
Coarse Grain Carry Architecture for FPGA

Hyuk-Jun Lee and Michael Flynn

Technical Report : CSL-TR-99-780

February 1999

This research has been supported by the Dept. of the Army under contract

DABT63-96-C-0106

Coarse Grain Carry Architecture for FPGA

by

Hyuk-Jun Lee and Michael Flynn

Technical Report : CSL-TR-99-780

February 1999

Computer Systems Laboratory

Stanford University

Gates Building 3A, Room 230

Stanford, California 94305

Email: hyukjunl@umunhum.stanford.edu

Web: http://umunhum.stanford.edu

Abstract

In this report we investigated several methods to improve the performance of FPGA for

general purpose computing. In the early stage of this research we identi�ed the �ne grain

size of current FPGA as the major performance bottleneck. To increase the grain size,

we introduced coarse grain carry architecture that can increase the granularity of arith-

metic operations including addition and multiplication. We used throughput density as a

cost/performance metric to justify the bene�t of the new architecture. We could achieve

roughly up to 5 times larger throughput density for selected applications. Along with that

we also introduced a dual-rail carry structure to improve the performance of a carry chain,

which usually set the cycle time of a FPGA design. A carry select adder built from the

dual-rail carry structure reduces the carry chain delay by a factor of two.

Key Words and Phrases: FPGA, grain, carry, carry save, carry select,throughput

Copyright c 1999

by

Hyuk-Jun Lee and Michael Flynn

Contents

1 Introduction 1

2 Background 2
2.1 Architecture of SRAM based FPGA . 2

2.1.1 con�guration logic block . 2

2.1.2 routing architecture . 4

2.1.3 dedicated carry chain . 4

3 System perspective 5
3.1 Locating the performance bottleneck and its implication 5

3.1.1 interconnect and grain size . 5

3.1.2 carry architecture . 7

3.2 Ideas . 8

4 Methodology 8
4.1 Metrics . 8

4.1.1 area . 8

4.1.2 delay(cycle time) . 9

4.1.3 throughput and throughput density 9

4.1.4 power-delay product . 9

4.1.5 energy-delay product . 10

4.2 Benchmark selection . 11

4.3 Simulation method . 11

5 Implementation 12
5.1 Current architecture-ripple carry adder . 12

5.2 High performance carry adder . 13

5.3 Coarse grain carry adder . 15

5.3.1 adder only . 15

5.3.2 adder/subtracter . 16

5.3.3 conditional adder/subtracter . 16

6 Result 16
6.1 AR and CR . 16

6.1.1 group I: 4-input addition . 17

6.1.2 group II: 4-input addition and subtraction 20

6.1.3 group III: conditional 4-input additions/subtractions 20

6.2 NAR � CR . 25

6.3 Throughput density gain measurement . 25

6.4 Results from SPICE simulation . 26

6.4.1 high performance carry chain . 26

6.4.2 coarse grain carry architecture . 28

iii

7 Future Work 28

8 Conclusion 29

iv

List of Figures

1 Con�guration Logic Block(XC4000E) . 3

2 Interconnect(XC4000E) . 3

3 Dedicated carry chain(XC4000E) . 4

4 Interconnect delay vs. Interconnect width (a)8-bit(FO=8)(b)16-bit(FO=16) 5

5 Interconnect delay vs. Logic delay . 6

6 Interconnect delay between two CLBs . 6

7 Simulation ow . 11

8 Spice model for carry chain (a) pass transistor (b) tri-state bu�er 13

9 Dual-rail carry chain for a carry select adder 14

10 Coarse grain carry architecture . 15

11 Area Reduction for M-tap N-bit FIR �lter 17

12 Area Reduction for Jacobi Relaxation . 19

13 Jacobi Relaxation(2x2) . 19

14 Fast DCT algorithm by Arai, Agui, Nakajima 21

15 Area reduction for a multiplier . 23

16 AR �CR for integer matrix multiplication 24

17 Normalized Area Reduction factor � Cycle Reduction factor 25

18 Throughput density gain . 26

19 Transistor size in Carry Select Path vs. Delay(Carry Select Adder) 27

20 Performance of high speed carry chain . 28

v

List of Tables

1 Comparing computing machines(metric:throughput density) 2

2 CPA and CSA performance . 7

3 Three di�erent functional complexities for coarse grain carry architecture . 16

4 Number of CLBs required for adding m n-bit numbers 17

5 Number of CLBs required for a M-tap N-bit FIR 18

6 Number of CLBs used for Jacobi Relaxation 18

7 Number of CLBs used for parallel pipelined multipliers 22

8 Number of CLBs used for integer matrix multiplication 23

vi

1 Introduction

For the past decades the use of FPGA has been limited to prototyping ASIC. With recent

advances in architecture and CAD tools its use has been extended to the areas ranging

from high performance computing[2] to mobile communications. The reasons for the grow-

ing popularity have three folds. First, given performance requirements FPGAs are a cost

e�ective solution compared with DSPs or microprocessors. Recent study[1] shows that FP-

GAs outperform Microprocessors and DSPs by one to two orders in terms of throughput

density, table 1. The di�erence mainly arises from the fact that the degree of parallelism that

can be exploited is greater in FPGAs than in DSPs. While superscalar, VLIW, and MMX

processors exploit parallelism in a one-dimensional fashion, limited by branches, hazards, ex-

ceptions, and data compaction/expansion, FPGAs use the parallelism in a two-dimensional

fashion by mapping the entire pipelined algorithm on a two-dimensional array. Secondly,

the FPGA is an energy-eÆcient solution in mobile computing and communications. It is

because FPGAs can control the factors determining energy consumption more easily than

others. For instance, programmability allows a FPGA to minimize energy consumption

through activating only the necessary part of a chip. In addition, voltage scaling at the cost

of using more area(computing elements) can signi�cantly reduce the energy consumption.

Not as much important as the �rst two reasons, FPGAs show good performance in some

areas such as CORDIC[3] and Distributed Arithmetic[11]. It is because embedded memory

and programmable interconnect make it possible to choose an optimal number system and

algorithm.

As semiconductor technology approaches a deep sub-micron regime, the FPGA faces

several challenges. The increase in programming complexity is one of the issues. Technology

scaling into deep sub-micron enables the number of computing elements fabricated into a

single FPGA chip to grow from a hundred CLBs(Con�guration Logic Blocks) to eight

thousand CLBs. It allows a single chip to contain not only a few computing elements but

the entire algorithm for a particular application. Tremendous amounts of work have been

done in developing mapping algorithms for various types of circuits. However, applications

requiring high performance still favor manual placement. Recent e�orts[9],[10] to generate

modules for hierarchical design make it feasible to build a large high-performance system.

Another issue raised by technology scaling is the performance of interconnect. Inter-

connect in FPGA is built from wires and pass transistors. And the wires are not scaled

well as technology scales, and the delay remains relatively unchanged. The performance

of a FPGA system, such as cycle time, heavily depends on interconnect performance, and

recently some researchers proposed a scheme to dedicate more area to already dominant

interconnect that currently takes 80% � 90% of total area[4].

In this research we identi�ed the interconnect delay as a major factor limiting the

performance. However, we also noticed that the �ne grain size is much crucial factor that

causes the large performance gab between custom and FPGA design, table 1. Measurements

have shown that directly changing the grain size of current FPGA architecture can improve

the performance more e�ectively without improving the interconnect and reduce the e�ect

of interconnect on cycle time.

As a method to increase the grain size, we implemented coarse grain carry architecture.

1

Dedicated carry architecture in FPGA is a basis for many arithmetic operations. Coarse

grain carry architecture can map more arithmetic operations on a single CLB and increase

the throughput density up to 5 times. Along with the grain size change, we designed a

dual-rail carry structure to improve the carry chain delay. A carry select adder built from

the structure reduces the delay up to 2.4 times, which set the upper bound for cycle time

reduction.

unit Custom FPGA DSP

Multiplier(16 bit)(0.6um) mpy
�2�sec

9.6 0.097 0.057

FIR �lter(8 bit)(0.6um) TAPs
�2�sec 3.5 1.9 0.057

IIR �lter(10 bit)(0.6,0.9um) TAPs
�2�sec 5.0(0.9um) 0.093 0.01

DES Key Search Keys
�2�sec

0.028(1.5um) 0.00086(0.3um) 0.000023(0.3um)

DNA Sequence Matching CU
�2�sec 1.9(2.0um) 0.070(0.6um) 0.0032(0.75um)

Table 1: Comparing computing machines(metric:throughput density)

The organization of this report is as follows. In section 2 we will review the architecture

of a SRAM based FPGA. In section 3 performance bottleneck will be analyzed from a system

perspective and its implication will be discussed. In section 4 we discuss methodological

issues including metrics, benchmark selection, and a simulation method. In section 5 and 6

we will present the detailed implementation of new carry architectures and the simulation

results.

2 Background

2.1 Architecture of SRAM based FPGA

A SRAM based FPGA consists of Con�guration logic blocks(CLB) and routing architecture.

Figure 1 and 2 show one CLB and its associated routing architecture of Xilinx XC4000E.

Each CLB and its associated routing is laid out in roughly 1:2M�2 area(XC4000). Each

CLB consists of two 4-input lookup tables, one 3-input lookup tables, two ip-ops, and two

tri-state bu�ers. Later series of XC4000 include dedicated carry chains shown in �gure 3 to

speed up addition. In this research we used the architecture of Xilinx XC4000 as a baseline

FPGA and performed our simulation.

2.1.1 con�guration logic block

An N-input lookup table(LUT), referred as logic function in �gure 1, consists of 2N SRAM

cells. The 4-input lookup table can implement any 4-input Boolean functions. Two of these

with one 3-input lookup table can implement any 5-input Boolean functions. Rose[7] showed

that the 4-input lookup table gives the smallest area assuming each size of lookup tables

implements an identical function. This is because for the LUT with less than 4 inputs inputs

and ouputs to the SRAM dominate the area and for the LUT with larger than 4 inputs the

2

Figure 1: Con�guration Logic Block(XC4000E)

Figure 2: Interconnect(XC4000E)

3

Figure 3: Dedicated carry chain(XC4000E)

SRAM size grows exponentially. From a delay perspective, a 5-input lookup table showed

suÆciently good average delay of a critical path over various circuit implementations[6].

The lookup table size of XC4000 architecture is based on these results. The outputs of

lookup tables in a CLB drive interconnect either directly or through ip-ops.

2.1.2 routing architecture

Routing architecture in FPGA is used to establish connections between inputs and outputs

of CLBs. It consists of segmented wires of di�erent length and programmable switch matri-

ces. The segmented wires are called single, double, and quad as they span one, two, and four

CLBs. Each wire is connected to another through a programmable switch matrix(PSM)

shown in Figure 2. 'Long' wires span the half-width or the entire width of a chip without

going through a PSM, which are desirable for signal with a large fanout. Performance and

cost of routing architecture will be discussed in detail later in section 3.

2.1.3 dedicated carry chain

To improve the performance of implementations utilizing a carry operation, XC4000 series

facilitate dedicated carry chains. A carry chain is a basis for building adders, subtracters,

multipliers, dividers, and counters. The programmable carry chains span the entire width

of a chip in columnwise direction. The direct interconnect for carry propagation between

CLBs doesn't su�er from the large capacitance of other types of wires and provides small

delay comparable to that of a custom adder. Two of four inputs to lookup tables serve as

two inputs to a carry function. The carry output is connected to the input of a lookup table

through a multiplexor.

4

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20
wire width vs delay

Wire Width(um)

D
el

ay
(n

s)

double
long
long(tri−state)
single(tri−state buffer)
double(tri−state buffer)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
wire width vs delay

Wire Width(um)

D
el

ay
(n

s)

double
long
long(tri−state)
single(tri−state buffer)
double(tri−state buffer)

Figure 4: Interconnect delay vs. Interconnect width (a)8-bit(FO=8)(b)16-bit(FO=16)

3 System perspective

3.1 Locating the performance bottleneck and its implication

3.1.1 interconnect and grain size

In FPGA, interconnects are segmented to provide minimum delay over various lengths of in-

terconnects and to ensure routability. Xilinx XC4000 chips are equipped with single, double,

quad, and long lines. These interconnects su�er from substantially large capacitive loads.

Two major sources are the di�usion capacitance of pass transistors connecting segmented

lines to the input and output of CLBs and programmable switch matrices. For instance, a

single line is connected to 10 � 14 pass transistors and two programmable switching matri-

ces per segment. The size of transistors exceeds that of transistors used in a logic portion

by an order in magnitude[13].

Simulation, �gure 4, explains why large transistors are used for the interconnects. (a)

and (b) are the interconnect delays spanning 8 and 16 CLBs-fanout of 8 and 16-with respect

to the width of transistors used in interconnect. This is a common con�guration found in

many applications where 8-bit or 16-bit data are selected or manipulated by a single source

of signal. To have reasonable performance, quite large size transistors are necessary. As a

result, interconnect including wires, programmable switch, I/O to the CLB takes 80 � 90%

of the area[13]. The large capacitance also accounts for the power consumption related to

the interconnects, which is 90 % of the total power consumption[13].

From a delay perspective the e�ect of interconnect on the cycle time is substantial.

Figure 5 shows a cycle time, for various applications, broken into a CLB and interconnect

portion. Interconnect delay accounts for 50 � 60 % of the cycle time. The large interconnect

delay comes from FPGA's inherent programmable structure. As technology scales and more

inputs are added to a CLB, interconnect delay gets worse with respect to the delay through

CLBs.

In general there are two ways to reduce the e�ect of interconnect on throughput. One

5

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Applications

R
at

io

1: Integer Matrix Multiply(2x2)

2: Integer Matrix Multiply(4x4)

3: Jacobi relaxation

4: 8−bit multiplier

5: 16−bit multiplier

6: viterbi decoder

logic delay
interconnect delay

Figure 5: Interconnect delay vs. Logic delay

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Distance in x and y direction between two CLBs

In
te

rc
on

ne
ct

 D
el

ay
(n

s)

Figure 6: Interconnect delay between two CLBs

6

is a device-level or circuit-level solution that physically improves the delay of interconnect.

The other is an architectural solution such as increasing the grain size. As far as throughput

is concerned, the latter is more promising because throughput is increased not only from

reduction in interconnect delay, which will be explained, but also from performing more

computation during cycle time.

When we de�ne the grain size as the functional capacity of a CLB, the impact of

increasing the grain on cycle time can be estimated from the measurement shown in �gure 6.

It basically shows the interconnect delay between two points that are separated horizontally

by x and vertically by y CLBs. The horizontal axis represents the radial distance between

two points expressed as
p
x2 + y2. The key observation is that the delay between two points

increases roughly linearly with respect to the radial distance of two points. It implies that

twice the functional capacity of a CLB could reduce the interconnect delay potentially to

its half since logic in-between can be presumably placed on the half number of CLBs.

In FPGA, the CLB grain size can be changed in two ways. The �rst method is to

increase the SRAM lookup table size. The drawback of this scheme is that the lookup table

size grows exponentially as the number of input increases. Collapsing two 4-input lookup

tables would need 16 times the area of one 4-input lookup table. Another problem is that

the increased lookup table is likely to be wasted for functions with a few inputs. The second

method to increase grain size is to increase the grain size of carry architecture because it

is the key element in arithmetic operations including addition, subtraction, multiplication,

and division. Carry architecture in FPGA is implemented in custom logic with direct

interconnect. It takes a small portion of logic area in the CLB, and thus the e�ect on area

is small. The grain size and performance of current carry architecture will be discussed in

detail in the next section.

3.1.2 carry architecture

Carry propagation and carry saving are two methods to deal with carries in addition. In

carry propagation addition(CPA), the base cell(a full adder) generates a sum and a carry,

and the carry generated in the current bit position is used as a carry input for the next

higher bit position. While the carry propagation su�ers from considerable propagation

delay, carry save addition(CSA) resolves this problem by keeping the result of addition

in a redundant form: both sum and carry. Carry save additions are often used for two

reasons. First, it can reduce cycle time when we need iterative addition such as in division

by avoiding carry propagation. Second, it can reduce the critical path delay in adder trees

such as in a multiplier.

CPA CSA(per stage)

custom �rst carry generation+0.2N+�nal sum(ns) 0.5 (ns)

FPGA �rst carry generation+0.4N+�nal sum(ns) 4 � 5 (ns)

Table 2: CPA and CSA performance

7

Both carry propagation and carry saving adder performance are crucial in FPGA be-

cause they determine the performance for a large set of applications. Table 2 shows the

performance of two adders implemented in custom logic and FPGA(CMOS 0:35�m). N in

the CPA column represents the input bit width.

While dedicated carry chain makes the CPA in FPGA comparable to the custom design,

The CSA in FPGA performs about ten times worse than the custom CSA. Throughput

di�erence is not necessarily ten times because the FPGA design is more deeply pipelined

than the custom design. However, this di�erence cannot be hidden in the unpipelinable

system.

3.2 Ideas

From the comparison in previous section, we can draw two points. First, increasing the

grain size of carry architecture to support a CSA would increase the throughput. The

optimal grain size and the necessary functionality can be determined from mapping various

applications on the new architecture. Several functional complexity levels varying from

addition to addition/subtraction to conditional addition/subtraction can be implemented

and compared at the cost/performance basis. Secondly, high performance carry chain such

as carry select, carry lookahead or Brenk-Kung would further increase the performance by

decreasing the cycle time. Following section will discuss the methodological issues to carry

out the comparison.

4 Methodology

4.1 Metrics

The metric to compare di�erent FPGA architectures varies according to the set of bench-

marks chosen for the comparison. Two metrics that are particularly important, and will be

used, are throughput density and energy-delay product. Throughput density is proposed

by DeHon[1] to compare FPGA with custom circuits or DSP for computation-intensive and

latency-insensitive applications. Energy-delay product is a metric to compare the energy

demand for applications used in mobile communication and computing. To formulate the

equations for these metrics, we need to begin with how to compute or measure area and

delay.

4.1.1 area

The area of FPGA design can be determined by multiplying the number of CLBs used in

the design by the CLB area(including associated routing) in FPGA. We de�ne two ratios to

determine the area reduction rate between two architectures. Area Reduction(AR) is the

ratio between the numbers of CLBs used in the design for two architectures. Normalized

Area Reduction(NAR) is the AR normalized to the CLB area di�erence. The distinction is

made to emphasize the di�erence between the ratio with consideration of area penalty in

new architecture and the ratio without it.

8

Area(�2) = Area for a single CLB(�2)� number of CLBs in the design (1)

AR =
Number of CLBs for Arch: 1

Number of CLBs for Arch: 2
(2)

NAR =
Number of CLBs for Arch: 1� CLB area for Arch: 1

Number of CLBs for Arch: 2� CLB area for Arch: 2
(3)

4.1.2 delay(cycle time)

The delay in FPGA is usually referred to a maximum delay between two stages of ip-

ops, which also set the cycle time of a pipelined system. The delay can only be measured

after performing logic placement and interconnect routing because of heuristic nature of

place and route algorithms. The ratio between two cycle times is de�ned as cycle time

reduction(CTR).

CTR =
Cycle time for Arch: 1

Cycle time for Arch: 2
(4)

4.1.3 throughput and throughput density

The throughput of a FPGA design is a reciprocal of a cycle time. Throughput density is

the throughput normalized to the used area. It has a unit of 1
ns��2

. This metric is easy

to calculate and provides a fair cost/performance comparison for applications with large

throughput requirement and suÆcient parallelism.

The ratio of two throughput densities is de�ned as multiplication of three factors.

Throughput density gain(TDG) = Normalizedarea reduction factor(NAR)

� cycle reduction factor(CR)

� cycle time reduction factor(CTR) (5)

where

CR =

(
cycles taken for current arch
cycles taken for new arch

; if not fully pipelined

1 ; if fully pipelined

4.1.4 power-delay product

The power-delay product is often referred as energy per operation. In general,

Power = Capacitance� SupplyV oltage2 � Frequency (6)

Power �Delay =
Energy

operation
(7)

= Capacitance� SupplyV oltage2 (8)

9

This metric gives the energy that is required to execute a single operation. However,

it fails to deliver information on the performance such as the throughput. Energy-Delay

product resolves this problem.

4.1.5 energy-delay product

Normalizing energy to throughput provides a metric that measures the energy eÆciency of

mobile computing and communication systems under identical throughput requirements.

In CMOS design, the �rst order equation can be written as

Energy �Delay =
Energy

Throughput
(9)

= Power �Delay2 (10)

= Capacitance(C)� Supply V oltage(V)2

�Frequency(F)�Delay(D)2 (11)

= CV 2D (12)

Delay =
CV

k(V � Vth)a
where a is 1 to 2 and k is a constant (13)

In FPGA, the �rst order approximation of equation 11 becomes

Energy �Delay = scalingfactor � (NumberofCLBs)� V 2 �Delay (14)

Scaling factor reects the averaged switching activity times the averaged capacitance of

a CLB.

An Energy-Delay product ratio between two FPGA designs is

ED1

ED2

=
Number of CLB1 � V 2

1 �
V1

(V1�Vth)a

Number of CLB2 � V 2
2 �

V2
(V2�Vth)a

(15)

assuming scaling factors, equation 14, are cancelled out, and C and k, equation 13,

are cancelled. From the fact that more than 90% of total capacitance are associated with

the routing architecture, above assumption is valid if the routing architecture for the new

FPGA architecture doesn't much di�er from the original.

The importance of this metric in this research is its relation to the throughput density

gain. For throughput-intensive and highly-paralellizable applications throughput is often

proportional to the used area. The design exibility in FPGA allows application-speci�c

optimization for a particular metric at the cost of other metrics. Trade-o�s between energy

consumption and throughput are the example.

In a FPGA system throughput density gain from architectural improvement can be

used to reduce the energy consumption through voltage scaling while aggregate throughput

10

Old Design

Application

Cycle Time

New Carry Chain

Application with dummy cell

PamBlox

PamDC

dcf2xnf

ppr

Xdelay

PamBlox

PamDC

dcf2xnf

ppr

Xdelay

SPICE

carry chain delay

LUT delay+IO

interconnect delay Cycle Time

New Design

Figure 7: Simulation ow

meets the requirement. The equation 15 turns out to be handy to estimate how much

energy saving we can achieve from throughput density gain. For 0:35�m process with

a = 1:25; Vth = 0:5V; V1 = 3:3V:, four times increase in throughput density can lead to

energy saving by an order in magnitude. We will keep this fact in mind throughout this

report to estimate the energy saving for the new carry architecture.

4.2 Benchmark selection

In this research, we chose benchmarks from three di�erent categories: arithmetic units, a

DSP library from Xilinx, and a subset of RAW benchmark suite from MIT. Arithmetic units

include adders and multipliers. The DSP library is composed of FIR, IIR �lters, correlators,

FFT, and Viterbi decoder. The original RAW benchmark consists of Binary Heap, Bubble

Sort, DES Encryption, FFT, Semiring Graph Problems, Integer Matrix Multiply, Jacobi,

Life, Merge Sort, N Queens. The subset of RAW benchmarks includes Binary Heap, Integer

Matrix Multiply, and Jacobi. Life was not considered because it doesn't use any adder

structure and merge sort was also dropped because its structure is similar to Binary heap.

DCT(discrete cosine transform over integer numbers) was considered instead of FFT over

complex numbers. N Queens, Semiring Graph Problems, and DES still remain to be studied.

4.3 Simulation method

Of three factors constituting throughput density gain(TDG), area reduction factor and cycle

reduction factor can be computed using a formula derived from careful design and veri�ca-

tion. Cycle time reduction factor, however, only can be measured through the simulation

whose procedure is shown in �gure 7 .

11

The target FPGA in this research is Xilinx XC4000XL series(0:35�m process) with

speed grade of -1. Cycle time for the current architecture can be measured using Xdelay

from Xilinx after the benchmarks are placed and routed on the target FPGA. Measuring

the cycle time for the new architecture requires additional steps. Cycle time in FPGA

design is broken into two portions: interconnect delay and logic delay. Logic delay is again

broken into carry chain delay, and lookup table and I/O delay. Measuring interconnect

delay requires the place and route of actual design due to the non-deterministic nature of

a heuristic algorithm. For the measuement we could use our current place and route tools

because we didn't alter the interconnect architecture.

To measure the three delay components, three di�erent methods, �gure 7, were used.

First, to measure new carry chain delay, SPICE model was developed for a 0:35�m pro-

cess and the new carry circuit is simulated to generate delay for di�erent bit width. Sec-

ondly, the lookup table and I/O delay were taken from the switching characteristic table of

XC4000XL(0:35�m) series [14]. Finally, interconnect delay was measured using a dummy

CLB. The dummy CLBs were placed where the new CLBs are needed such that in the

new architecture, we can replace the dummy CLB with new CLB without changing input

and output connectivity. Thus, measuring the interconnect delay with dummy CLBs is

essentially same as with new CLBs. The cycle time of new architecture was determined by

combining three delays. Xdelay was used to measure the cycle time of the design for new

architecture by measuring the worst case delay in pipeline stages.

The functionality of the new CLB for new architecture was veri�ed by mapping a new

CLB on several CLBs on the FPGA of current architecture.

5 Implementation

5.1 Current architecture-ripple carry adder

The dedicated carry logic in XC4000, we used as a baseline architecture, adopts a ripple

carry architecture and can compute the carries in O(N) time where N is the input width. Its

diagram is shwon in �gure 3. Assuming all the inputs to the adder are available at the same

time, the delay of a carry chain is summation of the delay for the �rst carry bit generation

and the delay through a series of multiplexors up to the last bit. The �rst carry generation

gives constant delay, and a series of multiplexors gives delay proportional to the input size.

For this reason, it is critical to optimize the multiplexor chain. As a base architecture, two

SPICE models were developed, shown in �gure 8. One uses pass transistors, �gure 8(a)

, to minimize the area and the other uses tri-state bu�ers, �gure 8(b) , to put reasonable

bu�ering. In diagram (a) and (b) carry-in is connected to carry-out through either two

pass transistors, (a), or two tri-state bu�ers,(b). We took into account all the capacitive

loads in the critical path Di�erent transistor size was simulated to �nd a optimal size. The

performance of the former was signi�cantly degraded by series of pass transistors, and the

latter with a transistor size of 8� gave about 0.5 ns through the carry chain that is close

to the performance of current Xilinx carry chain(0:35�m). Hence, we used the latter as a

base architecture for this research.

12

P:16

N:8

cin

P:16

N:8

cout

4 4

P
:16

N
:8

Vdd Gnd

Gnd

4 4

P
:16

N
:8

Vdd Gnd

Gnd

VddVdd

Vdd Vdd

’C
W

’
’C

W
’

’C
W

’
’C

W
’

P:16

N:8

cin

P:16

N:8

cout

4 4

P
:16

N
:8

Vdd Gnd

Gnd

4

P
:16

N
:8

Vdd

Gnd

Gnd

Vdd
Vdd

Vdd
Vdd

’C
W

’

Gnd

P:’CW*2’

N:’CW’

P:’CW*2’

N:’CW’

P
:’C

W
*2’

N
:’C

W
’

’C
W

’

Figure 8: Spice model for carry chain (a) pass transistor (b) tri-state bu�er

5.2 High performance carry adder

Carry lookahead, carry select, and Brent-Kung adders are widely used adders to break the

linear dependency in the ripple carry adder's delay. Hauck et. al applied these techniques to

Mux based carry chain(Altera) and reported that the Brent-Kung adder reduces the delay

upto 3.8 times with 8% increase in area for a 32-bit addition[12]. Their implementation,

however, has a limitation that the adder has a �xed starting and ending point, which

doesn't reect the real case in which the starting and ending point of a FPGA carry chain

are decided dynamically for a particular implementation. The exibility introduces more

gates and capacitance in the critical path. In that sense their measurement gave an upper

bound.

In this research we implemented a dual-rail carry structure that can be used as a carry

select adder. Figure 9 shows a dual-rail carry chain built into a single CLB. In implementing

a carry select adder, each cell is programmed as either the last cell or the non-last cell. In

the last cell mode the carry select output is enabled, and the carry-out of the current CLB

is chosen based on the previous carry select signal. In the non-last cell mode, the carry

select output is disabled and two carry paths are connected to the next CLB. The carry

select adder implemented using this structure is di�erent from the usual ASIC design in

a sense that the dual-rail carry structure only provides one level of carry select. Hence, a

N-bit carry select adder is made of a N-bit adder broken into M N
M
-bit ripple adders, and

the critical path is the summation of the delay through the �rst N
M
-bit ripple adder and

M-1 carry select logics. We tried to achieve high performance through two optimizations.

13

P:16

N:8

P:16

N:8

4 4

P
:16

N
:8

Vdd Gnd

Gnd

4

P
:16

N
:8

Vdd

Gnd

Gnd

Vdd

Vdd

’C
W

’

Gnd

P:’CW*2’

N:’CW’

P:’CW*2’

N:’CW’

P
:’C

W
*2’

N
:’C

W
’

P:16

N:8

P:16

N:8

4 4

P
:16

N
:8

Vdd Gnd

Gnd

4

P
:16

N
:8

Vdd

Gnd

Gnd

Vdd

Vdd

’C
W

’

Gnd

P:’CW*2’

N:’CW’

P:’CW*2’

N:’CW’

P
:’C

W
*2’

N
:’C

W
’

cin1

cin2

’C
W

’
’C

W
’

csel_b

csel_out _

en_csel_out

Gnd

Gnd

Vdd

Vdd

P:16

N:8

P:16

N:8

Vdd

4

P:16

N:8

Vdd

4

P:16

N:8

w
M=’segsize’

P
:16

N
:8

P:’CSW*2’

N:’CSW’

P:’CSW*2’

N:’CSW’

’C
S

W
’

zero carry path

one carry path

Figure 9: Dual-rail carry chain for a carry select adder

14

And_Xor

And_Xor

And_Xor

And_Xor

CSA

A3

A2

A1

A0
CSA XOR

CARRY OUT

CARRY IN

I
II

III

IV

Figure 10: Coarse grain carry architecture

The �rst is reducing the number of gates in the critical path by alternating polarity of carry

selection signal. The second optimization was achieved through the study of trade-o�s

between the bypass segment size-size of the smaller ripple adders-and the transistor size in

carry select path. The detailed result will be presented in section 6.4.1. Multi-level carry

select adders were also implemented but didn't perform better than the single-level.

5.3 Coarse grain carry adder

A ripple carry adder only uses two out of four inputs to the LUT. That is, we can increase

the grain size from two-bit addition to four-bit addition without modifying the i/o interface

of current architecture. The four-bit addition requires a (4,2) counter. The proposed coarse

grain carry architecure implements a (4,2) counter and connects the two outputs(external)

to the original two inputs of carry architecture.

We built three di�erent versions to determine how many new local(direct) wires are

needed and which inputs should be provided as a dynamic inputs by mapping various

applications on the new architecture. Three version will be introduced according to the

incremental complexity in each design.

5.3.1 adder only

The simplest design was a carry structure only supporting addition. To compute A0+A1+

A2 + A3, what we really need is a (4,2) counter that can add 7 bits of same weight and

generate three carries and one sum bits. Each (4,2) counter takes 3 carry bits from previous

bit and 4 inputs: A0; A1; A2; and A3. As shown in �gure 10 I, The �rst (3,2) counter takes

A0,A1,and A2 and the second (3,2) counter takes the sum of the �rst, the carry from the

15

�rst (3,2) counter in the cell below, and A3. The delay of added (3,2) counters only appears

once in the �rst bit carry generation and doesn't a�ect the delay of the carry chain. In this

design, we introduce two new direct interconnects for internal carries. To initialize the �rst

carry-in for a (3,2) counter and a xor, two extra multiplexors are used.

5.3.2 adder/subtracter

To compute�A0�A1�A2�A3, we need to provide two things: inverting inputs,A0; A1; A2; A3

and providing correct carry-ins. An extra xor gate for each input can invert the inputs.

There are only three paths for carries. This limits the number of subtractions to three

per slice. That is, up to three subtractions, A0 � A1 � A2 � A3, are possible by inverting

three inputs and setting three carry-ins to ones. Newly added portion is enclosed by a box

marked as II.

The necessity of switching between adder and subtracter dynamically can be justi�ed

from benchmark analysis. The initial analysis was that none of the benchmarks requires

dynamic switching. Thus, we only provided static programmability to choose addition or

subtraction.

5.3.3 conditional adder/subtracter

To mask out four inputs, A0; A1; A2; and A3, selectively, we need an AND gate for each

input and four selection signals. The four selection signals run vertically to provide common

selection signals to CLBs in the same column.

Provided that four signal are encoded, only two signals are suÆcient, which reduces the

area for the wires between CLBs. However, this scheme su�ers from its overhead because we

can use minimum size wires for selection signals unlike other general purpose interconnect,

and encoding requires a 4-to-2 encoder and a 2-to-4 decoder per 16-bit LUT(half CLB) that

take relatively large area.

6 Result

6.1 AR and CR

Operation complexity Expressions comments

4-input Add A0 +A1 +A2 +A3(A0 +A1 �A3)

4-input Add/Sub �A0 �A1 �A2 �A3

Conditional 4-input Add/Sub �x0 �A0 � x1 �A1 � x2 �A2 � x3 �A3 xi is a Boolean

Table 3: Three di�erent functional complexities for coarse grain carry architecture

Area and cycle reduction factor were computed using formulae derived from mapping

and veri�cation. The benchmarks are categorized into three groups according to the func-

tional complexity required. The di�erent complexity levels are shown in table 3. Each

16

8
10

12
14

16
18

20

0

20

40

60

80
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Precision(bits)

Area reduction in FIR filter

Number of Taps

A
re

a
re

du
ct

io
n

fa
ct

or

Figure 11: Area Reduction for M-tap N-bit FIR �lter

group includes the benchmarks that achieve area and cycle reduction from each incremen-

tal complexity.

6.1.1 group I: 4-input addition

Benchmarks using tree adder structures take advantage of this improvement. FIR �lter from

DSP library, integer matrix multiplication and Jacobi relaxation from RAW benchmark

suite, a multiplier fall into this category.

Operation Number of CLBs

2-input adder
Pdlog

2
me

i=1 dm
2i
e � dn+i

2
e

4-input adder
Pdlog

4
me

i=1 dm
4i
e � dn+2i

2
e

Table 4: Number of CLBs required for adding m n-bit numbers

Table 4 shows the number of CLBs required for 2-input adders and 4-input adders in

case where m n-bit numbers are added using tree topology. The area reduction factor(AR)

for the tree ranges from 2.25 to 3, which is in many cases the upper bound for the AR of the

17

entire application. For instance, AR for the FIR �lter for di�erent TAP size and precision,

shown in �gure 11, ranges from 1.13 to 1.51. This is because FIR �lter uses distributed

arithmetic in which the area for precomputed coeÆcient table dominates the total area.

More information on distributed arithmetic can be found in [11].

Operation Number of CLBs

2-input adder nm
2
+

mn(n+2)

8
+ ndm

4
� 1ed

log
2
m+n

2
e+

Pdlog
2
ne

i=1 d n
2i
edn+log2m+2i

2
e

4-input adder nm
2
+

mn(n+2)

8
+ ndm�4

12
� 1ed

log
2
m+n

2
e+

Pdlog
4
ne

i=1 d n
4i
edn+log2m+4i

2
e

Table 5: Number of CLBs required for a M-tap N-bit FIR

Table 5 shows the number of CLBs required to implement a M-tap N-bit precision FIR

�lter with 2-input and 4-input adders. Since the FIR �lter is fully pipelined, CR is 1.

As for multipliers and integer matrix multiplication, the area reduction only from 4-input

addition is also limited due to the dominant area used for booth multiplexors. However, the

area reduction for these applications get signi�cantly increases using conditional addition

and subtraction. This will be discussed later.

Operation Number of CLBs

2-input adder 4n+ (n2 + 2n� 1) + 2n2

4-input adder 4n+ 2n2

Table 6: Number of CLBs used for Jacobi Relaxation

Jacobi relaxation from RAW benchmarks suite also gets improved using 4-input adders.

Jacobi relaxation is an iterative algorithm to �nd a solution to di�erential equations of the

form r2A+B = 0 given a set of boundary conditions. Each step of this algorithm replace

the node's content with the average of the values of its four neighbor nodes. Figure 13

visualizes an example with small input size[9]. In each iteration of the algorithm, the

content of a node is added with that of a node in upper right side. This requires 7 adders

to add two numbers grouped together. Then, additional 4 adders add two of these 7 results

to update four Y nodes. In general, for n � n nodes, we need 2n2 + 2n � 1 adders using

the original 2-input adder. With 4-input adders, we only need n2 adders. Table 6 compares

the CLB numbers used to implement the entire Jacobi relaxation for 2-input and 4-input

adders. For large n, AR approaches 3
2
. CR is 1 because initialization can be ignored.

Although we didn't include in our benchmarks, a median �lter, found in multimedia

applications, is basically same as Jacobi relaxation and potentially gets same bene�t from

this new architecture.

18

0 10 20 30 40 50 60 70 80
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

sqrt(number of cells)

ar
ea

 r
ed

uc
tio

n
fa

ct
or

Jacobi relazation

Figure 12: Area Reduction for Jacobi Relaxation

X0 X1

X2 Y0 Y1 X3

X4 Y2 Y3 X5

X7X6

Figure 13: Jacobi Relaxation(2x2)

19

6.1.2 group II: 4-input addition and subtraction

The benchmarks that utilize this additional functionality are Discrete Cosine Transform(DCT)

and Viterbi decoder.

The DCT is a common application used in image processing. Figure 14 (a) shows a fast

DCT algorithm proposed by Arai, Agui, Nakajima[17]. It contains only 5 multiplications

and 8 scalings. Often scaling is absorbed in the stages following DCT, and thus it is ignored

for analysis.

Figure 14 (b) and (c) represent the 8-bit precision 8-point DCT implementations for

2-input adder and 4-input adder/subtracter separately. An 8-bit constant coeÆcient multi-

plier takes two cycles, which is shown as two squares in series. Two stages of shu�e network

implemented with 2-input adders can be compressed to one using 4-input adder/subtracters.

In addition, �nal adders for a1 and a5 multiplications can be shared using 4-input adders.

As a result, the number of CLBs for (b) and (c) are 382 and 270. AR = 1.4. In this case,

CR = 1 since the entire circuit is fully pipelined.

The Viterbi algorithm is a method commonly used for decoding bit streams encoded by

convolution coders. The details of a particular decoder algorithm depends on the encoder.

We implemented a decoder that can decode a 4-state optimal rate 1/2 convolution code.

Viterbi decoding can be broken into two major operations, metric update and traceback.

In metric update, two things are done: the accumulated state metric is calculated for each

state and the optimal incoming path associated with each state is determined. Traceback

uses this information to derive an optimal path through the trellis.

The major area reduction is achieved in metric update process. The state metric update

requires add-compare-select(ACS) units that takes 60 % of the total area. A single ACS

unit consists of two adders, one comparator and one multiplexor. Two adders add two state

metrics(�) and path metrics(�), and the results are compared by the comparator. The

sign of comparator's result set the multiplexor. With 4-input additions/subtractions, two

adders and a comparator performing (�00 + �00)� (�01 + �01) can be mapped on a single

adder/subtracter. The area reduction for the Viterbi decoder is 1.7. CR is 1 because the

algorithm is fully pipelined.

6.1.3 group III: conditional 4-input additions/subtractions

The conditional addition/subtraction integrates control into arithmetic operation. Mul-

tipliers, integer matrix multiplication, and binary heap are the applications that can be

signi�cantly improved from the added functionality.

FPGA multipliers can be grouped into two according to the characteristics of operands.

If one operand is a constant, it is called a constant coeÆcient multiplier. This is �rst pro-

posed by Xilinx[11] and takes smaller area than a two-variable multiplier by using SRAM as

a lookup table of precomputed multiples of a multiplicand. If both operands are variables,

we need a full multiplier composed of partial product generation and addition.

20

a1

a2

a4

a3

s0

s2

s1

s4

s6

s7

s3

s5

X0

X1

F0

F5

F1

F4

F2

F6

F7

F3

X2

X3

X4

X5

X6

X7

a5

(a) original algorithm

F0

F5

F1

F4

F2

F6

F7

F3

a2

a4

a3

X0

X1

X2

X3

X4

X5

X6

X7

a1

a2

a3

a4

a1

a5 a5

a5a5

a1

a1

(b) mapped on 2-input adder

a2

a4

a3

X0

X1

X2

X3

X4

X5

X6

X7

a1

a2

a3

a4

a1

a5 a5

a5a5

a1

a1

F0

F5

F1

F4

F2

F6

F7

F3

X1+X2+X5+X6

X1+X2-X5+X6

X0+X3-X4+X7

X1+X2-X5-X6

X0+X1-X6-X7

X0-X7

X0+X3+X4+X7

-X2-X3+X4+X5

-X2+X3

X2+X3

-X4-X5+X7-X8

X5+X6+X7-X8

X5-X6+X7+X8

X4-X5+X7+X8

(c) mapped on 4-input adder/subtracter

Figure 14: Fast DCT algorithm by Arai, Agui, Nakajima

21

Two-variable multiplication requires the process called partial product generation. In

microprocessor, Booth encoding is generally used to reduce the number of partial products.

The drawback of Booth encoding is to generate the negative multiples of a multiplicand(M).

The negation can be simply obtained in ASIC by inverting bits. In FPGA, however, this

inversion is generally expensive. Chapman[18] shows that non-Booth requires the same area

and latency to generate the partial product by making use of XC4000 carry architecture.

The non-Booth encoder generates 0;M; 2M; 3M instead of 0;�M;�2M using its carry

chain.

The 4-input conditional adder/subtracter can implement the non-Booth encoder that

can produce the multiples of a multiplicand(M) from 0 to 15M. The equation 16 can be

rewritten by replacing Ai with A0 � 2i,

�x0 �A0 � x1 �A1 � x2 �A2 � x3 �A3 (16)

= x0 �A0 � 2i + x1 �A0 � 2i+1 + x2 �A0 � 2i+2 + x3 �A0 � 2i+3

= A0 � 2i � (x0 + 2� x1 + 4� x2 + 8� x3) (17)

A0�2
i; A0�2

i+1; A0�2
i+2; and A0�2

i+3 can be achieved by simply connecting properly

shifted A0 to the A1; A2; A3. The combinations of x0; x1; x2; x3 from 0000 to 1111 generate

multiples ofA0 from 0 to 15�A0.

For an N-bit multiplicand, a column of N
2
+ 2 CLBs can generate 0, M, 2M, 3M, 4M,

5M,, 14M, 15M. Each column takes 4 multiplier bits. This is about four times area

reduction compared to the original partial product generation in a 2- input adder since a

column of N+1 CLBs are required to generate 0,M,2M,3M, and each column only consumes

2 multiplier bits. In addition to that, the number of partial products has been halved. That

is, the number of adders required to sum up the partial products is halved as well.

Operation Number of CLBs

2-input adder

partial product generationz }| {
n+ d

n

2
e � (n+ 2) +

adder treez }| {
dlog

2
ne�2X

i=1

fd
n

2i+1
e � (

n+ 2i+1

2
)g+ n

cond. 4-input adder

partial product generationz }| {
n+ d

n

4
e �

(n+ 4)

2
+

adder treez }| {
dlog

4
ne�2X

i=1

fd
n

4i+1
e � (

n+ 4i+1

2
)g+ n

Table 7: Number of CLBs used for parallel pipelined multipliers

The table 7 shows the number of CLBs to implement a n-bit pipelined parallel multiplier.

Figure 15 shows two CLB numbers and AR for input bit width from 8 to 64. The area

reduction factor ranges from 2.6 and 4.2. The mean and median of area reduction factor

are 3.78 and 3.92. CR is 1 for a fully pipelined parallel multiplier.

22

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Area Comparision for Multipliers using Old and New Carry(CLBs)

Input bit Width(bits)

C
LB

s

Old Carry
New Carry
Area Reduction Factor*1000

Figure 15: Area reduction for a multiplier

Integer matrix multiplication performs a multiplication of twom�mmatrices in O(m logm)

time withm2 multipliers. M trees of logm adders are required to sum m2 multiplier results.

Based on this hardware requirement, table 8 shows the number of CLBs for integer matrix

multiplication over n-bit numbers.

Operation Number of CLBs

2-input adder m log2m� 2n+m2�#CLB for a n-bit multiplier

cond. 4-input adder m log4m� 2n+m2�#CLB for a n-bit multiplier

Table 8: Number of CLBs used for integer matrix multiplication

Unlike other applications, CR a�ects the throughput density. This is because the matrix

multiplication requires an initialization step that prohibits fully pipelined implementation.

To compute CR, total number of cycles to complete the entire matrix multiplication have

to be determined. Current Xilinx XLA and XV series can hold 576(24x24) to 8464(92x92)

CLBs with pin numbers of 192 to 448. Since the area for an n-bit parallel multiplier is

relatively large, the throughput is not pin-bandwidth limited but area-limited. Under the

assumption that in each cycle one row or column of matrix variables are loaded,

CR =
1 +m+ (1 + log2(m� n))

1 +m+ (1 + log4(m� n))
(18)

23

0
10

20
30

40
50

60
70

5

10

15

20

25

30

35
2.5

3

3.5

4

4.5

5

Matrix size

Integer Matrix Multiply

Precision(bits)

A
re

a
R

ed
uc

tio
n

*
C

yc
le

 R
ed

uc
tio

n

Figure 16: AR� CR for integer matrix multiplication

The �rst term is for loading Matrix A into a single or multiple chips. The second term

represents Matrix B shift. The third term is the latency of a multiplier and an adder tree.

Figure 16 shows AR � CR with respect to m and n. It ranges from 2.8 to 4.9 with

median = 4.0.

Binary heap implements the heapifying operation to convert a binary tree into a binary

heap. A binary heap is a binary tree that satis�es the condition that the value at each

node is greater than the values of children nodes. The key operation of this algorithm is

three-way comparison. The three-way comparison in each node requires two comparators

and one multiplexor to �nd the largest number. This can be implemented with a single

comparator through time-multiplexing. Initially, a left and right child are compared. Then,

according to the outcome of the comparison, the larger number and parent node's value

are compared in the next phase. The outcome of two comparisons determines the swap

patterns.

Each node in the tree can serve as a parent or a child. This requires a 4-to-1 multiplexor

per node to execute the swapping in steady state or data load in initialization. Assuming

input data size is n, each node takes 3(n
2
+1) CLBs for the latched 4-to-1 multiplexor. This

can be reduced to n
2
+ 1 using conditional adders/subtracters as a multiplexor.

Thus, total area per node is reduced from 3(n
2
+ 1) + 3n

2
to n

2
+ n

2
. Roughly three times

area reduction can be achieved. CR � 1 assuming heapifying time is dominant compared

to initialization.

24

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Applications

N
or

m
al

iz
ed

 A
re

a
R

ed
uc

tio
n

*
C

yc
le

 R
ed

uc
tio

n 1: FIR

2: Jacobi Relaxation

3: 8−Point DCT(AAN)

4: Viterbi(4−state,1/2−rate)

5: Parallel pipelined Multiplier

6: Integer Matrix Multiplier

7: Binary heap

MIN
MAX

Figure 17: Normalized Area Reduction factor � Cycle Reduction factor

6.2 NAR � CR

Figure 17 shows the summary of normalized area reduction and cycle reduction factors

for selected benchmarks. The values include the additional area cost for more complex

carry architecture. Approximately 10 � 15 % additional area was used due to the added

complexity.

6.3 Throughput density gain measurement

Normalized area reduction factor, cycle reduction factor, and cycle time reduction factor are

measured from placing and routing various applications with small problem size, �gure 18.

Area reduction factors range from 1.0 to 3.5, roughly 3 for applications requiring multipli-

cations. AR for FIR �lter is small compared to other applications. An explanation for this

is that the throughput density for FIR �lter implemented in FPGA is already comparable

to that for custom design as shown in table 1. Cycle reduction factors range from 1.4 to

1.6 except for Jacobi relaxation which has 2.2 because two adders in the critical path is

reduced to one adder. Throughput density gain ranges from 2 to 5 for most of applications

except for FIR �lter. Applications utilizing multipliers get the most bene�t from the coarse

grain carry architectures.

25

1 2 3 4 5 6 7
0

1

2

3

4

5

6

Applications

N
A

R
 x

 C
R

 x
 C

T
R 1: Integer Matrix Multiply(2x2),8−bit

2: Integer Matrix Multiply(4x4),8−bit

3: Jacobi relaxation

4: 8−bit multiplier

5: 16−bit multiplier

6: Viterbi(4−state,1/2 rate)

7: 4−Tap 8−bit FIR

Normalized Area Red. * Cycle Red.
Cycle Time Red.
Throughput Density Gain

Figure 18: Throughput density gain

6.4 Results from SPICE simulation

6.4.1 high performance carry chain

The performance of carry select adders was determined by two factors: the transistor size

in the carry select chain and the bypass segment size. Two factors are not mutually in-

dependent because the segment size a�ects the capacitive load that each transistor drives.

SPICE simulation is done to measure the optimal size of the transistor and segment. Figure

19 shows three plots with bypass segment size of 4,8 and 12 bits. Each plot contains the

carry delay for 8,16,32, and 64-bit carry select adders with four di�erent transistor sizes.

In general, the delay with respect to the transistor size has a knee around 3:2�m, which

is 16� in a 0:35�m process. For the segment size of 4 bits, the delay decreases as the

transistor size increases for all input widths. For the segment size of 8 and 12-bits, the

delay for 8 and 16-bit adders increases as the transistor size increases. This is because carry

select adders with small input width don't get improved much from the large segment size,

and larger transistors in the carry select path hurt the performance with larger capacitive

loading.

The e�ect of di�erent segment size can be seen by comparing the delay for adders of

same transistor size in three di�erent plots. The 4-bit segment adders outperform others

for input widths up to 32 bits, which means that the �ne segment size is e�ective unless we

implement larger than 32-bits adders. The segment size of 12 bits only shows the best delay

for a 64-bit adder. Figure 20 shows the delay of carry select adders(transistor size of 24�)

and a ripple carry adder. For a 8-bit adder the carry select adder with 4-bit segment has the

26

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

2

4

6

8

10

12
carry select adder with 12−bit bypass vs delay(0.35um)

transister size for carry select chain(um)

de
la

y(
ns

)

8−bit
16−bit
32−bit
64−bit

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

2

4

6

8

10

12
carry select adder with 8−bit bypass vs delay(0.35um)

transister size for carry select chain(um)

de
la

y(
ns

)

8−bit
16−bit
32−bit
64−bit

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

2

4

6

8

10

12
carry select adder with 4−bit bypass vs delay(0.35um)

transister size for carry select chain(um)

de
la

y(
ns

)

8−bit
16−bit
32−bit
64−bit

Figure 19: Transistor size in Carry Select Path vs. Delay(Carry Select Adder)

27

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18
Performance of high speed carry chain(tran.size=24lambda,0.35um)

input width of an adder(bits)

de
la

y(
ns

)

ripple adder
carry select adder(seg=4bits)
carry select adder(seg=8bits)
carry select adder(seg=12bits)

Figure 20: Performance of high speed carry chain

smallest delay, and adders with 8-bit and 12-bit segment perform worse than a ripple adder

due to increased capacitance. For 16-bit and 32-bit addition, the adders with 4-bit and

8-bit segment show the best performance. For all cases 4-bit segment adders outperform a

ripple carry adder roughly by a factor of two. This improvement set the upper bound for

the cycle time reduction.

We also implemented variable segment size such as 4 and 8-bit segments or 8 and 16-bit

segments. Each CLB in this implementation should be capable of providing one carry to

two di�erent segments and selecting one carry from two segments. Additional capacitance

in these designs gave only marginal gain or showed worse performance over single segment

design.

6.4.2 coarse grain carry architecture

The e�ect of adding (3,2) counters on the critical path delay in current carry architecture

appears only in the �rst carry bit generation. The delay for the �rst carry generation

increases to 1.74 ns from 0.72 ns.

7 Future Work

In this work, we limit the grain size such that addition of up to four numbers can be done

in a single adder, which is roughly doubling the throughput of the current architecture.

This limitation was set by simulation tools to measure the accurate the interconnect delay.

28

Larger grain size for addition would increase the throughput density gain more up to a

certain point. Our future work involves the search for the point where increasing grain size

no longer improves throughput density.

Another area we will focus on in the future is to measure the factor of energy saving

through voltage scaling with a throughput constraint. The energy saving can be obtained

at the cost of area, the reduction of which is promised by coarse grain architecture.

8 Conclusion

This report presented coarse grain carry architecture to increase the throughput density.

The most gain comes from the area reduction or more functional capacity for the same area.

Applications using multiplication get the most bene�t and their normalized area reduction

factors were measured from 2 to 4.5. The reasons for the reduction have two folds. First, a

conditional adder/subtracter signi�cantly reduces the area for multiplexors that are used for

partial product generation and reduces the number of partial products. This accounts for

roughly four times reduction. Second, area reduction rate for a tree of adders by increasing

grain size grows larger than linearly. Theoretically, it grows exponentially but it is beset by

the fact that each adder now needs larger bit width to contain the bigger result. Cycle time

reduction is another factor that plays an important role in throughput density gain. Cycle

time reduction comes from two reasons. First, shorter interconnect length from higher logic

compression ratio gives shorter delay. Secondly, the number of CLBs in the critical path

get smaller due to coarser grain size. These account for roughly 1:5 � 2 times throughput

density gain. In addition to the aforementioned reasons, conditional addition/subtraction

provides the integration of control and ALU operation that can be utilized by adds followed

by compares.

In addition to coarse grain carry architecture we implemented a dual-rail carry structure

that can reduces the carry chain delay. Trade-o�s between di�erent transistor size and

bypass segment size have been studied. Up to 2.4 reduction in carry chain delay is achieved

using a carry select adder with bypass segment size of 8 bits.

References

[1] A. DeHon, "Comparing Computing Machines",In Con�gurable Computing: Technology

and Applications, Proceedings of SPIE 3526, p. 124, November 1998.

[2] J.M. Arnold, et al., "The Splash 2 processor and applications",IEEE International

Conference on Computer Design, Oct. 1993.

[3] Ray Andraka, "A survey of CORDIC algorithms for FPGA based comput-

ers",International Symposium on Field Programmable Gate Arrays , pp. 191-200, Feb.

1998.

29

[4] A. Takahara, et al., "More wires and fewer LUTs: A design methodology for FP-

GAs",International Symposium on Field Programmable Gate Arrays , pp. 12-19, Feb.

1998.

[5] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, \Architecture of Field-

Programmable Gate Arrays",Proceedings of the IEEE, Vol. 81, No.7, pp. 1013-1029,

July. 1993.

[6] S.Singh et al., \The E�ect of Logic Block Architecture on FPGA Performance", IEEE

J. Solid-State Circuits, Vol. 27, No.3, pp. 281-287, March 1992.

[7] S. Brown, "FPGA Architectural Research: A Survey",IEEE Design & Test of Com-

puters, pp. 9-15, winter 1996.

[8] J. Babb and et al., "The RAW Benchmark Suite: Computation Structure for General

Purpose Computing", IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 134-43 , April 1997.

[9] O.Mencer, M.Morf, and M.Flynn, "PAM-Blox:High Performance FPGA Design for

Adaptive Computing",IEEE Symposium on Field-Programmable Custom Computing

Machines, pp.167-174, April 1998.

[10] M. Chu, et al., "Object Oriented Circuit-Generators in Java",IEEE Symposium on

Field-Programmable Custom Computing Machines, pp.158-166, April 1998.

[11] G. Goslin, "A Guide to Using Field Programmable Gate Arrays(FPGAs) for Applica-

tion -Speci�c Digital Signal Processing Performance", Xilinx Corporation, 1995.

[12] S. Hauck, \High-Performance Carry Chains for FPGAs",International Symposium on

Field Programmable Gate Arrays, pp. 223-233, Feb. 1998.

[13] E. Kusse, \Analysis and Circuit Design for Low Power Programming Logic Modules",

Master Thesis, University of California, Berkeley, 1998.

[14] Xilinx Corporation, \XC4000 Field Programmable Gate Arrays:Programmable Logic

Databook", 1996.

[15] Xilinx Corporation, \Application Note #13, Using the Dedicated Carry Logic in

XC4000E", June 1997.

[16] Xilinx Corporation, \Application Brief #14, A Simple Method of Estimating Power in

XC40000 XL/EX/E FPGAs", June 1997.

[17] Y. Arai, et al., "A fast DCT-SQ scheme for images",Transactions of the Institute of

Electronics, Information and Communication Engineers, vol.E71, no.11, pp. 1095-1097

Nov. 1988.

[18] http://www.xilinx.com/xcell/best/xl14 28.pdf

30

