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Abstract

We consider the problem of providing afair bandwidth allocation to each of n flows that
share an outgoing link at a congested router. The buffer at the outgoing link isasimple
FIFO, commonly shared by packets belonging to the n flows. We devise a simple packet
dropping scheme, CHOK e, that discriminates against the flows which submit more pack-
etg/sec than is allowed by their fair share. By doing this, the scheme aims to approximate
the fair queueing policy.
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1 Introduction

The Internet provides a connectionless, best effort, end-to-end packet service using
the I P protocol. It depends on the congestion avoidance mechanisms implemented in the
transport layer protocols, like TCP, to provide good services under heavy load. However, a
lot of the TCP implementations do not include the congestion avoi dance mechanism either
by mistake or on purpose. Besides, there are agrowing number of UDP-based applications
running in the Internet, such as packet voice, packet video. All these flows do not back off
properly when they receive congestion indications. As aresult, they aggressively use up
more bandwidth than other TCP compatible flows. This could eventually cause "Internet
Collapse". A recent Internet draft RFC 2309 strongly recommends further research of
router mechanisms to deal with unresponsive or aggressive flows[1].

Asdiscussedin [1], there are two classes of router algorithms related to congestion
control: “scheduling algorithm” and “queue management”. Several scheduling algorithms
have been proposed to provide fairness in the bottleneck link bandwidth sharing. Fair
Queueing (FQ), which has been widely studied, maintains separate output queues for each
flow [2]. Upon congestion, a packet is dropped from the longest queue. In this scheme,
packets are scheduled using an approximate bit-by-bit, round-robin discipline, which actu-
ally achieves the max-min fair bandwidth allocation. By per flow queueing, all traffic
flows are essentially isolated from each other. Therefore, unresponsive flows can not
degrade the performance of TCP friendly connections. However, it is well known that this
approach requires complicated per flow states, which is not cost-effective to be widely
deployed.

Core Stateless Fair Queueing (CSFQ), a variant of Fair Queueing, was proposed to
simplify backbone router's design complexity [5]. In this method, routers are divided into
two categories: edge routers and core routers. An edge router keeps per flow states and
estimates each flow's arrival rate. These estimations are inserted into the packet headers
and then passed to the core routers. A core router merely maintains a stateless FIFO queue
and drops a packet randomly based on the rate estimation. This scheme reduces the core
router’s design complexity. However, the edge router's design is still complicated.

Besides, because of the rate information in the header, the core routers have to extract
packet information differently from traditional routers. Stochastic Fair Queueing (SFQ),
another variant of FQ, reduces fair queueing's address look up complexity [3]. Nonethe-
less, it requires extra data structures in order to match FQ's performance. Other scheduling
algorithms, such as Class Based Queueing (CBQ), require per flow states as well [4].

While the scheduling schemes can provide a fair bandwidth allocation with com-
plicated structures, the queue management mechanisms, although simple and easy to
implement, usually fail to provide fair service. The queue management schemes, such as
Drop Tail and RED, are designed to control the queue length by dropping packets when
necessary. It is well known that the widely deployed Drop Tail method can cause the
“Lock Out” and “Full Queue” problems [1]. RED, an active queue management algo-
rithm, was proposed to solve these issues [6]. By keeping the average queue size small,
RED avoids the bias against bursty traffic and reduces the delays experienced by most
flows. RED drops the arrival packets randomly based on the average queue size. In this
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way, it avoids the problem of global synchronization, where many flows reduce their win-

dow size at the same time. However, like Drop Tail, RED doesn’t penalize unresponsive
traffics. A flow's fraction of the aggregate packet drops roughly equals to its fraction of the
aggregate arrival rate. In other words, the percentage of packets dropping for each flow
over a period of time is almost the same. Consequently, misbehaving traffics could take up
a large percentage of the link bandwidth and starve out the TCP friendly flows.

To improve RED's capability of handling unresponsive users, a few methods have
been proposed, for instance, Flow Random Early Detection (FRED) [7] and RED with
penalty box [8]. Even though these two router mechanisms do not require per-flow states,
they all need extra data structures to collect certain types of state information. FRED
keeps per-active-connection states and RED with penalty box stores information about
unfriendly flows.

All the schemes discussed so far drop packets without examining them. A new
RED mechanism called Stabilized RED (SRED) suggests an idea of comparing the arriv-
ing packet with a randomly chosen packet that recently preceded it into the buffer [9]. The
scheme maintains a data structure, "Zombie List", which keeps the information regarding
recently seen flows. The SRED router estimates the number of active flows based on
“Zombie List”. When a packet arrives at the SRED router, it is compared against a ran-
domly chosen packet from the “Zombie List”. The arriving packet is dropped randomly
based on the packet comparison result and the estimation of the number of active flows.
The dropping probability increases if the active flow estimation is bigger or packet com-
parison ends in matching. In this way, SRED penalizes the unfriendly flows and controls
the buffer length independent of the number of active flows. However, this scheme needs
a large “Zombie List” data structure.

From the discussions above, we can see that there are generally two trends in
search of solutions to the problem of unfriendly flows. One trend is based on the almost
perfect fair queueing. In this group, router algorithms are proposed to reduce FQ's design
complexity while keeping FQ’s good feature of max-min fair bandwidth allocation. The
other trend is based on RED. Several methods are suggested to improve RED’s capability
of handling misbehaving users. However, all the schemes discussed so far fail to provide
fairness with a minimum overhead.

In this paper we propose a new method - the CHOKe (CHOose and Keep for
responsive flows; CHOose and Kill for unresponsive flows) algorithm. CHOKe is based
on the fact that the FIFO queue itself forms a statistical information about packet arrivals
upon which we can use to identify bad users. The basic CHOKe scheme is to choose a vic-
tim candidate from the FIFO queue when a packet arrives, and kill both the incoming and
victim candidate if they belong to the same flow. However if the victim candidate and the
arriving packet are from different flows, the newly arrived packet will be admitted into the
router with a probability based on average queue size and no action will be taken towards
the victim packet. CHOKe is very similar to SRED in that it selectively drops the packets
of unresponsive flows by making some comparison. However, CHOKe does not need any
state information and does not maintain any extra data structures except the data buffers.
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In the below, Section 2 explains our motivations and goals for using the CHOKe
mechanism. Section 3 describesthe CHOK e algorithm in detail. The simulation resultsare
presents in section 4. Instead of choosing only one victim candidate, CHOK e can be mod-
ified to select multiple packets from the FIFO queue. All the victim packets which have
the sameflow ID asthat of the arrival packet are dropped. The effect of this multiple drops
Is studied in section 5 in the context of multiple unfriendly flows, followed by discussions
and conclusionsin section 6.

2 Motivations and Goals

Our work is motivated by the lack of asimple, stateless router algorithm that can
achieve fair bandwidth allocation and flow isolation. We assume that packets are queued
into different FIFO queues according to its priority and there is a general priority based
scheduler in the router to schedule the packets. The queue management algorithm is pro-
posed to provide fair service to the flows that share one FIFO queue. The new scheme
should give the maximum penalty to unresponsive flows and prevent TCP friendly flows
from being sacrificed. As aresult, it minimizes the maximum bandwidth that unrespon-
sive flows can take and boosts up the well-behaving flow’s throughput. We want our
scheme to keep RED’s advantages such as no bias against bursty traffic, avoidance of glo-
bal synchronization and lower-delay interactive service. It is not our intention to achieve
the almost perfect fairness obtained by Fair Queueing. We would like to provide fairness
with alowest cost. By fairness, we mean minimizing the maximum bandwidth that unre-
sponsive flows can take, instead of the max-min fairness achieved by the Fair Queueing.
Overall, our goal of implementing the CHOK e algorithm can be itemized as the following:

1) min-max fair bandwidth allocation;

2) protection from aggressive sources,

3) no bias against bursty traffic;

4) no global synchronization by deploying this algorithm;
5) low latency for interactive applications,

6) minimum cost or implementation overhead.

3 Basic CHOKealgorithm

This section explains the basic algorithm used in the CHOK e gateways. As RED,
it calculates the average queue size using an exponential moving average. The average
gueue size is compared against two thresholds, a minimum and a maximum threshold. If
the average queue size isless than the minimum threshold, every arriving packet is queued
into the FIFO buffer. If the aggregated arrival rate is smaller than the output link capacity,
the average queue size should not build up to the minimum level and no packets are
dropped. If the average queue size is greater than the maximum threshold, every arriving
packet is dropped. This step moves the queue occupancy back to below the maximum
threshold.
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When the average queue size is between the minimum and maximum threshold,
each arrival packet is compared to arandomly selected packet from the FIFO queue. If
they have the different flow ID, the newly arrived packet is dropped with the probability
based on the average queue size. The dropping probability function is chosen to be the
same as the one used in RED as well. However, if both packets have the same flow ID,
both of them are dropped. The main idea here isto admit a new packet into the FIFO
gueue based on both the queue distribution and average queue size.

The algorithm is better illustrated by the simple example below. Let’s assume sev-
eral properly implemented TCP flows share a bottleneck link with a congestion-unaware
UDP flow. We aso assume all flows begin transmitting at the same time. The TCP flows
start off with alarge window size and the UDP flow has a constant bit rate which isamost
the same as the link capacity.

Initially, the FIFO gqueue in the CHOK e gateway has a size zero. The arriving
packets are queued into the buffer without drops. Soon, average queue size goes up and
over the minimum threshold since all flows send out packets aggressively. Then the
incoming packets start to be dropped and, associated with them, some packets are dropped
from the queue as well. At this moment, each flow takes up a certain amount of spacein
the buffer and no flow has much more packets in the queue than the other flows. So when
a packet is chosen from the queue, the chance of it having the same flow ID as the incom-
ing packet issmall. Therefore, we argue that the algorithm behaves mostly like RED up to
this point.

Then, the TCP flows start to throttle back because of packets dropping. But the
UDP flow still persistently send data at the same speed. As aresult, traffic arrival distribu-
tion is different from what it was before: the UDP flow makes a greater fraction of the
total incoming traffic compared to any other flow. This affects the queue distribution
among all the flows. The major difference between RED and CHOK e is the way they han-
dle this situation, where the arrival rate and queue occupancy are not equally distributed
among all the flows.

RED discards packets based on the average queue size only. When a packet arrives
at a queue whose size is between the minimum and maximum threshold, it has a probabil-
ity of being dropped. But the probability isindependent of the flow type. In other words,
al flows get the same probability of dropping at any time window. Even though a flow
with more arrivals has more drops as well, the ratio between aflow’s total packet drops to
its total packet arrivals stays roughly the same among all flows.

Unlike RED, CHOK e penalizes the ill-behaving users when the incoming traffic
rate and queue occupancy are not well balanced among all the flows. In the example dis-
cussed above, a UDP packet can be easily caught as a victim candidate when the UDP
connection uses more network resources. The action of dropping both the incoming packet
and the victim not only lowers the admission rate of the UDP flow but also reduce its
gueue occupancy. Besides, the flows with higher arrival rate have a higher probability of
dropping simply because they trigger the CHOK e algorithm more often. This process con-
tinues until the queue is well balanced again. As a consequence, thereis no flow can use
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up amajor fraction the bottleneck link bandwidth. From TCP flow’s point of view, they
are favored by the CHOK e gateway. First, the probability of being chosen as avictim can-
didate is small. Second, given being caught, it is given a second chance because it can be
left intact if the flow ID comparison ends in mismatching. Because the UDP flows don't
back off in the case of congestion, the probability is very high that those TCP victim can-
didates are left unharmed. Last, since CHOKe isinvoked upon a packet arrival, aflow
with lower arrival rate has a smaller drop rate aswell. A TCP flow packet, therefore, has
less chance of being dropped.

From the discussions above, we can see that CHOK e achieves the goals: 1)min-
max fair bandwidth allocation and 2)protection from aggressive sources. How CHOKe
achieves the other goals will be shown below.

AsRED, CHOK e estimates the average size by using an exponential moving aver-
age. By keeping the average queue size low, the delay experienced by the usersislower
and aburst of data can beadmitted into the buffer without dropping. Also a packet is
dropped randomly in CHOK e so there is no global synchronization, where alot of connec-
tions decrease or increase their windows at the same time.

Itisobviousthat CHOKeisatruly stateless algorithm, which does not require any
data management structure like all the other algorithms discussed do. Compared to a pure
FIFO queue, there are just a few extra operations that CHOK e have to do: drawing a
packet randomly from a queue, comparing the flow ID and dropping both the incoming
and victim packets. Flow ID comparison can be easily done in hardware. Drawing a
packet can be implemented as generating arandom address at which a packet flow ID is
read out. The operation of victim packet dropping is arguably more difficult because a
packet has to be removed from alink-list queue. Instead of breaking the link list, we pro-
pose to add one extrabit in the link-listed packet header. The bit is set to one when the vic-
tim candidate is decided to be dropped. Depending on the status of this bit, when a packet
moves up to the queue front, it is either discarded or sent out. In thisway, CHOKe can be
implemented using minimum overhead and therefore goal 6) is accomplished.

4 Simulation Result

In this section, we present our simulation results, which show that CHOKe can
successfully provide fair bandwidth allocation and protect TCP friendly flows. RED and
Drop Tail schemes, whose complexities are similar to that of CHOK e, are used as the
comparisons. It is not compared against Fair Queueing, which achieves the ideal fairness
by implementing the expensive, complicated per flow queueing.

The network configuration used in our smulationsis shown in Figure 1. There are
m TCP sources and n UDP sources sending packets. Accordingly, there are m TCP sinks
and n UDP sinksreceiving data. (i) sends packetsto R(i) wherei =1, 2, 3... etc. Inreturn,
R(i) sends back acknowledgmentsif it isa TCP sink. A UDP sink, however, simply
absorbs the data without sending packets back. K1 and K2 are gateways in the network.
The link between them has a capacity of 1IMbps, which is the bottleneck link. Every host
is connected to arouter by a 10Mbpslink. FTP sessions are assumed as TCP traffics. The
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window size of a TCP traffic is set to be 100. All packets are set to have the size of 1K
Bytes. The UDP hosts send packets at a constant bit rate (CBR) of r Kbps, wherer isa
variable.

Throughput(Kbps)

1200

Figure 1. Network Configuration:
m TCP sources, n UDP sources

K1 |1Mbps | K2:
router router

Figure 2. Drop Tail’s Throughput Comparison
(32 TCP sources, 1 UDP source)
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Figure 2 to Figure 4 show the throughputs of the TCP and UDP flows using differ-
ent router algorithms: Drop-Tail, RED and CHOKe. There are m = 32 TCP sources (Flow
#1 to Flow #32) and n = 1 UDP source (Flow #33) in the smulation. The UDP source
sends packets at arate of r = 2 Mbps, which is twice the bandwidth of the bottleneck link.
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Figure 3. RED’s Throughput Decomposition
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From these figures, we can clearly see that the RED and Drop-Tail gateways can’t
provide fair bandwidth allocation. The UDP flow takes away more than 95% of the bottle-
neck link capacity and the TCP connections can only take the remaining 50 Kbps.
CHOKZe, on the other hand, improves the throughput of the TCP flows dramatically by
limiting the UDP throughput. As shown in Figure 4, the UDP flow’s throughput at steady
state is 250 Kbps, which is only 25% of the link capacity. The throughout of per TCP flow,
however, is boosted from 1.6 Kbps to 23.4 Kbps.

The individual throughputs of the 33 connections (32 TCP flows + 1 UDP flow)
are plotted in Figure 5 to Figure 7. Y axis is drawn in Log scale. As shown in Figure 7,
although the UDP flow's throughput is still higher than the rest TCP flows, CHOKe pro-
vides much better service to the TCP flows by simply dropping both the incoming and the
victim packet when they have the same flow ID.

Figure 5. Drop Tail: Throughput per Flow
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Figure 8. CHOKe’s Performance Under Different Traffic Load
(32 TCP sources, 1 UDP source)

—e— UDP Throughput with mark for
UDP Dropping Percentage

300

250

—m— Awverage TCP Throughput H

73.3%

200

Kbps

150

96.4% \ 98-1%
44 3%

100

97.8% 98%
98.8%

50

?

T

100

1000 10000
UDP Arrival Bandwidth (Kbps)

March 18, 1999



The CHOKEe's performance under different traffic load conditionsisillustrated in
Figure 8, where the flow throughputs versus the UDP flow arrival rate are plotted. The
drop percentage of the UDP flow isaso shown in Figure 8. From the plot, we can see that
CHOKe drops 23% of the UDP packets when its arrival rateis as low as 100K bps. Asthe
UDP arrival rate increases, the drop percentage goes up as well. It drops almost all of the
packets (99%) when the arrival rate reaches 10Mbps. The average TCP flow’s throughput
stays almost constant.

Figure 9 shows the queue distribution among the flows for different traffic load
conditions. The minimum and maximum threshold are set to 30 and 60 packets. It is obvi-
ous that CHOKe can control the average queue size as RED does. Note that when the UDP
arrival rate is at 100Kbps, it is only a few times the rate of a single TCP flow and one tenth
of the total TCP arrival rate. However, CHOKe is able to detect this small difference and
drops 23% of the UDP traffic. With the UDP arrival rate goes up, its share of the queue
occupation increases. Because of the aggressive dropping scheme that CHOKe adopts, the
average of queue size of the UDP flow can never become the dominant portion of the
gueue usage.

Figure 9. Queue Distribution for Different Traffic Load
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As a comparison, RED’s performance under different traffic load is shown in Fig-
ure 10 and 11. It is obvious that RED can not provide protection against greedy connec-
tions. The unresponsive flows use up all the network bandwidth and start out the well-
behaving flows. Also, RED becomes a Drop Tail scheme under heavy load since the queue
size goes above maximum threshold. All the arrival packets are dropped.
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Figure 10. RED's Performance Under Different Traffic Load
(32 TCP sources, 1 UDP source)
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5 CHOKewith Multiple Drops

To study the effect of multiple drops, we modified the basic CHOK e so that multi-
ple victim candidates are dawn from the FIFO queue. The dropping disciplines are asthe
following:

1) Multiple victim candidates are drawn from the FIFO queue;

2) Any victim candidate whose flow ID is the same as that of the incoming packet
iskilled;

3) Aslong asthereis one victim candidate dropped, the arriving packet is
dropped as well. The incoming candidate is enqueued into the FIFO queue only
If none of the victim candidates hasitsflow ID.

Figure 12-13 show the performance of the CHOK e agorithm with two and three
victim candidates. The network configuration for the smulation is the same as the onein
Figure 4 (32 TCP sources share a 1 Mbps bottleneck link with 1 UDP source. The CBR
rate for the UDP source is at 2Mbps). From these two figures, we can see that CHOKe
with multiple candidates can improve the basic CHOKe scheme’s performance. However,
the performance difference between CHOKe with two or three victim candidates is hardly
noticeable. So CHOKe with two victim candidates seems to be the optimal cost-effective
solution. Since CHOKe with m-1 victim candidates has a maximum drop of m packets (m-
1 victim packets + 1 incoming packet), it will be referred to as CHOKe with drop m. As a
comparison to the basic CHOKe scheme, the performance of CHOKe with drop 3, under
different traffic load, is illustrated in Figure 15. The corresponding queue distribution is
depicted in Figure 14.

Figure 12. CHOKe with 2 victim candidates: Throughput Decomposition
(32 TCP sources, 1 UDP source)
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Figure 13. CHOKe with 3 victim candidates: Throughput Decomposition

(32 TCP sources, 1 UDP source)
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Figure 14. CHOKe with Drop 3: Queue Distribution for Different Traffic Load
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Figure 15. CHOKe with drop 3:
Performance Under Different Traffic Load (32 TCP sources, 1 UDP source)
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As expected, because of its more aggressive dropping scheme, CHOK e with drop
3 has a better control over the unresponsive UDP traffic than the basic CHOK e agorithm.
Besides, average queue size is kept smaller so that traffics experience less delay. Yet, we
have to notice that the performance improvement, brought by the multiple drops, is not
radical in this case, around 10-15%.

When there are many UDP flows in the network, CHOK e with multiple drops
exhibits its advantage over the basic algorithm. A simulation configuration is set up where
there are 32 TCP sources and 5 UDP sources. All the UDP sources are assumed to have
the same arrival rate. The minimum and maximum queue thresholds are still set up to be
30 and 60 packets. The simulation results for the basic CHOK e algorithm are given in Fig-
ure 16 and 17. As shown in Figure 16, the throughput of the UDP sources goes up mono-
tonically with their arrival rate. As aresult, thereis almost no bandwidth left for TCP
sources. From Figure 17, we can see that, although the total UDP flows occupy almost all
the buffer space, each UDP connection takes only around 20% of the queue. As aresullt,
the chance of catching a right victim is low and UDP flows can't be regulated as desired.
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Figure 19. CHOKe with Drop 6: Queue Distribution
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CHOKe with multiple drops reinforce the TCP flows’ throughput by its vigorous
dropping method, as depicted in Figure 18 and 19. Because multiple victim candidates are
selected from the queue, the chance of catching the bad flows increases. Therefore, the
CHOKe with multiple drops can penalize those flows that are hard to detect but use more
than their fair share network bandwidth.

6 Discussions and Conclusions

As discussed in section 5, the basic CHOKe scheme only works well with a small
number of unresponsive flows. When there are more ill-behaving users, the number of
gueue packet drops has to be increased correspondingly in order to achieve our goals.
Therefore, the implementation gets complicated. A new implementation is being worked
on to reduce the design complexity.

In summary, we have proposed a new congestion control scheme, CHOKe, which
can limit the throughput of misbehaving users with a minimum overhead. It uses the statis-
tical information that exists in the packet buffers to identify and penalize bad flows. When
there is no unresponsive flow at the gateway, CHOKe behaves just like RED. It maintains
all the good features that RED has.
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