter_ buffer(cache_line, €vent)

{
J* e * /
/* Update local nenory nodul e. */
2 */
counter_buffer[index CB].extended_tag <= extended_tag(cache line);
counter _buffer[index CB].counter <= cache _line.counter;
J ® e */
/* "event" can be one of {"v", "E", "R"}. */
/* */
/* "v' = overflow of counter */
/* "E" = ejection of cache line due to eviction or */
/* i nval i dation */
/* "R" = (remotely) reading l|ocal cache line */
K e e */
count er_buffer[index_ CB|. SF <= event;
i ndex CB++;

}

est abl i sh-checkpoint0

{
CSB. CF <= TENTATI VE CHECKPO NT | S_ACTI VE;
wait until all pending nmenmory accesses are conpleted or negatively

acknow edged;
negatively acknow edge all cache-coherence messages until checkpoint is
est abl i shed;

est abl i sh-tentative-checkpoi nto;
CSB. CF <= PERMANENT- CHECKPO NT- | S- ACTI VE;
establish permanent checkpoint();
 * e e e */
/*  Established checkpoint. */
. */
CSB. CF <= CHECKPO NT-1S_NOT _ACTI VE;

}

establish-tentative-checkpoint0

{
/ F e e e —————————— e */
/*  CSB.toggle flag toggl es between o and 1. */



}
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i <=1 - CcsB.toggle flag;

save tag, status_of line, line_of _data, and IDF of all cache lines
i Nt 0 cSB.checkpoint area[i}.cache;

save internal state of processor
i Nt 0 cSB.checkpoint area[i].processor_state;

CSB.checkpoint area[i].status <= TENTATI VE- CHECKPO NT- AREA,;

est abl i shger manent - checkpoi nt 0

{

}

/e * /
/*  Establish permanent checkpoint. */
e */

index LB <= o0;
index_cB_ <= 0;

i ndex LB <= 0;
index_CB <= 0;

for (each cache-line in cache) {
cache_line.counter <= 0;

}

i <= CSB.toggle flag;
CSB.checkpoint areafi].status <= NULL;

i <=1 - cSB.toggle flag;
CSB.checkpoint areaf[i].status <= PERVMANENT- CHECKPO NT- AREA,
CSB.toggle flag <=1 ;

conpl et e- per manent - checkpoi nt 0

{

/K o */
/* Establish pernmanent checkpoint. */
[ e ——————————— */
i ndex_LB_ <= 0;

index CB_ <=0

i ndex LB <= 0;
index_cB <= 0;

for (each cache-line in cache) {
cache_line.counter <= 0;

}

j <= CcsB.toggle flag;
i f ((CSB.checkpoint area[j].status == PERMANENT- CHECKPO NT- AREA) &s&
(CSB.checkpoint_area[l - j].status == TENTATI VE- CHECKPO NT- AREA)) {

i <= CSB.toggle flag;
CSB.checkpoint area[i].status <= NULL;

i <=1 - CSB.toggle flag;
CSB.checkpoint area[i].status <= PERVMANENT- CHECKPO NT _AREA,



CSB.toggle flag <= i;

el se if ((CSB.checkpoint_area[j].status == NULL) &&
(CSB.checkpoint area[l - j].status == TENTATI VE- CHECKPO NT- AREA))

i <=1 - CSB.toggle_flag;
CSB.checkpoint areafi].status <= PERMANENT- CHECKPO NT- AREA,;
CSB.toggle flag <= |;

}
el se if ((CSB.checkpoint_area[]j].status == NULL) &&
(CSB.checkpoint area[l - j].status == PERVANENT- CHECKPO NT- AREA))

CSB.toggle flag <= 1 - j;

el se {
do not hi ng speci al

fault detection

if (RLC detects fault in processor nodule) {

if (fault == pernmanent) {
repl ace processor nodule with spare processor nodul e
reset spare processor nodule, invalidating all entries
in both Ist-level cache and 2nd-level cache;

}
el se { . . . .
reset processor nodule, invalidating all entries
in both Ist-level cache and 2nd-level cache;
}

trap to virtual machine nmonitor;

query all nermory nodules to find | ost cache-coherence nessages;
negatively acknow edge all cache-coherence nessages
until recovery is conplete;

if (CSB.CF == PERMANENT- CHECKPQO NT- | S- ACTI VE) {

complete permanent_ checkpoint();

i <= CcsB.toggle flaq;

i f (CSB.checkpoint area[i].status != PERVANENT- CHECKPO NT- AREA) {
i =1 -~ csB.toggle flag;

}

load internal state of processor
fromcsB.checkpoint areal[i).processor_state;

for (each cache line in cache) {
| oad cache-1line fromcsB.checkpoint area[i].cache;

cache_line-counter <= o;
}

return fromtrap to virtual machine nonitor;
exit and resune nornal execution;



if (CSB.CF == TENTATI VE- CHECKPO NT- | S- ACTI VE) ¢
i <=1 - CsB.toggle_flag;
CSB.checkpoint area[i].status <= NULL;

CSB. CF <= CHECKPQO NT.LS NOT _ACTI VE;

discard tentative checkpoint;
}

read all valid entries fromline buffer;
group all entries according to cache index but, for each cache index,
maintain the tenporal order in which the entries were originally
inserted into the line buffer;
pl ace grouped entries into sorted-line-buffer;

read all valid entries from counter buffer;
group all entries according to cache index but, for each cache index,
mai ntain the tenporal order in which the entries were originally
inserted into the counter buffer;
pl ace grouped entries into sorted-counter-buffer;

i <= CsB.toggle flag;

i f (CsB.checkpoint area[i].status ! = PERMANENT- CHECKPO NT- AREA) {
i = 1 - csB.toggle flag;

}

load internal state of processor
fromcsB.checkpoint area[i].processor_state;
for (each cache line in cache) {
| oad cache-line fromcsB.checkpoint area[i].cache;

cache line.counter <= 0;
cache-line. SF <= "v»;

}

return fromtrap to virtual nmachine nonitor;

enter recovery node of execution;
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}

execution mode: recovery

/e
/* Upgrade miss occurs in cache data |ine.

/*

/* Upgrade miss occurs when data-wite "hits" in cache

/* line with status being SHARED.

K e

data-write-has-upgrade-niss-in-cache-data-line: ¢{
stall data-wite:

cache line.status_of |ine <= EXCLUSI VE;

*/
*/
*/
*/



B S b

/* Retry data-wite.

/*

/* It then will hit in cache data line and will generate

/* "dat a-access-hits _in-cache-data-line" as next

/* event.

e e e e

retry data-wite;

br eak;

dat a- access-mi sses-in-cache-data-line: {
stall data access;

trap to virtual machine nonitor;

cache-line <= avail abl e cache line();

get_entry from sorted line buffer(cache line)
get-entry-fromsorted counter_buffer(cache line);
return fromtrap to virtual machine nonitor;

retry data access;
exit_recovery_ upon completion();

br eak;
}

menory- bl ock-arrives: {
if (original access is data access) {

~e

}

el se {
cache-line <= available cache line();
install_memory_block_into_cache_instruction line();

break;

dat a- access-hits-in-cache-data-line: ¢{
SWi tch (cache_line.SF) {

IIN": {
cache_line.counter <= 0;
break;

*/
*/
*/

*/
*/
*/

*/
*/
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}
1" E n :
if (cache-line.counter !'= 0) {
cache_line-counter--;
el se {
stall data access;
trap to virtual machine nonitor;
cache line-status of line <= | NVALID;
get_entry from sorted_ line buffer(cache line)
get-entry-fromsorted counter buffer(cache line);
return fromtrap to virtual machine nonitor;
retry data access;
}
break;
}
IIRII ‘: {
if (cache line.counter != 0) {
cache_line.counter--;
}
el se {
stall data access;
trap to virtual nachine nonitor;
cache line.status of |ine <= SHARED
get-entry-fromsorted counter buffer(cache |ine)
return fromtrap to virtual machine nonitor
retry data access;
}
br eak
}
IIVI| :
if (cache-line-counter !'= 0) {
cache line.counter--;
}
el se {
stall data access
trap to virtual machine nonitor;
get-entry-fromsorted counter_buffer(cache line);
return fromtrap to virtual machine nonitor;
retry data access;
}
br eak
}
exit_recovery upon_completion();
br eak

}
defaul t: {
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exi t-recovery-upon-conpl etion();
br eak

}

wite back-and-invalidate-cache-1ines0O
{
i <= CSB.toggle flag;
i f (CsB.checkpoint_area[i].status != PERVANENT- CHECKPO NT- AREA) {
i <= 1 — CSB.toggle flag;
}

for (each dirty cache-line in csB.checkpoint area[i].cache) {
write cache-line back into main nmenory;

for (each cache-line in csB.checkpoint_area[i].cache) {
cache _line.status_of |ine <= | NVALI D,

}

tell the directory controller of each nenory nodul e
to change the status of any menory block (i. e. cache line)
held by the cache (of the local processor) to indicate that
the cache no |onger holds the nenmory bl ock

for (each cache-line in cache of local processor) {
cache line.status of |line <= | NVALI D
}
}

exi t-recovery-upon-conpl etion()

if ((sorted-counter-buffer has no entry where SF is “E” or “R”) &&
(counters in all valid cache data lines where SF is “E” or “rR” are 0)) {

Ty S S Py P S */
/*  Conpletion of recovery is inmmnent. */
/* */
/* Update state of cache. */
J H e */

for (each valid cache-line in cache) {
switch (cache-line.SF) {
IIEII: {
cache line.status of |ine <= | NVALI D
break;

}

IIRI': {
cache line.status of |ine <= SHARED
break;

}
defaul t: {
br eak

}
}

establish checkpoint();



}

{

write-back-and-invalidate _cache lines();

exit recovery and resune nornmal execution;

}
el se {
/) ® e e ———————— e
/*  Conpletion of recovery is not immnent.
K e e e
}

get next matching entry from sorted-Iine-buffer;

cache-line.tag <= tag(sorted line buffer[entry].extended tag);
if (data-access == wite) {
cache line.status of |ine <= EXCLUSI VE;
}
el se
cache line.status of |ine <= SHARED,

}
cache-line-1ine-of-data<=sorted_line buffer[entry].line of data;

get-entry-from sorted-counter(cache-Iline)

{

get next matching entry from sorted-counter-buffer;

if (no matching counter) {
cache |line.counter <= 0;
cache-line. | DF <= 1;
cache-line.SF <= "N";

}

el se {
cache-line.counter <= sorted-counter-buffer[entry].counter;
cache _line.|IDF <= 1,
cache_line.SF <= sorted-counter-buffer[entry]. SF

}

*/
*/
*/

*/
*/
*/

*/

*/

*/
*/
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H. Pedagogical Example

To complete our

is a directly mapped cache with 3 entries. We designate the 2nd-level cache as simply “cache” in figure 10. As for
the fields of the cache, we designate the “line of data’, the “ counter”, and the 2-bit status flag (SF) as simply “data’,
“cntr”. and “status’. In the line buffer and the counter buffer, we designate the “extended tag” as “xtnd tag”. For
simplicity, we omit “status of lineg’ and the instruction/data flag (IDF) from the cache. Also, we do not consider
instruction accesses. We consider only data accesses.

In this example, “P” executes 2 simple statements; “X =2*A” and“Y =X + A”. When “P” attempts to
execute“X =2 * A", the data accesses for “A” and “ X" missin the 2nd-level cache. After the incoming memory
blocks satisfying these accesses arrive at the local directory controller, it forwards them to the 2nd-level cache and,
avoiding any additional delay, concurrently copies them into the line buffer. The cache resets the counters of the
affected cache linesto 0. Then, “P” reads the value of “ A", calculates the new value of “ X", and writes that value,
6, into the cache line. Since “P” accesses each of “A” and “X” once, the cache increments the counter of each of
“A” and “X" by 1.

Then, aremote processor writes into the cache line for “ A”. Thelocal directory controller receives an
invalidation and forwards it to the 2nd-level cache. It invaidates the cache line for “ A” . The cache sends an

acknowledgment to the directory controller and, avoiding any additional delay, concurrently sends the counter (of

30

E
& description of DRSM-L, we
£ X=2%A Y=X+A fault | , o
; 2 ; illustrate its operation with a
' 8 =5
- EBEES |
Le o, o[A3]0 AR |- o [A[0]0 AT0[1 A[OTI] | + simple example. Figure 10
8 1 1 X[A[0 e XA 1 X[EA ] X621 ] X612 ] x
'S 2 2 2Y[2]0 61 5[0 .
; illustrates the normal
|
2 A0[3 A0[3 .
= X7 1 XT[1 execution of a processor “P”
o ' A0 [0
: invali vz |2 ' )
B =¥ invalidate remotely bead dirty from the last checkpoint. At
-
g AIE AD[1[E )
%g VZ 1K the last checkpoint, the 2nd-
33
e .
Ty level cache, the line buffer,
EZg 2
R-ovg
. ) and the counter buffer are
Figure 10. Normal Execution of Processor
empty. The 2nd-level cache



31

the invalidated cache line) with the acknowledgment. The directory controller inserts the counter into the counter
buffer and sets the SF to “E”, indicating that an eviction/invalidation of the cache line occurred after the number of
accesses recorded by the counter.

Next, “P” executes“ Y = X + A”. When “P” attemptsto execute“ Y = X + A”, the data accesses for “ A" and
“Y” missin the 2nd-level cache. After the incoming memory blocks satisfying these accesses arrive at the local
directory controller, it forwards them to the 2nd-level cache and, avoiding any additional delay, concurrently copies
them into the line buffer. The cache resets the counters of the affected cache lines to 0. Then, “P” reads the values
of “A” and“ X", cdculates the new value of “ Y” , and writes that value, 6, into the cache line. Since “P” accesses
each of “A”,“X”, and “Y” once, the cache increments the counter of each of “A”,“ X", and“Y” by 1.

Then, a remote processor reads the memory block of “ Y. The local directory controller receives a write-back
request (associated with the remote read) and forwards it to the 2nd-level cache. It changes the status of the affected
cache line from EXCLUSIVE to SHARED. The cache sends a copy of both the data and the counter in the line to
the directory controller and concurrently resets the counter to 0. The directory controller inserts the counter into the
counter buffer and sets SFto “ R”, indicating that a remote read of the cache line occurred after the number of
accesses recorded by the counter.

Now, we suppose that afault occurs at thispoint. Figure 11 illustrates how “P” performs recovery and,

specifically, how “P” reproduces the exact same dirty value that “P” produced prior to the fault.
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Figure 11. Recovery of Processor 2nd-level cache with the contents
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of the cache saved at the last checkpoint. For each line in the cache, the VMM resets the counter to 0 and sets the
SFto “V”. (In our simple example, the contents of the cache saved at the last checkpoint is empty and has no valid
lines.) The VMM also loads “P” with the processor state saved at the last checkpoint. Next, the VMM groups the
entries (by the 2nd-level-cache index of the extended tag) of the line buffer and the counter buffer and places the
entries into the sorted line buffer (SLB) and the sorted counter buffer (SCB). The grouping procedure maintains, for
each cache index, the temporal order in which the entries were originally inserted into the line buffer and the counter
buffer.

Then, “P” proceeds to execute in recovery mode. When “P” attempts to execute “ X =2 * A”, the data
accesses for “ A” and “X” missin the 2nd-level cache. Execution traps to the VMM. To satisfy each of these
misses, the VMM retrieves the next matching entry from the SLB and the next matching entry from the SCB and
places the contents of the entries into the appropriate cache line. Since the SCB has no matching entry for “ X", the
VMM resets the counter in the cache line for “ X” to 0 and setsthe SF in that cache lineto “ N” (meaning “ no
event”). Then, “P” reads the value of “ A", calculates the new value of “X”, writes that value, 6, into the cache line.
Since “P” accesses each of “A” and “ X" once, the cache decrements the counter of each of “A” and “ X" by 1 if
counter is not 0. If the counter is already 0, the counter is not decremented.

At this point in normal execution, an invalidation arrives at the 2nd-level cache. Figure | 1illustrates this
event with an italicized label.

Next, “P” executes “Y = X + A”. When “P” attempts to execute “ Y = X + A”, the data access for “ A” hitsin
the 2nd-level cache. It discovers that the counter for “ A” is0, and since SFisnot “ N”, execution traps to the VMM.
It then acts on the value of the SF. Sinceit is“E” and indicates that the cache line was evicted/invaidated, the
VMM retrieves the next matching entry from the SLB and the next matching entry from the SCB and places the
contents of the entries into the cache line for “ A” . Since the SCB has no matching entry for “ A", the VMM resets
the counter in the cache line for “ A” to 0 and sets the SF in that cache lineto “ N” (meaning “ no event”).

The data access for “ X" aso hitsin the 2nd-level cache. It discovers that the counter for “X” is O, but since
the SFis“ N”, execution does not trap to the VMM.

The data access for “ Y” missesin the cache. To handle the access misson “ Y” , the VMM retrieves the next
matching entry from the SLB and the next matching entry from the SCB and places the contents of the entriesinto

the cacheline for “Y”.
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Then, “P” reads the values of “ A” and “ X", caculates the new value of “ Y”, and writes that value, 6, into the
cache line. Since “P” accesses each of “A”,“ X", and“Y"” once, the cache decrements the counter of each of “ A",
“X",and*Y” by 1if the counter is not O. If the counter is already 0, the counter is not decremented.

At this point in normal
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Figure 12. Completion of Recovery of Processor
following 2 conditions: (1) the

SCB has no remaining entry with a SF of “E” or “R” and (2) the countersin al valid cache datalines (i. e. with IDF
being “1”) with a SF of “E” or “R” are 0. Execution traps to the VMM. For each valid cache data line, if the SF is
“E” or “ R". then the VMM changes the status of the lineto INVALID or SHARED, respectively.

To complete the recovery from the fault, the VMM invokes “P” to establish a checkpoint, indicated in figure
12. Establishing the checkpoint clears the line buffer and the counter buffer and resets all the counters in the 2nd-
level cacheto 0. Once the checkpoint is established, the VMM reads each dirty 2nd-level-cache line saved in the
permanent-checkpoint area of the CSB and writes the line back into main memory. The VMM changes the status of
each 2nd-level-cache line saved in the permanent-checkpoint area (of the CSB) to INVALID. Then, the VMM tells
the directory controller of each memory module to change the status of any memory block (i. e. cache line) held by
the 2nd-level cache (of “P”) to indicate that the 2nd-level cache no longer holds the memory block. The VMM also

changes the status of each line in the 2nd-level-cache (of “P”) to INVALID. The contents of the 2nd-level cache are
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now consistent with the information stored in the directories of the memory modules. “P” resumes normal
execution.

“P” must establish a checkpoint at the end of recovery in order to deal with the loss of counter values after a
fault. The last values of the countersfor “ A” and “ X" in figure 10 are 1 and 2, respectively. Both | and 2 are lost

after the fault occurs.

V. Optimal Size of Line Buffer and Counter Buffer

For a given amount of silicon area from which we can build the line buffer and counter buffer, we show that
the optimal size of each is one where the ratio of the number of entries in the counter buffer to the number of entries
in the line buffer equals the ratio of the rate at which the counter buffer fillsto the rate at which the line buffer fills.

Suppose that we have the following parameters.

E[ CB] = number of entries in the counter buffer
E[LB] = nunmber of entries in the line buffer
A(T, E) = amount of silicon area consunmed by transistors to inplenment "E"
entries for buffer of type »T~
AA = fixed anmount of allocated silicon area in which to inplenent

counter buffer and line buffer

R[CB] = rate at which counter buffer fills in terns of the nunber of
entries per unit tine

R[LB] = rate at which line buffer fills in terms of the nunber of entries

per unit tine
RC = rate of establishing checkpoints

Then, considering only checkpoints tri ggered by overflowing a buffer, we have the following equations.

A(“counter buffer", E[CB]) + A(“line buffer", E[LB]) = AA (equation #1)

RC = max (R[CB] / E[CB], R LB] / E[LB]) (equation #2)

The optimum size of each of the counter buffer and the line buffer arises when the "RC", rate of establishing
checkpoints, is minimum. Suppose that we select "E[CB]" and "E[L.B]" to be "EQ[CB]" and "EOQ[LB]", respectively,

where
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max (R[CB] / EQ CB], R LB] / EJLB]) (equation #3)

3

RICB] / EQCB] = R LB / EJLB]. (equation #4)

Now, we consider what happens when we increase "E{CB]" or decrease it. Suppose that we increase it to some

value "E2[CB]" such that "E2|CB]" is greater than "EO{CB}". By equation #1, "E[LB]" must decrease to some

value, say "E2[LB]. Then, we have that

max (R[CB] / E2{cB], RILB] / E2[LB]) (equation #5)

3

R LB] / E2[LB]. (equation #6)

On the other hand, suppose that we decrease "E|CB|" to some value "E1{CB]"such that “El [CB|" is less than
"EO[CB}". By equation #1, "E[LB]" must increase to some value, say “El (LB]. Then, we have that
(equation #7)

max (Rl CB] / E1[CB], R[LB] / E1[LB])

3

R[CB] /E1[CB]. (equation #8)

Comparing equation #4, equation #6, and equation #8, we see that “ RC” is smdlest when "E[CB|" equals "EO[CB]".

Hence, the optimum ratio of "E[CB]" to "E[LB]|" is one where

E[CB] / E[LB] = RCB] / RLB]. (equation #9)



V1. Simulation Environment and M ethodology

A. Multiprocessor Simulator
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Figure 13. Base Multiprocessor

36

We evaluated DRSM-L by simulating its
operation within a multiprocessor simulator. The block
diagram of the base multiprocessor in our simulator
appearsin figure 13, illustrating a 2-processor
configuration. The model of the memory system and the
network is the NUMA model packaged with the SimOS
simulator [4]. Instead of SIMOS, we use our own
simulator, ABSS, to simulate the processors and to
drive the model of the memory system and the network.

ABSS is an augmentation-based simulator that runs

significantly faster than SimOS [8]. Our ssimulator has the following parameters.
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base paraneters

processor = SPARC V7 @ 200 negahertz
cache policy = wite-back
menory nodel = sequential consistency

| st-level instruction cache = 32 kilobytes with 4-way set associativity,
2 states (INVALID, SHARED), 64-byte line
Ist-level data cache = 32 kilobytes with 4-way set associativity,
3 states (INVALID, SHARED, EXCLUSIVE), 64-byte line
2nd-level cache = 1 nmegabyte with 4-way set associativity,
3 states (INVALID, SHARED, EXCLUSIVE), 128-byte line

average delay (NUMA BUS-TIME) between 2nd-level cache
and directory controller (DC = 75 cycles
average delay (SCACHE HIT TIME) for access that hits
in the 2nd-level cache = 50 cycles
average delay (NUMA PILOCAL DC TIME) in the loca DC
for local access = 100 cycles
average delay (NUMA Pl REMOTE-DC-TIME) in the |local DC
for remote access = 25 cycles
average delay (NUMA NILOCAL DC TIME) in the rempte DC
for renmote access = 350 cycles
average delay (NUMA_NIREMOTE DC_TIME) in the rempte DC
for remote reply = 25 cycles
average network delay (NUMA NET TIME) between 2 Dpcs = 150 cycles
average delay (NUMA MEM TIME) to access nmenory = 50 cycles

DRSM L paraneters

wi dth of counter = 32 bits

line buffer = 8192 entries

counter buffer = 8192 entries

timer = expiration per 20 nmillion cycles

B. Benchmarks

I'n ABSS, Werun 6 benchmarks -- Cholesky, FFT, LU,ocean, radi x, and water -- fromthe SPLASH2site
[12] Cholesky factors a sparse matrix. FFT perfornms a fast Fouriertransform. LU factors adense matrix. Ocean
simulates eddy and boundary currents in oceans. Radix performs a radix sort. Finally, water evaluates the forces
and potentials as they change overtime among water nolecul es.

Woopresents a detailed study of these benchmarks [12]. They have 2 conmon characteristics. First, the
working set of all these benchmarks fit within the large 2nd-level cache of our TCMP. Second, these benchmarks
repreent a scientific workload. Theyareuseful in representing a wide variety of nmenory-access patterns but do
virtually no comunication with the environment outside of theTCMP. So, establishing acheckpoint that is

triggered by conmunication between a processor and the environment outsdeof the TCMP does not arisein our
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simulations. We note that regardless of the event triggering the establishment of a checkpoint, the procedure for

establishing a checkpoint remains the same. Hence. we can till evauate the performance of our hardware-based

algorithms even if checkpoint establishment is tri ggered by a smaller set of events.

C. LSM-type Algorithm and Apparatus

processor processor
0 #1

i

directory
DRSM #8 controller
Distcrated
A Recoverahle dependency
yadrix
rocessor Shared Memory #1
! E E
DRSM %2 I I
bonk #1 bank #2
of memary of memory

Figure 14. Distributed

Recoverable Shared Memory

In order to compare the performance of DRSM-L (asaUSM-
type agorithm) against a L SM-type agorithm, we introduce DRSM.
It is arecently developed LSM-type algorithm and is an extension of
recoverable shared memory (RSM) developed by Banatre. Figure 14
illustrates only the key structures of DRSM for a 3-processor
configuration.

We very briefly describe how DRSM works. Bank #1 of
memory holds the working data, and bank #2 holds the permanent

checkpoint. The dependency matrix records checkpoint dependencies

that can arise when 2 processors access the same memory block in the memory module. For example, if processor

P1 reads a memory block into which P2 previously wrote data, then the checkpoint dependency “P1 > P2” arises,

and the directory controller setsentry [1, 2] of the matrix to “ 1”.

DRSM establishes a checkpoint in 2 phases: tentative checkpoint and permanent checkpoint. Suppose that

processor “P” wishes to establish a tentative checkpoint. “P” establishes it, then queries all the dependency

matrices, and identifies al processors that are dependent on “P”. “P” tells them to join the tentative checkpoint. As

arecursive step, each dependent processor, in turn, queries the dependency matrices, determines all dependent

processors, and tells them to join the tentative checkpoint. DRSM repeats the recursive step until it finds all

dependent processors. A processor joins the tentative checkpoint by saving the processor state into the local

memory module and by writing al dirty 2nd-level-cache lines back into main memory (i. e. bank #1).

Once the tentative checkpoint is concluded, “P” initiates the permanent checkpoint by telling all dependent

processors and al dependent memory modules to convert the tentative checkpoint into a permanent checkpoint. A

dependent memory module is a memory module where (1) the dependency matrix has non-zero entries for any

dependent processor or “P” or (2) bank #1 has dirty blocks written by any dependent processor or “P” since the last
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checkpoint. Each dependent memory module marks each block containing tentative-checkpoint data in bank #l to
indicate that the tentative-checkpoint data is converted into permanent-checkpoint data. After the permanent
checkpoint is concluded, a write access hitting on a marked block causes the memory module to first copy the data
(in the marked block) into bank #2 before answering the write access. After the dependent processors and the
dependent memory modules complete their permanent checkpoint, “P” completes its permanent checkpoint.

The DRSM described here differs from the DRSM in prior work [10] in regards to only 1 aspect. In the
current DRSM, bank #2 always holds the permanent checkpoint, but in the prior DRSM, bank #2 alternates between
holding permanent-checkpoint data and holding working data. The extra functiondlity in the prior DRSM proved
unnecessary, so we removed the functionality and simplified the hardware.

Finaly, only 2 events trigger the establishment of a checkpoint. They are (1) expiration of atimer and (2)

communication between a processor and the environment outside of the TCMP.
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VII. Analysis and Results

A. Overall Performance of Benchmarks

Figure 15 shows the performance of the 6 application benchmarks running on 3 TCMPs: the base system, the
system with DRSM, and the system with DRSM-L. We set the number of processors to 8, 16, and 32. We
decompose the execution time into 5 categories. non-idle time of the processor, the instruction stall, the lock stall,
the data stall, and the barrier stall. In general, the performance of DRSM-L exceeds the performance of DRSM.

We see 2 notable effects. Firgt, for all benchmarks except Cholesky, the barrier stall and the lock stall
increase substantially as the number of processors increases from 8 to 32 processors because all benchmarks except
Cholesky have several globa barriers and global locks. Both the locks within global barriers and the global locks,
where al processors compete for alock, cause hot spots to arise at the memory addresses holding the locks. In
Cholesky, after the processors enter the main loop of execution, they encounter no global synchronization. Hence,
Cholesky does not suffer this problem.

Second, the checkpointing algorithm can

Base Communication

occasionally cause a TCMP with DRSM to

memory

module
me | R Nl exceed the performance of the base TCMP.
e yd \\ .

N Figure 16 illustrates the explanation for this
(proctssor s processor
\ \Q/ M3 M3\ P

effect. In the base system, the transfer of dirty

Improvement by Checkpoint data from processor "Q" to processor "P"

memory
mo;“'e w typically involves the following activities. "P"

suffers aread miss in the local cache. "P" sends

Q\@) P message "M 1" to the remote memory module

Figure 16. Communication Improved by Checkpoint “R’. It sends arequest "M2" to "Q" to refrieve

‘he dirty data. "Q" replies to "R" with message "M3". "R" forwards the data to "P" in message "M4". This type of
communication involves 4 messages. "M 1", "M2","M3", and "M4".
Now, consider a TCMP with DRSM. Suppose that "Q" establishes a checkpoint just prior to this

communication. the transfer of dirty data. After the checkpoint, "P" reads the dirty data that was in the cache of
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"Q". "P" suffers only 2 messages. “MI " and "M4". The net cost of the communication itself is 3 messages: “MI ",

"M3", and "M4". ("M3" is the cost that is part of "Q" establishing a checkpoint.) Therefore, the checkpointing

improved the performance of the communication by eliminating the cost of message "M2". In order for this benefit

to have maximum impact, the checkpointing must occur just before such transfer of dirty data, but DRSM does not

guarantee that checkpointing will occur at such an opportune time. Hence, in figure 15, TCMP with DRSM only

occasionally -- not always -- performs better than the base TCMP.

B. Checkpoints and Checkpoint Data
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1. Checkpoints for DRSM-L
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Table 1 shows statistics about the rate at which DRSM-L establishes checkpoints per processor for each of the

6 benchmarks. For each application, there are 4 rows of statistics. The first row indicates the total number of

checkpoints established per processor. DRSM-L has effectively 3 events that trigger the establishment of a

checkpoint; they are (1) timer expiration, (2) line-buffer overflow, and (3) counter-buffer overflow. The
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checkpoints that are attributed to each tri gger appear in the 2nd row of statistics. For example, in the 2nd row for
Cholesky running on an & processor TCMP, we see “(9.62 + 0.12 + 0.62)". The number of checkpoints due to timer
expiration, line-buffer overflow, and counter-buffer overflow are 9.62, 0.12, and 0.62, respectively.

The remaining 2 rows show the time consumed by checkpoint establishment. The 3rd row shows the number
of cycles for which a processor is stalled in establishing the number of checkpoints in the 2nd row. Each number
within parentheses in the 3rd row indicates a fraction of 10,000 cycles. The 4th row shows the percentage (of the
total execution time of the benchmark) represented by the number of cyclesin the 3rd row. For example, during the
execution of the Cholesky benchmark by the 8-processor TCMP, atypical processor consumed 81,890 cyclesin
establishing a total of 9.62 timer-triggered checkpoints. The 81,890 cyclesis 0.03977 % of the total number of
cycles needed to execute Cholesky.

The datafor DRSM-L indicates that the 8 192-entry line buffer and the 8 192-entry counter buffer are
adequately large. They overflow infrequently and, hence, tri gger the establishment of checkpoints only
infrequently. Based on the number of bits of storage, the size of the combination of the line buffer and the counter

buffer is close to the size of the 2nd-level cache.

E- processor TCWP l6-processor TCMWP 32-processor TCW
Chol esky 11.00 8.00 6. 00 checkpoints
(11.00) (8.00) (6.00) (pl ease see text)
(7.530) (3.447) (2.039) x le+6 cycles
(3.353) (2.327) (1.868) % of run time
FFT 2.00 2.00 2.00 checkpoints
(2.00) (2.00) (2.00) (pl ease see text)
(0.700) (0.278) (0.193) x le+6 cycles
(1.667) (1.161) (0.751) % of run time
LU 9.38 6.19 5.09 checkpoints
(9.38) (6.19) (5.09) (please see text)
(2.775) (0.832) (0.280) x le+6 cycles
(1.143) (0. 466) (0.171)  %of run time
ocean 24.00 20. 00 39. 00 checkpoints
(24.00) (20.00) (39.00) (please see text)
(31.227) (17.650) (10.910) x le+6 cycles
(5.871) (4.117) (1.338)  %of run tine
radi x 1.00 1.00 2.00 checkpoints
(1.00) (1.00) (2.00) (please see text)
(0.306) (0.378) (0.359) x le+6 cycles
(0.813) (0.974) (0.828) % Of run time
wat er 8.00 5.00 4.00 checkpoints
(8.00) (5.00) (4.00) (please see text)
(0.471) (0.238) (0.179) x 1le+6 cycles
(0.280) (0.247) (0.204) %of run tine
Table 2. Checkpoints for DRSM
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Table 2 shows dtatistics about the rate at which DRSM establishes checkpoints per processor for each of the 6
benchmarks. The checkpoints in table 2 are tri ggered by the expiration of the timer.

Table 3 shows statistics about the amount of data written into the line buffer and the counter buffer. Each row
has 3 consecutive numbers enclosed within parentheses. The 1st number is the number of entries written into the
line buffer. The 2nd number is the number of entries written into the counter buffer. The 3rd number is the ratio of
the 2nd number to the 1st number. Thisratio is the optimum ratio of the number of entriesin the counter buffer to

the number of entriesin the line buffer, according to equation #9.

8- processor TCWP l6-processor TCW 32-processor TCWP

Chol esky (35559.5; 28548.5; 0.80) (24420.2; 16946.8; 0.69) (18822.8; 11469.8; 0.61)
FFT (8782.0; 6335.1; 0.72) (4602.8; 3155.5; 0.69) (2680.0; 1882.9; 0.70)

LU (10571.5; 4475.9; 0.42) (6794.8; 2813.2; 0.41) (5293.3; 2147.0; 0.41)

ocean (124516.0; 116525.0; 0.94) (61962.0; 54849.1; 0.89) (39862.0; 35659.4; 0.89)
radi x (8389.2; 5223.5; 0.62) (12267.9; 10375.3; 0.85) (10379.2; 8968.8; 0.86)

wat er (4893.5; 3976.4; 0.81) (5123.9; 4326.2; 0.84) (4508.6; 3874.1; 0.86)

Table 3. Aundit-Trail Data (entries in line buffer; entries in counter buffer; ratio)

For DRSM-L with 8, 16, and 32 processors, the ratios represented by the 3rd numbers are concentrated in the
range of 10.62, 0.94],(0.69, 0.89], and [0.61, 0.89], respectively, excluding 3 atypical extreme values (i.e. 0.42,
041, and 0.41). That the ratios are concentrated in a somewhat narrow band over several rather different
applications is opportune. We can then select and use the average ratio (according to a geometric average) to
determine the relative sizes of the line buffer and the counter buffer, and this average ratio shall yield good system
performance across al the benchmarks. The geometric averages of the ratios within the bands of [0.62, 0.94],[0.69,
0.89],and |0.61, 0.89] are 0.79, 0.80, and 0.79, respectively. Our selected ratio of 1.0 -- ratio of 8192 entries in the
counter buffer to 8192 entriesin the line buffer -- is somewhat larger than these 3 geometric averages. (For our 6
benchmarks, the ratios change little as we vary the number of processors).

Idedlly, we use the following agorithm to determine the optimum ratio of the counter-buffer size to the line-

buffer size.
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1. Let R=1. "1" is our initial guess of the optinmumratio.

2. Set the ratio of the nunber of entries in the counter buffer to the
number of entries in the line buffer to "R". (W nust set the nunber of
entries according to the anpunt of silicon area that we can dlocate f or
bui | ding the buffers.)

3. Run a representative set of application prograns for a TCMP with the
nurmber of processors that we intend to use.

4,  For each run of each application, determine the ratio of the nunber of
entries witten into the counter buffer to the nunber of entries witten
into the line buffer.

5, Fromthe list of ratios determined in step #4, create a pruned |ist by
elimnating the atypical extreme ratios.

6. Using the values in the pruned list, deternm ne the geonetric average,
"Q",

7. If "o" is adequately close in value to "R', then we can use "R" as the
optimumratio of the counter-buffer size to the line-buffer size.

O herwise, if "Q" is not adequately close in value to "R", we set "R" toO
the value of "Q" and repeat the whole procedure starting from step #2.

C. Performance Impact of Establishing Checkpoints

When a processor establishes checkpoints, 2 types of interference can degrade the performance of the
processor in both DRSM and DRSM-L. First, the processor must waste time in actually establishing the checkpoint.
Second, establishing a checkpoint causes certain resources to be unavailable; a processor attempting to access such a
resource receivesa negative acknow edgnment. Forexanpl e, whensomeprocessor "P"establ i shes acheckpoint, "P"
negati vel y acknowledges cache-coherence messages (like invalidations) indirectly sent from other processors.

A processor in DRSM also suffers a third type of interference. During the establishment of a checkpoint, "P"
converts much dirty data (in state EXCLUSIVE) in the 2nd-level cache into clean data (in state SHARED) by
witing it back into manmemory. After "P" resumes execution after establishing the checkpoint, "P" wastes time in
submitting many upgrade requests to memory in order to convert clean data (which was dirty prior to the
checkpoint) back into dirty data so that "P" can resume writing into that data.

Wenote that identifying the precise portion (of eachbarinfigurel5) contributed by each of the types of
interference is difficult. This identificationis conplicated byseverdissuesFirst, establishingacheckpointcan
actually but unpredictably improve the performance of a processor, depending on when the checkpoint is

established. (Consider figure 16.) In addition, the delay caused by each type of interference can be amplified by the
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data dependencies among processors. For example, suppose that there are 3 processors: "P","Q", and “R’.
Suppose that "P" must wait on a result produced by "Q" and that "Q" must wait on a result produced by "R". “R” is
the head processor of this chain: “R=> Q =>P". Just prior to producing the result needed by "Q", "R" establishes a
checkpoint. The delay experienced by "R" in establishing the checkpoint is then propagated down the chain of
processors to "P". All processors in this chain then experience the delay. In general, determining (1) the occurrence
of such achain, (2) its head processor, and (3) its members is extremely difficult. Hence, instead of identifying the
precise portion (of each bar in figure 15) contributed by each type of interference, we focus on the overall
performance of the checkpointing algorithm and on selected statistics.

Table 4 shows the number of negative acknowledgments (NAKs) and upgrade misses generated by the base
TCMP and the TCMP with DRSM-L. For each of the benchmarks, the 1 st row shows the number of NAKs; the
impact of the 2nd type of interference is the increase in NAKs over that of the base TCMP. The 2nd row shows the

number of upgrade misses. A processor in DRSM-L does not suffer the 3rd type of interference.

8 processors 16 processors 32 processors
base DRSM L base DRSM L base DRSM L
Chol esky 127.2 148. 1 331.2 340.2 736. 4 665.9 negative ack.'s
9036. 1 9078.9 4954. 6 4938. 4 3268.2 3285.2 upgrade misses
FFT 86. 6 95.2 278.9 269.0 911.0 908.4 negative ack.'s
6374. 4 6377.2 3427.0 3428.5 1754.6 1755.4 upgrade nisses
LU 982. 4 993. 4 1848. 3 1915.9 3239.0 3225.6 negative ack.'s
2058. 8 2058.5 1041.1 1042. 2 519.2 520.6 upgrade nisses
ocean 6222. 2 6347.1 15936. 6 16480. 3 50931.9 50128.0 negative ack.'s
41021. 2 40980. 4 28386. 2 28430.9 14449.4 14511.8 upgrade misses
radi x 66.9 67.9 225.5 240.1 969. 9 926.4 negative ack.'s
105. 4 107.0 203.7 209.3 176.1 178.1 upgrade misses
wat er 399.6 440.0 954. 2 1007. 7 3042.1 2979.5 negative ack.'s
884.6 888.5 1220.0 1226. 8 704.3 705.8 upgrade nisses
Table 4. Negative Acknowledgments and Upgrade Misses for DRSM-L

Table 5 shows the number of negative acknowledgments (NAKs) and upgrade misses generated by the base
TCMP and the TCMP with DRSM. For each of the benchmarks, the 1 st row shows the number of NAKs: the
impact of the 2nd type of interference is the increase in NAKs over that of the base TCMP. The 2nd row shows the

number of upgrade misses; the impact of the 3rd type of interference is the increase in upgrade misses over that of



the base TCMP. This large increase in the number of upgrade misses is one of the mgjor reasons that DRSM

performs worse than DRSM-L.
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8 processors 16 processors 32 processors
base DRSM base DRSM base DRSM
Chol esky 127.2 148. 8 331.2 334.9 736.4 768.7 negative ack.'s
9036.1 22662.6 4954. 6 9533.7 3268. 2 5447.2 upgrade nmisses
FFT 86. 6 80.9 278.9 270.8 911.0 914.8 negative ack.'s
6374. 4 7534. 2 3427.0 3509. 8 1754. 6 1779.7 upgrade misses
LU 982. 4 748.6 1848. 3 1807. 8 3239.0 3214.4 negative ack.'s
2058. 8 9602. 9 1041.1 2925.9 519. 2 1093.8 upgrade misses
ocean 6222. 2 6404.5 15936.6  16624.4 50931.9 51009.8 negative ack.'s
41021.2 75475.0 28386.2 61812.2 14449.4  38453.7 upgrade misses
radi x 66.9 64.5 225.5 239.6 969. 9 1069.6 negative ack.'s
105. 4 231.9 203.7 559. 4 176.1 319.3 upgrade misses
wat er 399.6 430.1 954. 2 1025.7 3042.1 2844.7 negative ack.'s
884.6 1964.0 1220.0 1707. 4 704.3 962.2 upgrade mnisses

Table 5. Negative Acknowledgments and Upgrade Misses for DRSM

D. DRSM Versus DRSM-L

DRSM-L, a USM-type agorithm, has an inherent advantage over DRSM, a L SM-type agorithm. DRSM-L
enables a processor "P" to establish a checkpoint without regard to any other processor. By contrast, in a system
with DRSM, if "P" establishes a checkpoint, then all processors that are checkpoint dependent on "P" must also
establish a checkpoint. Suppose that "P" tends to establish checkpoints at a much higher rate than the other
processors. If the TCMP uses DRSM, then checkpoint dependencies between “P” and the other processors tend to
cause the other processors to establish checkpoints at a high rate, degrading the performance of the TCMP. On the
other hand, if the TCMP uses DRSM-L,, the high rate of checkpoints by "P" does not cause the other processors to
establish checkpoints at a high rate. Hence, DRSM-L has an inherent performance advantage over DRSM.

To quantitatively demonstrate this performance advantage, we artificially increase the rate at which processor

#3 in our TCMP establishes checkpoints. We set the timer of processor #3 to expire after each interval of 2 million



48

cycles, but we keep the current timer interval of 20 million cycles for the other processors. In other words, we

increase, by afactor of 10, the rate at which processor #3 tends to establish timer-triggered checkpoints.

We focus on Cholesky because it, unlike

the other benchmarks, does not suffer any hot

high rate of chechpoints far T CPLUY

e ; spots. Figure 17 shows the overall results for
2oy b B

Cholesky. (For DRSM, expiration of a timer

13608

is effectively the only event that triggers
establishing a checkpoint.) In figure 15,

DRSM-L runs about 9.09%,6.13%, or 4.77%

faster than DRSM for aTCMP with 8, 16, or

32 processors, respectively. In figure 17,

base (32}
DREM (02

OREM L {50}

ba
LREM
DRTM- L (B}
a
orow {15}
SREM-L (1€

DRSM-L runs about 26.75%, 25.00%, or

Figure 17. Effect of Irregular Checkpointing -- 19.28% faster than DRSM for a TCMP with 8,
Processor #3 with High Checkpointing Rate

16, or 32 processors, respectively. DRSM

DRSM DRSM L
8 cpus (120; 92.9) (103; 9.6)  checkpoints | Performsmuchworsethen DRSM-L in
16 CPUs (80; 68.8) (68; 6.9) checkpoints
32 cpus  (58; 50.4) (51; 5.1)  checkpoints figure 17 because the high rate of

Table 6. Timer-triggered Checkpoints: (number for

establishing checkpoints by processor #3
processor #3; average for other processors)

causes the other processors to establish
checkpoints at a high rate as well. To obtain insight into the extent to which checkpoint dependencies cause a high
rate of checkpointing by one processor to impact other processors, we introduce a lumped parameter that is the
average number of timer-triggered checkpoints across all processors except processor #3. Table 6 shows the values
for this new parameter. Each row has 2 sets of humbers. The 1 st number in each set is the number of timer-
triggered checkpoints established by processor #3. The 2nd number in each set is the average number of timer-
triggered checkpoints across all processors_except processor #3. Clearly, due to the checkpoint dependencies that
arein DRSM, the high rate of establishing checkpoints by processor #3 causes all the other processors to establish

checkpoints at ailmost the same high rate. Hence, DRSM performs much worse than DRSM-L.

VIIl. Conclusion
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Compared to abase TCMP or aTCMP with DRSM, a TCMP with DRSM-L performswell. Specificaly, we
showed that DRSM-L performs significantly better than DRSM when 1 processor, processor #3 in our case, tends to
establish checkpoints at a high rate. Such a scenario can arise when applications are structured in the following way.
One processor, "P", in the TCMP performs I/0 (i. e. communication) with the environment outside of the TCMP.
Each of the other processors in the TCMP performs the core computation of the application and periodicaly sends
results to “P’. "P" sends many messages (containing those results) to the environment outside of the TCMP and,
hence, must establish checkpoints frequently. When "P" does s0, it will not interfere with the core computation
being performed by the other processors -- if the TCMP uses DRSM-L.

We conclude that DRSM-L is a good checkpointing apparatus and algorithm for TCMPs. DRSM-L is the first
USM-type algorithm for a TCMP. Unlike current algorithms, DRSM-L allows independent establishment of a
checkpoint and independent roll-back from a fault and, hence, is much more scalable than DRSM. DRSM-L
performs much better than DRSM. Also, DRSM-L is substantially cheaper to implement than DRSM. For example,

DRSM-L requires only a single bank of memory, but both DRSM and RSM [2] require 2 banks of memory.
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