
Optimum Instruction-level Parallelism (ILP)

for Superscalar and VLIW Processors

Patrick Hung and Michael J. Flynn

Technical Report No. CSL-TR-99-783

July 1999

This work was supported by DARPA under Army contract DABT63-96-C-0106.



Optimum Instruction-level Parallelism (ILP)

for Superscalar and VLIW Processors

by

Patrick Hung and Michael J. Flynn

Technical Report No. CSL-TR-99-783

July 1999

Computer Systems Laboratory

Stanford University

Gates Building 3A, Room 332

Stanford, California 94305-9030

pubs@shasta.stanford.edu

Abstract

Modern superscalar and VLIW processors fetch, decode, issue, execute, and retire multiple instruc-
tions per cycle. By taking advantage of instruction-level parallelism (ILP), processor performance
can be improved substantially. However, increasing the level of ILP may eventually result in dimin-
ishing and negative returns due to control and data dependencies among subsequent instructions
as well as resource con
icts within a processor. Moreover, the additional ILP complexity can have
signi�cant overhead in cycle time and latency.

This technical report uses a generic processor model to investigate the optimum level of ILP for
superscalar and VLIW processors.

Key Words and Phrases: Instruction Level Parallelism, Superscalar processor, VLIW



Copyright c
 1999

by

Patrick Hung and Michael J. Flynn



Contents

1. Introduction 1

2. ILP-Processor Model 1

2.1 Fixed Cycle Time and Instruction Latency . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 ILP Impacts on Cycle Time and Instruction Latency . . . . . . . . . . . . . . . . . . 4

3. Simulation Results 6

4. Conclusions 8

5. Future Works 8

List of Figures

1 IPC versus N (Instruction Latency = L0) . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 IPC versus N (Instruction Latency = L0 � (1 +O �N)) . . . . . . . . . . . . . . . . . . . . 5

3 Performance versus ILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of Tables

1 Di�erent Schemes to Model ILP Overhead . . . . . . . . . . . . . . . . . . . . . . . . 4

iii



1. Introduction

Computer architecture has evolved in the last �fty years in order to pursue higher performance,
which usually comes at the expense of increased complexity. Server processors today are typically
superpipelined superscalar or VLIW processors, implying that these processors can potentially
execute many instructions in parallel.

Dubey and Flynn [DF90] used an analytical processor model and showed that superpipelining
technique can result in diminishing and even negative returns due to pipeline overhead as well as
unexpected processor behaviors such as branch disruptions and exceptions. This means that there
is an optimum number of pipeline stages to maximize processor performance.

There is an analogous behavior in selecting the optimum level of instruction-level parallelism (ILP).
Researchers have showed that increasing the level of ILP results in diminishing returns due to
dependencies among the instructions in a program [JW89]. In this report, we use an analytical
ILP-processor model and conclude that if we consider the e�ects of the ILP overhead in instruction
latency and cycle time, increasing the level of ILP can eventually result in negative returns.

2. ILP-Processor Model

In this section, we develop a processor model to analyze superscalar and VLIW processors. In
both superscalar and VLIW processors, multiple instructions are fetched, decoded, executed, and
retired per cycle, but a superscalar processor schedules instructions dynamically whereas a VLIW
processor schedules instructions statically.

The transfer of instructions from decode stage to execution stage is known as \instruction issue."
Instructions can only be issued if there are available processor resources to service the new instruc-
tions, and these instructions do not depend on any previously issued instructions which have not
yet been completed.

There are two di�erent kinds of instruction dependencies: control and data dependencies. Control
dependency refers to the case that an instruction may a�ect the execution of another instruction
due to a conditional branch. Data dependency corresponds to the fact that subsequent instructions
may be dependent on each other because of data; for instance, the input operand of an instruction
is the same as the result operand of a previous instruction.

Assume that a processor can issue up to N instructions per cycle. Let P be the probability that a
new instruction cannot be issued, and M be the number of issued instructions which have not yet
completed. If M is zero, a new instruction can always be issued; on the other hand, if M is very
large, it is likely that a new instruction has to be stalled because of control and data dependencies
or resource con
icts. Therefore, P is zero if M is zero, and P approaches one if M is very large.

For simplicity, we assume that the control and data dependencies between any two pairs of instruc-
tions are statistically independent. The assumption simply means that if we select any two pairs

1



of instructions in a program, the fact that there are dependencies between one pair of instructions
does not provide any information on the dependencies between the other pair of instructions.

Let p be the probability that two randomly selected instructions have control or data dependencies,
P and p are then related by:

1� P = (1� p)M (1)

The probability p is usually small, and we can use binomial expansion to expand (1 � p)M . The
above equation can be approximated by:

P =M � p (2)

Equations (1) and (2) assume that there is no resource con
ict within the processor. However,
the probability that there is resource con
ict is also roughly proportional to the number of active
instructions in the processor. We can therefore assume that P is proportional toM with a new pro-
portional constant p0 which considers instruction control and data dependencies as well as resource
con
icts.

P =M � p0 (3)

The number of active instructions M depends on both the instruction latencies and the processor
throughput. On the average, M is equal to the product of the processor throughput in IPC

(number of instructions per cycle) and the average instruction latency L(N).

M = IPC � L(N) (4)

Here, we assume that the average latency L(N) is a function of the ILP width N . The reason is that
the ILP width N a�ects the processor complexity and can therefore a�ect the average instruction
latency. Substituting (4) into (3), we get:

P = p0 � IPC � L(N) (5)

On the other hand, IPC also depends on the number of issues N and the issue probability (1�P ).

2



Figure 1: IPC versus N (Instruction Latency = L0)

IPC = N � (1� P ) (6)

Substituting (6) into (5), we obtain a simple relationship among processor throughput in IPC, ILP
width N , and average instruction latency L(N).

IPC =
N

1 +N � p0 � L(N)
(7)

2.1 Fixed Cycle Time and Instruction Latency

In this section, we analyze the optimistic case that the level of ILP neither a�ects the average
instruction latency nor the cycle time. In this case, the processor performance is proportional to
the IPC and we assume L(N) is equal to a constant L0. Substituting L(N) into (7), we get:

IPC =
N

1 +N � p0 � L0

(8)

Figure 1 shows the relationship between IPC and N . Although the ILP complexity does not a�ect
the average instruction latency or the cycle time, we still observe diminishing returns by increasing

3



N . When N approaches in�nity, we can derive the maximum attainable IPC (IPCmax). The
equation shows that IPCmax is inversely proportional to the product of L0 and p

0. For example, if
L0 is 10 and p0 is 5%, IPCmax is 2.0.

IPCmax =
1

p0 � L0

(9)

2.2 ILP Impacts on Cycle Time and Instruction Latency

In this section, we consider the general case when the increased level of ILP does have negative
impacts on instruction latency and cycle time. Let L0 and TC be the average instruction latency and
the cycle time for a scalar processor, respectively. Table 1 shows nine possible modeling schemes to
model ILP overhead in instruction latency and cycle time, where O represents a constant overhead
factor.

In general, increasing the level of ILP increases both gate delay and interconnect delay. In deep
submicron VLSI designs, interconnect delay is usually more dominant than gate delay. The exact
overhead model depends on the actual processor implementation, which in turn depends on the
circuit design and the fabrication technologies. In scheme A, the average instruction latency and
the cycle time are assumed to be independent of the ILP width N ; this case has already been
discussed in Section 2.1.

Suppose the functional blocks are laid out in a linear array, the interconnect length is then pro-
portional to N . If bu�er insertion technique is employed, interconnect delay is proportional to the
interconnect length; on the other hand, if bu�er insertion technique is not used, interconnect delay
is proportional to the square of interconnect length. Consequently, the interconnect delay is pro-
portional to N with bu�er insertion, and the delay is proportional to N2 without bu�er insertion.
The overhead can be a penalty in the average instruction latency as shown in Schemes B and C,
or a penalty in the cycle time as shown in Schemes F and G.

Table 1: Di�erent Schemes to Model ILP Overhead

Scheme Average Instruction Latency Cycle Time

A L0 TC

B L0 �
�
1 +O �N2

�
TC

C L0 � (1 +O �N) TC

D L0 �
�
1 +O �

p
N
�

TC

E L0 � (1 +O � log(N)) TC

F L0 TC �
�
1 +O �N2

�

G L0 TC � (1 +O �N)

H L0 TC �
�
1 +O �

p
N
�

I L0 TC � (1 +O � log(N))

4



Figure 2: IPC versus N (Instruction Latency = L0 � (1 +O �N))

On the other hand, suppose the functional blocks are laid out in a 2-D array, the interconnect
length is then proportional to

p
N . In this case, the interconnect delay is proportional to

p
N with

bu�er insertion, and the delay is proportional to N without bu�er insertion. The overhead can be
a penalty in the average instruction latency as shown in Schemes C and D, or a penalty in the cycle
time as shown in Schemes G and H.

If the interconnect resistance is very small or if the interconnect delay is small compared with gate
delay, increasing N has logarithmic e�ects on the total delay, which corresponds to Schemes E and
I. For instance, assuming fanout-of-4 (FO4) for all logic gates, the decoding time of a memory array
is only increased by one logic gate if the memory is quadrupled in size.

2.2.1 ILP Impacts on Average Instruction Latency

In Table 1, Schemes B, C, D, and E represent di�erent ILP impacts on the average instruction
latency. All these models exhibit similar behaviors, although in some cases the optimum N (Nopt)
are more distinctive than in other schemes. We show the calculations for Scheme C, but the other
schemes have similar results. In Scheme C, the average latency L(N) increases linearly with the
ILP width N . Substituting L(N) into (7), we get Equation (10). Figure 2 shows the relationship
between IPC and N .

IPC =
N

1 +N � p0 � L0 � (1 +O �N)
(10)

If we di�erentiate (10) with respect to N , we get (11).

5



@IPC

@N
=

1� p0 � O � L0 �N
2

(1 +N � p0 � L0 � (1 +O �N))2
(11)

By setting @IPC
@N

to zero, and we can determine the optimum N (Nopt) and the maximum attainable
IPC (IPCmax) (Equations (12) and (13)). When O is zero, Nopt becomes in�nity and IPCmax

becomes 1

p0
�L0

, which is consistent with the results shown in Section 2.1.

Nopt =
1

p
O � p0 � L0

(12)

IPCmax =
1

p0 � L0 + 2
p
O � p0 � L0

(13)

2.2.2 ILP Impacts on Cycle Time

In this case, processor performance is proportional to IPC
CycleT ime

. We only show the calculations with
Scheme G, but the calculations for Schemes F, H, and I are similar. In Scheme G, the cycle time
TC increases linearly with the ILP width N . Using (7), we can derive the performance equation as
below.

Performance =
N

(1 +N � p0 � L0) � (1 +O �N)
(14)

We can di�erentiate (14) with respect to N to get the optimum ILP width Nopt, which is identical
to Nopt in Scheme C (Equation 12).

Nopt =
1

p
O � p0 � L0

(15)

3. Simulation Results

We use the MXS simulator [Ben98], the detailed simulator component of the SimOS simulation
environment [RHWG95] to verify our model. MXS employs an execution based simulation method
to accurately model a dynamically scheduled processor. The benchmarks are from the SPEC 92
benchmark suite.

6



Figure 3: Performance versus ILP

The processor model was selected to represent a modern dynamically scheduled processor. It is
a N -issue, dynamically scheduled processor with register renaming, branch prediction, speculative
execution, and precise interrupts. Instructions issue out-of-order, and a reorder bu�er is used to
restore the precise state after an interrupt. The load/store bu�er has 16 entries, the instruction
window has 16 entries, and the reorder bu�er is 32 entries.

For simplicity, only single-level 8-K instruction cache and data cache are modeled. They are four
way set associative with an LRU replacement policy and a �xed line size of 32 bytes. The data
cache is write back with write miss allocate. Both memory latency and memory bus traÆc are
modeled. The cache miss has a latency of 20 cycles and consumes 4 bus cycles.

We assume the ILP overhead in cycle time increases linearly with the ILP width N , which corre-
sponds to Scheme G in Table 1. In Figure 3, we show the results of the \compress" program with
O equals 0%, 1%, 2%, 3%, and 4%. The performance behaviors are consistent with our proposed
analytical model. We take O = 4% as an example. In this example, the optimum ILP width (Nopt)
is around 4. We also ran MXS simulations for some other SPEC 92 benchmarks (Espresso, Sc,
Spice, Wave, Lisp) and obtained similiar results.

7



4. Conclusions

We proposed a generic processor model to analyze the optimum level of ILP for superscalar and
VLIW processors, and showed that increasing the level of ILP can eventually result in negative
returns. There is an optimum ILP width (Nopt) which depends on three factors: average instruction
latency (L0), ILP overhead (O), and the probability that two subsequent instructions have control
and data dependencies and resource con
icts (p0).

We showed a number of ways to model ILP overhead in cycle time and average instruction latency,
but concluded that these schemes all exhibit similar behaviors. Our model has been veri�ed with
SPEC 92 benchmark suite using the MXS simulator.

5. Future Works

We are working on a more generalized model with the following IPC equation, where K is a
constant. This equation is same as Equation (7) when K is 1.

IPC =
N

K +N � p0 � L(N)
(16)

8



References

[Ben98] James E. Bennett. Latency Tolerant Architectures. PhD thesis, Stanford University,
1998.

[DF90] Pradeep K. Dubey and Michael J. Flynn. Optimal pipelining. Journal of Parallel and
Distributed Computing, 8:10{19, 1990.

[JW89] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for superscalar
and superpipelined machines. In International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 290{302, 1989.

[RHWG95] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete computer system
simulation: the SIMOS approach. IEEE Parallel & Distributed Technology: Systems

& Applications, 3:34{43, 1995.

9


