
The M-log-Fraction Transform (MFT)

for Computer Arithmetic

Oskar Mencer, Michael J. Flynn, and Martin Morf

Technical Report : CSL-TR-99-784

December 1999

This research is supported by DARPA Grant No. DABT63-96-C-0106.

The M-log-Fraction Transform (MFT)
for Computer Arithmetic

by

Oskar Mencer, Michael J. Flynn, and Martin Morf

Technical Report : CSL-TR-99-784

December 1999

Computer Systems Laboratory

Department of Electrical Engineering and Computer Science

Stanford University

William Gates Computer Science Building, 4A-408

Stanford, California 94305-9040

Email: pubs@shasta.stanford.edu

Abstract

State-of-the-art continued fraction(CF) arithmetic enables us to compute rational func-

tions so that input and output values are represented as simple continued fractions. The

main problem of previous work is the conversion between simple continued fractions and

binary numbers.

The M-log-Fraction Transform(MFT), introduced in this work, enables us to instantly

convert between binary numbers and M-log-Fractions. Conversion is related to the distance

between the '1's of the binary number. Applying M-log-Fractions to continued fraction arith-

metic algorithms reduces the complexity of the CF algorithm to shift-and-add structures, and

more speci�cally, digit-serial arithmetic algorithms for a family of rational functions.

We show two applications of the MFT:

(1) a high radix rational arithmetic unit computing (ax+b)/(cx+d) in a shift-and-add

structure.

(2) the evaluation of rational approximations (or continued fraction approximations) in

a multiplication-based structure.

In (1) we obtain algebraic formulations of the entire computation, including the next-

digit-selection function. For high radix operation, we can therefore partition the selection

table into arithmetic blocks, making high radix implementations feasible.

(2) overlaps the �nal division of a rational approximation with the multiply-add itera-

tions.

The MFT bridges the gap between continued fractions and the binary number represen-

tation, enabling the design of a new class of eÆcient rational arithmetic units and eÆcient

evaluation of rational approximations.

Key Words and Phrases: Computer Arithmetic, Continued Fractions, Rational Arith-

metic

Copyright c
 1999

by

Oskar Mencer, Michael J. Flynn, and Martin Morf

Contents

1 Introduction 1

1.1 Introduction to Continued Fractions . 1

1.2 The SEPA Algorithm . 2

2 The M-log-Fraction Transformation (MFT) 3

3 Algorithm Class 1: A Rational Arithmetic Unit 4

3.1 Higher Radix Rational Arithmetic . 5

4 Algorithm Class 2:

Rational Approximations of Elementary Functions 9

5 Conclusions 11

iii

List of Figures

1 The SEPA State Machine . 2

2 The M-log-Fraction . 3

3 Non-Restoring Division . 5

4 Radix-2 Division . 6

5 Radix-r Division . 8

6 arctan(x) . 9

7 arcsin(x)=
p
1� x2 . 10

8 �(0.5,x) . 11

iv

1 Introduction

Rational approximation o�ers eÆcient evaluation of elementary functions (see [12]). We

investigate the design of rational arithmetic units for VLSI based on the M-log-Fraction

Transform (MFT), which we introduce in this paper. The M-log-Fraction connects binary

numbers and continued fractions. In order to explain the theory behind the M-log-Fraction,

and the relationship of the M-log-Fraction to the distances between the '1's of a binary

number, we require a basic understanding of continued fractions and the state-of-the-art in

continued fraction arithmetic algorithms.

1.1 Introduction to Continued Fractions

We �rst de�ne some continued fraction(CF) forms. Finite continued fractions are rational

numbers that are constructed as follows: for ai; bi 2 R

An

Bn
= a0 +

b1

a1 +
b2

a2+���
bn

an

= a0 +
b1j

ja1
+

b2j

ja2
+ � � �+

bn

an
(1)

Simple continued fractions form a special case with partial quotients bi = 1. We use the

series notation [a0; a1; : : : an] to denote simple continued fractions. The core transform of

the simple continued fraction form is

F (x) = ai +
1

x
(2)

Regular continued fractions are simple continued fractions with all ai 2 N+, except

a0 2 N . Logarithmic continued fractions lead to a logarithmic representation of partial

quotients. Early results on continued fraction algorithms are presented in [7]. Trivedi[8]

investigates logarithmic continued fractions, and Kornerup[9] uses f�2;�1

2
; 0; 1

2
; 2g as the

digit set for partial quotients of simple continued fractions.

A �nite continued fraction with i partial quotients can always be transformed into a

ratio Ai

Bi
with:

Ai = aiAi�1 + biAi�2 (3)

Bi = aiBi�1 + biBi�2 (4)

where
Ai�1

Bi�1
corresponds to the value of the same continued fraction without the ith partial

quotient. Initial conditions are A0 = a0, B0 = 1, A�1 = 1, and B�1 = 0.

Every number representation has its natural set of operations. Residue numbers favor

addition, while logarithmic numbers favor multiplication. Continued fractions favor f =

1=x, which is computed by [0; a0; a1; : : :] if a0 6= 0, and [a1; a2; : : :] if a0 = 0. Negation

is achieved by negating all partial quotients. A simple continued fraction multiplied by a

constant c becomes:

[0;
a0

c
; c � a1;

a2

c
; c � a3;

a4

c
; c � a5; : : :] (5)

1

MFT MFT
-1

SEPA Arithmetic Unit

a

b

c

d

state registers

cx+d
ax+b

x

x i oi

Binary Binary

is

i

IE

Figure 1: The �gure shows the state machine for the iteration equations (IE) of the SEPA

algorithm. The rounding operation for the output digit (be) stands for choosing an output

digit close to the exact value. The MFT is introduced in section 2.

In summary, continued fractions are equivalent to rational approximations, converge

faster than polynomial approximations with a much larger interval of convergence. For a

thorough introduction to continued fractions see [1].

1.2 The SEPA Algorithm

The basic algorithms for continued fraction arithmetic are based on the work of Hurwitz[2],

Hall [3], and later Gosper[4] and Raney[5]. The Semi-Exact Positional Algebraic (SEPA)

algorithm for regular continued fractions is analyzed in [11]. In summary, the SEPA al-

gorithm is a �nite implementation of Vuillemin's positional algebraic algorithm[17] for

exact arithmetic. In the simplest case we compute a linear fractional transformation

o = [o1; o2; o3; : : :] = T (x) with x = [x1; x2; x3; : : :].

T (x) =
A � x+B

C � x+D
=

a0 � x+ b0

c0 � x+ d0
= T0(x) (6)

with a0; b0; c0; d0 as initial state. The iterative algorithm consumes one input digit xi and

produces one output digit oi at each iteration step, based on the simple continued fraction

core transform F (x) from equation 2. The transformation of the function Ti at each iteration

is:

Ti+1(x) =
1

Ti(xi +
1

x
)� oi

= F (xi) Æ Ti(x) Æ F�1(oi) (7)

The homographic function T (x) = ax+b
cx+d

is invariant over the required transformation

and can therefore be computed by using a �nite state machine and the following iteration

(state transition) equations for state variables a; b; c; d shown in �gure 1:

ai+1 = cixi + di bi+1 = ci
ci+1 = aixi + bi � oi(cixi + di) di+1 = ai � oici

(8)

2

1

2 +
1

1
...

-(2 +2)+

M 1

1M M 2

Simple
 CF

1

r0 + 1
r + 1

r1
2

...

Binary
Representation

 Binary

B=2 +2 +2 ...β32β1β

M-log-Fraction

Figure 2: The block-diagram above shows the binary M-log-fraction. The binary M-log-

fraction serves as a link between simple continued fraction expansions and binary numbers.

The algorithm is self-correcting, i.e. we can choose an arbitrarily approximate oi close to

ôi =
aixi+bi
cixi+di

at each iteration, and the algorithm still converges to the right result. Ideally,

we choose oi to make the �nal continued fraction simple to evaluate to a binary number,

which is the key observation leading to the MFT proposed in this paper.

In general, a SEPA algorithm can be developed for many rational functions, i.e. func-

tions T (x) which preserve their form in transformation 7. For more details on how to design

higher order SEPA algorithms see [17] and [11].

2 The M-log-Fraction Transformation (MFT)

One major diÆculty with continued fractions as a tool for computer arithmetic is the amount

of e�ort needed to convert binary numbers to continued fractions. We introduce the M-

log-fraction { a special case of a logarithmic simple continued fraction { to bridge the gap

between simple continued fraction expansions and binary numbers (see �gure 2):

Theorem 1 Binary M-log-Fraction: A binary number B with p binary digits, and n '1's is

equivalent to a simple continued fraction with n partial quotients called the M-log-Fraction:

B = b1b2b3 � � � bp = 2�1 + 2�2 + 2�3 + 2�4 + 2�5 + : : :+ 2�n (9)

� [0; 2M1 ;�(2�M1+ 2M2); (2�M2+ 2M3);�(2�M3+ 2M4); (2�M4+ 2M5) : : : � (2�Mn�1+ 2Mn)](10)

� < M1;M2;M3;M4;M5; : : : ;Mn > (11)

where Mi are related to �i, the distances between the '1's of the binary number B, as follows:

M1 = �1 = ��1; M2 = �2 �M1; Mi = �i �Mi�1 (12)

3

For a proof of theorem 1 see Appendix A. We refer to the encoding of binary numbers

with a sequence of Mis as shown above as M-log-Fraction Transformation (MFT). In fact,

the �rst digitM1 is the integer part of the logarithmic representation of B. Thus, the MFT

is a variant of the logarithmic number system[16] with the advantage that conversion just

requires counting the distance between the '1's.

We now have a direct correspondence between binary numbers and the MFT space.

Applying the M-log-Fraction to the input and output of the SEPA algorithm described

above leads to the �rst practical rational arithmetic units. However, in it's simplest form,

the MFT creates diÆculties for the selection function of the SEPA output digit. The sign

of each digit is �xed. As a consequence we would have to choose each ouput digit in a way

that would force the right sign on the next output digit. In order to avoid this diÆculty

we introduce the signed-digit M-log-Fraction. The signed-digit M-log-Fraction shown below

connects signed-digit binary numbers (e.g. digits f�1; 1g) with the MFT.

Corollary 2 Signed-Digit Binary M-log-Fraction: A binary number BR with n digits, and

si 2 f+1;�1g is equivalent to a simple continued fraction with n partial quotients as follows:

BR = s12
�1 + s22

�2 + s32
�3 + s42

�4 + : : :+ sn2
�n

� [0; s12
M1 ;�(s12

�M1+ s22
M2); (s22

�M2+ s32
M3);�(s32

�M3+ s42
M4); : : :� (sn�12

�Mn�1+ sn2
Mn)]

For faster algorithms, the digits si are extended to si 2 f�(r � 1); : : : ; r � 1g (higher

radix-r). Given the signed-digit MFT and the SEPA algorithm we show some hardware

implementations of rational arithmetic units.

3 Algorithm Class 1: A Rational Arithmetic Unit

The signed-digit binary M-log-Fraction combined with the SEPA algorithm explained in

the Introduction above results in a simple next-digit selection function(see �gure 1). For

simplicity reasons we show the case T1 = ax+b

cx+d
with a = 0; c = 0. The SEPA algorithm

simpli�es to a division algorithm for b

d
. As there are no input digits xi, the transformation

Ti+1(x) =
1

Ti(x)�oi produces iteration equations:

d�1 = b d0 =d di+1 = di�1 � oidi (13)

with

o1 = s12
M1 oi = (�1)i�1(si�12

�Mi�1 + si2
Mi) (14)

selected according to corollary 2.

In fact, the iterations are reduced to shift-and-add operations. We �x the series of shifts

M = f1; 0; 1; 0; 1; 0; : : :g. Fixing the shift-sequence (Ms) results in regular hardware. By

unrolling the iterations, the shifts can be hardwired and we obtain a pipeline of adders. A

comparison of the resulting structure to state-of-the-art SRT-division(e.g. [14]) is shown in

�gure 4.

4

–24

–22

–20

–18

–16

1 1.2 1.4 1.6 1.8 2Divisor d

log2(error) Division 1/d

0

0.2

0.4

0.6

0.8

–24 –22 –20 –18 –16
log2(error)

Histogram of Errors

(a) (b)

Figure 3: The graphs plot the error for computing 1=d after 16 iterations with 16-bit precision

at each iteration, not including exact results. (a) shows log
2
(error) for divisor d in the

range of [1; 2[. (b) shows the distribution of error values with a histogram.

Next, we compute the signed-digits si = f�1; 1g as follows:

si = sign
�
(�1)i�1 � di�1 � si�1 � 2�Mi�1 � di

�
� sign(di) (15)

Equation 15 enables us to select the next signed digit with little e�ort. The self-

correcting feature of the SEPA algorithm guarantee convergence to the right result. Using

a redundant digit set f+1; 0;�1g gives us some
exibility. As a consequence, a real-world

radix-2 SRT divider has a delay of 1 CSA plus a few gates to select the next digit. A similar

approach can get rid of the CPAs and tables for the MFT-based unit.

Figure 3 shows simulation results for the simple case b = 1; b
d
= 1

d
. We observe the

interval [1; 2[that is of interest for
oating point division. The �gures show results for a

�xed algorithm with 16 iterations, 16-bit accurate iteration computations, targeting 16-bit

results.

The proposed algorithm is similar to SRT division (Digit-Recurrence Algorithms [18]).

The major di�erence lies in the digit selection function. The derivation of the proposed

algorithm from continued fractions leads to a simpler and well de�ned selection function

based solely on sign comparisons in case of radix-2.

3.1 Higher Radix Rational Arithmetic

The radix-r algorithm uses a signed digit-set, e.g. s = f�(r � 1); : : : ; r � 1g. Higher radix
algorithms reduce the number of iterations at the cost of additional area and, possibly,

a longer delay per iteration. Current state-of-the-art in SRT-division does not scale to

eÆcient dividers beyond radix-8. The MFT enables us to design relatively simple higher

radix algorithms based on an algebraic formulation of the selection functions, as shown for

radix-2 in the previous sections.

As before, we �rst obtain an M-log-Fraction for the desired radix, and then design

the iterative algorithm based on the SEPA algorithm and the signed-digit radix-r M-log-

5

C

A
S

C

A
S

C
P
A

C
P
A

C
P
A

C

A
S

C
O
N
V

&
D

DIGIT OUT
DIGIT OUT

SRT
Table

Optimal SRT-Table(Radix-2)=3-input-gate

(a) MFT-based Radix-2 Divider (b) SRT-Table-based Radix-2 Divider

d i+1

d

s i

i

d

d

i

i

d i

d i-1

Figure 4: The �gure shows (a) a regular, pipelined radix-2 divider based on the MFT, and

(b) a general SRT-Table divider based on results from [14]. Broken lines en-capsule logic

that can be collapsed to a few gates if we use a redundant digit representation.

6

Fraction for the result. A radix-r number(rrn) results in the following signed-digit radix-r

M-log-Fraction:

rrn = 1 + s1r
�1 + s2r

�2 + s3r
�3 + s4r

�4 + � � � = (16)

= [1;Q1; Q2; Q3; Q4; : : :] (17)

Q1 =
r

s1
p1 = s�1

1
p1=̂

1

p1
= s1 (18)

Qi = (�1)i�1 �
�
pi +

1

r � pi�1

�
� qi (19)

pi = pi�1

si�2

si�1

pi=̂
1

pi
= pi�1

si�1

si�2

(20)

qi =

(
r i = odd

1 i = even
(21)

We obtain a next digit selection function for the SEPA algorithm by choosing the output

digit in the form of a digit of the radix-r M-log-Fraction as follows:

oi = Qi �
aixi + bi

cixi + di
(22)

Combining equations 22,19 we obtain the next digit si as a function of:

si = f(ai; bi; ci; di; Qi) (23)

The general development of a next digit equation for the SEPA algorithm can be used

to implement a digit-serial algorithm for a rational arithmetic unit capable of computing

many rational functions.

We use the simplest case, division of two numbers, to show the details of an actual

radix-r algorithm.

Radix-r Division

In case of radix-r division the function from equation 23 becomes:

si �
X

Y
=

8><
>:

disi�1r

�pidi�1r�di i = even

disi�1r

pidi�1�di i = odd

(24)

with pi computed by equation 20. Figure 5 shows the structure of an implementation of

the proposed algorithm for radix-r division units. Tables T1 and T2 use the most signi�cant

bits of X and Y to choose the next output digit si � X
Y
. With increasing radix-r we require

more levels of CSAs and increased precision in tables T1 and T2. However, as in the case of

radix-2, a redundant digit representation can enable us to reduce the complexity of choosing

the next digit si to a few gates.

7

C

A
S

C
P
A

C

A
S

C

A
S

C
P
A

C

A
S

C

A
S

C

A
S

d i

d i-1
T2

T1

s
i-1

p
i

X

Y

d

i
p

p
i+1

s
i

p

i

i

p
i+1

d
i+1

 s i

i-1

M

MM

i
s

Figure 5: The �gure shows a radix-r base-implementation of the proposed division unit.

si=̂
1

si
; pi=̂

1

pi
, MCSAs denote (log r)-level CSA structures. T1, T2 are small log r by log r

tables. However, as in the case of radix-2, a redundant digit representation enables us to

reduce the complexity of choosing the next digit si to a few gates. The broken line en-capsules

the area that can be simpli�ed.

8

–34

–32

–30

–28

–26

–24

–22

–20

–18

–16

–14

–12

–10

0 0.2 0.4 0.6 0.8 1
Argument X

log2(error) Arctan(X)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

–36 –34 –32 –30 –28 –26 –24 –22 –20 –18 –16 –14 –12 –10 –8
log2(error)

Histogram of Errors

(a) (b)

Figure 6: The graphs show the error for computing arctan(x) after 16 iterations with 16-bit

precision at each iteration. (a) shows log
2
(error) for arguments x in the range of [0; 1[.

(b) shows the distribution of error values with a histogram.

In summary, we have shown in this section the details on how to combine the MFT

and the SEPA algorithm to design regular, pipelineable radix-2, and higher radix division

units. Using the full power of the SEPA algorithm, we can compute a whole family of

functions such as T (x) = ax+b
cx+d

; T (x) = ax2+bx+c
dx2+ex+f

, but also functions of more variables such

as T (x; y) = axy+bx+cy+d
exy+fx+gy+h

. For details on the algorithm for these higher order functions see

[11].

The following section explores another application of the MFT method. We combine

the division-like algorithm with the evaluation of a rational approximation in the form of a

simple continued fraction.

4 Algorithm Class 2:

Rational Approximations of Elementary Functions

In this section we explore a multiplication-based algorithm based on the MFT and the

SEPA algorithm. By feeding a rational approximation in simple continued fraction form

into the MFT/SEPA algorithm, we evaluate the rational approximation in a digit-serial

fashion, obtaining one digit per iteration.

We focus here on the left step in �gure 2: converting simple continued fraction expansions

(rational approximations) with rational elements ri to binary numbers using a digit-serial

algorithm. We use the trivial linear fractional transformation 1�x+0

0�x+1
and the SEPA algorithm

to convert simple continued fraction expansions to a binary M-log-Fraction. In the examples

below we use the approach from the previous section with a small modi�cation to increase

the speed of convergence. Instead of �xing the shifts (Mis) we compute the next digit and

the next shift (Mi). Given the iteration equations 8 for the linear fractional SEPA algorithm

we choose the following output digit of the redundant binary M-log-Fraction.

9

–38
–36
–34
–32
–30
–28
–26
–24
–22
–20
–18
–16
–14
–12
–10

–8
–6
–4
–2

0 0.1 0.2 0.3 0.4 0.5Argument X

log2(error) Arcsin(X)/sqrt

0

0.02

0.04

0.06

0.08

–40 –30 –20 –10
log2(error)

Histogram of Errors

(a) (b)

Figure 7: The graphs show the error for computing
arcsin(x)p

1�x2 after 16 iterations with 16-bit

precision at each iteration. (a) shows log
2
(error) for arguments x in the range of [0; 0:5[.

(b) shows the distribution of error values with a histogram.

Mi =

�
log2

�
(�1)i�1

�
axi + b

cxi + d
� si�12

�Mi�1

���

� blog2(axi + b� si�12
�Mi�1(cxi + d))c � blog2(�1)i�1(cxi + d)c (25)

using oi = (�1)i�1(si2
Mi + si�12

�Mi�1)

We avoid computing log(x) by using a leading one detect(LOD) circuit computing

blog(x)c. By computing an approximation to the optimal next shift (Mi) we improve the

convergence of the algorithm to above 1 bit per iteration. The actual results of the exam-

ples below show the convergence of the algorithm to the exact function, and thus include

also the convergence behavior of the rational approximation. As a consequence, for some

arguments X, overall convergence drops below 1 bit per iteration.

Jones and Thron ([6], p. 202) give arctan(1) as an example of a function that converges

much faster when approximated by a continued fraction compared to a Taylor approxima-

tion. In order to show the versatility of continued fraction approximations, we also show a

composite function, and the incomplete Gamma function. For simplicity we use approxi-

mations with integer coeÆcients. For optimal results over an interval a minimax continued

fraction which can be computed with Remez's method [15],[10] is preferable.

Example 1 We approximate arctan(x) for x 2 [0 : : : 1] with the continued fraction approx-

imation given in [6], p. 202.

arctan(x) =

"
0;
1

x
;
3

x
;
5

x

�
1

2

�
2

;
7

x

�
2

3

�
2

;
9

x

�
3

4

�
2

; : : :

#
(26)

Figure 6 shows the results for 16 iterations with 16-bit precision at each iteration.

10

–22

–20

–18

–16

–14

20 40 60 80 100
Argument X

log2(error) Gamma(0.5,X)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

–22 –20 –18 –16 –14 –12
log2(error)

Histogram of Errors

(a) (b)

Figure 8: The graphs plot the error for computing the incomplete Gamma function �(0:5; x)

after 16 iterations with 16-bit precision at each iteration. (a) shows log
2
(error) for argu-

ments x in the range of [10; 100]. (b) shows the distribution of error values with a histogram.

Example 2 We approximate the normalized function
arcsin(x)p

1�x2 for x 2 f0; 0:5g with the

continued fraction approximation given in [6], p. 203.

arcsin(x)p
1� x2

=

�
0;
1

x
;� 3

1 � 2 �
1

x
;

5

1 � 2 �
1

x
;

7

3 � 4 �
1

x
� � �
�

(27)

Figure 7 shows the results for 16 iterations with 16-bit precision at each iteration.

Example 3 We approximate the incomplete Gamma function �(a; x) for a = 1

2
; x 2

[10 : : : 100] with the continued fraction approximation given in [6], p. 348, and [13].

�(0:5; x) = e�x � x0:5 �
h
0;x; (0:5)�1; x; (1:5)�1; x; (2:5)�1; x; (3:5)�1 : : :

i
(28)

Figure 8 shows the results for 16 iterations with 16-bit precision at each iteration. We

observe increasing precision with increasing distance from x = 0. Intuitively, the even

quotients of the continued fraction, x, lead to pseudo-divisions by zero. In fact, �(0:5; x)

has a pole at zero.

In general, average precision is dependent on the precision for the iteration computations,

while the standard deviation of the error in �gure 6(a) varies with the number of iterations.

5 Conclusions

In conclusion, the MFT bridges the gap between continued fractions and the binary number

representation, enabling the design of a new class of eÆcient rational arithmetic units. In

this paper we show the contribution of the MFT to two application areas: (high radix)

rational arithmetic units and the digit-serial evaluation of rational approximations.

From a distance the M-log-Fraction and MFT behave like a redundant representation

of binary numbers by the integer distances between the '1's, just like 0-runlength encoding.

11

This relatively simple transformation allows us to exploit the symmetries in the continued

fraction space while computing and storing binary numbers.

In this paper we showed some possible applications of the MFT/SEPA symbiosis. Fu-

ture work consists of investigating other possible algorithms, implementations, and their

competitiveness to state-of-the-art implementations of arithmetic units.

Acknowledgments

We thank D.W. Bump for discussions on the M-log-Fraction, and J.T. Gill and S. Oberman

for helpful comments and suggestions.

Appendix A: Proof of Theorem 1

Throughout the appendix Mi =
Pi

j=1
Mj and < M1;M2;M3; : : : > denotes the M-log-

Fraction with parameters Mi.

Before proving theorem 1 we have to show that for any Ai

Bi
(see equations 3,4) of a binary

M-log-Fraction (equation 10), i = 1; 2; 3; : : :,

Bi = (�1)b0:5�ic � 2Mi (29)

Proof by induction

B1 = a1 = 2M1 B2 = B1a2 +B0 = �2M1+M2 (30)

from equation 4 follows

Bi+1 = (�1)i(2Mi+1 + 2�Mi)Bi +Bi�1 (31)

using equation 29 for Bi and Bi�1 we obtain

Bi+1 = (�1)i
�
(�1)b0:5�ic2Mi+1 + (�1)b0:5�ic2Mi�1

�
+ (�1)b0:5(i�1)c2Mi�1 = (32)

= (�1)b0:5(i+1)c � 2Mi+1 (33)

q.e.d.

In addition to the proof above, we require identity(e.g. see [6] equation 2.1.9),

Ai+1Bi �AiBi+1 = (�1)i (34)

for simple continued fractions.

12

Proof of Theorem 1

An M-log-Fraction of length n is equivalent to n powers of 2 for any n 2 N .

Direction 1: Binary M-log-Fraction of length n ! n powers of 2.

We show by induction on the length of the M-log-Fraction that for any n 2 N :

<M1;M2;M3;M4; : : : Mn>! 2�M1 + 2�2M1�M2 + 2�2M1�2M2�M3 + � � �+ 2�2Mn�1�Mn

! 2�1 + 2�2 + 2�3 + � � �+ 2�n (35)

First, for length n = 1 and n = 2 we obtain by inspection:

<M1>= 2�M1 <M1;M2>= 2�M1 + 2�2M1�M2 (36)

Given n,

<M1;M2; : : : ;Mn>= 2�M1 + 2�2M1�M2 + � � �+ 2�2Mn�1�Mn (37)

we show that

<M1;M2; : : : ;Mn+1>=<M1;M2; : : : ;Mn> +2�2Mn�Mn+1 (38)

<M1;M2; : : : ;Mn+1> � <M1;M2; : : : ;Mn> =
An+1

Bn+1

� An

Bn

= (39)

= (�1)n 1

Bn+1Bn

(40)

using identity 34.

Finally, we apply equation 29 and obtain

(�1)n 1

Bn+1Bn

= 2�2Mn�Mn+1 (41)

Direction 2: n powers of 2 ! Binary M-log-Fraction of length n, for any n 2 N .

2�1 + 2�2 + 2�3 + � � �+ 2�n! 2�M1 + 2�2M1�M2 + 2�2M1�2M2�M3 + � � � + 2�2Mn�1�Mn

!<M1;M2;M3; : : :Mn > (42)

First, for length n = 1 and n = 2:

2�1 =<��1> 2�1 + 2�2 =<��1; 2�1 � �2> (43)

Given n,

2�1 + 2�2 + � � � + 2�n =<M1;M2; : : : ;Mn> (44)

we show that

2�1 + 2�2 + � � �+ 2�n+1 =<M1;M2; : : : ;Mn+1> (45)

13

By using equations (29,34,39,40,44) we conclude that

<M1;M2; : : : ;Mn+1> � <M1;M2; : : : ;Mn>=
An+1

Bn+1

� An

Bn

= (46)

= 2�2Mn�Mn+1 = 2�n+1 (47)

Thus, an M-log-Fraction of length n is equivalent to n powers of 2, with the relation

between Ms and the powers of 2 as shown in equation 35.

q.e.d.

References

[1] O. Perron, Die Lehre von den Kettenbr�uchen, Band I,II , Teubner Verlag, Stuttgart,

1957.

[2] A. Hurwitz, �Uber die Kettenbr�uche, deren Teilnenner arithmetische Reihen bilden,

Vierteljahrsschrift d. naturforsch. Gesellschaft, Z�urich, Jahrgang 41, 1896.

[3] M. Hall, On the sum and product of continued fractions, Ann. of Math. 48, 966-993,

1947.

[4] R.W. Gosper, R. Schroeppel, M. Beeler, HAKMEM, Continued Fraction Arithmetic,

MIT AI Memo 239, Feb. 1972.

[5] G.N. Raney, On Continued Fractions and Finite Automata, Math. Ann. 206, 265-283,

1973.

[6] W.B. Jones, W.J. Thron, Continued Fractions: Analytic Theory and Applications,

Encyclopedia of Mathematics and its Applications, Vol. 11, Addison-Wesley, Reading,

Mass., 1980.

[7] A. Bracha-Barack, Application of Continued Fractions for Fast Evaluation of Certain

Functions on a Digital Computer, IEEE Trans. on Computers, March 1974.

[8] J.E. Robertson, K.S. Trivedi, On the Use of Continued Fractions for Digital Computer

Arithmetic, IEEE Trans. on Computers, July 1977.

[9] P. Kornerup, D.W. Matula, An algorithm for redundant binary bit-pipelined rational

arithmetic, IEEE Trans. on Computers, Vol. 39, No. 8, Aug. 1990.

[10] Waterloo Maple Inc., Maple V,

http://www.maplesoft.com/.

[11] O. Mencer, M. Morf, M. J. Flynn, Precision of Semi-Exact Redundant Continued

Fraction Arithmetic for VLSI, SPIE Advanced Signal Processing Algorithms, Archi-

tectures, and Implementations IX, Denver, July 1999.

14

[12] I. Koren, O. Zinaty, Evaluating Elementary Functions in a Numerical Coprocessor

Based on Rational Approximations, IEEE Trans. on Computers, Vol. 39, No. 8, Aug.

1990.

[13] A.N. Khovanskii, The application of continued fractions and their generalizations

to problems in approximation theory, 1956, translated by Peter Wynn, Groningen,

Netherlands, P. Noordho�, 1963.

[14] S. Oberman with M.J. Flynn, Design issues in high performance
oating point arith-

metic units PhD thesis, Dept. of Electrical Engineering, Stanford, Nov. 1996.

[15] E.Y. Remez, General Computational Methods of Chebyshev Approximation, Kiev,

1957. (see also L.A. Lyusternik et al, Computing Elementary Functions, Pergamon

Press, 1965.)

[16] E.E. Schwartzlander, A.G. Alexpoulos The sign-logarithm number system, IEEE

Trans. on Computers, Dec. 1975.

[17] J.E. Vuillemin, Exact Real Computer Arithmetic with Continued Fractions, IEEE

Trans. on Computers, Vol. 39, No. 8, Aug. 1990.

[18] M.D. Ercegovac, T. Lang, Division and Square Root, Digit-Recurrence Algorithms

and Implementations, Kluwer Academic Pubs, Massachusetts, 1994.

15

