

Checkpointing Apparatus and Algorithms for
Fault-Tolerant Tightly-Coupled Multiprocessors

Dwight Sunada

Technical Report: CSL-TR-99-785

July 1999

The initial phase of this research was supported by a financial grant from
Hewlett-Packard Company.

ii

Checkpointing Apparatus and Algorithms for Fault-Tolerant
Tightly-Coupled Multiprocessors

Dwight Sunada

Technical Report: CSL-TR-99-785

July 1999

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
William Gates Building, 4A-408
Stanford, California 94305-9040

<e-mail: pubs@shasta.stanford.edu>

Abstract

The apparatus and algorithms for establishing checkpoints on a tightly-coupled multiprocessor

(TCMP) fall naturally into three broad classes: tightly synchronized method, loosely synchronized

method, and unsynchronized method. The algorithms in the class of the tightly synchronized

method force the immediate establishment of a checkpoint whenever a dependency between two

processors arises. The algorithms in the class of the loosely synchronized method record this

dependency and, hence, do not require the immediate establishment of a checkpoint if a

dependency does arise; when a processor chooses to establish a checkpoint, the processor will

query the dependency records to determine other processors that must also establish a

checkpoint. The algorithms in the class of the unsynchronized method allow a processor to

establish a checkpoint without regard to any other processor. Within this framework, we develop

four apparatus and algorithms: distributed recoverable shared memory (DRSM), DRSM for

communication checkpoints (DRSM-C), DRSM with half of the memory (DRSM-H), and DRSM

with logs (DRSM-L). DRSM-C is an algorithm in the class of the tightly synchronized method,

and DRSM and DRSM-H are algorithms in the class of the loosely synchronized method. DRSM-

L is an algorithm in the class of the unsynchronized method and is the first of its kind for a TCMP.

DRSM-L has the best performance in terms of minimizing the impact of establishing checkpoints

(or logs) on the running applications and has the least expensive hardware.

Key Words and Phrases: audit trail, checkpoint, fault tolerance, roll-back recovery,

tightly-coupled multiprocessor

iii

© Copyright by Dwight Sunada 1999

All Rights Reserved

iv

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and quality, as a dissertation for the degree of Doctor of

Philosophy.

 .

 Michael J. Flynn

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and quality, as a dissertation for the degree of Doctor of

Philosophy.

 .

 David B. Glasco

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and quality, as a dissertation for the degree of Doctor of

Philosophy.

 .

 Bernard Widrow

Approved for the University Committee on Graduate Studies:

 .

v

Acknowledgments

Starting from the 7th grade of intermediate school, I have hoped to obtain a Doctor-of-Philosophy

degree in either (1) computer science or (2) a field related to computer science. More than 20

years later, I shall earn a Doctor of Philosophy (Ph. D.) in electrical engineering; my Ph. D.

research is focused on the architecture of computer systems. Although I encountered many

obstacles along the way to earning a Ph. D., I have finally fulfilled one of my childhood dreams.

Several people contributed to my accomplishment. At Stanford University, I thank both Professor

Michael J. Flynn and Professor David B. Glasco for serving as my advisors. I thank Professor

Bernard Widrow for being the 3rd member of my reading committee. I thank Professor John M.

Cioffi for serving as the chairman of my orals committee and Professor Abbas El-Gamal for being

the 4th member of my orals committee. In addition, I thank the colleagues in my research group

and the students in the ÒEE 385BÓ seminar for listening to my numerous practice presentations

(for the Ph. D. oral defense) and for offering helpful suggestions.

At the University of Houston (in Texas), I thank Professor Pauline Markenscoff for believing that I

can do research. The University of Houston (UH) has a tiny fraction of the resources and the

intellectual environment that Stanford University has. Research positions in computer

architecture at UH were rare Ð if they even existed. Nonetheless, after I graduated with a

Bachelor-of-Science degree in electrical engineering from UH in 1988 May, I looked for a summer

job doing research in computer architecture. By sheer coincidence, Professor Markenscoff had

an opening for such a job and hired me to do research on the subject of multiprocessors. In this

research, I used computer simulation to develop algorithms for assigning subtasks (of a whole

task) to the processors in a multiprocessor. This work and a strong letter of recommendation

from Professor Markenscoff significantly helped me to successfully obtain a 3-year graduate

fellowship (for graduate study at Stanford University) from the National Science Foundation in

1989. Also, this research culminated in my first significant paper: ÒComputation of Tasks

Modeled By Directed Acyclic Graphs on Distributed Computer Systems: Allocation without

Subtask Replication" on pages 2400 - 2404 in volume 3 of the 1990 IEEE International

Symposium on Circuits and Systems. I am very grateful to Professor Markenscoff.

vi

To complete my academic acknowledgments, I thank 3 teachers from secondary school for

having taught me well. They are Ms. Dillion from my American-history class in the 10th grade (at

Klein High School in Klein, Texas), Ms. Little from my science class in the 7th grade (at Strack

Intermediate School in Klein, Texas), and Ms. Lacy in the 3rd grade (at Hidden Valley Elementary

School in Houston, Texas). All 3 teachers asked me to remember them if I ever became famous.

Since obtaining the Ph. D. is a type of fame, I now honor their request. I thank all 3 teachers for

having taught me well.

In my personal life, I thank my grandfather, Chew Doo Wong, for his kindness towards me. I

have suffered very many, painful experiences in my life; during almost all of these painful

experiences, no person genuinely cared about me. In particular, I suffered one of these painful

experiences when I was approximately 13 years old. At that time, my grandfather was in a

position to help me, and he conscientiously helped me in a substantial way. Shortly thereafter, he

passed away Ð into the kind and gentle place. Although more than 20 years have elapsed since

his death, I still occasionally remember him and his kindness. I thank my grandfather very much

for his kindness on that occasion long ago.

Finally, I dedicate this dissertation (and any benefit derived from it) to the hope that both (1) the

adult survivors of child abuse and (2) abused children will someday find inner peace and joy. As

for the victims who did not survive child abuse, I dedicate this dissertation (and any benefit

derived from it) to the hope that they will find inner peace and joy in the kind and gentle place

beyond this cruel world.

vii

Table of Contents

Chapter 1. Introduction ... 1

1.1. Tightly-Coupled Multiprocessor (TCMP).. 1

1.2. Fault-tolerant TCMP.. 2

1.3. Research on Roll-back Recovery... 3

Chapter 2. Background... 5

2.1. Dependencies ... 5

2.2. Classes of Algorithms ... 10

Chapter 3. Assumptions ... 12

3.1. Fault-tolerant Components... 12

3.2. Distinction between Processor and Directory Controller... 13

Chapter 4. Distributed Recoverable Shared Memory (DRSM)... 15

4.1. Introduction.. 15

4.2. Prior Work ... 15

4.3. Background: Recoverable Shared Memory (RSM)... 15

4.3.1. Dependency Matrix ... 16

4.3.2. Last-Writer Indicator .. 16

4.3.3. Checkpoint Counters... 17

4.3.4. Memory for Tentative Checkpoint... 17

4.3.5. Memory for Permanent Checkpoint.. 17

4.3.6. Establishing Checkpoints .. 17

4.3.7. New Requests after Initiating Checkpoint .. 19

4.4. Apparatus of DRSM.. 19

4.5. Triggers of Checkpoint Establishment ... 22

4.6. Establishing Tentative Checkpoints ... 22

4.6.1. General Overview.. 22

4.6.2. Details .. 24

4.6.3. Dependent Processors and Dependent DRSM Modules .. 25

4.7. Establishing Permanent Checkpoints .. 26

4.7.1. General Overview.. 26

4.7.2. Details .. 26

4.8. Additional Features... 27

viii

4.8.1. Artificially Dependent Processors... 27

4.8.2. Arbiter... 28

4.9. Recovery from a Fault .. 28

Chapter 5. Distributed Recoverable Shared Memory for Communication Checkpoints (DRSM-C)

.. 31

5.1. Introduction.. 31

5.2. Prior Work ... 31

5.3. Apparatus .. 32

5.4. Triggers of Checkpoint Establishment ... 33

5.5. Establishing Checkpoints ... 33

5.5.1. General Overview.. 33

5.5.2. Details .. 34

5.6. Recovery from a Fault .. 35

Chapter 6. Distributed Recoverable Shared Memory with Half of the Memory (DRSM-H)............. 37

6.1. Introduction.. 37

6.2. Apparatus .. 37

6.3. Memory Cache.. 39

6.4. Triggers of Checkpoint Establishment ... 40

6.5. Establishing Tentative Checkpoints ... 40

6.6. Establishing Permanent Checkpoints .. 41

6.6.1. General Overview.. 41

6.6.2. Details .. 42

6.7. Recovery from a Fault .. 43

Chapter 7. Distributed Recoverable Shared Memory with Logs (DRSM-L)..................................... 44

7.1. Introduction.. 44

7.2. Apparatus .. 44

7.3. Audit Trail .. 46

7.4. Optimizations .. 48

7.5. Triggers of Checkpoint Establishment ... 49

7.5.1. List of Triggers... 49

7.5.2. Context Switch... 49

7.6. Establishing Checkpoints ... 50

7.7. Recovery from a Fault .. 51

7.8. Pedagogical Example ... 54

7.9. Optimal Size of Line Buffer and Counter Buffer .. 59

7.10. Detailed Description.. 60

Chapter 8. Simulation Environment and Benchmarks .. 61

ix

8.1. Multiprocessor Simulator .. 61

8.2. Benchmarks .. 62

Chapter 9. Results and Analysis.. 64

9.1. Overall Performance of Benchmarks ... 64

9.2. Performance Impact of Establishing Checkpoints... 71

9.2.1. Checkpoints ... 72

9.2.2. Negative Acknowledgments and Upgrade Misses .. 77

9.3. Checkpoint Data.. 80

9.4. Audit-Trail Data ... 83

9.5. Extent of Checkpoint Dependencies.. 85

9.6. Memory Cache and Dirty-Shared Data.. 85

9.7. DRSM Versus DRSM-L .. 87

9.8. Additional Observations.. 89

9.8.1. Delay for Establishing Checkpoints .. 89

9.8.2. Number of Negative Acknowledgments (NAKs) .. 90

9.8.3. Number of Upgrade Misses .. 93

9.9. High Rate of Checkpoints for All Processors... 93

Chapter 10. Conclusions .. 94

10.1. DRSM-C .. 94

10.2. DRSM and DRSM-H... 94

10.3. DRSM-L... 94

10.4. Future Work .. 95

10.4.1. Simulation .. 95

10.4.2. Proof of Concept.. 96

Appendix A. Precise Description of DRSM-L .. 97

Appendix B. Results for Timer Expiration per 2,000,000 Cycles.. 112

B.1. Overall Performance of Benchmarks... 112

B.2. Performance Impact of Establishing Checkpoints .. 118

B.2.1. Checkpoints... 118

B.2.2. Negative Acknowledgments and Upgrade Misses.. 121

B.3. Checkpoint Data ... 123

B.4. Audit-Trail Data... 126

B.5. Extent of Checkpoint Dependencies ... 126

B.6. Memory Cache and Dirty-Shared Data ... 127

B.7. Additional Observations ... 129

List of References.. 132

x

List of Tables

Table 1. Checkpoints for DRSM... 73

Table 2. Checkpoints for DRSM-C... 74

Table 3. Checkpoints for DRSM-H... 75

Table 4. Checkpoints for DRSM-L ... 76

Table 5. Negative Acknowledgments and Upgrade Misses for DRSM.. 78

Table 6. Negative Acknowledgments and Upgrade Misses for DRSM-C.. 78

Table 7. Negative Acknowledgments and Upgrade Misses for DRSM-H.. 79

Table 8. Negative Acknowledgments and Upgrade Misses for DRSM-L... 79

Table 9. Data Saved per Processor per Checkpoint for DRSM ... 80

Table 10. Data Saved per Processor for DRSM ... 80

Table 11. Data Saved per Processor per Checkpoint for DRSM-C ... 81

Table 12. Data Saved per Processor for DRSM-C ... 82

Table 13. Data Saved per Processor per Checkpoint for DRSM-H ... 82

Table 14. Data Saved per Processor for DRSM-H ... 83

Table 15. Audit-Trail Data (entries in line buffer; entries in counter buffer; ratio)............................ 84

Table 16. Extent of Checkpoint Dependencies for DRSM.. 85

Table 17. Extent of Checkpoint Dependencies for DRSM-H.. 85

Table 18. Statistics about Dirty-Shared Data .. 87

Table 19. Timer-triggered Checkpoints: (number for processor #3; average for other processors)

.. 89

Table 20. Checkpoints for DRSM .. 118

Table 21. Checkpoints for DRSM-C... 119

Table 22. Checkpoints for DRSM-H... 120

Table 23. Checkpoints for DRSM-L ... 121

Table 24. Negative Acknowledgments and Upgrade Misses for DRSM.. 121

Table 25. Negative Acknowledgments and Upgrade Misses for DRSM-C.................................... 122

Table 26. Negative Acknowledgments and Upgrade Misses for DRSM-H.................................... 122

Table 27. Negative Acknowledgments and Upgrade Misses for DRSM-L 123

Table 28. Data Saved per Processor per Checkpoint for DRSM ... 123

Table 29. Data Saved per Processor for DRSM ... 124

Table 30. Data Saved per Processor per Checkpoint for DRSM-C ... 124

xi

Table 31. Data Saved per Processor for DRSM-C ... 125

Table 32. Data Saved per Processor per Checkpoint for DRSM-H ... 125

Table 33. Data Saved per Processor for DRSM-H ... 126

Table 34. Audit-Trail Data (entries in line buffer; entries in counter buffer; ratio).......................... 126

Table 35. Extent of Checkpoint Dependencies for DRSM.. 126

Table 36. Extent of Checkpoint Dependencies for DRSM-H.. 127

Table 37. Statistics about Dirty-Shared Data ..128

xii

List of Illustrations

Figure 1. Basic Architecture of Tightly-Coupled Multiprocessor (TCMP)... 2

Figure 2. Roll-back Dependency for Write-Read Interaction .. 6

Figure 3. Checkpoint Dependency for Write-Read Interaction... 7

Figure 4. Roll-back/Checkpoint Dependency for Write-Write Interaction with Writes to Different

Words ... 8

Figure 5. Roll-back Dependency for Write-Write Interaction with Writes to the Same Word............ 8

Figure 6. Checkpoint Dependency for Write-Write Interaction with Writes to the Same Word......... 9

Figure 7. Dependencies to Classes of Checkpointing Algorithms.. 10

Figure 8. Tightly-Coupled Multiprocessor (TCMP).. 13

Figure 9. Recoverable Shared Memory (RSM)... 16

Figure 10. Flow of Checkpoint ... 18

Figure 11. Distributed Recoverable Shared Memory (DRSM) ... 20

Figure 12. Transition of State for 2-Bit State Register .. 21

Figure 13. Flow of Tentative Checkpoint ... 23

Figure 14. Flow of Permanent Checkpoint .. 27

Figure 15. Distributed Recoverable Shared Memory for Communication Checkpoints (DRSM-C)

.. 32

Figure 16. Flow of Checkpoint ... 34

Figure 17. Distributed Recoverable Shared Memory with Half of the Memory (DRSM-H) 38

Figure 18. Flow of Permanent Checkpoint .. 41

Figure 19. Distributed Recoverable Shared Memory with Logs (DRSM-L) 45

Figure 20. Transition of State of Both Processor and 2nd-Level Cache.. 46

Figure 21. Normal Execution of Processor.. 55

Figure 22. Recovery of Processor ... 56

Figure 23. Completion of Recovery of Processor ... 58

Figure 24. Base Multiprocessor ... 61

Figure 25. Benchmark #1 ... 65

Figure 26. Benchmark #2 ... 66

Figure 27. Benchmark #3 ... 67

Figure 28. Benchmark #4 ... 68

Figure 29. Benchmark #5 ... 69

xiii

Figure 30. Benchmark #6 ... 70

Figure 31. Communication Improved by Checkpoint .. 71

Figure 32. Performance of Memory Cache ... 86

Figure 33. Effect of Irregular Checkpointing -- Processor #3 with High Checkpointing Rate 88

Figure 34. Delay for Establishing Checkpoints per Processor ... 90

Figure 35. Number of Negative Acknowledgments (NAKs) per Processor 91

Figure 36. Number of Upgrade Misses per Processor.. 92

Figure 37. Benchmark #1 ... 112

Figure 38. Benchmark #2 ... 113

Figure 39. Benchmark #3 ... 114

Figure 40. Benchmark #4 ... 115

Figure 41. Benchmark #5 ... 116

Figure 42. Benchmark #6 ... 117

Figure 43. Performance of Memory Cache ... 127

Figure 44. Delay for Establishing Checkpoints per Processor ... 129

Figure 45. Number of Negative Acknowledgments (NAKs) per Processor 130

Figure 46. Number of Upgrade Misses per Processor.. 131

1

Chapter 1. Introduction

1.1. Tightly-Coupled Multiprocessor (TCMP)

The tightly-coupled multiprocessor (TCMP), where specialized hardware maintains the image of a

single shared memory, has the highest performance among the various types of computer

systems. The architecture of a TCMP can vary greatly. In this dissertation, we focus on a TCMP

with an architecture like that shown in figure 1.

In figure 1, the TCMP has 4 nodes connected by a high-speed internal network. Each node of

the TCMP consists of the processor module and its associated memory module, and both these

modules are usually combined into a single processor board. Each processor module has a

processor, a 1st-level cache, and a 2nd-level cache. In figure 1, the processor modules are the

objects labeled Òprocessor #0Ó, Òprocessor #1Ó, Òprocessor #2Ó, and Òprocessor #3Ó. The caches

do not appear explicitly in figure 1.

Each memory module has both a directory controller and 1 bank of memory. In figure 1, the

memory modules are the objects labeled ÒDSM #0Ó, ÒDSM #1Ó, ÒDSM #2Ó, and ÒDSM #3Ó. The

bank of memory is labeled Òworking memoryÓ. The memory is organized into consecutive blocks

of many bytes. The size of a memory block is identical to the size of a 2nd-level-cache line. (The

directory controller is a component that intercepts and processes cache-coherence messages

destined for either the local processor or the local memory. For each block of memory, the

directory controller records all the processors holding the block in their caches.)

Some examples of a TCMP are the AViiON AV 25000 by Data General, the NUMA-Q 2000 by

Sequent, and the S/390 by International Business Machines (IBM). The most well-known TCMP

is probably the IBM S/390 [9]. It differs somewhat from the block diagram in figure 1. The

processor modules of the IBM S/390 are connected directly into the internal network. Also, the

IBM S/390 has exactly one memory module, which is connected directly into the internal network.

2

1.2. Fault-tolerant TCMP

In order to facilitate the use of such TCMPs in the commercial environment, we must build fault

tolerance into them. One approach is triple modular redundancy. Three TCMPs receive identical

Memory (DSM) #1

directory
controller

processor
#1

processor
#0

processor
#2

processor
#3

DSM #0

DSM #2

DSM #3

working
memory

Distributed Shared

ne
tw

or
k

Figure 1. Basic Architecture of Tightly-Coupled Multiprocessor (TCMP)

3

copies of inputs from the environment outside of the TCMP and perform identical computations.

A voter, a separate device, compares the outputs of the 3 TCMPs. If no fault occurs, all 3 outputs

are identical, and the voter delivers the common output to the environment. If one TCMP fails

due to a transient fault, then 1 of the 3 outputs will differ from the other 2 outputs, and the voter

delivers one of the 2 common outputs to the environment. The TCMP that failed then resets itself

and loads its state from that in the other 2 TCMPs. In this way, triple module redundancy

tolerates the failure of 1 entire TCMP. Triple module redundancy performs well since it does not

hinder the execution of the TCMP; the time for recovering from a fault is effectively 0 second. On

the other hand, triple module redundancy is extremely expensive since it requires multiple

TCMPs.

Instead of using modular redundancy, which requires excessive replication of hardware, we can

use roll-back recovery, which minimizes replication of hardware but increases the recovery time.

The newest IBM S/390 uses this approach [11]. The error-correcting-code circuits protect the

main memory and 2nd-level cache from any transient fault. The error-checking-code circuits

detect any transient fault in the 1st-level cache. The G5 microprocessor in the IBM S/390

consists of 2 identical processors tied together by a comparator, which verifies that their outputs

are identical. The R-unit, a separate fault-tolerant buffer within the G5 microprocessor, stores a

duplicate copy of the current state of the G5 and is essentially its checkpoint; the G5 updates the

R-unit per cycle. If a transient fault arises either in 1 of the 2 identical processors (according to

the comparator) or in the 1st-level cache (according to the error-checking-code circuit), the G5

resets the 2 identical processors, loads their state from the R-unit, and invalidates the contents of

the 1st-level cache. The G5 then resumes normal execution. Roll-back recovery does not

require multiple TCMPs but does hinder the execution of the TCMP if a fault occurs (since the

IBM S/390 must waste time in halting the 2 identical processors of the G5 microprocessor and in

loading their state from the R-unit, for example). Hence, roll-back recovery is cheaper than but

slower than triple modular redundancy.

1.3. Research on Roll-back Recovery

Because roll-back recovery is relatively inexpensive, it has become the dominant method of fault

tolerance. In general, roll-back recovery has 2 principal aspects. First, a processor establishes

occasional checkpoints; a checkpoint is a consistent state of the system. Second, if the

processor encounters a fault, the processor rolls back to the last checkpoint and commences

execution from the state saved in that checkpoint. The first aspect, the establishment of

checkpoints, is the more important one as it is a cost that the TCMP regularly experiences even if

no fault arises. The second aspect, the actual rolling-back, is less important as faults occur

4

infrequently. Hence, much of the research in roll-back recovery for TCMPs has focused on

developing efficient algorithms for establishing checkpoints.

Our research also focuses on efficient methods of establishing checkpoints for roll-back recovery.

We assume that re-designing a processor specifically to be fault-tolerant is prohibitively

expensive. In other words, we assume that only commodity processors are available. By

contrast, the engineers of the G5 microprocessor completely re-designed the architecture so that

the time for establishing checkpoints (i. e. updating the state in the R-unit) is hidden in the

pipeline and is effectively 0 second.

In this dissertation, we present 4 apparatus and algorithms for establishing checkpoints and

rolling back from a fault but focus on the performance of establishing checkpoints. We contribute

the following to the field of fault tolerance.

1. We extend recoverable shared memory (RSM) [2] to create distributed recoverable shared

memory (DRSM). RSM operates in a TCMP with multiple processor modules but with only a

single memory module; this memory module contains the entire global physical memory. By

contrast, DRSM operates in a TCMP where each processor has its own local memory module;

each local memory module contains a portion of the global physical memory. (Also, each

memory module of a TCMP with the DRSM has 2 banks of memory. One bank is the working

memory, and another bank is the permanent-checkpoint memory.)

2. We extend DRSM by eliminating 1 of its 2 banks of memory to create DRSM with half of the

memory (DRSM-H).

3. We implement a communication-based checkpointing apparatus and algorithm, DRSM for

communication checkpoints (DRSM-C), by eliminating the dependency matrix of DRSM.

4. We implement the first audit-trail-based apparatus and algorithm, DRSM with logs (DRSM-L),

on a TCMP.

5. We use a uniform set of assumptions to evaluate DRSM, DRSM-C, DRSM-H, and DRSM-L in

order to provide a fair comparison.

6. We present the first performance-based analysis of checkpointing apparatus and algorithms

on a TCMP with a general interconnection network assisted by directories. The only other

performance-based analysis [7] of checkpointing focuses on a bus-based TCMP.

5

Chapter 2. Background

2.1. Dependencies

The basic idea of roll-back recovery is the following. In a uni-processor computer, the processor

periodically establishes a checkpoint. If the computer encounters a fault, the processor rolls the

system back to the state in the last checkpoint. A checkpoint is a snapshot of the data stored in

the system and can represent any set of values that are generated by the fault-free execution of

the system. In other words, the checkpoint is a consistent state of the system

The simple scheme for roll-back recovery becomes complicated in a TCMP. Processors access

shared memory blocks, and this interaction causes dependencies to arise. There are 4 possible

types of interactions on the same shared memory block.

Only the last 2 interactions cause dependencies to arise. We shall examine how they arise. In

our presentation, we assume that a memory block and the highest-level-cache line are identical in

1. read Ð read: A read by processor P precedes a read (of the same
 memory block) by processor Q.

 dependency: none

2. read Ð write: A read by processor P precedes a write (of the
 same memory block) by processor Q.

 dependency: none

3. write Ð read: A write by processor P precedes a read (of the
 same memory block) by processor Q.

 roll-back dependency: P -> Q

 checkpoint dependency: Q -> P

4. write Ð write: A write by processor P precedes a write (of the
 same memory block) by processor Q.

 roll-back dependency: P <-> Q

 checkpoint dependency: P <-> Q

6

size and that the TCMP uses a write-back cache policy. To minimize the cost of the system, we

assume that it can hold only 1 level of checkpoint.

We use the notation of Ò->Ó or Ò<->Ó to indicate, respectively, that 1 processor is dependent on

another processor or that 2 processors are dependent on each other. For example, consider the

roll-back dependency of ÒP -> QÓ. This symbolic notation indicates that if processor ÒPÓ rolls

back to its last checkpoint, then processor ÒQÓ must also roll back to its last checkpoint.

Figure 2 illustrates the roll-back dependency that arises for the write-read interaction. After

processor "P" writes the value of 1 into a word of the memory block, processor "Q" reads that

value of 1. Then, processor "P" experiences a fault and rolls back to the last checkpoint. "Q"

must also roll back to the last checkpoint because ÒQÓ read a value, 1 in this case, that "P"

produced. When "P" resumes execution from the last checkpoint, "P" may not necessarily

reproduce the value of 1. (ÒPÓ may not necessarily reproduce the value of 1 since ÒPÓ may not

necessarily read the same values that ÒPÓ read prior to the fault. Some other processor, say ÒRÓ,

may have already modified those values.) Thus, we have the roll-back dependency of "P -> Q".

Figure 3 illustrates the checkpoint dependency that arises for the write-read interaction. After

processor "P" writes the value of 1 into a word of the memory block, processor "Q" reads that

value of 1. Then, processor "Q" establishes a checkpoint. In figure 3, "Q" establishes 2

checkpoints: the 1st checkpoint occurring before "Q" reads the value of 1 and the 2nd checkpoint

1 3

checkpoint: Q -> P

P Q time

(write-back policy)
memory/cache block

P: write(1)

checkpoint for Q
checkpoint for P

Q: read(1)
fault for P

roll-back: P -> Q

Figure 2. Roll-back Dependency for Write-Read Interaction

7

occurring after "Q" reads the value of 1. Subsequently, processor "P" experiences a fault and

rolls back to the last checkpoint. The roll-back dependency dictates that "Q" must roll back to the

1st checkpoint, but by the time that "P" experiences a fault, "Q" has already established the 2nd

checkpoint and can only roll back to it. The state saved in the 2nd checkpoint depends on the

value of 1 produced by "P". Since "P" may not necessarily reproduce the value of 1 after

resuming execution from the last checkpoint, the state saved in the 2nd checkpoint can be

invalid. Therefore, if "Q" establishes a checkpoint after the write-read interaction, then "P" must

also establish a checkpoint. In this way, we ensure that "P" does not "un-do" the value of 1 that

was read by "Q". Thus, we have the checkpoint dependency of "Q -> P".

The write-write interaction has 2 cases: one where the processors write into different words of the

same memory block and one where the processors write into the same word of the same memory

block. Each case results in a different direction of the dependency (i. e. a different direction of the

dependency arrow in the above list). The combined effect of both cases is a 2-way dependency

for both the roll-back dependency ("P <-> Q") and the checkpoint dependency ("P <-> Q").

Figure 4 illustrates the roll-back dependency and the checkpoint dependency for the write-write

interaction where the processors write into different words of the same memory block. Since the

cache policy is write-back, after "Q" writes the value of 5 into the block, "Q" holds it in the cache.

"Q" can potentially read the value of 1 written by "P". Hence, a write-read interaction arises. We

have already analyzed this interaction in figures 2 and 3. Thus, we have a roll-back dependency

of "P -> Q" and a checkpoint dependency of "Q -> P".

1 3

checkpoint: Q -> P

P Q time

(write-back policy)
memory/cache block

P: write(1)

checkpoint for Q
checkpoint for P

Q: read(1)
fault for P

checkpoint for Q

roll-back: P -> Q

Figure 3. Checkpoint Dependency for Write-Read Interaction

8

Figure 5 illustrates the roll-back dependency for the write-write interaction where the processors

write into the same word of the same memory block. Processor "P" writes the value of 1 into the

1 5

checkpoint: Q -> P

P Q timeQ

Q: read(1)Q: write(5)P: write(1)

(write-back policy)
memory/cache block

checkpoint for P
checkpoint for Q

roll-back: P -> Q

Figure 4. Roll-back/Checkpoint Dependency for Write-Write Interaction with

Writes to Different Words

P Q

checkpoint: P -> Q

time

Q: write(5)P: write(1)

(write-back policy)
memory/cache block

checkpoint for P

6 2 25

fault for Q

checkpoint for Q

roll-back: Q -> P

Figure 5. Roll-back Dependency for Write-Write Interaction with Writes to the

Same Word

9

memory block, overwriting the original value of "6". Then, processor "Q" writes the value of 5 into

the same word, overwriting the value of 1. Subsequently, "Q" experiences a fault and rolls back

to the last checkpoint. "Q" un-does the value of 5 and must replace it with the value of 1, but

there is no convenient way to retrieve the value of 1 since it was destroyed by "Q" writing the

value of 5. The only value that the TCMP can use to replace 5 is the original value of 6. In order

to ensure that the state of the TCMP is valid, "P" must roll-back to the last checkpoint as well in

order to un-do the value of 1. Hence, we have a roll-back dependency of "Q -> P".

Figure 6 illustrates the checkpoint dependency for the write-write interaction where the

processors write into the same word of the same memory block. Processor "P" writes the value

of 1 into the memory block, overwriting the original value of 6. Then, processor "Q" writes the

value of 5 into the same word, overwriting the value of 1. Next, "P" establishes a checkpoint. In

figure 6, "P" establishes 2 checkpoints: the 1st checkpoint occurring before "P" writes the value of

1 and the 2nd checkpoint occurring after "P" writes the value of 1. Subsequently, "Q"

experiences a fault and rolls back to the last checkpoint. The roll-back dependency dictates that

"P" must roll back to the 1st checkpoint, but by the time that "Q" experiences a fault, "P" has

already established the 2nd checkpoint and can only roll back to it. The state of the TCMP can

become invalid since (1) it assumes that the value of 1 is stored in the pertinent word of the

memory block but (2) "Q" can un-do the value of 5 by only replacing it with 6. There is no

convenient way to retrieve the value of 1 and to use 1 to replace 5. Hence, to solve this problem,

if "P" establishes the 2nd checkpoint, "Q" must also establish a checkpoint. Then, "Q" will not roll

P Q

checkpoint: P -> Q

time

Q: write(5)P: write(1)

(write-back policy)
memory/cache block

checkpoint for P

6 2 25

checkpoint for P

fault for Q

checkpoint for Q

roll-back: Q -> P

Figure 6. Checkpoint Dependency for Write-Write Interaction with Writes to

the Same Word

10

back past the 2nd checkpoint and will not need to un-do the value of 5. Thus, we have a

checkpoint dependency of "P -> Q".

Therefore, the write-write interaction causes bi-directional dependencies to arise. The roll-back

dependency is "P <-> Q". The checkpoint dependency is "P <-> Q" as well.

2.2. Classes of Algorithms

Checkpointing algorithms must deal with these dependencies. How the algorithms deal with

them results in a natural partition of the types of algorithms that exist. We shall present this

natural partition. In presenting this natural partition, we implicitly assume that our processor is a

commodity processor, which does not have any special hardware for establishing a checkpoint;

hence, we specifically exclude the G5 microprocessor (produced by IBM) from our consideration.

Anyhow, figure 7 illustrates the approaches for dealing with the dependencies. Dependencies

arise because a dirty value written by a processor "P" (and possibly read by another processor

"Q") is not necessarily reproduced if "P" rolls back to its last checkpoint and resumes execution

from it. (A dirty value is merely data modified by a processor.) If an algorithm can ensure that

dirty values written by a processor "P" after roll-back are identical to those dirty values written by

dirty values on
recovery

record
dependencies

?

reproduce

?
yesno

Unsynchronized Method

Tightly Synchronized Method Loosely Synchronized Method

no yes

dependencies
handling

Figure 7. Dependencies to Classes of Checkpointing Algorithms

11

"P" before encountering the fault (that resulted in the roll-back), then the algorithm is a member of

the class called the unsynchronized method. In an algorithm in the class of the unsynchronized

method, a processor can establish a checkpoint (or perform a roll-back) that is completely

independent of any other processor.

If an algorithm cannot guarantee that dirty values produced by "P" after roll-back are identical to

those dirty values produced by "P" before encountering the fault, then the algorithm can simply

record the dependencies. Such an algorithm is a member of the class called the loosely

synchronized method. In an algorithm in the class of the loosely synchronized method, if any

checkpoint dependency (or roll-back dependency) arises, the TCMP simply records the

dependency. At some point in the future, if a processor establishes a checkpoint (or performs a

roll-back), then that processor queries the records of dependencies to determine all other

processors that must establish a checkpoint (or perform a roll-back) as well.

Finally, if the checkpointing algorithm cannot guarantee reproduction of dirty values after roll-back

and if the algorithm does not record dependencies, then the algorithm must do following. A

processor "P" must establish a checkpoint whenever "P" delivers dirty data to another processor

or to the memory system (via the eviction of a dirty cache line). Such an algorithm is a member

of the class called the tightly synchronized method.

For a TCMP, researchers have developed algorithms in the class of the tightly synchronized

method and in the class of the loosely synchronized method. An example of an algorithm in the

class of the tightly synchronized method is the algorithm proposed by Wu [17]. An example of an

algorithm in the class of the loosely synchronized method is the algorithm proposed by Banatre

[2].

As for our algorithms in this dissertation, DRSM-C is an algorithm in the class of the tightly

synchronized method. Both DRSM and DRSM-H are algorithms in the class of the loosely

synchronized method. DRSM-L is an algorithm in the class of the unsynchronized method and is

the first algorithm in the class of the unsynchronized method for a TCMP. Before DRSM-L, no

such algorithm for a TCMP existed although Richard [10] and Suri [15] have proposed algorithms

in the class of the unsynchronized method for a loosely-coupled multiprocessor like a network of

workstations. The DRSM-L described here is an improved version of DRSM-L originally contrived

by Sunada [13].

12

Chapter 3. Assumptions

3.1. Fault-tolerant Components

The TCMP into which we shall incorporate our checkpointing apparatus and algorithms is a multi-

node multiprocessor like that shown in Figure 8. Each node has a processor module and a

memory module. The nodes are connected by a high-speed internal network. We make the

following specific assumptions about our TCMP.

The first 4 assumptions are commonly found in research papers proposing checkpointing

algorithms for a TCMP. The last assumption can be re-phrased by replacing Òvirtual-machine

monitorÓ with Òoperating systemÓ for those systems without a virtual-machine monitor. (A virtual-

machine monitor is a layer of software running on top of the raw computer and presents a

separate virtual image of the underlying hardware, including the processor and external network,

to each operating system [3].) We believe that building fault tolerance into the virtual-machine

monitor is superior to building fault tolerance into the operating system since a fault-tolerant

virtual-machine monitor enables us to run any non-fault-tolerant operating system while the entire

TCMP remains fault-tolerant. The TCMP views the operating system as simply another user

application running on top of the virtual-machine monitor [3].

1. Each component in our TCMP is fail safe. If the component fails, it simply stops and does
not emit spurious data.

2. The TCMP suffers at most a single point of failure. The TCMP has exactly 1 spare
processor module (including the processor and associated caches).

3. Each memory module is fault tolerant.

4. The network connecting the nodes in our TCMP is fault tolerant. Specifically, between any
2 nodes are 2 independent paths, and each memory module is dual-ported.

5. The virtual-machine monitor is fault-tolerance aware. Specifically, if communication occurs
between a processor and the environment outside of the TCMP, then the virtual-machine
monitor will invoke the processor to establish a checkpoint.

13

Also, our assumption that the TCMP suffers at most a single point of failure is overly restrictive for

both DRSM-C and DRSM-L. The recovery algorithms that we describe for DRSM-C and DRSM-L

actually allow them to recover from multiple transient faults (but only a single permanent fault

since we assume only 1 spare processor module).

The essence of our assumptions is that the memory module and the network are fault tolerant but

that the processor module (including the processor and associated caches) is not fault tolerant.

The apparatus and algorithms that we describe enable the TCMP to recover from a failure of the

processor module.

3.2. Distinction between Processor and Directory Controller

When we describe the procedure by which DRSM, DRSM-C, or DRSM-H establishes a

checkpoint, we describe the procedure by specifying many actions that a processor performs in

order to establish a checkpoint, but the processor does not actually perform most of those actions

that we specify. Rather, the directory controller actually performs most of those actions. Once a

processor attempts to establish a checkpoint, the local directory controller takes control of

establishing the checkpoint and coordinates the associated activities on behalf of the processor.

Nevertheless, we use the processor-centered approach, assigning actions (that are really done

2nd-level

the memory modules

cache
2nd-level

cache

processor processor

1st-level
cache

1st-level
cache

networkdirectory
controller

memory memory

controller
directory

The network and

are fault tolerant.

Figure 8. Tightly-Coupled Multiprocessor (TCMP)

14

by the directory controller) to the processor, to describe the checkpointing procedure because this

approach simplifies the description.

15

Chapter 4. Distributed Recoverable Shared Memory (DRSM)

4.1. Introduction

The distributed recoverable shared memory (DRSM) is our 1st apparatus and algorithm for

establishing checkpoints and is a type of loosely synchronized method. We construct DRSM by

extending recoverable shared memory (RSM) to multiple memory modules. The DRSM (and

RSM) basically records dependencies that arise among processors as they access the same

memory locations. Recording the dependencies generally enables the DRSM to delay the

establishment of checkpoints until an arbitrarily chosen time. In our case, we use a timer to

announce when a processor should establish a checkpoint; the timer can set the maximum

temporal interval between checkpoints, effectively setting the maximum time for roll-back

recovery. Any interaction between an application process and the environment of the TCMP

poses a special problem and requires that the processor of the application process must

immediately establish a checkpoint.

4.2. Prior Work

DRSM improves upon RSM, developed by Banatre [2]. Unlike a modern TCMP with multiple

memory modules, a TCMP using RSM has a single memory module, and this configuration

degrades the performance of the TCMP by, for example, increasing the likelihood of hot spots.

To minimize the impact of such problems, we extend RSM to multiple memory modules to create

DRSM.

In addition, DRSM differs from the scheme proposed by Janakiraman [6] in 2 important aspects.

First, he assigns a checkpoint dependency of ÒQ <-> PÓ to the write-read interaction (in which a

read by ÒQÓ follows a write by ÒP"); this dependency is unnecessarily stronger than the actual

checkpoint dependency of ÒQ -> PÓ that arises. Second, although Janakiraman claims that his

approach works for a TCMP, he ignores the fact that caches experience conflict misses.

4.3. Background: Recoverable Shared Memory (RSM)

16

Before we describe DRSM, we first describe RSM. Figure 9 illustrates the configuration of a RSM

module. We slightly modify the explanation by Banatre to present details that may not have

appeared in the original description.

4.3.1. Dependency Matrix

The key element is the dependency matrix, which is an array of bits. This matrix, "DM[][]", sees

all accesses that reach the RSM module and sets the bits according to the checkpoint

dependencies listed in section 2.1.

4.3.2. Last-Writer Indicator

counter

processor

processor

processor

processor
#2

#1

#0

#3

state
buffer

dependency matrix

block
checkpoint
counter

checkpoint-

bank of bank of

memory checkpoint
memory

working permanent-
last

writer

global
checkpoint

Figure 9. Recoverable Shared Memory (RSM)

17

The RSM module contains an additional buffer for each block of memory. This buffer stores the

last writer to the block.

4.3.3. Checkpoint Counters

The collection of global checkpoint counters contains 1 counter for each processor in the system.

Each block in memory has an associated block checkpoint counter. When processor "P[2]", for

example, writes into a block, the value of the global checkpoint counter for "P[2]" is copied into

the block checkpoint counter. RSM updates the buffer for the last writer to "2". The purpose of

the checkpoint counters is to accelerate the establishment of permanent checkpoints. They are

explained in a later section.

4.3.4. Memory for Tentative Checkpoint

The working memory operates like the memory in a non-fault-tolerant system but also functions

as the tentative-checkpoint memory. When the RSM begins a 2-phase checkpoint of dependent

processors, they write their dirty cache data into the tentative-checkpoint memory in the 1st

phase. The dirty blocks of memory form the tentative checkpoint, which is later converted into the

permanent checkpoint in the 2nd phase.

4.3.5. Memory for Permanent Checkpoint

The RSM ultimately copies data saved during the tentative-checkpoint phase into the permanent-

checkpoint memory. It always contains data comprising a consistent state of the system. The

TCMP rolls back to this data after a failure occurs.

4.3.6. Establishing Checkpoints

Figure 10 illustrates the establishment of a checkpoint for a 4-processor TCMP. A processor

"P[1]" that wishes to establish a checkpoint submits a request to the RSM. The RSM then scans

the dependency matrix for all other processors that must establish a checkpoint along with "P[1]".

The RSM finds that both "P[0]" and "P[3]" must establish a checkpoint along with "P[1]" and

hence submits a request to them to establish a checkpoint. They write their dirty cache data back

into memory and send a copy of their internal states (i. e. data in the internal registers) to the

RSM. This phase is the tentative-checkpoint phase. After it completes successfully, the RSM

converts the tentative checkpoint into a permanent checkpoint.

18

(phase 2)

RSM

P[1]

P[0] P[3]

RSM

P[0] P[3]

RSM

P[1]

P[1]

establish

tentative checkpoint

(phase 1)

establish

permanent checkpoint

Figure 10. Flow of Checkpoint

19

After verifying that the establishment of the tentative checkpoint is successful, the RSM

increments the global checkpoint counters for "P[0]", "P[1]", and "P[3]" and then requests those

processors to resume execution of their normal processes. They send acknowledgments to the

RSM, and it resumes its normal functions. The RSM does not immediately copy the blocks saved

during the tentative-checkpoint phase into the permanent-checkpoint memory during the

permanent-checkpoint phase. Rather, the RSM merely increments the global checkpoint

counters for the processors involved in the checkpoint. After the RSM concludes the permanent

checkpoint, if a write access occurs on a block (in the tentative-checkpoint memory) where the

global checkpoint counter of the last writer is greater than the block counter, then the RSM knows

that the current data in the block is part of a permanent checkpoint. Hence, the RSM first copies

the data from the block in the tentative-checkpoint memory into the corresponding block in the

permanent-checkpoint memory before the RSM writes the incoming new data into the block in the

tentative-checkpoint memory. This copy-on-write technique accelerates the establishment of the

permanent checkpoint by avoiding the copying of potentially millions of blocks of data from the

tentative-checkpoint memory into the permanent-checkpoint memory during the permanent-

checkpoint phase.

4.3.7. New Requests after Initiating Checkpoint

If processor "P[2]" submits a request to the RSM to establish a checkpoint and if the request

arrives at the RSM before the start of the permanent-checkpoint phase for "P[0]", "P[1]", and

"P[3]", then the RSM will combine "P[2]" into the group of processors that must establish a

checkpoint together. In other words, the RSM grants the request from "P[2]" to establish a

checkpoint and waits until "P[2]" has finished its tentative-checkpoint phase before the RSM

begins the permanent-checkpoint phase of all processors in the group: "P[0]", "P[1]", "P[2]", and

"P[3]". If the request arrives after the start of the permanent-checkpoint phase, then the RSM

negatively acknowledges the request, and "P[2]" must re-submit its request.

4.4. Apparatus of DRSM

We extend RSM to multiple memory modules to create distributed recoverable shared memory

(DRSM). The single memory module of RSM degrades the performance of the TCMP by, for

example, increasing the likelihood of hot spots. Modern TCMPs distribute the shared memory

among all the nodes in the system.

20

Figure 11 shows the new organization of the TCMP with DRSM. Each DRSM module no longer

contains the checkpoint counter. We replace it with the 2-bit-state register, which indicates the

state of its corresponding memory block. For each block, the 2-bit-state register transitions

among the states indicated in figure 12. When a 2nd-level cache issues an EXCLUSIVE access

to a block in the state of "PC", the 2-bit-state register transitions from "PC" to "W".

state buffer

directory
controllerDRSM #0

processor
#1

processor
#0

DRSM #2

processor
#2

DRSM #3

processor
#3

2-bit-
state

register

dependency matrix

dependency array

processor

permanent-
checkpoint

memory

working
memory

Distributed
Recoverable
Shared Memory #1

lock

last
writer

checkpoint-

Figure 11. Distributed Recoverable Shared Memory (DRSM)

21

The DRSM module also has a checkpoint-state buffer. The checkpoint-state buffer contains 3

units (not shown in figure 11): the 2-bit checkpoint flag, the tentative-checkpoint area, and the

permanent-checkpoint area. The checkpoint flag indicates the status of the local processor and

holds 1 of 3 possible values: ÒCHECKPOINT_IS_NOT_ACTIVEÓ, ÒTENTATIVE_CHECKPOINT_

IS_ACTIVEÓ, and ÒPERMANENT_CHECKPOINT_IS_ACTIVEÓ. The tentative-checkpoint area

holds the internal state of the local processor for the tentative checkpoint, and the permanent-

checkpoint area holds the internal state of the local processor for the permanent checkpoint.

The dependency array contains 1 entry for each processor in the TCMP. If a processor writes

data into the memory module, then the directory controller sets the corresponding entry of the

dependency array to 1. Also, if (1) a processor reads data and (2) this event causes a

dependency to arise and, hence, to be recorded in the dependency matrix, then the directory

controller sets the corresponding entry of the dependency array to 1.

PC

TC W
write to
memory

read from

dirty copy in cache(s)

memory

read from memory

write to memory

establish tentative checkpoint

establish

checkpoint

permanent

tentative checkpoint

permanent checkponit
PC = data that is part of

TC = data that is part of

W = working data with

Figure 12. Transition of State for 2-Bit State Register

22

In figure 11, the structure with the label of Òprocessor lockÓ contains 1 lock per processor in the

TCMP. The DRSM module sets the processor lock to "1" if a processor querying the memory

module during the establishment of the tentative checkpoint has an entry of Ò1Ó in the dependency

array; an entry of Ò1Ó in the dependency array indicates that the processor (1) is a writer of a dirty

block in the memory module or (2) has dependent processors, according to the dependency

matrix. During the establishment of the permanent checkpoint, if an incoming memory access

originates from a processor with its processor lock being "1", the DRSM module negatively

acknowledges that request. This action prevents a race from developing on the dependency

matrix.

One example of a race is the following. Suppose that processor "P[1]" finishes its permanent

checkpoint before a memory module "DRSM[2]" completes its permanent checkpoint and that

"P[1]" has its processor lock being "1" in "DRSM[2]". Suppose that "P[3]" writes into a memory

block (in "DRSM[2]") that is not part of the checkpoint which is just completing. Then, processor

"P[1]" reads that same block before "DRSM[2]" completes its permanent checkpoint. The

dependency "P[1] -> P[3]" will be lost when "DRSM[2]" completes its permanent checkpoint,

clearing the row and column (of the dependency matrix) containing "P[1]".

4.5. Triggers of Checkpoint Establishment

Two events can trigger the establishment of a checkpoint.

4.6. Establishing Tentative Checkpoints

4.6.1. General Overview

Unlike RSM, DRSM has several memory modules, so we must radically modify the algorithm for

establishing a tentative checkpoint. Figure 13 shows the new algorithm. Its general strategy is

that a processor wishing to establish a checkpoint must query all DRSM modules to determine all

1. timer-triggered checkpoint: A timer expires. When the timer for
a processor expires, it establishes a checkpoint. The timer
ensures a maximum bound on the time interval between checkpoints.

2. external-communication-triggered checkpoint: Communication
occurs between a processor and the environment outside of the
TCMP. When data leaves or enters a TCMP, the processor handling
the data must establish a checkpoint. Communication includes
interrupts.

23

dependent processors that must also establish a checkpoint. They, in turn, query all DRSM

modules to determine additional dependent processors. The process proceeds in the fashion of

an expanding tree of processors. The root of the tree is the processor that initially wished to

establish a checkpoint, and the leaves of the tree are processors that either (1) have no

checkpoint-dependent processors or (2) have already been identified higher up in the tree. Once

the algorithm reaches the leaves of the tree, processors starting from the bottom of the tree and

moving upwards toward the root send acknowledgment messages to the parent processor. A

parent processor must first receive acknowledgments from all its children before that parent

processor sends an acknowledgment to its parent processor.

tentative checkpoint

DRSM[0]

DRSM[1]

DRSM[2]

DRSM[3]

P[3]

P[1] P[3]

DRSM[0]

DRSM[1]

DRSM[2]

DRSM[3]

P[0]

P[1]

P[0]

P[1]

P[0] P[1] P[3]

DRSM[0]

DRSM[1]

DRSM[2]

DRSM[3]

P[2]

DRSM[0]

DRSM[1]

DRSM[2]

DRSM[3]

establish

(phase 1)

Figure 13. Flow of Tentative Checkpoint

24

4.6.2. Details

As a specific example, we trace the flow in figure 13 for a 4-processor TCMP. We arbitrarily

select processor "P[0]" to act as an arbiter to allow at most one tentative checkpoint to be

established at any time. "P[1]" submits a request to "P[0]" to obtain permission to establish a

checkpoint. "P[0]" grants the request, and "P[1]" proceeds to establish a tentative checkpoint (in

the first phase).

"P[1]" queries all the DRSM modules. They search their dependency matrices to find all

processors which must establish a checkpoint along with "P[1]". The DRSM modules send their

replies back to "P[1]". From their replies, "P[1]" discovers that "P[0]", "P[2]", and "P[3]" must

establish checkpoints. "P[1]" requests all of them to establish tentative checkpoints. In this

example, "P[0]", "P[2]", and "P[3]" receive the request from "P[1]" at approximately the same time

(although this situation need not always arise).

"P[0]" then queries all the DRSM modules to find that both "P[1]" and "P[3]" are dependent upon

it. "P[0]" requests them to establish tentative checkpoints. Upon receiving this request from

"P[0]", both "P[1]" and "P[3]" respond that they have already joined the checkpoint tree and are,

hence, leaves in this tree.

After receiving the request from "P[1], "P[2]" then queries all the DRSM modules to find that

"P[0]", "P[1]", and "P[3]" are dependent upon it. "P[2]" requests them to establish tentative

checkpoints. Upon receiving this request from "P[2]", all 3 processors Ð "P[0]", "P[1]", and "P[3]"

Ð respond that they have already joined the checkpoint tree and are, hence, leaves in this tree.

Finally, after receiving the request from "P[1]", "P[3]" then queries all the DRSM modules to find

that no processors are dependent on it. Hence, "P[3]" is a leaf in this tree. After "P[3]" completes

its tentative checkpoint, "P[3]" sends an acknowledgment back to "P[1]".

After "P[0]" completes its tentative checkpoint, "P[0]" sends an acknowledgment back to "P[1]".

After "P[2]" completes its tentative checkpoint, "P[2]" sends an acknowledgment back to "P[1]".

After "P[1]" receives acknowledgments from "P[0]", "P[2]", and "P[3]", "P[1]" concludes the

establishment of the tentative checkpoint, which is phase #1.

Figure 13 shows the general flow in the process of establishing a tentative checkpoint but omits 6

important details. They are the following.

25

4.6.3. Dependent Processors and Dependent DRSM Modules

The acknowledgments that are propagated from the leaves of the checkpoint tree up to the root in

figure 13 lists the dependent processors. Each processor in the tree determines processors that

are checkpoint dependent upon itself, packages this information along with all dependent-

processor information from the child processors, and passes this package of information in an

acknowledgment to the parent processor. In the end, the root processor is aware of all

dependent processors in the entire tree.

1. Before a processor queries all DRSM modules (in order to determine dependent
processors), it (1) waits until all its pending cache operations are finished or negatively
acknowledged and (2) then writes all dirty cache data back into memory. The processor
waits for the DRSM modules to acknowledge that all the write-backs are complete.

2. Each processor sends a copy of its state (i. e. data in the internal registers) to the
checkpoint-state buffer of the DRSM module that is local to the processor.

3. A DRSM module that receives a query (to determine dependent processors) waits until all
pending memory operations by the directory controller are finished before the DRSM
module replies (with information about dependent processors) to the querying processor.
During this waiting period, the DRSM module negatively acknowledges all requests that it
receives.

4. Just before the DRSM module replies to the querying processor, the DRSM module scans
for all memory blocks (in the working bank of memory) where (1) the state is "W" and (2)
the last writer is the querying processor. If such memory blocks exist, then the DRSM
module transitions the state from "W" to "TC". The DRSM module negatively
acknowledges accesses to blocks for which the state is ÒTCÓ. Locking out accesses to
such blocks prevents changes in the checkpoint dependencies of the processors that have
almost completed the tentative checkpoint.

5. In addition, the DRSM module sets the processor lock of the querying processor to "1" if
the corresponding entry in the dependency array is Ò1Ó. The DRSM module negatively
acknowledges normal memory accesses originating from a processor with its processor
lock being "1". The aim is to prevent a race condition from developing in the dependency
matrix when the processor finishes its permanent checkpoint before the DRSM module
finishes its own permanent checkpoint.

6. Just before the root processor of the checkpoint tree begins the establishment of the
tentative checkpoint, that processor sets a 2-bit checkpoint flag in the checkpoint-state
buffer of the local memory module to indicate that the establishment of the tentative
checkpoint is active. The state of the checkpoint flag can be 1 of {CHECKPOINT_IS_
NOT_ACTIVE, TENTATIVE_CHECKPOINT_IS_ACTIVE, PERMANENT_CHECKPOINT_
IS_ACTIVE}. In figure 13, processor "P[1]" sets the checkpoint flag to "TENTATIVE_
CHECKPOINT_IS_ACTIVE". The TCMP uses this state information to determine what to
do in the event that a fault occurs during the establishment of a checkpoint.

26

The tree also propagates information about dependent DRSM modules to the root processors. A

DRSM module is a dependent DRSM module if the entry for the querying processor in the

dependency array is set to Ò1Ó.

When the DRSM module replies (with information about the dependent processors) to the

querying processor, the DRSM module also sends information (to the querying processor)

indicating whether the module is a dependent memory module. The querying processor

propagates this information about dependent DRSM modules back up to the root processor of the

checkpoint tree.

4.7. Establishing Permanent Checkpoints

4.7.1. General Overview

Figure 14 shows the new algorithm for establishing a permanent checkpoint for a 4-processor

TCMP. The general strategy is that the root processor in the checkpoint tree for the tentative

checkpoint guides the establishment of the permanent checkpoint. The root processor requests

all dependent processors and all dependent DRSM modules to establish a permanent

checkpoint. Once they complete their permanent checkpoint, they send acknowledgments to the

root processor. It then completes its own permanent checkpoint and sends an acknowledgment

to the arbiter processor. It removes the root processor from the queue.

4.7.2. Details

As a specific illustration, we trace the flow in figure 14. "P[1]" is the root processor of the

checkpoint tree for the tentative checkpoint. From it, "P[1]" knows that "P[0]", "P[2]", and "P[3]

are dependent processors and that "DRSM[0]", "DRSM[1]" , and "DRSM[3]" are dependent

DRSM modules. In this particular example, "DRSM[2]" is not a dependent DRSM module. "P[1]"

tells all dependent processors and DRSM modules to establish a permanent checkpoint.

Each of "DRSM[0]", "DRSM[1]", and "DRSM[3]" performs the following. The DRSM module

resets (to 0) all columns and all rows (in the dependency matrix) containing any processor with its

processor lock being "1". Next, the DRSM module identifies all blocks (in the working memory)

for which their states are "TC". The DRSM module transitions their states to "PC" and copies the

contents of the blocks from the working memory into the corresponding blocks in the permanent-

checkpoint memory. Finally, the DRSM module sends an acknowledgment to the root processor.

27

After receiving the request to establish a permanent checkpoint, each of "P[0]", "P[2]", and "P[3]"

sends an acknowledgment back to the root processor and resumes normal processing. After

"P[1]" receives acknowledgments from all dependent processors and all dependent memory

modules, "P[1]" itself sends an acknowledgment to the arbiter processor, "P[0]", and resumes

normal processing. "P[0]" then grants the request from the next processor wishing to establish a

checkpoint.

We should note the following additional details. "P[1]" sets the checkpoint flag to "PERMANENT_

CHECKPOINT_IS_ACTIVE" just before "P[1]" begins the phase for the establishment of the

permanent checkpoint. The dependent DRSM modules clear all the processor locks to "0" during

phase 2. After the establishment of the permanent checkpoint is complete, "P[1]" sets the

checkpoint flag to "CHECKPOINT_IS_NOT_ACTIVE". Also, each processor tells its local

memory module to designate the tentative checkpoint of the processor state in the checkpoint-

state buffer as a permanent checkpoint. The processor does not wait for an acknowledgment

from the local memory module before sending an acknowledgment to "P[1]" since the network is

reliable.

4.8. Additional Features

4.8.1. Artificially Dependent Processors

permanent checkpoint

P[0] P[2] P[3]

P[0]

P[1]

P[1]

DRSM[0] DRSM[1] DRSM[3]

establish

(phase 2)

Figure 14. Flow of Permanent Checkpoint

28

If the establishment of a checkpoint is in progress, the arbiter queues requests from processors

that request permission to establish a checkpoint. After the arbiter receives an acknowledgment

that the establishment of the current checkpoint is complete, the arbiter grants the next processor

(waiting in the checkpoint-request queue) permission to establish a checkpoint. There can be

many processors waiting in the queue.

If more than 1 processor waits in the queue, the arbiter grants permission to the processor at the

front of the queue but requests that processor, say "P[1]", to artificially treat all the other

processors (in the queue) as being dependent on it. After "P[1]" finishes querying the DRSM

modules to find the genuinely dependent processors, "P[1]" adds the artificially dependent

processors to this group of genuinely dependent processors. Then, "P[1]" requests that all of

them establish tentative checkpoints.

In this way, any processor that submits a request to establish a checkpoint to the arbiter

processor needs to wait at most approximately the period for establishing one checkpoint. That

one checkpoint is the one that is currently being established when the request arrives at the

arbiter.

4.8.2. Arbiter

The algorithm for the DRSM uses an arbiter, which is "P[0]" in our example. Although the arbiter

appears to be a potential bottleneck in the TCMP, the arbiter actually does not cause a problem.

The maximum number of requests (for the establishment of checkpoints) that can queue at the

arbiter is "(number of processors in the TCMP) - 1". After the current establishment of a

checkpoint completes, the arbiter requests the processor, say "P[2]", of the first request in the

queue to begin the establishment of a checkpoint. If there are other requests in the queue, the

arbiter requests "P[2]" to include their corresponding processors as artificially dependent

processors. In other words, after the current establishment of a checkpoint completes, all

processors with requests waiting in the queue participate in the next establishment of a

checkpoint, clearing the entire queue. The maximum delay between (1) the arrival of a request at

the arbiter and (2) the participation (in the establishment of a checkpoint) by the processor

submitting the request is approximately the time required for the current establishment of a

checkpoint to complete.

4.9. Recovery from a Fault

29

We consider the following simple scheme for rolling back from a fault experienced by a

processor. We arrange for a special recovery-logic circuit on the memory module to periodically

send "Are you alive?" messages to the local processor. If it does not respond within a specified

timeout period, the recovery-logic circuit assumes that the processor experienced a fault. If the

fault is permanent, the recovery-logic circuit replaces the failed processor with the spare

processor. Then, the recovery-logic circuit resets the processor, say "P3", and directs it to begin

the recovery activity. "P3" negatively acknowledges all cache-coherence messages from the

directory controllers until recovery is complete.

ÒP3Ó requests the arbiter processor to disallow the establishment of any checkpoint until the

recovery is complete. If a checkpoint is currently being established, then ÒP3Ó waits until the

checkpoint is either completed or aborted. A checkpoint will be aborted if (1) ÒP3Ó is a member of

the checkpoint tree and (2) the root processor (of the checkpoint tree) has its checkpoint flag

being ÒTENTATIVE_CHECKPOINT_IS_ACTIVEÓ. Otherwise, the checkpoint will be completed.

In particular, if (1) ÒP3Ó is a member of the checkpoint tree but (2) the root processor (of the

checkpoint tree) has its checkpoint flag being ÒPERMANENT_CHECKPOINT_IS_ACTIVEÓ, then

the checkpoint will be completed.

Then, "P3" checks the checkpoint flag of the local checkpoint-state buffer. Suppose that the state

of the checkpoint flag is ÒCHECKPOINT_IS_NOT_ ACTIVEÓ, meaning that "P3" did not fail during

the establishment of a checkpoint. "P3" must query the dependency matrix of each DRSM

module in order to determine all other processors that must also roll back to the last permanent

checkpoint. "P3" spawns a recovery tree that is similar to the checkpoint tree (i. e. processor

tree) generated during the establishment of a tentative checkpoint. Then, ÒP3Ó must perform the

following activities. They apply as well to all other processors that are in the recovery tree. First,

"P3" invalidates all entries in its cache and requests all the directory controllers to update their

directories to indicate that "P3" does not have memory blocks in its cache. Then "P3" tells the

memory modules (1) to transition the 2-bit-state registers from state "W" to state "PC" and (2) to

copy data from the permanent-checkpoint memory into the working memory for all blocks where

"P3" is the active writer. "P3" then loads the processor state stored in the permanent-checkpoint

area of the checkpoint-state buffer and resumes execution.

Now, suppose that the state of the checkpoint flag is ÒPERMANENT_CHECKPOINT_IS_

ACTIVEÓ, meaning that "P3" failed during the establishment of a permanent checkpoint. Then

"P3" completes the permanent checkpoint, telling the memory modules to transition the 2-bit-state

registers from state "TCÓ to state "PC" for all blocks where "P3" is the active writer. "P3" tells the

checkpoint-state buffer to designate the processor state saved in the tentative-checkpoint area as

30

the permanent checkpoint. "P3" invalidates all entries in its cache and requests all the directory

controllers to update their directories to indicate that "P3" does not have memory blocks in its

cache. "P3" then loads the processor state stored in the permanent-checkpoint area of the

checkpoint-state buffer and resumes execution.

Finally, suppose that the state of the checkpoint flag is ÒTENTATIVE_CHECKPOINT_IS_

ACTIVEÓ, meaning that "P3" failed during the establishment of a tentative checkpoint. ÒP3" along

with all the other processors in the checkpoint tree must discard this tentative checkpoint and roll

back to their previous permanent checkpoint. The roll-back of each processor generates its own

recovery tree of processors; all the recovery trees can be combined into 1 huge recovery tree

where all participating processors can recover concurrently. Then, ÒP3Ó must perform the

following activities. They apply as well to all other processors that are in the recovery tree. First,

"P3" invalidates all entries in its cache and requests all the directory controllers to update their

directories to indicate that "P3" does not have memory blocks in its cache. Then "P3Ó discards

the tentative checkpoint, telling the memory modules (1) to transition the 2-bit-state registers from

both state "W" and state "TC" to state "PC" and (2) to copy data from the permanent-checkpoint

memory into the working memory for all blocks where "P3" is the active writer. "P3" tells the

checkpoint-state buffer to invalidate the processor state saved in the tentative-checkpoint area.

"P3" then loads the processor state stored in the permanent-checkpoint area of the checkpoint-

state buffer and resumes execution.

31

Chapter 5. Distributed Recoverable Shared Memory for Communication

Checkpoints (DRSM-C)

5.1. Introduction

The distributed recoverable shared memory for communication checkpoints (DRSM-C) is our 2nd

apparatus and algorithm for establishing checkpoints. The DRSM-C is a tightly synchronized

method. Unlike the DRSM, the DRSM-C does not record dependencies that arise among

processors as they access the same memory block. Hence, the DRSM-C requires that a

processor immediately establishes a checkpoint if another processor reads or writes a block (of

memory) to which the former processor wrote data. In addition, to establish a maximum bound

on the temporal interval between the checkpoints for a processor, we use a timer to announce

when the processor must establish a checkpoint. Any interaction between an application process

and the environment of the TCMP also causes the establishment of a checkpoint.

5.2. Prior Work

Wu also proposes an apparatus and algorithm in the class of the tightly synchronized method, but

his scheme differs from DRSM-C in 2 aspects. First, Wu uses a TCMP with both fault-tolerant

caches and exactly 1 bank of fault-tolerant memory [17]. By contrast, our TCMP has caches that

are not fault-tolerant, but our system does have 2 banks of fault-tolerant memory.

Second, in the scheme proposed by Wu, a processor "P[3]" must establish a checkpoint if "P[1]"

reads from data or writes to data that is cached in the dirty state in "P[3]". In addition, "P[3]" must

establish a checkpoint if ÒP[3]Ó writes dirty cache data back into main memory.

By contrast, the 2 banks of memory in DRSM-C enable us to eliminate the latter cause of

establishing checkpoints. Namely, a processor can write dirty cache data back into main memory

without requiring the establishment of a checkpoint. The TCMP must still establish a checkpoint

for a processor, say "P[3]", whenever the system transfers dirty data written by "P[3]" to another

processor, say "P[1]". This dirty data need not reside in "P[3]" at the moment of the transfer but

could reside solely in main memory.

32

5.3. Apparatus

Figure 15 illustrates the DRSM-C module. The 2-bit-state register and the last-writer buffer for

each block indicate, respectively, (1) whether data in a block is dirty and (2) which processor

writer

directory
controller

2-bit-
state

register

processor
#1

processor
#0

DRSM-C

processor
#2

DRSM-C

processor
#3

DRSM-C
#0

#2

#3

Distributed Recoverable Shared

#1

state buffer

Memory for Communication Checkpoints

checkpoint-

checkpoint
permanent-

memory

working
memory

last

Figure 15. Distributed Recoverable Shared Memory for Communication

Checkpoints (DRSM-C)

33

must establish a checkpoint in the event that the dirty data is transferred to another processor.

The DRSM-C module omits the dependency matrix. Any dependency that arises immediately

forces the establishment of a checkpoint; the newly established checkpoint erases the

dependency and hence obviates the need for a matrix to record the dependency.

When an access arrives at a DRSM-C module, it checks whether the matching block of memory

contains dirty data. If the block contains dirty data, the DRSM-C module sends a negative

acknowledgment to the memory-accessing processor and then requests that the last-writer

processor (of the block with dirty data) establishes a checkpoint. The 2-bit-state register and the

last-writer buffer provide sufficient information to determine whether to negatively acknowledge a

memory access.

5.4. Triggers of Checkpoint Establishment

Three events can trigger the establishment of a checkpoint.

5.5. Establishing Checkpoints

5.5.1. General Overview

Figure 16 illustrates the algorithm for establishing a checkpoint for a 4-processor TCMP. The

general strategy is that a processor wishing to establish a checkpoint simply does the following.

The processor writes its dirty cache data back into memory and requests that each DRSM-C

module establishes a tentative checkpoint for the blocks containing data written by the processor.

Once all the modules acknowledge completion of the tentative checkpoint, the processor

1. timer-triggered checkpoint: A timer expires. When the timer for
a processor expires, it establishes a checkpoint. The timer
ensures a maximum bound on the time interval between checkpoints.

2. communication-triggered checkpoint: Dirty data is transferred
between processors. Since the DRSM-C does not record
dependencies among processors and hence does not permit roll-back
propagation, any dependency that arises (like that caused by
transferring dirty data between processors) forces the
establishment of a checkpoint to erase the dependency.

3. external-communication-triggered checkpoint: Communication
occurs between a processor and the environment outside of the
TCMP. When data leaves or enters a TCMP, the processor handling
the data must establish a checkpoint. Communication includes
interrupts.

34

requests that each module convert the tentative checkpoint into a permanent checkpoint. Once

the modules tell the processor that the establishment of the permanent checkpoint is complete,

the processor finishes the establishment of the checkpoint and resumes normal processing.

5.5.2. Details

As a specific illustration, we trace the flow in figure 16. "P[1]" begins the establishment of the

tentative checkpoint. "P[1]" requests that each DRSM-C module establishes a tentative

checkpoint (by transitioning the 2-bit-state register from state ÒWÓ to state ÒTCÓ) for each block

that has been written by "P[1]". Once the modules finish the tentative checkpoint, they send

(phase 2)

P[1]

P[1]

DRSM-C[1]

P[1]

DRSM-C[0] DRSM-C[3]

DRSM-C[0] DRSM-C[1]

(phase 1)

tentative checkpoint

establish

DRSM-C[3]DRSM-C[2]

establish

permanent checkpoint

Figure 16. Flow of Checkpoint

35

acknowledgments to "P[1]". It then begins the 2nd phase, which is establishing the permanent

checkpoint. "P[1]" then requests that each DRSM-C module except "DRSM-C[2]" transitions the

2-bit-state register of each block from state ÒTCÓ to state ÒPCÓ. In our example, "DRSM-C[2]"

does not contain any blocks to which "P[1]" has written data since the last checkpoint of ÒP[1]Ó, so

"DRSM-C[2]" does not transition the 2-bit-state register of any block into state ÒTCÓ and hence

does not participate in the permanent-checkpoint phase. After all 3 DRSM-C modules complete

the permanent checkpoint, they send acknowledgments to "P[1]". It then resumes normal

processing.

Figure 16 shows the general flow in establishing a tentative checkpoint but omits 3 important

details. They are the following.

Also, we should note the following. "P[1]" sets the checkpoint flag to "PERMANENT_

CHECKPOINT_IS_ACTIVE" just before "P[1]" begins the phase for the establishment of the

permanent checkpoint. After its establishment is complete, "P[1]" sets the checkpoint flag to

"CHECKPOINT_IS_NOT_ACTIVE". Finally, each processor tells its local memory module to

designate the tentative checkpoint of the processor state in the checkpoint-state buffer as a

permanent checkpoint.

5.6. Recovery from a Fault

We consider the following simple scheme for rolling back from a fault experienced by a

processor. We arrange for a special recovery-logic circuit on the memory module to periodically

send "Are you alive?" messages to the local processor. If it does not respond within a specified

1. Before a processor requests all DRSM-C modules to transition blocks into the tentative-
checkpoint state, the processor (1) waits until all its pending cache operations are finished
or negatively acknowledged and (2) then writes all dirty cache data back into memory. The
processor waits for the DRSM-C modules to acknowledge that all the write-backs are
complete.

2. Each processor sends a copy of its state (i. e. data in the internal registers) to the
checkpoint-state buffer of the DRSM-C module that is local to the processor.

3. Just before the processor begins the establishment of the tentative checkpoint, that
processor sets a 2-bit checkpoint flag in the checkpoint-state buffer of the local memory
module to indicate that the establishment of the tentative checkpoint is active. The state of
the checkpoint flag can be 1 of {CHECKPOINT_IS_NOT_ACTIVE, TENTATIVE_
CHECKPOINT_IS_ACTIVE, PERMANENT_CHECKPOINT_IS_ACTIVE}. In figure 16,
processor "P[1]" sets the checkpoint flag to "TENTATIVE_CHECKPOINT_IS_ACTIVE".
The TCMP uses this state information to determine what to do in the event that a fault
occurs during the establishment of a checkpoint.

36

timeout period, the recovery-logic circuit assumes that the processor experienced a fault. If the

fault is permanent, the recovery-logic circuit replaces the failed processor with the spare

processor. Then, the recovery-logic circuit resets the processor, say "P3", and directs it to begin

the recovery activity. "P3" negatively acknowledges all cache-coherence messages from the

directory controllers until recovery is complete. "P3" invalidates all entries in its cache and

requests all the directory controllers to update their directories to indicate that "P3" does not have

memory blocks in its cache.

"P3" checks the checkpoint flag of the local checkpoint-state buffer. Suppose that the state of the

checkpoint flag is ÒCHECKPOINT_IS_NOT_ ACTIVEÓ, meaning that "P3" did not fail during the

establishment of a checkpoint. Then "P3" tells the memory modules (1) to transition the 2-bit-

state registers from state "W" to state "PC" and (2) to copy data from the permanent-checkpoint

memory into the working memory for all blocks where "P3" is the active writer. "P3" then loads

the processor state stored in the permanent-checkpoint area of the checkpoint-state buffer and

resumes execution.

Suppose that the state of the checkpoint flag is ÒPERMANENT_CHECKPOINT_IS_ACTIVEÓ,

meaning that "P3" failed during the establishment of a permanent checkpoint. Then "P3"

completes the permanent checkpoint, telling the memory modules to transition the 2-bit-state

registers from state "TCÓ to state "PC" for all blocks where "P3" is the active writer. "P3" tells the

checkpoint-state buffer to designate the processor state saved in the tentative-checkpoint area as

the permanent checkpoint. "P3" invalidates all entries in its cache and requests all the directory

controllers to update their directories to indicate that "P3" does not have memory blocks in its

cache. "P3" then loads the processor state stored in the permanent-checkpoint area of the

checkpoint-state buffer and resumes execution.

Finally, suppose that the state of the checkpoint flag is ÒTENTATIVE_CHECKPOINT_IS_

ACTIVEÓ, meaning that "P3" failed during the establishment of a tentative checkpoint. Then "P3"

discards the tentative checkpoint, telling the memory modules (1) to transition the 2-bit-state

registers from both state "W" and state "TC" to state "PC" and (2) to copy data from the

permanent-checkpoint memory into the working memory for all blocks where "P3" is the active

writer. "P3" tells the checkpoint-state buffer to invalidate the processor state saved in the

tentative-checkpoint area. "P3" invalidates all entries in its cache and requests all the directory

controllers to update their directories to indicate that "P3" does not have memory blocks in its

cache. "P3" then loads the processor state stored in the permanent-checkpoint area of the

checkpoint-state buffer and resumes execution.

37

Chapter 6. Distributed Recoverable Shared Memory with Half of the

Memory (DRSM-H)

6.1. Introduction

DRSM has 2 banks of memory per memory module and, hence, is expensive. In order to reduce

the cost of DRSM, we remove 1 of the 2 banks of memory to create distributed recoverable

shared memory with half of the memory (DRSM-H). The remaining bank of memory always holds

only the permanent checkpoint. Since main memory now holds only the permanent checkpoint, a

dirty 2nd-level-cache line being written back into main memory triggers the establishment of a

checkpoint. In order to maximally delay when a dirty line is written back into memory, we try to

keep the dirty line "floating" among the caches as long as possible; towards that aim, we increase

the number of cache-line states to include the state of DIRTY_SHARED.

Also, a processor in the TCMP with DRSM-H writes a dirty 2nd-level-cache line back into memory

only during the establishment of the permanent checkpoint. In order to ensure that the system

can recover from a fault that occurs during this write-back, the processor first writes all dirty cache

lines into the tentative-checkpoint buffer during the establishment of the tentative checkpoint. If a

fault occurs during the actual write-back into main memory, the TCMP can complete the write-

back by retrieving the dirty lines from the tentative-checkpoint buffer.

6.2. Apparatus

Figure 17 illustrates the arrangement of the DRSM-H. In designing it, we seek to maintain the

good performance of DRSM but to eliminate the cost of the 2nd bank of memory. Hence, the

DRSM-H omits the 2nd bank of memory and restricts the remaining bank of memory to always

hold the permanent checkpoint. During the establishment of a tentative checkpoint, each

processor involved in it writes the dirty cache lines into a new buffer, the tentative checkpoint

buffer; during the establishment of the permanent checkpoint, each processor involved in it writes

the dirty cache lines back into main memory. The tentative-checkpoint buffer ensures that the

DRSM-H can recover from a fault even if it occurs during the establishment of the permanent

checkpoint.

38

Since the single bank of memory in each DRSM-H module is reserved for the permanent

checkpoint, whenever the 2nd-level cache must write a dirty line (of data) back into main memory

due to a conflict miss or a capacity miss, the processor of that cache must establish a checkpoint.

In order to keep dirty data "floating" among the caches as long as possible before it is written

back into main memory, we modify the 2nd-level cache to use 4 states: INVALID, SHARED,

writer

directory
controller

processor
#1

processor
#0

processor
#2

processor
#3

DRSM-H

#2

DRSM-H

#3

DRSM-H

#0

2-bit-
state

register

memory cache

Distributed
Recoverable
Shared Memory
with Half of the Memory #1

processor

dependency matrix

dependency array

state buffer
checkpoint-

lock

tentative-
checkpoint
buffer permanent-

checkpoint
memory

last

Figure 17. Distributed Recoverable Shared Memory with Half of the Memory

(DRSM-H)

39

DIRTY_SHARED, and EXCLUSIVE. Once a block enters the state of EXCLUSIVE, the block

changes state among DIRTY_SHARED and EXCLUSIVE.

Compared to the dependency matrix in DRSM, the dependency matrix in DRSM-H records the

following more stringent conditions for dependency.

The checkpoint dependency for the write-read interaction now becomes a 2-way dependency. If

the dependency matrix recorded a checkpoint dependency according to that indicated for the

write-read interaction in section 2.1., the following situation can arise. Processor "P" writes data

into memory block "BA". Then processor "Q" reads the value of that block, which resides in state

DIRTY_SHARED, and "P" subsequently evicts "BA" from the 2nd-level cache. Next, "P"

establishes a checkpoint and must write the value in "BA" into main memory. Unfortunately, "P"

cannot easily find "BA" since (1) it does not reside in the cache of "P" and (2) no checkpoint

dependency (according to the checkpoint dependency for the write-read interaction in section

2.1.) exists between "P" and "Q". Hence, to solve this problem in a simple way, we replace the

dependency ÒQ -> PÓ with ÒQ <-> PÓ.

6.3. Memory Cache

The new DIRTY_SHARED state for each cache line has a side effect. Suppose that processor

ÒP2Ó incurs a read miss on a memory block ÒBAÓ, that the 2nd-level cache of processor ÒP3Ó holds

that memory block ÒBAÓ in the state of DIRTY_SHARED, and that the memory cache of the

directory controller tracking ÒBAÓ is empty. Then, the directory controller tracking ÒBAÓ cannot use

the memory module to directly satisfy the read request from ÒP2Ó. The directory controller must

retrieve a copy of ÒBAÓ from ÒP3Ó and must forward that copy to ÒP2Ó. It, in turn, installs the data

into the cache line in the state of DIRTY_SHARED.

1. write Ð read: A write by processor P precedes a read by
 processor Q.

 roll-back dependency: P <-> Q

 checkpoint dependency: Q <-> P

2. write Ð write: A write by processor P precedes a write by
 processor Q.

 roll-back dependency: P <-> Q

 checkpoint dependency: P <-> Q

40

A lengthy delay occurs when the directory controller must retrieve a copy of ÒBAÓ from ÒP3Ó. In

order to minimize the delay of future read misses for ÒBAÓ, the directory controller stores a copy of

ÒBAÓ into the memory cache. Subsequently, if processor ÒP1Ó incurs a read miss on memory

block ÒBAÓ, the directory controller tracking it first checks the memory cache to see whether it has

a copy of ÒBAÓ, which can satisfy the read request.

The memory cache for the DRSM-H in our study holds copies of the last 2 memory blocks that

satisfy read misses for data held in the state of DIRTY_SHARED or EXCLUSIVE. If the directory

controller receives a write request for a block that the directory controller tracks, then it invalidates

any block (1) that resides in the memory cache and (2) that matches the address of the write

request.

6.4. Triggers of Checkpoint Establishment

Three events can trigger the establishment of a checkpoint.

6.5. Establishing Tentative Checkpoints

The procedure for establishing a tentative checkpoint is similar to that illustrated in figure 13 for a

4-processor TCMP with DRSM. The principal difference between the procedure for DRSM-H and

that for DRSM is that the processor in the DRSM-H does not first write the dirty 2nd-level-cache

lines back into main memory. Rather, the processor first writes the dirty lines into the tentative-

checkpoint buffer. During the establishment of the permanent checkpoint, the processor writes

the dirty lines back into main memory.

1. timer-triggered checkpoint: A timer expires. When the timer for
a processor expires, it establishes a checkpoint. The timer
ensures a maximum bound on the time interval between checkpoints.

2. cache-triggered checkpoint: The 2nd-level cache (1) evicts a
cache line in state EXCLUSIVE without forwarding the line to
another cache or (2) evicts the last copy of a cache line in
state DIRTY_SHARED. Both events require that a DRSM-H module
write the dirty line back into memory, which holds the permanent
checkpoint.

3. external-communication-triggered checkpoint: Communication
occurs between a processor and the environment outside of the
TCMP. When data leaves or enters a TCMP, the processor handling
the data must establish a checkpoint. Communication includes
interrupts.

41

6.6. Establishing Permanent Checkpoints

6.6.1. General Overview

(phase 2)

P[1]

P[2]P[0] P[3]

P[1]

DRSM-H[1]

P[1]

P[0]

DRSM-H[0] DRSM-H[3]

establish

permanent checkpoint

Figure 18. Flow of Permanent Checkpoint

42

Figure 18 shows the new algorithm for establishing a permanent checkpoint for a 4-processor

TCMP, following from the events in figure 13. The algorithm is similar to that illustrated in figure

14 for DRSM. The principal difference is that the dependent processors must first write their dirty

2nd-level-cache lines back into main memory and must complete the permanent checkpoint

before the dependent DRSM-H modules can complete their permanent checkpoint. The root

processor, "P[1]", writes its dirty 2nd-level-cache lines back into main memory but does not

complete the permanent checkpoint until the DRSM-H modules complete their permanent

checkpoint.

6.6.2. Details

As a specific illustration, we trace the flow in Figure 18. During phase 1, "P[1]" determined that

there are 3 dependent processors -- "P[0]", "P[2]", and "P[3]" -- and 3 dependent memory

modules -- "DRSM-H[0]", "DRSM-H[1]", and "DRSM-H[3]". In this particular example, "DRSM-

H[2]" is not a dependent DRSM-H module. "P[1]" tells all dependent processors to establish a

permanent checkpoint.

After receiving the request to establish a permanent checkpoint, each of "P[0]", "P[2]", and "P[3]"

writes its dirty 2nd-level-cache lines back into main memory. The processor waits until the write-

back is complete, then sends an acknowledgment back to the root processor, and resumes

normal processing. After "P[1]" receives acknowledgments from all dependent processors, "P[1]"

tells all dependent DRSM-H modules to establish a permanent checkpoint.

Each of "DRSM-H[0]", "DRSM-H[1]", and "DRSM-H[3]" performs the following. The DRSM-H

module resets (to 0) all columns and all rows (in the dependency matrix) containing any

processor with its processor lock being "1". Next, the DRSM-H module identifies all blocks for

which their states are "TC", according to the 2-bit-state register. The DRSM-H module transitions

their states to "PC". Finally, the DRSM-H module sends an acknowledgment to the root

processor.

After "P[1]" receives acknowledgments from all dependent memory modules, "P[1]" itself sends

an acknowledgment to the arbiter processor "P[0]" and resumes normal processing. "P[0]" then

grants the request from the next processor wishing to establish a checkpoint.

Unlike the dependent memory modules in DRSM, the ones in DRSM-H must establish a

permanent checkpoint after the dependent processors establish a permanent checkpoint. The

43

dependent processors must write the dirty lines in their caches back into main memory (which

contains the permanent checkpoint) during the establishment of the permanent checkpoint. Only

after this activity is complete can the dependent memory modules convert their tentative

checkpoint into a permanent one.

Concerning figure 18, we note the following additional details for DRSM-H. At the start of phase

2, ÒP[1]Ó updates the checkpoint flag of the checkpoint-state buffer to ÒTENTATIVE_

CHECKPOINT_IS_ACTIVEÓ. During phase 2, the dependent processors write all the dirty lines in

their 2nd-level caches back into main memory. A safe copy of these blocks exists in the

tentative-checkpoint buffer, so if a fault occurs during the write-back, the TCMP can still recover

from the fault. Further, each dependent processor directs the checkpoint-state buffer to invalidate

its old permanent checkpoint and to designate the processor state saved in the tentative-

checkpoint area as the new permanent checkpoint. Each dependent memory module clears, in

the dependency matrix, all rows and columns containing any processor with its processor lock

being "1" and then resets all the processor locks to "0". At the end of phase 2, "P[1]" directs the

checkpoint-state buffer to invalidate its old permanent checkpoint and to designate the processor

state saved in the tentative-checkpoint area as the new permanent checkpoint, and "P[1]" then

updates the checkpoint flag of the checkpoint-state buffer to ÒCHECKPOINT_IS_NOT_ACTIVEÓ,

indicating that phase 2 (and the entire checkpoint) is complete.

6.7. Recovery from a Fault

The recovery procedure for DRSM-H is similar to that for DRSM. The principal difference is that if

"P3" failed during the establishment of a permanent checkpoint, then "P3" must read the

associated tentative-checkpoint buffer and must write all dirty blocks back into main memory in

order to complete the permanent checkpoint during recovery.

44

Chapter 7. Distributed Recoverable Shared Memory with Logs (DRSM-L)

7.1. Introduction

Distributed recoverable shared memory with logs (DRSM-L) is an apparatus and algorithm in the

class of the unsynchronized method to establish checkpoints. DRSM-L enables a processor to

establish a checkpoint (or to roll back to the last checkpoint) in a manner that is independent of

any other processor.

DRSM-L differs fundamentally from DRSM, DRSM-C, and DRSM-H in that a processor can

establish a checkpoint independently of all other processors. A processor in the TCMP with

DRSM-L has this flexibility since the processor ensures that dirty data sent to other processors is

never lost even if the sending processor rolls back to the previous checkpoint. Specifically, each

processor logs each incoming cache line into the line buffer of the local DRSM-L module and logs

the number of accesses (that the processor makes) to this cache line into the counter buffer of

the DRSM-L module. If the processor encounters a fault and rolls back to the last checkpoint, the

processor uses the cache data and access history recorded in the line buffer and the counter

buffer to satisfy all cache accesses during the recovery period. Once the recovery completes, the

processor resumes normal execution. The processor re-calculates exactly the original values of

the dirty data that the processor sent to other processors prior to encountering the fault. We note

that DRSM-L also enables a processor to roll back to the last checkpoint independently of all

other processors.

7.2. Apparatus

Figure 19 illustrates the apparatus of DRSM-L. It consists of new structures in both the 2nd-level

cache and the local memory module. Each line of the 2nd-level cache has the traditional fields:

tag, status (SHARED, EXCLUSIVE, and INVALID) of line, and line of data. Each line has 3

additional fields: counter, instruction/data flag, and 2-bit status flag. The 2-bit-status flag

assumes any 1 of 4 values: ÒNÓ (no event), ÒRÓ (remote read), ÒEÓ (ejection), ÒVÓ (counter

overflow). The cache also has 2 index registers that mirror 2 index registers in the local memory

module.

45

The local memory module has the traditional directory controller and the traditional bank of

memory. The module also has a line buffer and a counter buffer. Each buffer has an

accompanying index register that points at the next free entry in the buffer. The module also has

a checkpoint-state buffer. We will describe how the new structures function as we describe how

DRSM-L logs incoming cache data, how DRSM-L establishes checkpoints, what triggers the

establishment of checkpoints, and how DRSM-L facilitates recovery from a fault.

In the following discussion, we assume that the TCMP (1) prohibits self-modifying code and (2)

requires instructions and normal data to reside in separate memory blocks (i. e. cache lines). In

section 7.4, we explain how this assumption allows us to use the instruction/data flag.

flag memory
workingextendedextended line

index_CBindex_LB

tag
status
of line data

of
line

counter

index_LB_ index_CB_

2nd-level
cache

system
memory

directory controllercache line

incoming

line buffer counter buffer

of datatag tag
2-bit-statuscounter

checkpoint-state buffer

instruction/data flag

2-bit-status flag

Figure 19. Distributed Recoverable Shared Memory with Logs (DRSM-L)

46

7.3. Audit Trail

DRSM-L is an algorithm in the class of the unsynchronized method and guarantees that a

processor resuming execution from the last checkpoint (after a roll-back due to a fault)

reproduces the exact same dirty values that the processor produced before encountering a fault.

Figure 20 illustrates the strategy that DRSM-L uses to provide this guarantee. In figure 20, the

ÒstateÓ is the combination of the processor state and the 2nd-level-cache state; the cache state

refers only to 4 fields -- tag, status of line, line of data, and the instruction/data flag. The transition

of the processor-cache state depends on 4 events: incoming data in the form of memory blocks,

clean evictions (or invalidations), dirty evictions (or invalidations), and dirty reads by a remote

processor. During recovery after a fault, the processor will reproduce the dirty values delivered

by the dirty eviction (or invalidation) and by the remote dirty read if the processor-cache state

repeats the transitions (that occurred prior to the fault) past the point where the processor sent

the last dirty value to the rest of the TCMP. In figure 20, the last dirty value sent by the processor

occurs during the remote dirty read. Furthermore, the processor-cache state will repeat the

transitions (that occurred prior to the fault) if the recovery apparatus reproduces the 4 events at

the right time relative to the last checkpoint and to the data accesses. Therefore, to ensure that a

processor "P" can reproduce the exact same dirty values that it produced prior to a fault, "P" must

record (1) data values that arrive in its 2nd-level cache and (2) the number of times that ÒPÓ

accesses each 2nd-level-cache line of data until the next event that occurs on the cache line.

Events that occur on a cache line are clean eviction/ invalidation, dirty eviction/invalidation, and

remote dirty read.

remote dirty

state

ch
ec

kp
oi

nt

state

incoming data

state state state

eviction/invalidation
dirtyclean

eviction/invalidation

fault

read

Figure 20. Transition of State of Both Processor and 2nd-Level Cache

47

"P" logs the incoming cache lines (or memory blocks) into the line buffer in figure 19. The line

buffer has 2 fields: extended tag and line of data. The extended tag is the regular 2nd-level-

cache tag appended with the index of the exact cache line into which the incoming cache data is

destined. The "line of data" is the cache data itself. The logging of the incoming cache line into

the line buffer can be performed in parallel with forwarding the line to the 2nd-level cache, so the

logging does not cause additional delay.

Merely recording the incoming cache line is not sufficient to guarantee that "P" will reproduce the

exact same dirty values that it produced prior to a fault. "P" must also record the number of times

that ÒPÓ uses data in a 2nd-level-cache line before an event occurs on it. Below are the 3

possible events.

To count the number of accesses to data in a 2nd-level cache prior to these events, "P" performs

the following. "P" forwards the address of the access to both the 1st-level cache and the 2nd-

level cache. Regardless of whether the access hits in the 1st-level cache, if the access hits in a

line of the 2nd-level cache, it increments the counter of the matching line. The counter of a line is

reset to 0 whenever incoming cache data arrives in the line.

If a valid 2nd-level-cache line experiences any 1 of the above 3 events, then the cache writes the

counter of that cache line into the counter buffer in figure 19 and resets the counter (in the cache

line) to 0. The counter buffer has 3 fields: extended tag, counter, and 2-bit status flag. The

directory controller sets the 2-bit-status flag to ÒRÓ, ÒEÓ, or ÒVÓ if event #1, #2, or #3, respectively,

occurs. For events #1 and #2, logging the counter into the counter buffer is performed in parallel

with the usual cache-coherence activity, so the logging does not cause additional delay.

The line buffer and the counter buffer effectively record an audit trail of data accessed by a

processor "P". After "P" encounters a fault, "P" rolls back to the last checkpoint and resumes

execution. "P" uses the audit trail to satisfy all read or write misses until recovery is complete.

The information stored in the line buffer and the counter buffer is sufficient and necessary to

ensure that "P" will reproduce the exact same dirty values that it produced prior to a fault. We

illustrate how recovery works in section 7.7.

1. The status of the line transitions from EXCLUSIVE to SHARED due
to a read by a remote processor.

2. The status of the line transitions from SHARED or EXCLUSIVE to
INVALID due to an eviction or invalidation.

3. The counter overflows.

48

If an upgrade miss (i. e. a write ÒhitÓ on a 2nd-level-cache line with its status being SHARED)

occurs in the 2nd-level cache, it obtains permission to upgrade the affected cache line in the

same way that the 2nd-level cache of a base TCMP without DRSM-L would handle the upgrade

miss. Upgrading a 2nd-level-cache line involves changing its status from SHARED to

EXCLUSIVE. After the 2nd-level cache upgrades the affected cache line, the cache retries the

data-write. The cache then processes the write hit in the usual fashion for maintaining an audit

trail.

7.4. Optimizations

For the 2nd-level cache, figure 19 shows 2 optimizations: the instruction/data flag and the index

registers which mirror those in the local memory module. If the TCMP both (1) prohibits self-

modifying code and (2) requires instructions and normal data to reside in separate memory

blocks (i. e. cache lines), then we can distinguish between cache lines holding instructions and

cache lines holding data. If the incoming cache line satisfies an access miss for regular data,

then the 2nd-level cache sets the instruction/data flag of the cache line (satisfying the access

miss) to 1. The incoming cache line and its associated counter are handled in the usual manner

for maintaining an audit trail. On the other hand, if the incoming cache line satisfies an instruction

miss, then the cache line is not saved in the line buffer. Further, the 2nd-level cache sets the

instruction/data flag of the cache line (satisfying the instruction miss) to 0. Subsequent instruction

fetches that hit in the cache line do not cause the counter to increment. In this way, we avoid

using space in the line buffer and the counter buffer to store the instructions and the number of

instruction fetches, respectively.

If the TCMP either (1) allows self-modifying code or (2) allows instructions and normal data to

reside in the same memory block (i. e. cache line), then we cannot distinguish between cache

lines holding instructions and cache lines holding data. We omit the instruction/data flag and

must handle all incoming cache lines in the usual manner for maintaining an audit trail.

The second optimization is the index registers that mirror those in the local memory module. In

the memory module, the index register of each buffer points to the next free entry in the buffer.

Òindex_LBÓ is the index register of the line buffer, and Òindex_CBÓ is the index register of the

counter buffer. Òindex_LB_Ó and Òindex_CB_Ó mirror Òindex_LBÓ and Òindex_CBÓ, respectively.

When the directory controller saves an incoming cache line (for a data access) into the line buffer

and forwards the line to the 2nd-level cache, the directory controller increments Òindex_LBÓ. The

2nd-level cache installs the incoming cache data into a cache line and increments Òindex_LB_Ó.

49

In addition, when the 2nd-level cache writes a counter into the counter buffer, the cache

increments Òindex_CB_Ó. When the directory controller saves the counter into the counter buffer,

the directory controller increments Òindex_CBÓ.

When the line buffer or the counter buffer becomes full, the local processor must establish a

checkpoint. Establishing a checkpoint clears both buffers and resets all the index registers to 0.

The index registers in the 2nd-level cache itself enable the processor module to determine

whether the line buffer or the counter buffer is full without incurring the cost of querying the index

registers in the local memory module.

7.5. Triggers of Checkpoint Establishment

7.5.1. List of Triggers

Five events can trigger the establishment of a checkpoint.

In addition to the above 5 events (triggering the establishment of a checkpoint), if any event, say

ÒSÓ, can potentially invalidate the guarantee that a processor, say ÒPÓ, during recovery reproduces

the exact same dirty values that ÒPÓ produced prior to the occurrence of a fault, then ÒPÓ must

establish a checkpoint upon the occurrence of event ÒSÓ. An example of an event that can

potentially invalidate the aforementioned guarantee is a processor reading the value of the time-

of-day clock.

7.5.2. Context Switch

1. timer-triggered checkpoint: A timer expires. When the timer for
a processor expires, it establishes a checkpoint. The timer
ensures a maximum bound on the time interval between checkpoints.

2. line-buffer-triggered checkpoint: The line buffer overflows.

3. counter-buffer-triggered checkpoint: The counter buffer
overflows.

4. context-switch-triggered checkpoint: A context switch occurs.

5. external-communication-triggered checkpoint: Communication
occurs between a processor and the environment outside of the
TCMP. When data leaves or enters a TCMP, the processor handling
the data must establish a checkpoint. Communication includes
interrupts.

50

The description of DRSM-L thus far applies to a single thread of a single process running on a

processor in a TCMP. In order to deal with multiple threads and processes, the DRSM-L must

direct a processor, ÒPÓ, to establish a checkpoint just after ÒPÓ switches context (and before ÒPÓ

sends any dirty data to the rest of the TCMP).

Establishing a checkpoint at each context switch will not cause appreciable deterioration in

performance. Establishing a checkpoint involves mainly saving the 2nd-level-cache and the

processor state into the checkpoint-state buffer and costs about 41 microseconds for a 8192-line

2nd-level cache of a 200 megahertz processor. The fastest context-switch time (of a thread) is

approximately 8 microseconds, scaled for a 200 megahertz SPARC processor from the results by

Narlikar [8]. The checkpoint time and the context-switch time have roughly the same order of

magnitude.

In calculating the checkpoint time of 41 microseconds, we use the parameters listed in section

8.1. The 2nd-level cache expends 75 cycles to grab the bus between the cache and the directory

controller. The 2nd-level cache then sends 1 cache line per cycle (in a pipelined fashion) to the

directory controller, which saves the line into the checkpoint-state buffer; transferring all 8192

2nd-level-cache lines requires 8192 cycles. Also, transferring the processor state to the directory

controller uses another 16 cycles. Hence, establishing a checkpoint requires 8283 cycles, which

is approximately 41 microseconds.

7.6. Establishing Checkpoints

The checkpoint-state buffer assists the local processor to establish a checkpoint. The

checkpoint-state buffer has 3 separate units (which are not shown in figure 19): the 2-bit

checkpoint flag, the tentative-checkpoint area, and the permanent-checkpoint area. The

checkpoint flag indicates 1 of 3 checkpointing states: "CHECKPOINT_IS_NOT_ACTIVE",

"TENTATIVE_CHECKPOINT_IS_ACTIVE", and "PERMANENT_CHECKPOINT_IS_ACTIVE".

The tentative-checkpoint area holds both (1) the processor state (of the local processor) and (2)

the contents of the 2nd-level cache for the current checkpoint. The permanent-checkpoint area

holds both (1) the processor state and (2) the contents of the 2nd-level cache from the last

checkpoint. At the end of the establishment of the current checkpoint, the local processor

switches the designation of the tentative-checkpoint area and the permanent-checkpoint area. In

other words, the tentative-checkpoint area becomes the permanent-checkpoint area, and the

permanent-checkpoint area becomes the tentative-checkpoint area.

51

DRSM-L enables a processor "P" to establish a checkpoint in 2 phases: tentative checkpoint and

permanent checkpoint. "P" first updates the checkpoint flag of the checkpoint-state buffer to

"TENTATIVE_CHECKPOINT_IS_ACTIVE", indicating that "P" is in phase 1, the tentative

checkpoint. Then, "P" waits until all its pending memory accesses are completed (or negatively

acknowledged). "P" negatively acknowledges all cache-coherence messages from the directory

controllers until the establishment of the checkpoint is complete. Next, "P" downloads both its

internal registers (i. e. the processor state) and all 2nd-level-cache lines (saving only the tag,

status of line, line of data, and instruction/data flag) into the tentative-checkpoint area of the

checkpoint-state buffer (while preserving the previous permanent checkpoint in the permanent-

checkpoint area). At the end of phase 1, "P" updates the checkpoint flag of the checkpoint-state

buffer to "PERMANENT_CHECKPOINT_IS_ACTIVE", indicating that "P" is now in phase 2 (i. e.

the permanent checkpoint). "P" resets all the index registers in both the processor module and

the local memory module. "P" then tells the checkpoint-state buffer to invalidate the old

permanent checkpoint in the checkpoint-state buffer and to designate the processor state and the

cache lines saved in the tentative-checkpoint area as the new permanent checkpoint. Finally, "P"

updates the checkpoint flag of the checkpoint-state buffer to "CHECKPOINT_IS_NOT_ACTIVE",

indicating that phase 2 (and the entire checkpoint) is finished.

7.7. Recovery from a Fault

Fault-tolerance schemes generally involve 2 aspects: (1) logging data or establishing periodic

checkpoints prior to the occurrence of any fault and (2) rolling the system back to the last

checkpoint and recovering the state of the system prior to the fault. We now show how DRSM-L

may recover from a fault. We assume that the TCMP operates with a fault-tolerance-aware

virtual-machine monitor. (The following comments apply as well to a TCMP that executes a fault-

tolerance-aware operating system without a virtual-machine monitor). We consider the following

simple scheme for rolling back from a fault experienced by a processor. We arrange for a special

recovery-logic circuit on the memory module to periodically send "Are you alive?" messages to

the local processor. If it does not respond within a specified timeout period, the recovery-logic

circuit assumes that the processor experienced a fault. If the fault is permanent, the recovery-

logic circuit replaces the failed processor with a spare processor. Then, the recovery-logic circuit

resets the processor, say "P", and directs it to begin the recovery activity. "P" invalidates all

entries in both the 1st-level cache and the 2nd-level cache. "P" negatively acknowledges all

cache-coherence messages from the directory controllers until recovery is complete.

ÒPÓ checks the checkpoint flag of the local checkpoint-state buffer. Suppose that the state of the

checkpoint flag is ÒPERMANENT_CHECKPOINT_IS_ACTIVEÓ, meaning that "P" failed during the

52

establishment of a permanent checkpoint. Then "P" completes the establishment of the

permanent checkpoint that was in progress when the fault occurred. "P" queries all the memory

modules to find messages which were sent to "P" just prior to the fault; "P" negatively

acknowledges them. Then, ÒPÓ loads both the processor state and all 2nd-level-cache lines

saved in the permanent-checkpoint area of the checkpoint-state buffer. ÒPÓ installs each line

saved in the checkpoint-state buffer into a 2nd-level-cache line and resets its counter to 0. "P"

resumes normal processing.

Now, suppose that the state of the checkpoint flag is either ÒCHECKPOINT_IS_NOT_ACTIVEÓ or

ÒTENTATIVE_CHECKPOINT_IS_ACTIVEÓ, meaning that "P" did not fail during the establishment

of a permanent checkpoint. (If the state of the checkpoint flag is ÒTENTATIVE_CHECKPOINT_

IS_ACTIVEÓ, then "P" tells the checkpoint-state buffer to invalidate both the processor state and

the cache state saved in the tentative-checkpoint area of the checkpoint-state buffer.) Then "P"

must perform the following procedure. "P" queries all the memory modules to find messages

which were sent to "P" just prior to the fault; "P" negatively acknowledges them. Then, "P" reads

the entire line buffer and the entire counter buffer and groups their entries according to the cache

index of the extended tag so that an entry can be easily fetched upon a miss in the 2nd-level

cache. "P" saves these sorted entries in a separate memory area reserved for the virtual-

machine monitor; for the purpose of this discussion, we assume that they reside in the sorted-line

buffer and the sorted-counter buffer. Then, "P" invalidates all entries in both the 1st-level cache

and the 2nd-level cache and loads both the processor state and all 2nd-level-cache lines saved in

the permanent-checkpoint area of the checkpoint-state buffer. ÒPÓ installs each line saved in the

checkpoint-state buffer into a 2nd-level-cache line, resets its counter to 0, and sets the 2-bit-

status flag to ÒVÓ.

"P" resumes execution in recovery mode. In this mode, if a data-read or a data-write misses in

the 2nd-level cache, a trap occurs to the virtual-machine monitor. It finds the next matching line

(of data) and the next matching counter from the sorted-line buffer and the sorted-counter buffer,

respectively, and places the line and the counter into the cache. The virtual-machine monitor

sets the instruction/data flag of the affected cache line to 1. The virtual-machine monitor also

sets the 2-bit-status flag in the cache to the value stored in the 2-bit-status flag of the sorted-

counter buffer.

If a data-read or a data-write hits on a 2nd-level-cache line, its counter is decremented. Once a

hit causes the counter to underflow (below 0), the hardware must interpret the 2-bit-status flag. If

the 2-bit-status flag is "N", then the counter is not decremented but remains at 0, and satisfying

the access hit proceeds. On the other hand, if the 2-bit-status flag is not "N", then execution traps

53

to the virtual-machine monitor. It must interpret the 2-bit-status flag. If it is ÒRÓ, then the virtual-

machine monitor re-loads the counter and 2-bit-status flag with the next matching entry in the

sorted-counter buffer and also transitions the status of the line from EXCLUSIVE to SHARED. If

the 2-bit-status flag is ÒEÓ, then the virtual-machine monitor re-loads the cache line with the next

matching entry in the sorted-line buffer and also re-loads the counter and the 2-bit-status flag with

the next matching entry in the sorted-counter buffer. If the 2-bit-status flag is ÒVÓ, then the virtual-

machine monitor re-loads the counter and the 2-bit-status flag with the next matching entry in the

sorted-counter buffer. Regardless of whether the 2-bit-status flag is "R", "E", or "V", if the next

matching entry in the sorted-counter buffer does not exist, then the virtual-machine monitor sets

the counter and the 2-bit-status flag to 0 and "N", respectively.

Also, if an upgrade miss (i. e. a write ÒhitÓ on a 2nd-level-cache line with its status being

SHARED) occurs in the 2nd-level cache, it immediately upgrades the affected cache line by

changing its state from SHARED to EXCLUSIVE. The 2nd-level cache then retries the data-write

and processes it in the usual fashion for recovery. We specifically note that the 2nd-level cache

does not handle the upgrade miss by submitting a cache-coherence message to the directory

controller.

In the recovery mode, ÒPÓ handles instruction misses by fetching the instruction from main

memory into the cache in the usual fashion. ÒPÓ sets the instruction/data flag (of the 2nd-level-

cache line receiving the incoming memory block that satisfies the instruction miss) to 0. For data

misses (due to data-reads and data-writes), the processor sets the instruction/data flag to 1 but

uses the sorted-line buffer and the sorted-counter buffer to satisfy them.

Eventually, ÒPÓ achieves the following 2 conditions: (1) the sorted-counter buffer has no entry

with a 2-bit-status flag of ÒEÓ or ÒRÓ and (2) the counters in all valid cache data lines (i. e. with

instruction/data flag being 1) with a 2-bit-status flag of ÒEÓ or ÒRÓ are 0. When both conditions

arise, recovery for "P" is close to completion. We say that ÒPÓ has reached the state of Òimminent

completion of recovery". Execution traps to the virtual-machine monitor. It updates the status of

all valid cache lines with a 2-bit-status flag of ÒEÓ or ÒRÓ. If the 2-bit-status flag is ÒEÓ or ÒRÓ, then

ÒPÓ changes the status of the line to INVALID or SHARED, respectively. Then, the virtual-

machine monitor invokes ÒPÓ to establish a checkpoint, which clears both the line buffer and the

counter buffer.

To ensure that the contents of the cache are consistent with the information stored in the

directory of each memory module, the virtual-machine monitor reads each dirty 2nd-level-cache

line from the permanent-checkpoint area of the checkpoint-state buffer and writes the line back

54

into main memory. The virtual-machine monitor changes the status of each 2nd-level-cache line

saved in the permanent-checkpoint area (of the checkpoint-state buffer) to INVALID. Then, the

virtual-machine monitor requests the directory controller of each memory module to change the

status of each memory block (i. e. cache line) to indicate that the 2nd-level cache of ÒPÓ does not

hold the memory block. The virtual-machine monitor also changes the status of each line in the

2nd-level cache to INVALID.

Finally, recovery is complete. The virtual-machine monitor then places "P" in the normal mode of

execution where the counter increments on each hit.

We note that DRSM-L has the extremely desirable property of no roll-back propagation. If a

processor experiences a fault, the processor (or the spare processor) must roll back to the last

checkpoint to resume execution. This roll-back does not require that other processors also roll

back to their last checkpoints.

7.8. Pedagogical Example

To complete our description of DRSM-L, we illustrate its operation with a simple example. Figure

21 illustrates the normal execution of a processor ÒPÓ from the last checkpoint. At the last

checkpoint, the 2nd-level cache, the line buffer, and the counter buffer are empty. The 2nd-level

cache is a directly mapped cache with 3 entries. We designate the 2nd-level cache as simply

ÒcacheÓ in figure 21. As for the fields of the cache, we designate the Òline of dataÓ, the ÒcounterÓ,

and the Ò2-bit-status flagÓ as simply ÒdataÓ, ÒcntrÓ, and ÒstatusÓ. In the line buffer and the counter

buffer, we designate the Òextended tagÓ as Òxtnd tagÓ. For simplicity, we omit the Òstatus of lineÓ

and the Òinstruction/data flagÓ from the cache. Also, we do not consider instruction accesses. We

consider only data accesses.

In this example, ÒPÓ executes 2 simple statements: ÒX = 2 * AÓ and ÒY = X + AÓ. When ÒPÓ

attempts to execute ÒX = 2 * AÓ, the data accesses for ÒAÓ and ÒXÓ miss in the 2nd-level cache.

After the incoming memory blocks satisfying these accesses arrive at the local directory

controller, it forwards them to the 2nd-level cache and, avoiding any additional delay, concurrently

copies them into the line buffer. The cache resets the counters of the affected cache lines to 0.

Then, ÒPÓ reads the value of ÒAÓ, calculates the new value of ÒXÓ, and writes that value, 6, into the

cache line. Since ÒPÓ accesses each of ÒAÓ and ÒXÓ once, the cache increments the counter of

each of ÒAÓ and ÒXÓ by 1. (The Ò0Ó, Ò1Ó, and Ò2Ó in ÒA0Ó, ÒX1Ó, and ÒY2Ó, respectively, are the

indices of the cache lines.)

55

Then, a remote processor writes into the cache line for ÒAÓ. The local directory controller receives

an invalidation and forwards it to the 2nd-level cache. It invalidates the cache line for ÒAÓ. The

cache sends an acknowledgment to the directory controller and, avoiding any additional delay,

concurrently sends the counter (of the invalidated cache line) along with the acknowledgment.

The directory controller inserts the counter into the counter buffer and sets the 2-bit-status flag to

ÒEÓ, indicating that an eviction/invalidation of the cache line occurred after the number of

accesses recorded by the counter.

Next, ÒPÓ executes ÒY = X + AÓ. When ÒPÓ attempts to execute ÒY = X + AÓ, the data accesses for

ÒAÓ and ÒYÓ miss in the 2nd-level cache. After the incoming memory blocks satisfying these

accesses arrive at the local directory controller, it forwards them to the 2nd-level cache and,

avoiding any additional delay, concurrently copies them into the line buffer. The cache resets the

counters of the affected cache lines to 0. Then, ÒPÓ reads the values of ÒAÓ and ÒXÓ, calculates

the new value of ÒYÓ, and writes that value, 6, into the cache line. Since ÒPÓ accesses each of ÒAÓ,

ÒXÓ, and ÒYÓ once, the cache increments the counter of each of ÒAÓ, ÒXÓ, and ÒYÓ by 1.

Then, a remote processor reads the memory block of ÒYÓ. The local directory controller receives

a write-back request (associated with the remote read) and forwards it to the 2nd-level cache. It

changes the status of the affected cache line from EXCLUSIVE to SHARED. The cache sends a

ch
ec

kp
oi

nt

0
1
2

co
un

te
r

bu
ff

er
X = 2 * A

remotely read dirty

0
1
2

3
1

Y = X + A

2
1
0

1
3

2
0

invalidate

1 1
1

E E
R

A0
X1

A0
X1
A0
Y2

A0 A0
Y2

A
X 1

3 0
0 X 16

A
X 6

3 1
1

A
X
Y

6
2

0 0
1
0

A
X
Y 6

2
1

1
6
0 A

Y
X

6 0

0 1
6 2

ta
g

da
ta

st
at

us
cn

tr
st

at
us

cn
tr

ta
g

ta
g

xt
nd

da
ta

xt
ndlin

e
bu

ff
er

ca
ch

e
fault

Figure 21. Normal Execution of Processor

56

copy of both the data and the counter in the line to the directory controller and concurrently resets

the counter to 0. The directory controller inserts the counter into the counter buffer and sets the

2-bit-status flag to ÒRÓ, indicating that a remote read of the cache line occurred after the number

of accesses recorded by the counter.

Now, we suppose that a fault occurs at this point. Figure 22 illustrates how ÒPÓ performs

recovery and, specifically, how ÒPÓ reproduces the exact same dirty value that ÒPÓ produced prior

to the fault.

The recovery-logic circuit resets ÒPÓ. (If ÒPÓ experienced a permanent fault, the recovery-logic

circuit replaces the failed processor module with a spare processor module, and the spare

processor becomes ÒPÓ.) ÒPÓ enters the virtual-machine monitor. It loads the 2nd-level cache

with the contents of the cache saved at the last checkpoint. For each line in the cache, the

virtual-machine monitor resets the counter to 0 and sets the 2-bit-status flag to ÒVÓ. (In our simple

example, the contents of the cache saved at the last checkpoint is empty and has no valid lines.)

The virtual-machine monitor also loads ÒPÓ with the processor state saved at the last checkpoint.

Next, the virtual-machine monitor groups the entries (by the 2nd-level-cache index of the

extended tag) of the line buffer and the counter buffer and places the entries into the sorted-line

buffer and the sorted-counter buffer. The grouping procedure maintains, for each cache index,

ch
ec

kp
oi

nt
ca

ch
e

so
rt

ed
 li

ne

0
1
2

bu
ff

er

X = 2 * A

0
1
2

Y = X + A

2
1
0

invalidate

A0

remotely read dirtyY2 22 Y2

3

A0 1
Y2 1

E
R Y2 1 R

A
X 1

3 1
0

A
X 6

3 0
0 X

A
6 0
3 0 A

X
Y

6
2 1

0
0 0

X
Y

A

6
6
0 0

0
0

X
Y

A

6
0
0

0 0
6

E
N

E E
N N

R
N
N N N

N
R

N
R

da
ta

cn
tr

st
at

us

ta
g

xt
nd ta

g
da

ta

xt
nd ta

g
cn

tr
st

at
us

bu
ff

er
so

rt
ed

 c
ou

nt
er

A0
X1

0
1

A0 0

Figure 22. Recovery of Processor

57

the temporal order in which the entries were originally inserted into the line buffer and the counter

buffer.

Then, ÒPÓ proceeds to execute in recovery mode. When ÒPÓ attempts to execute ÒX = 2 * AÓ, the

data accesses for ÒAÓ and ÒXÓ miss in the 2nd-level cache. Execution traps to the virtual-machine

monitor. To satisfy each of these misses, the virtual-machine monitor retrieves the next matching

entry from the sorted-line buffer and the next matching entry from the sorted-counter buffer and

places the contents of the entries into the appropriate cache line. Since the sorted-counter buffer

has no matching entry for ÒXÓ, the virtual-machine monitor resets the counter in the cache line for

ÒXÓ to 0 and sets the 2-bit-status flag in that cache line to ÒNÓ (meaning Òno eventÓ). Then, ÒPÓ

reads the value of ÒAÓ, calculates the new value of ÒXÓ, writes that value, 6, into the cache line.

Since ÒPÓ accesses each of ÒAÓ and ÒXÓ once, the cache decrements the counter of each of ÒAÓ

and ÒXÓ by 1 if the counter is not 0. If the counter is already 0, the counter is not decremented.

At this point in the previous normal execution, an invalidation arrives at the 2nd-level cache.

Figure 22 illustrates this event with an italicized label.

Next, ÒPÓ executes ÒY = X + AÓ. When ÒPÓ attempts to execute ÒY = X + AÓ, the data access for

ÒAÓ hits in the 2nd-level cache. It discovers that the counter for ÒAÓ is 0, and since the 2-bit-status

flag is not ÒNÓ, execution traps to the virtual-machine monitor. It then acts on the value of the 2-

bit-status flag. Since it is ÒEÓ and indicates that the cache line was evicted/invalidated, the virtual-

machine monitor retrieves the next matching entry from the sorted-line buffer and the next

matching entry from the sorted-counter buffer and places the contents of the entries into the

cache line for ÒAÓ. Since the sorted-counter buffer has no matching entry for ÒAÓ, the virtual-

machine monitor resets the counter in the cache line for ÒAÓ to 0 and sets the 2-bit-status flag in

that cache line to ÒNÓ (meaning Òno eventÓ).

The data access for ÒXÓ also hits in the 2nd-level cache. It discovers that the counter for ÒXÓ is 0,

but since the 2-bit-status flag is ÒNÓ, execution does not trap to the virtual-machine monitor.

The data access for ÒYÓ misses in the cache. To handle the access miss on ÒYÓ, the virtual-

machine monitor retrieves the next matching entry from the sorted-line buffer and the next

matching entry from the sorted-counter buffer and places the contents of the entries into the

cache line for ÒYÓ.

Then, ÒPÓ reads the values of ÒAÓ and ÒXÓ, calculates the new value of ÒYÓ, and writes that value,

6, into the cache line. Since ÒPÓ accesses each of ÒAÓ, ÒXÓ, and ÒYÓ once, the cache decrements

58

the counter of each of ÒAÓ, ÒXÓ, and ÒYÓ by 1 if the counter is not 0. If the counter is already 0, the

counter is not decremented.

At this point in normal execution, a write-back request (due to a read by a remote processor)

arrives at the 2nd-level cache. Figure 22 illustrates this event with an italicized label. We note

that ÒPÓ has reproduced the exact same dirty value that ÒPÓ produced prior to the fault.

Currently, ÒPÓ has reached the state of Òimminent completion of recoveryÓ. ÒPÓ has achieved the

following 2 conditions: (1) the sorted-counter buffer has no remaining entry with a 2-bit-status

flag of ÒEÓ or ÒRÓ and (2) the counters in all valid cache data lines (i. e. with the instruction/data

flag being Ò1Ó) with a 2-bit-status flag of ÒEÓ or ÒRÓ are 0. Execution traps to the virtual-machine

monitor. For each valid cache data line, if the 2-bit-status flag is ÒEÓ or ÒRÓ, then the virtual-

machine monitor changes the status of the line to INVALID or SHARED, respectively.

ca
ch

e
bu

ff
er

lin
e

bu
ff

er
co

un
te

r

A0

Y2 2

3

A0 1
Y2 1

ca
ch

e-
lin

e
in

va
lid

at
io

n

E
R

X1 1
A0 0

0
1
2

da
ta

cn
tr

st
at

us

ta
g

xt
nd ta

g
cn

tr
st

at
us

A0

Y2 2

3

A0 1
Y2 1

E
R

xt
nd ta

g
da

ta

X1 1
A0 0

X
Y

A

6
0
0

0 0
6

N
N
R

ch
ec

kp
oi

nt

0
1
2

X
Y

A

6
0
0

0 0
6

N
N
R

0
1
2

X
Y

A

6
0
0

0 0
6

N
N
R

di
rt

y
w

ri
te

-b
ac

k

0
1
2

Figure 23. Completion of Recovery of Processor

59

To complete the recovery from the fault, the virtual-machine monitor invokes ÒPÓ to establish a

checkpoint, indicated in figure 23. Establishing the checkpoint clears the line buffer and the

counter buffer and resets all the counters in the 2nd-level cache to 0. Once the checkpoint is

established, the virtual-machine monitor reads each dirty 2nd-level-cache line saved in the

permanent-checkpoint area of the checkpoint-state buffer and writes the line back into main

memory. The virtual-machine monitor changes the status of each 2nd-level-cache line saved in

the permanent-checkpoint area (of the checkpoint-state buffer) to INVALID. Then, the virtual-

machine monitor tells the directory controller of each memory module to change the status of

each memory block (i. e. cache line) to indicate that the 2nd-level cache of ÒPÓ does not hold the

memory block. The virtual-machine monitor also changes the status of each line in the 2nd-level

cache (of ÒPÓ) to INVALID. The contents of the 2nd-level cache are now consistent with the

information stored in the directories of the memory modules. ÒPÓ resumes normal execution.

ÒPÓ must establish a checkpoint at the end of recovery in order to deal with the loss of counter

values after a fault. The last values of the counters for ÒAÓ and ÒXÓ in figure 21 are 1 and 2,

respectively. Both 1 and 2 are lost after the fault occurs.

7.9. Optimal Size of Line Buffer and Counter Buffer

For a given amount of silicon area from which we can build the line buffer and the counter buffer,

we show that the optimal size of each is one where the ratio of the number of entries in the

counter buffer to the number of entries in the line buffer equals the ratio of the rate at which the

counter buffer fills to the rate at which the line buffer fills. Suppose that we have the following

parameters.

Then, considering only checkpoints triggered by overflowing a buffer, we have the following

equations.

 E[CB] = number of entries in the counter buffer
 E[LB] = number of entries in the line buffer
 A(T, E) = amount of silicon area consumed by transistors to

implement "E" entries for buffer of type ÒTÓ
 AA = fixed amount of allocated silicon area in which to

implement counter buffer and line buffer
 R[CB] = rate at which counter buffer fills in terms of the number

of entries per unit time
 R[LB] = rate at which line buffer fills in terms of the number of

entries per unit time
 RC = rate of establishing checkpoints

60

A(Òcounter bufferÓ, E[CB]) + A(Òline bufferÓ, E[LB]) = AA (equation #1)

 RC = max (R[CB] / E[CB], R[LB] / E[LB]) (equation #2)

The optimum size of each of the counter buffer and the line buffer arises when the "RC", rate of

establishing checkpoints, is minimum. Suppose that we select "E[CB]" and "E[LB]" to be

"E0[CB]" and "E0[LB]", respectively, where

 RC = max (R[CB] / E0[CB], R[LB] / E0[LB]) (equation #3)

 = R[CB] / E0[CB] = R[LB] / E0[LB]. (equation #4)

Now, we consider what happens when we increase "E[CB]" or decrease it. Suppose that we

increase it to some value "E2[CB]" such that "E2[CB]" is greater than "E0[CB]". By equation #1,

"E[LB]" must decrease to some value, say "E2[LB]. Then, we have that

 RC = max (R[CB] / E2[CB], R[LB] / E2[LB]) (equation #5)

 = R[LB] / E2[LB]. (equation #6)

On the other hand, suppose that we decrease "E[CB]" to some value "E1[CB]"such that "E1[CB]"

is less than "E0[CB]". By equation #1, "E[LB]" must increase to some value, say "E1[LB]. Then,

we have that

 RC = max (R[CB] / E1[CB], R[LB] / E1[LB]) (equation #7)

 = R[CB] /E1[CB]. (equation #8)

Comparing equation #4, equation #6, and equation #8, we see that "RC" is smallest when

"E[CB]" equals "E0[CB]". Hence, the optimum ratio of "E[CB]" to "E[LB]" is one where

 E[CB] / E[LB] = R[CB] / R[LB]. (equation #9)

7.10. Detailed Description

In Appendix A, we precisely describe the operation of DRSM-L by using C-like code.

61

Chapter 8. Simulation Environment and Benchmarks

8.1. Multiprocessor Simulator

We evaluate DRSM, DRSM-C, DRSM-H, and DRSM-L by simulating their operation within a

multiprocessor simulator. The block diagram of the base multiprocessor in our simulator appears

in figure 24, illustrating a 2-processor configuration. The model of the memory system and the

network is the NUMA model packaged with the SimOS simulator [4]. Instead of SimOS, we use

our own simulator, ABSS, to simulate the processors and to drive the model of the memory

system and the network. ABSS is an augmentation-based simulator that runs significantly faster

than SimOS [12]. Our simulator has the following parameters.

SCACHE_HIT_TIME

ne
tw

or
k

N
U

M
A

_N
E

T
_T

IM
E

memory
module

NUMA_MEM_TIME

controller

directory
NUMA_BUS_TIME

cache

2nd-level

NUMA_NILOCAL_DC_TIME

NUMA_PIREMOTE_DC_TIME

NUMA_NIREMOTE_DC_TIME

NUMA_PILOCAL_DC_TIME

processor

1st-level

cache

instruct.

1st-level

data

cache

SCACHE_HIT_TIME

memory
module

NUMA_MEM_TIME

controller

directory
NUMA_BUS_TIME

cache

2nd-level

NUMA_NILOCAL_DC_TIME
NUMA_NIREMOTE_DC_TIME

NUMA_PIREMOTE_DC_TIME
NUMA_PILOCAL_DC_TIME

processor

1st-level

cache

instruct.

1st-level

cache

data

Figure 24. Base Multiprocessor

62

In particular, we assume that the amount of data in the processor state (i. e. the internal registers

of the processor) is identical to the amount of data in 16 2nd-level-cache lines.

8.2. Benchmarks

In ABSS , We run 6 benchmarks -- Cholesky, FFT, LU, ocean, radix, and water -- from the

SPLASH2 suite [16] . Cholesky factors a sparse matrix. FFT performs a fast Fourier transform.

explanatory notes
A cycle is a 200-megahertz-processor cycle.

base parameters
processor = SPARC V7 @ 200 megahertz
processor state = equivalent of 16 2nd-level-cache lines of data
cache policy = write-back
memory model = sequential consistency

1st-level instruction cache = 32 kilobytes with 4-way set
 associativity, 2 states (INVALID and
 SHARED), 64-byte line
1st-level data cache = 32 kilobytes with 4-way set associativity,
 3 states (INVALID, SHARED, and EXCLUSIVE),
 64-byte line
2nd-level cache = 1 megabyte with 4-way set associativity, 3 states
 (INVALID, SHARED, and EXCLUSIVE), 128-byte line

average delay (NUMA_BUS_TIME) between 2nd-level cache
 and directory controller (DC) = 75 cycles
average delay (SCACHE_HIT_TIME) for access that hits
 in the 2nd-level cache = 50 cycles
average delay (NUMA_PILOCAL_DC_TIME) in the local DC
 for local access = 100 cycles
average delay (NUMA_PIREMOTE_DC_TIME) in the local DC
 for remote access = 25 cycles
average delay (NUMA_NILOCAL_DC_TIME) in the remote DC
 for remote access = 350 cycles
average delay (NUMA_NIREMOTE_DC_TIME) in the remote DC
 for remote reply = 25 cycles
average network delay (NUMA_NET_TIME) between 2 DCs = 150 cycles
average delay (NUMA_MEM_TIME) to access memory = 50 cycles

DRSM-H parameters
memory cache = 2 entries
2nd-level cache = 4 states (INVALID, SHARED, DIRTY_SHARED, and
 EXCLUSIVE)

DRSM-L parameters
width of counter = 32 bits
line buffer = 8192 entries
counter buffer = 8192 entries
timer = expiration per 20 million cycles

63

LU factors a dense matrix. Ocean simulates eddy and boundary currents in oceans. Radix

performs a radix sort. Finally, water evaluates the forces and the potentials as they change over

time among water molecules.

Woo presents a detailed study of these benchmarks [16]. They have 3 common characteristics.

First, the working set of each benchmark fits within the large 2nd-level cache of our TCMP.

Second, these benchmarks represent a scientific workload. They are useful in representing a

wide variety of memory-access patterns but do virtually no communication with the environment

outside of the TCMP. So, establishing an external-communication-triggered checkpoint does not

arise in our simulations. Third, these benchmarks invoke exactly one thread to run per processor.

So, establishing a context-switch-triggered checkpoint does not arise in our simulations. We note

that regardless of the event triggering the establishment of a checkpoint, the procedure for

establishing a checkpoint remains the same. Hence, we can still evaluate the performance of our

hardware-based algorithms even if checkpoint establishment is triggered by a smaller set of

events.

64

Chapter 9. Results and Analysis

9.1. Overall Performance of Benchmarks

Figures 25, 26, 27, 28, 29, and 30 show the performance of the 6 application benchmarks running

on 5 TCMPs: the base system (which is a TCMP without any special hardware for establishing

checkpoints), the system with DRSM, the system with DRSM-C, the system with DRSM-H, and

the system with DRSM-L. We set the number of processors to 8, 16, and 32. We decompose

the execution time into 5 categories: non-idle time of the processor, the instruction stall, the lock

stall, the data stall, and the barrier stall. (In the figures, we occasionally designate a processor as

a ÒCPUÓ, the acronym for Òcentral processing unitÓ.) In general, the performance of DRSM-L

exceeds the performance of DRSM, DRSM-C, and DRSM-H.

We see 2 notable effects. First, for all benchmarks except Cholesky, the barrier stall and the lock

stall increase substantially as the number of processors increases from 8 to 32 because all

benchmarks except Cholesky have several global barriers and global locks. Both the locks within

global barriers and the global locks, where all processors compete for a lock, cause hot spots to

arise at the memory addresses holding the locks. In Cholesky, after the processors enter the

main loop of execution, they encounter no global synchronization. Hence, Cholesky does not

suffer this problem.

Second, the checkpointing algorithm can occasionally cause a TCMP with DRSM, DRSM-C, or

DRSM-H to exceed the performance of the base TCMP. Figure 31 illustrates the explanation for

this effect. In the base system, the transfer of dirty data from processor "Q" to processor "P"

typically involves the following activities. "P" suffers a read miss in the local cache. "P" sends

message "M1" to the remote memory module "R". It sends a request "M2" to "Q" to retrieve the

dirty data. "Q" replies to "R" with message "M3". "R" forwards the data to "P" in message "M4".

This type of communication involves 4 messages: "M1", "M2", "M3", and "M4".

65

Figure 25. Benchmark #1

66

Figure 26. Benchmark #2

67

Figure 27. Benchmark #3

68

Figure 28. Benchmark #4

69

Figure 29. Benchmark #5

70

Now, consider a TCMP with DRSM. Suppose that "Q" establishes a checkpoint just prior to this

communication, the transfer of dirty data. After the checkpoint, "P" reads the dirty data that was

in the cache of "Q". "P" suffers only 2 messages: "M1" and "M4". The net cost of the

communication itself is 3 messages: "M1", "M3", and "M4". ("M3" is the cost that is part of "Q"

establishing a checkpoint.) Therefore, the checkpointing improved the performance of the

communication by eliminating the cost of message "M2". In order for this benefit to have

maximum impact, the checkpointing must occur just before such transfer of dirty data, but DRSM

does not guarantee that checkpointing will occur at such an opportune time. Hence, in figures 25,

26, 27, 28, 29, and 30, the TCMP with DRSM only occasionally -- not always -- performs better

than the base TCMP.

Figure 30. Benchmark #6

71

9.2. Performance Impact of Establishing Checkpoints

When a processor establishes checkpoints, 3 types of interference can degrade the performance

of the processor in DRSM, DRSM-C, or DRSM-H. First, the processor must waste time in

actually establishing the checkpoint. We label this type of interference as Òtype-1 interferenceÓ.

Second, establishing a checkpoint causes certain resources to be unavailable; a processor

attempting to access such a resource receives a negative acknowledgment. For example, when

a processor, say "P", establishes a checkpoint, "P" negatively acknowledges cache-coherence

messages (like invalidations) indirectly sent from other processors. We label this type of

interference as Òtype-2 interferenceÓ. Third, during the establishment of a checkpoint, "P"

converts much dirty data (in state EXCLUSIVE) in the 2nd-level cache into clean data (in state

SHARED) by writing it back into main memory. After "P" resumes execution after establishing the

checkpoint, "P" wastes time in submitting many upgrade requests to memory in order to convert

M2

M3 M4

M1

memory

Communication

module

P
processorprocessor

Q

Base Communication

memory
module

M1

M4M3

Q P

processorprocessor

after Checkpoint

Figure 31. Communication Improved by Checkpoint

72

clean data (which was dirty prior to the checkpoint) back into dirty data so that "P" can resume

writing into that data. We label this type of interference as Òtype-3 interferenceÓ.

DRSM-L exhibits only the first 2 types of interference. DRSM-L does not have the 3rd-type of

interference since a processor establishing a checkpoint does not write dirty data back into main

memory.

We note that identifying the precise portion (of each bar in, for example, figure 25) contributed by

each of the types of interference is difficult. This identification is complicated by several issues.

First, establishing a checkpoint can actually but unpredictably improve the performance of a

processor, depending on when the checkpoint is established. (Consider figure 31.) In addition,

the delay caused by each type of interference can be amplified by the data dependencies among

processors. For example, suppose that there are 3 processors: "P", "Q", and "R". Suppose that

"P" must wait on a result produced by "Q" and that "Q" must wait on a result produced by "R". ÒRÓ

is the head processor of this chain: ÒR => Q => PÓ. Just prior to producing the result needed by

"Q", "R" establishes a checkpoint. The delay experienced by "R" in establishing the checkpoint is

then propagated down the chain of processors to "P". All processors in this chain then

experience the delay. In general, determining (1) the occurrence of such a chain, (2) its head

processor, and (3) its members is extremely difficult.

Hence, instead of identifying the precise portion (of each bar in, for example, figure 25)

contributed by each type of interference, we focus on the overall performance of the

checkpointing algorithms and on selected statistics.

9.2.1. Checkpoints

Tables 1, 2, 3, and 4 show statistics about the rate at which DRSM, DRSM-C, DRSM-H, and

DRSM-L establish checkpoints per processor for each of the 6 benchmarks. The tables also

show the extent of type-1 interference.

73

 8 processors 16 processors 32 processors
Cholesky 11.00 8.00 6.00 checkpoints
 11.00 8.00 6.00 checkpoints
 7.530 3.447 2.039 x 1e+6 cycles
 3.353 2.327 1.868 % of run time
 3.666 2.485 1.941 % of base runtime

 FFT 2.00 2.00 2.00 checkpoints
 2.00 2.00 2.00 checkpoints
 0.700 0.278 0.193 x 1e+6 cycles
 1.667 1.161 0.751 % of run time
 1.681 1.094 0.698 % of base runtime

 LU 9.38 6.19 5.09 checkpoints
 9.38 6.19 5.09 checkpoints
 2.775 0.832 0.280 x 1e+6 cycles
 1.143 0.466 0.171 % of run time
 1.196 0.476 0.172 % of base runtime

 ocean 24.00 20.00 39.00 checkpoints
 24.00 20.00 39.00 checkpoints
 31.227 17.650 10.910 x 1e+6 cycles
 5.871 4.117 1.338 % of run time
 6.695 4.649 1.392 % of base runtime

 radix 1.00 1.00 2.00 checkpoints
 1.00 1.00 2.00 checkpoints
 0.306 0.378 0.359 x 1e+6 cycles
 0.813 0.974 0.828 % of run time
 0.824 0.995 0.871 % of base runtime

 water 8.00 5.00 4.00 checkpoints
 8.00 5.00 4.00 checkpoints
 0.471 0.238 0.179 x 1e+6 cycles
 0.280 0.247 0.204 % of run time
 0.282 0.249 0.199 % of base runtime

Table 1. Checkpoints for DRSM

74

 8 processors 16 processors 32 processors
Cholesky 437.9 520.1 682.1 checkpoints
 (0.4 + 437.5) (0.0 + 520.1) (0.0 + 682.1) checkpoints
 (0.071 + 6.655) (0.000 + 4.776) (0.000 + 4.572) x 1e+6 cycles
 (0.027 + 2.496) (0.000 + 2.564) (0.000 + 3.042) % of run time
 (0.035 + 3.240) (0.000 + 3.443) (0.000 + 4.353) % of base runtime

 FFT 18.0 21.4 24.5 checkpoints
 (0.0 + 18.0) (0.0 + 21.4) (0.0 + 24.5) checkpoints
 (0.000 + 0.509) (0.000 + 0.308) (0.000 + 0.337) x 1e+6 cycles
 (0.000 + 1.214) (0.000 + 1.178) (0.000 + 1.236) % of run time
 (0.000 + 1.222) (0.000 + 1.213) (0.000 + 1.219) % of base runtime

 LU 75.4 77.4 81.8 checkpoints
 (1.4 + 74.0) (1.2 + 76.2) (1.1 + 80.7) checkpoints
 (0.112 + 1.957) (0.038 + 0.990) (0.017 + 1.034) x 1e+6 cycles
 (0.043 + 0.752) (0.020 + 0.516) (0.010 + 0.586) % of run time
 (0.048 + 0.844) (0.022 + 0.567) (0.011 + 0.636) % of base runtime

 ocean 2446.6 3161.9 4088.8 checkpoints
 (0.0 + 2446.6) (0.0 + 3161.9) (0.0 + 4088.8) checkpoints
 (0.000 + 24.827) (0.000 + 22.740) (0.000 + 32.389) x 1e+6 cycles
 (0.000 + 3.341) (0.000 + 3.291) (0.000 + 1.989) % of run time
 (0.000 + 5.323) (0.000 + 5.990) (0.000 + 4.132) % of base runtime

 radix 380.0 584.6 606.1 checkpoints
 (0.2 + 379.8) (0.0 + 584.6) (0.0 + 606.1) checkpoints
 (0.020 + 6.643) (0.000 + 6.494) (0.000 + 4.900) x 1e+6 cycles
 (0.016 + 5.489) (0.000 + 6.397) (0.000 + 6.635) % of run time
 (0.053 + 17.858) (0.000 + 17.098) (0.000 + 11.869) % of base runtime

 water 189.9 770.9 580.6 checkpoints
 (1.0 + 188.9) (0.0 + 770.9) (0.0 + 580.5) checkpoints
 (0.001 + 0.953) (0.000 + 2.804) (0.000 + 3.102) x 1e+6 cycles
 (0.001 + 0.552) (0.000 + 2.514) (0.000 + 2.185) % of run time
 (0.001 + 0.570) (0.000 + 2.931) (0.000 + 3.456) % of base runtime

Table 2. Checkpoints for DRSM-C

75

 8 processors 16 processors 32 processors
Cholesky 50.0 43.6 41.2 checkpoints
 (2.1 + 47.9) (1.0 + 42.6) (1.0 + 40.2) checkpoints
 (1.254 + 14.983) (0.943 + 9.807) (0.014 + 8.314) x 1e+6 cycles
 (0.508 + 6.073) (0.556 + 5.787) (0.011 + 6.400) % of run time
 (0.610 + 7.294) (0.680 + 7.069) (0.013 + 7.915) % of base runtime

 FFT 6.0 2.0 2.0 checkpoints
 (1.0 + 5.0) (2.0 + 0.0) (2.0 + 0.0) checkpoints
 (0.012 + 3.555) (0.548 + 0.000) (0.302 + 0.000) x 1e+6 cycles
 (0.025 + 7.746) (2.265 + 0.000) (1.151 + 0.000) % of run time
 (0.028 + 8.532) (2.156 + 0.000) (1.093 + 0.000) % of base runtime

 LU 9.5 11.2 5.2 checkpoints
 (8.1 + 1.4) (4.0 + 7.2) (4.0 + 1.1) checkpoints
 (4.935 + 0.263) (1.902 + 0.754) (1.357 + 0.036) x 1e+6 cycles
 (2.003 + 0.107) (1.036 + 0.411) (0.817 + 0.021) % of run time
 (2.127 + 0.114) (1.089 + 0.432) (0.834 + 0.022) % of base runtime

 ocean 74.5 48.0 51.0 checkpoints
 (5.0 + 69.5) (7.0 + 41.0) (31.0 + 20.0) checkpoints
 (1.847 + 47.014) (1.758 + 24.859) (5.315 + 9.526) x 1e+6 cycles
 (0.328 + 8.340) (0.392 + 5.550) (0.651 + 1.167) % of run time
 (0.396 + 10.080) (0.463 + 6.548) (0.678 + 1.215) % of base runtime

 radix 14.0 7.0 2.0 checkpoints
 (1.0 + 13.0) (0.0 + 7.0) (1.0 + 1.0) checkpoints
 (0.364 + 3.950) (0.000 + 1.665) (0.437 + 0.441) x 1e+6 cycles
 (0.738 + 8.022) (0.000 + 4.027) (1.000 + 1.011) x 1e+6 cycles
 (0.977 + 10.618) (0.000 + 4.383) (1.058 + 1.069) % of base runtime

 water 8.0 5.0 4.0 checkpoints
 (8.0 + 0.0) (5.0 + 0.0) (4.0 + 0.0) checkpoints
 (1.492 + 0.000) (1.461 + 0.000) (0.297 + 0.000) x 1e+6 cycles
 (0.875 + 0.000) (1.459 + 0.000) (0.317 + 0.000) % of run time
 (0.894 + 0.000) (1.527 + 0.000) (0.331 + 0.000) % of base runtime

Table 3. Checkpoints for DRSM-H

76

We shall explain how to read the most complicated table, table 4, first. For each application,

there are 4 rows of statistics. The 1st row indicates the total number of checkpoints established

per processor. DRSM-L has effectively 3 events that trigger the establishment of a checkpoint;

they are (1) timer expiration, (2) line-buffer overflow, and (3) counter-buffer overflow. The

checkpoints that are attributed to each trigger appear in the 2nd row of statistics. For example, in

the 2nd row for Cholesky running on an 8-processor TCMP, we see Ò(9.62 + 0.12 + 0.62)Ó. The

number of timer-triggered checkpoints, line-buffer-triggered checkpoints, and counter-buffer-

triggered checkpoints are 9.62, 0.12, and 0.62, respectively.

The remaining 3 rows show the time consumed by checkpoint establishment. The 3rd row shows

the number of cycles for which a processor is stalled in establishing the number of checkpoints in

the 2nd row. Each number within parentheses in the 3rd row indicates a fraction of 10,000

cycles. For each number (of cycles) in the 3rd row, the 4th row shows the percentage of the total

execution time of the benchmark running on a TCMP with DRSM-L, and the 5th row shows the

percentage of the total execution time of the benchmark running on a base TCMP. For example,

during the execution of the Cholesky benchmark by the 8-processor TCMP, a typical processor

 8 processors 16 processors 32 processors
Cholesky 10.38 7.00 5.19 checkpoints
 (9.62 + 0.12 + 0.62) (6.94 + 0.00 + 0.06) (5.03 + 0.12 + 0.03) checkpoints
 (8.189 + 0.106 + 0.532) (5.902 + 0.000 + 0.055) (4.281 + 0.106 + 0.027) x1e+4 cycle
 (3.977 + 0.052 + 0.258) (4.229 + 0.000 + 0.040) (4.109 + 0.102 + 0.026) x0.01% time
 (3.987 + 0.052 + 0.259) (4.254 + 0.000 + 0.040) (4.075 + 0.101 + 0.025) x0.01% time

 FFT 2.00 1.31 1.34 checkpoints
 (1.88 + 0.00 + 0.12) (1.25 + 0.00 + 0.06) (1.31 + 0.00 + 0.03) checkpoints
 (1.595 + 0.000 + 0.106) (1.063 + 0.000 + 0.058) (1.117 + 0.000 + 0.030) x1e+4 cycle
 (3.831 + 0.000 + 0.255) (4.146 + 0.000 + 0.224) (4.060 + 0.000 + 0.109) x0.01% time
 (3.829 + 0.000 + 0.255) (4.184 + 0.000 + 0.226) (4.039 + 0.000 + 0.108) x0.01% time

 LU 7.50 4.88 4.12 checkpoints
 (7.50 + 0.00 + 0.00) (4.81 + 0.00 + 0.06) (4.09 + 0.00 + 0.03) checkpoints
 (6.381 + 0.000 + 0.000) (4.094 + 0.000 + 0.053) (3.483 + 0.000 + 0.047) x1e+4 cycle
 (2.752 + 0.000 + 0.000) (2.341 + 0.000 + 0.031) (2.137 + 0.000 + 0.029) x0.01% time
 (2.751 + 0.000 + 0.000) (2.344 + 0.000 + 0.031) (2.140 + 0.000 + 0.029) x0.01% time

 ocean 22.38 18.19 37.25 checkpoints
 (21.38 + 0.25 + 0.75) (18.19 + 0.00 + 0.00) (37.25 + 0.00 + 0.00) checkpoints
(18.186 + 0.213 + 0.682) (15.474 + 0.000 + 0.000) (31.692 + 0.000 + 0.000) x1e+4 cycle
 (3.903 + 0.046 + 0.146) (4.045 + 0.000 + 0.000) (4.098 + 0.000 + 0.000) x0.01% time
 (3.899 + 0.046 + 0.146) (4.076 + 0.000 + 0.000) (4.043 + 0.000 + 0.000) x0.01% time

 radix 1.00 1.00 1.03 checkpoints
 (0.88 + 0.12 + 0.00) (0.38 + 0.62 + 0.00) (0.62 + 0.41 + 0.00) checkpoints
 (0.744 + 0.106 + 0.000) (0.319 + 0.532 + 0.000) (0.532 + 0.346 + 0.000) x1e+4 cycle
 (2.006 + 0.287 + 0.000) (0.841 + 1.401 + 0.000) (1.321 + 0.859 + 0.000) x0.01% time
 (2.001 + 0.286 + 0.000) (0.840 + 1.400 + 0.000) (1.288 + 0.837 + 0.000) x0.01% time

 water 7.50 4.00 3.56 checkpoints
 (7.50 + 0.00 + 0.00) (4.00 + 0.00 + 0.00) (3.56 + 0.00 + 0.00) checkpoints
 (6.381 + 0.000 + 0.000) (3.403 + 0.000 + 0.000) (3.031 + 0.000 + 0.000) x1e+4 cycle
 (3.816 + 0.000 + 0.000) (3.547 + 0.000 + 0.000) (3.415 + 0.000 + 0.000) x0.01% time
 (3.821 + 0.000 + 0.000) (3.557 + 0.000 + 0.000) (3.376 + 0.000 + 0.000) x0.01% time

Table 4. Checkpoints for DRSM-L

77

consumed 81,890 cycles in establishing a total of 9.62 timer-triggered checkpoints. The 81,890

cycles represent 0.03977 % of the total number of cycles needed to execute Cholesky on a

TCMP with DRSM-L and represent 0.03987 % of the total number of cycles needed to execute

Cholesky on a base TCMP.

The data for DRSM-L indicates that the 8192-entry line buffer and the 8192-entry counter buffer

are adequately large. They overflow infrequently and, hence, trigger the establishment of

checkpoints only infrequently. Based on the number of bits of storage, the size of the

combination of the line buffer and the counter buffer is close to the size of the 2nd-level cache.

Also, the 32-bit counter is adequately wide, for it never overflows in our simulations.

We can read tables 1, 2, and 3 in a fashion that is similar to the way in which we read table 4.

Since DRSM experiences effectively only timer-triggered checkpoints, table 1 shows the data for

only timer-triggered checkpoints. Since DRSM-C experiences effectively both timer-triggered

checkpoints and communication-triggered checkpoints, table 2 shows the data for both types of

checkpoints. For example, during the execution of the Cholesky benchmark by the 8-processor

TCMP, a typical processor consumed 71,000 cycles and 6,655,000 cycles in establishing 0.4

timer-triggered checkpoint and 437.5 communication-triggered checkpoints, respectively. They

represent 0.027% and 2.496%, respectively, of the total number of cycles needed to execute

Cholesky on a TCMP with DRSM-C and represent 0.035 % and 3.240 %, respectively, of the total

number of cycles needed to execute Cholesky on a base TCMP. Finally, since DRSM-H

experiences effectively both timer-triggered checkpoints and cache-triggered checkpoints, table 3

shows the data for both types of checkpoints. For example, during the execution of the Cholesky

benchmark by the 8-processor TCMP, a typical processor consumed 1,254,000 cycles and

14,983,000 cycles in establishing 2.1 timer-triggered checkpoints and 47.9 cache-triggered

checkpoints, respectively. They represent 0.508% and 6.073%, respectively, of the total number

of cycles needed to execute Cholesky on a TCMP with DRSM-H and represent 0.610 % and

7.294 %, respectively, of the total number of cycles needed to execute Cholesky on a base

TCMP.

9.2.2. Negative Acknowledgments and Upgrade Misses

Tables 5, 6, and 7 show the average number of negative acknowledgments (NAKs) and upgrade

misses experienced per processor in the base TCMP and in the TCMP with DRSM, DRSM-C,

and DRSM-H, respectively. For each of the benchmarks, the 1st row shows the number of NAKs;

the extent of type-2 interference is the increase in NAKs over that of the base TCMP. The 2nd

row shows the number of upgrade misses; the extent of type-3 interference is the increase in

78

upgrade misses over that of the base TCMP. This large increase in the number of upgrade

misses is one of the major reasons that DRSM, DRSM-C, and DRSM-H perform worse than

DRSM-L.

 8 processors 16 processors 32 processors
 base DRSM base DRSM base DRSM
Cholesky 127.2 148.8 331.2 334.9 736.4 768.7 neg. ack.'s
 9036.1 22662.6 4954.6 9533.7 3268.2 5447.2 upg. misses

 FFT 86.6 80.9 278.9 270.8 911.0 914.8 neg. ack.'s
 6374.4 7534.2 3427.0 3509.8 1754.6 1779.7 upg. misses

 LU 982.4 748.6 1848.3 1807.8 3239.0 3214.4 neg. ack.'s
 2058.8 9602.9 1041.1 2925.9 519.2 1093.8 upg. misses

 ocean 6222.2 6404.5 15936.6 16624.4 50931.9 51009.8 neg. ack.'s
 41021.2 75475.0 28386.2 61812.2 14449.4 38453.7 upg. misses

 radix 66.9 64.5 225.5 239.6 969.9 1069.6 neg. ack.'s
 105.4 231.9 203.7 559.4 176.1 319.3 upg. misses

 water 399.6 430.1 954.2 1025.7 3042.1 2844.7 neg. ack.'s
 884.6 1964.0 1220.0 1707.4 704.3 962.2 upg. misses

Table 5. Negative Acknowledgments and Upgrade Misses for DRSM

 8 processors 16 processors 32 processors
 base DRSM-C base DRSM-C base DRSM-C
Cholesky 127.2 5043.9 331.2 4729.3 736.4 5133.3 neg. ack.'s
 9036.1 50599.2 4954.6 30492.4 3268.2 19268.6 upg. misses

 FFT 86.6 476.8 278.9 796.6 911.0 1328.7 neg. ack.'s
 6374.4 8066.6 3427.0 4123.8 1754.6 2078.2 upg. misses

 LU 982.4 3082.5 1848.3 2574.7 3239.0 4154.8 neg. ack.'s
 2058.8 22977.4 1041.1 11583.8 519.2 5873.7 upg. misses

 ocean 6222.2 29954.1 15936.6 58596.6 50931.9 132119.8 neg. ack.'s
 41021.2 212526.4 28386.2 138173.3 14449.4 77262.5 upg. misses

 radix 66.9 5453.2 225.5 6832.9 969.9 5822.3 neg. ack.'s
 105.4 50649.8 203.7 28981.7 176.1 14891.1 upg. misses

 water 399.6 1616.4 954.2 4702.8 3042.1 9026.0 neg. ack.'s
 884.6 4872.1 1220.0 12729.8 704.3 7625.0 upg. misses

Table 6. Negative Acknowledgments and Upgrade Misses for DRSM-C

79

Table 8 shows the average number of negative acknowledgments (NAKs) and upgrade misses

experienced per processor in the base TCMP and in the TCMP with DRSM-L. For each of the

benchmarks, the 1st row shows the number of NAKs; the extent of type-2 interference is the

increase in NAKs over that of the base TCMP. The 2nd row shows the number of upgrade

misses. A processor in DRSM-L does not suffer type-3 interference.

 8 processors 16 processors 32 processors
 base DRSM-H base DRSM-H base DRSM-H
Cholesky 127.2 1197.4 331.2 1603.2 736.4 2537.8 neg. ack.'s
 9036.1 38662.0 4954.6 21136.7 3268.2 13516.6 upg. misses

 FFT 86.6 125.5 278.9 319.2 911.0 922.5 neg. ack.'s
 6374.4 10040.8 3427.0 3545.7 1754.6 1766.1 upg. misses

 LU 982.4 1078.6 1848.3 2235.4 3239.0 3535.5 neg. ack.'s
 2058.8 9929.8 1041.1 3680.2 519.2 1197.9 upg. misses

 ocean 6222.2 6940.4 15936.6 16692.9 50931.9 50795.3 neg. ack.'s
 41021.2 94987.2 28386.2 73821.8 14449.4 43733.1 upg. misses

 radix 66.9 158.2 225.5 311.6 969.9 1125.2 neg. ack.'s
 105.4 8357.6 203.7 1878.4 176.1 375.2 upg. misses

 water 399.6 657.0 954.2 1674.3 3042.1 3171.4 neg. ack.'s
 884.6 2190.5 1220.0 2341.1 704.3 978.7 upg. misses

Table 7. Negative Acknowledgments and Upgrade Misses for DRSM-H

 8 processors 16 processors 32 processors
 base DRSM-L base DRSM-L base DRSM-L
Cholesky 127.2 148.1 331.2 340.2 736.4 665.9 neg. ack.'s
 9036.1 9078.9 4954.6 4938.4 3268.2 3285.2 upg. misses

 FFT 86.6 95.2 278.9 269.0 911.0 908.4 neg. ack.'s
 6374.4 6377.2 3427.0 3428.5 1754.6 1755.4 upg. misses

 LU 982.4 993.4 1848.3 1915.9 3239.0 3225.6 neg. ack.'s
 2058.8 2058.5 1041.1 1042.2 519.2 520.6 upg. misses

 ocean 6222.2 6347.1 15936.6 16480.3 50931.9 50128.0 neg. ack.'s
 41021.2 40980.4 28386.2 28430.9 14449.4 14511.8 upg. misses

 radix 66.9 67.9 225.5 240.1 969.9 926.4 neg. ack.'s
 105.4 107.0 203.7 209.3 176.1 178.1 upg. misses

 water 399.6 440.0 954.2 1007.7 3042.1 2979.5 neg. ack.'s
 884.6 888.5 1220.0 1226.8 704.3 705.8 upg. misses

Table 8. Negative Acknowledgments and Upgrade Misses for DRSM-L

80

9.3. Checkpoint Data

For DRSM, DRSM-C, and DRSM-H, if a processor ÒPÓ establishes a checkpoint, all data written

by ÒPÓ since its last checkpoint must be saved in the current checkpoint. The current copy of that

data can reside either in the 2nd-level-cache of ÒPÓ or in main memory (since a conflict miss may

evict a dirty cache line back into main memory). A 2nd-level-cache line of data (or a memory

block of data) is 64 bytes.

For DRSM, table 9 shows the average amount of dirty data saved by each processor when it

establishes a timer-triggered checkpoint. Table 10 shows the average total amount of dirty data

saved for all the timer-triggered checkpoints established by each processor.

 8 processors 16 processors 32 processors
Cholesky 2056.9 1140.3 698.5 dirty cache lines
 2511.1 1552.6 1016.3 dirty mem. blocks

 FFT 1086.9 355.2 186.2 dirty cache lines
 1159.1 596.6 309.0 dirty mem. blocks

 LU 1046.6 468.6 212.3 dirty cache lines
 1224.8 630.3 310.4 dirty mem. blocks

 ocean 4127.5 2512.6 711.1 dirty cache lines
 4829.2 2802.1 787.0 dirty mem. blocks

 radix 1033.2 1095.0 457.9 dirty cache lines
 1034.2 1131.0 615.3 dirty mem. blocks

 water 183.6 130.1 93.5 dirty cache lines
 253.6 186.0 100.4 dirty mem. blocks

Table 9. Data Saved per Processor per Checkpoint for DRSM

 8 processors 16 processors 32 processors
Cholesky 22626.4 9122.8 4190.8 dirty cache lines
 27621.9 12420.5 6097.7 dirty mem. blocks

 FFT 2173.8 710.4 372.5 dirty cache lines
 2318.1 1193.2 618.1 dirty mem. blocks

 LU 9811.8 2899.6 1081.3 dirty cache lines
 11482.2 3899.7 1581.3 dirty mem. blocks

 ocean 99060.1 50251.2 27732.8 dirty cache lines
 115900.4 56042.3 30691.3 dirty mem. blocks

 radix 1033.2 1095.0 915.8 dirty cache lines
 1034.2 1131.0 1230.7 dirty mem. blocks

 water 1468.8 650.4 374.1 dirty cache lines
 2029.1 929.9 401.5 dirty mem. blocks

Table 10. Data Saved per Processor for DRSM

81

For each application, the 1st row shows the number of dirty cache lines that each processor

writes back into main memory. The 2nd row shows the number of dirty memory blocks that are

saved during the permanent checkpoint. The number in the 2nd row may be larger than the

corresponding number in the 1st row since conflict misses may evict dirty cache lines back into

main memory.

Table 11 and table 12 show the average amount of dirty data saved by each processor for

DRSM-C. Each pair of parentheses encloses 2 numbers. The 1st number indicates the amount

of dirty data for the timer-triggered checkpoint. The 2nd number indicates the amount of dirty

data for the communication-triggered checkpoint. For each application, the number in the 2nd

row may be larger than the corresponding number in the 1st row since conflict misses may evict

dirty cache lines back into main memory.

 8 processors 16 processors 32 processors
Cholesky (3768.0; 130.0) (0.0; 67.9) (0.0; 32.8) dirty cache lines
 (3788.0; 130.0) (0.0; 68.5) (0.0; 32.8) dirty mem. blocks

 FFT (0.0; 472.2) (0.0; 200.9) (0.0; 89.8) dirty cache lines
 (0.0; 472.2) (0.0; 200.9) (0.0; 89.8) dirty mem. blocks

 LU (1489.5; 311.4) (842.2; 152.9) (458.1; 73.7) dirty cache lines
 (1495.9; 311.4) (866.1; 152.9) (470.1; 73.7) dirty mem. blocks

 ocean (0.0; 112.5) (0.0; 48.7) (0.0; 20.3) dirty cache lines
 (0.0; 112.5) (0.0; 48.7) (0.0; 20.3) dirty mem. blocks

 radix (1030.5; 151.3) (0.0; 68.2) (0.0; 38.5) dirty cache lines
 (1030.5; 151.3) (0.0; 68.2) (0.0; 38.5) dirty mem. blocks

 water (8.0; 28.1) (0.0; 16.8) (0.0; 13.5) dirty cache lines
 (8.0; 28.1) (0.0; 16.8) (0.0; 13.5) dirty mem. blocks

Table 11. Data Saved per Processor per Checkpoint for DRSM-C

82

Table 13 and table 14 show the average amount of dirty data saved by each processor for

DRSM-H. Each pair of parentheses encloses 2 numbers. The 1st number indicates the amount

of dirty data for the timer-triggered checkpoint. The 2nd number indicates the amount of dirty

data for the cache-triggered checkpoint.

 8 processors 16 processors 32 processors
Cholesky (1413.0; 56861.4) (0.0; 35305.8) (0.0; 22402.7) dirty cache lines
 (1420.5; 56863.9) (0.0; 35628.6) (0.0; 22403.2) dirty mem. blocks

 FFT (0.0; 8500.2) (0.0; 4306.2) (0.0; 2200.9) dirty cache lines
 (0.0; 8500.2) (0.0; 4306.2) (0.0; 2200.9) dirty mem. blocks

 LU (2048.0; 23040.1) (1000.1; 11648.0) (501.0; 5950.5) dirty cache lines
 (2056.9; 23040.1) (1028.4; 11648.0) (514.2; 5950.5) dirty mem. blocks

 ocean (0.0; 275336.8) (0.0; 153958.1) (0.0; 83155.9) dirty cache lines
 (0.0; 275346.5) (0.0; 153958.1) (0.0; 83155.9) dirty mem. blocks

 radix (257.6; 57455.4) (0.0; 39858.6) (0.0; 23361.6) dirty cache lines
 (257.6; 57455.4) (0.0; 39858.6) (0.0; 23361.6) dirty mem. blocks

 water (8.0; 5300.5) (0.0; 12983.4) (0.0; 7866.0) dirty cache lines
 (8.0; 5300.5) (0.0; 12983.4) (0.0; 7866.0) dirty mem. blocks

Table 12. Data Saved per Processor for DRSM-C

 8 processors 16 processors 32 processors
Cholesky (1607.4; 898.9) (1810.0; 588.3) (9.5; 431.3) dirty cache lines
 (1104.9; 831.4) (573.0; 499.4) (9.5; 309.7) dirty mem. blocks

 FFT (58.4; 2105.9) (779.0; 0.0) (456.7; 0.0) dirty cache lines
 (57.5; 1636.8) (540.2; 0.0) (332.0; 0.0) dirty mem. blocks

 LU (1557.7; 1500.7) (1096.5; 365.8) (874.5; 462.6) dirty cache lines
 (1168.4; 1498.3) (625.5; 231.9) (265.7; 459.1) dirty mem. blocks

 ocean (1086.8; 2016.5) (694.0; 1732.0) (435.0; 1357.7) dirty cache lines
 (996.6; 1967.1) (595.9; 1632.9) (378.9; 1251.9) dirty mem. blocks

 radix (1043.2; 863.5) (0.0; 666.1) (1080.8; 1078.8) dirty cache lines
 (1036.0; 825.3) (0.0; 575.1) (357.1; 534.6) dirty mem. blocks

 water (537.8; 0.0) (787.3; 0.0) (125.5; 0.0) dirty cache lines
 (254.2; 0.0) (185.9; 0.0) (100.1; 0.0) dirty mem. blocks

Table 13. Data Saved per Processor per Checkpoint for DRSM-H

83

The number in the 1st row may be larger than the corresponding number in the 2nd row, for

multiple copies of a DIRTY_SHARED line may reside simultaneously in the 2nd-level caches of

several processors that must establish a checkpoint together (due to checkpoint dependencies).

Each processor holding a copy of a DIRTY_SHARED line (which may be residing in the 2nd-level

caches of several processors) must write the DIRTY_SHARED line back into main memory.

Since there is no convenient way by which to write exactly one of several copies of a

DIRTY_SHARED line back into main memory, DRSM-H must write all such copies back into main

memory, and hence, redundant write-backs may arise.

9.4. Audit-Trail Data

Table 15 shows statistics about the amount of data written into the line buffer and the counter

buffer. Each row has 3 consecutive numbers enclosed within parentheses. The 1st number is

the number of entries written into the line buffer. The 2nd number is the number of entries written

into the counter buffer. The 3rd number is the ratio of the 2nd number to the 1st number. This

ratio is the optimum ratio of the number of entries in the counter buffer to the number of entries in

the line buffer, according to equation #9 in section 7.9.

For DRSM-L with 8, 16, and 32 processors, the ratios represented by the 3rd numbers are

concentrated in the range of [0.62, 0.94], [0.69, 0.89], and [0.61, 0.89], respectively, excluding 3

atypical extreme values (i.e. 0.42, 0.41, and 0.41). That the ratios are concentrated in a

somewhat narrow band over several rather different applications is opportune. We can then

select and use the average ratio (according to a geometric average) to determine the relative

 8 processors 16 processors 32 processors
Cholesky (3415.8; 43033.9) (1810.0; 25078.1) (9.2; 17359.4) dirty cache lines
 (2347.9; 39802.5) (573.0; 21286.4) (9.2; 12467.3) dirty mem. blocks

 FFT (58.4; 10529.6) (1558.0; 0.0) (913.3; 0.0) dirty cache lines
 (57.5; 8183.9) (1080.4; 0.0) (664.0; 0.0) dirty mem. blocks

 LU (12656.1; 2063.5) (4386.2; 2629.1) (3525.2; 520.4) dirty cache lines
 (9492.9; 2060.1) (2501.9; 1666.8) (1071.1; 516.5) dirty mem. blocks

 ocean (5433.8; 140146.1) (4858.3; 71013.0) (13483.7; 27153.2) dirty cache lines
 (4983.0; 136712.8) (4171.1; 66949.9) (11745.4; 25038.4) dirty mem. blocks

 radix (1043.2; 11225.2) (0.0; 4662.9) (1080.8; 1078.8) dirty cache lines
 (1036.0; 10728.9) (0.0; 4025.6) (357.1; 534.6) dirty mem. blocks

 water (4302.1; 0.0) (3936.3; 0.0) (502.0; 0.0) dirty cache lines
 (2033.8; 0.0) (929.8; 0.0) (400.5; 0.0) dirty mem. blocks

Table 14. Data Saved per Processor for DRSM-H

84

sizes of the line buffer and the counter buffer, and this average ratio shall yield good system

performance across all the benchmarks. The geometric averages of the ratios within the bands

of [0.62, 0.94], [0.69, 0.89], and [0.61, 0.89] are 0.79, 0.80, and 0.79, respectively. Our selected

ratio of 1.0 -- ratio of 8192 entries in the counter buffer to 8192 entries in the line buffer -- is

somewhat larger than these 3 geometric averages. (For our 6 benchmarks, the average ratios

change little as we vary the number of processors).

Ideally, we use the following algorithm to determine the optimum ratio of the counter-buffer size to

the line-buffer size.

 8 processors 16 processors 32 processors
Cholesky (35559.5; 28548.5; 0.80) (24420.2; 16946.8; 0.69) (18822.8; 11469.8; 0.61)

 FFT (8782.0; 6335.1; 0.72) (4602.8; 3155.5; 0.69) (2680.0; 1882.9; 0.70)

 LU (10571.5; 4475.9; 0.42) (6794.8; 2813.2; 0.41) (5293.3; 2147.0; 0.41)

 ocean (124516.0; 116525.0; 0.94) (61962.0; 54849.1; 0.89) (39862.0; 35659.4; 0.89)

 radix (8389.2; 5223.5; 0.62) (12267.9; 10375.3; 0.85) (10379.2; 8968.8; 0.86)

 water (4893.5; 3976.4; 0.81) (5123.9; 4326.2; 0.84) (4508.6; 3874.1; 0.86)

Table 15. Audit-Trail Data (entries in line buffer; entries in counter buffer; ratio)

1. Let R = 1. "1" is our initial guess of the optimum ratio.

2. Set the ratio of the number of entries in the counter buffer to the number of entries in the
line buffer to "R". (We must set the number of entries according to the amount of silicon
area that we can allocate for building the buffers.)

3. Run a representative set of application programs for a TCMP with the number of
processors that we intend to use.

4. For each run of each application, determine the ratio of the number of entries written into
the counter buffer to the number of entries written into the line buffer.

5. From the list of ratios determined in step #4, create a pruned list by eliminating the atypical
extreme ratios.

6. Using the values in the pruned list, determine the geometric average, "Q".

7. If "Q" is sufficiently close in value to "R", then we can use "R" as the optimum ratio of the
counter-buffer size to the line-buffer size. Otherwise, if "Q" is not sufficiently close in value
to "R", we set "R" to the value of "Q" and repeat the whole procedure starting from step #2.

85

9.5. Extent of Checkpoint Dependencies

Table 16 shows the extent of checkpoint dependencies for DRSM. Each entry indicates the

average number of processors that must establish a checkpoint concurrently due to checkpoint

dependencies.

Table 17 shows the extent of checkpoint dependencies for DRSM-H. Each entry has 2 numbers

enclosed within parentheses. The 1st number indicates the average number of processors that

establish a timer-triggered checkpoint. The 2nd number indicates the average number that

establish a cache-triggered checkpoint. An entry of Ò---Ò indicates that the number of checkpoints

is 0.

9.6. Memory Cache and Dirty-Shared Data

Figure 32 shows the performance of the base TCMP, the TCMP with DRSM-H, and the TCMP

with DRSM-H without a memory cache. Removing the memory cache, which has 2 entries,

 8 processors 16 processors 32 processors
Cholesky 8.000 16.000 32.000 # of proc. per chkpnt

 FFT 8.000 16.000 32.000 # of proc. per chkpnt

 LU 5.769 9.900 18.111 # of proc. per chkpnt

 ocean 8.000 16.000 32.000 # of proc. per chkpnt

 radix 8.000 16.000 32.000 # of proc. per chkpnt

 water 8.000 16.000 32.000 # of proc. per chkpnt

Table 16. Extent of Checkpoint Dependencies for DRSM

 8 processors 16 processors 32 processors
Cholesky (5.667; 7.093) (16.000; 15.156) (31.000; 31.415) # of proc. per chkpnt

 FFT (8.000; 8.000) (16.000; ---) (32.000; ---) # of proc. per chkpnt

 LU (7.222; 2.750) (10.667; 1.917) (16.125; 7.200) # of proc. per chkpnt

 ocean (8.000; 6.950) (16.000; 16.000) (32.000; 32.000) # of proc. per chkpnt

 radix (8.000; 8.000) (--- ; 16.000) (32.000; 32.000) # of proc. per chkpnt

 water (8.000; ---) (16.000; ---) (32.000; ---) # of proc. per chkpnt

Table 17. Extent of Checkpoint Dependencies for DRSM-H

86

significantly worsens the hot spots that arise at the global barriers and global locks when the

TCMP has a large number of processors.

Table 18 shows the average number of data-accesses (per processor) to memory blocks residing

in the state of DIRTY_SHARED in a 2nd-level cache. For each application, there are 3 rows of

data. The data in the 1st row shows the number of 2nd-level-cache lines (in the state of

DIRTY_SHARED) that are evicted due to a conflict miss but that do not trigger a (cache-

triggered) checkpoint. (Table 3 indicates the number of DIRTY_SHARED evictions that do trigger

a checkpoint.) Evicting a DIRTY_SHARED line is more expensive than evicting a SHARED line

since the processor must wait for the directory controller (of the memory module owning the line)

to tell the processor whether its DIRTY_SHARED line is the last copy residing in any 2nd-level

cache. If the DIRTY_SHARED line is the last copy, then the processor must establish a (cache-

triggered) checkpoint.

Figure 32. Performance of Memory Cache

87

The data in the 2nd row and the 3rd row shows information about the performance of the memory

cache. The data in the 2nd row indicates the number of dirty-shared reads (i. e. reads for

DIRTY_SHARED data) that do not hit in the memory cache. The data in the 3rd row shows the

number of dirty-shared reads that do hit in the memory cache. The memory cache significantly

improves the performance of dirty-shared reads.

9.7. DRSM Versus DRSM-L

DRSM-L, an algorithm in the class of the unsynchronized method, has an inherent advantage

over DRSM, an algorithm in the class of the loosely synchronized method. DRSM-L enables a

processor "P" to establish a checkpoint without regard to any other processor. By contrast, in a

system with DRSM, if "P" establishes a checkpoint, then all processors that are checkpoint

dependent on "P" must also establish a checkpoint. Suppose that "P" tends to establish

checkpoints at a much higher rate than the other processors. If the TCMP uses DRSM, then

checkpoint dependencies between "P" and the other processors tend to cause the other

processors to establish checkpoints at a high rate, degrading the performance of the TCMP. On

the other hand, if the TCMP uses DRSM-L, the high rate of checkpoints by "P" does not cause

the other processors to establish checkpoints at a high rate. Hence, DRSM-L has an inherent

performance advantage over DRSM.

 8 processors 16 processors 32 processors
Cholesky 5.875 5.375 1.906 dirty-shared "write-backs"
 2249.625 3752.250 3609.094 dirty-shared reads
 248.125 345.625 481.438 fast dirty-shared reads

 FFT 3.375 0.000 0.000 dirty-shared "write-backs"
 0.000 0.000 0.000 dirty-shared reads
 35.000 99.312 309.719 fast dirty-shared reads

 LU 0.000 0.125 0.031 dirty-shared "write-backs"
 898.625 689.688 622.656 dirty-shared reads
 1034.000 1713.812 2342.500 fast dirty-shared reads

 ocean 15.500 9.250 3.781 dirty-shared "write-backs"
 892.625 4128.438 2913.250 dirty-shared reads
 2937.375 7281.125 13990.281 fast dirty-shared reads

 radix 1.375 0.438 0.125 dirty-shared "write-backs"
 175.250 433.375 827.562 dirty-shared reads
 33.750 115.500 423.812 fast dirty-shared reads

 water 0.000 0.000 0.000 dirty-shared "write-backs"
 1680.375 2846.125 1795.156 dirty-shared reads
 198.375 483.625 1178.719 fast dirty-shared reads

Table 18. Statistics about Dirty-Shared Data

88

To quantitatively demonstrate this performance advantage, we artificially increase the rate at

which processor #3 in our TCMP establishes checkpoints. We set the timer of processor #3 to

expire after each interval of 2 million cycles, but we keep the current timer interval of 20 million

cycles for the other processors. In other words, we increase, by a factor of 10, the rate at which

processor #3 tends to establish timer-triggered checkpoints.

We focus on Cholesky because it, unlike the other benchmarks, does not suffer any hot spots.

Figure 33 shows the overall results for Cholesky. (For DRSM, the expiration of a timer is

effectively the only event that triggers establishing a checkpoint.) In figure 25, DRSM-L runs

about 9.09%, 6.13%, or 4.77% faster than DRSM for a TCMP with 8, 16, or 32 processors,

respectively. In figure 33, DRSM-L runs about 26.75%, 25.00%, or 19.28% faster than DRSM for

a TCMP with 8, 16, or 32 processors, respectively. DRSM performs much worse then DRSM-L in

figure 33 because the high rate of establishing checkpoints by processor #3 causes the other

Figure 33. Effect of Irregular Checkpointing -- Processor #3 with High

Checkpointing Rate

89

processors to establish checkpoints at a high rate as well. To obtain insight into the extent to

which checkpoint dependencies cause a high rate of checkpointing by 1 processor to impact

other processors, we introduce a lumped parameter that is the average number of timer-triggered

checkpoints across all processors except processor #3. Table 19 shows the values for this new

parameter. Each row has 2 sets of numbers. The 1st number in each set is the number of timer-

triggered checkpoints established by processor #3. The 2nd number in each set is the average

number of timer-triggered checkpoints across all processors except processor #3. Clearly, due to

the checkpoint dependencies that are in DRSM, the high rate of establishing checkpoints by

processor #3 causes all the other processors to establish checkpoints at almost the same high

rate. Hence, DRSM performs much worse than DRSM-L.

9.8. Additional Observations

We further analyze the relationships among the data that we have presented in various figures

and tables. Since the Cholesky benchmark does not exhibit hot spots, we focus on it. Figure 34

shows the total delay (per processor) for establishing all the checkpoints and is essentially a plot

of the 3rd rows in tables 1, 2, 3, and 4. This checkpointing time includes the time expended for

saving the dirty data identified in tables 9, 10, 11, 12, 13, and 14. Figure 35 shows the number of

negative acknowledgements (NAKs) per processor and is essentially a plot of the 1st rows in

tables 5, 6, 7, and 8. Figure 36 shows the number of upgrade misses per processor and is

essentially a plot of the 2nd rows in tables 5, 6, 7, and 8.

9.8.1. Delay for Establishing Checkpoints

Figure 34 shows a surprising result. The checkpointing time for DRSM and DRSM-H can exceed

the checkpointing time for DRSM-C. DRSM-C establishes checkpoints at a high rate, but

establishing each checkpoint requires only a relatively small amount of time. By contrast, DRSM

and DRSM-H establish much fewer checkpoints than DRSM-C, but establishing each checkpoint

in DRSM or DRSM-H consumes a relatively large amount of time. In DRSM and DSRM-H,

 DRSM DRSM-L

 8 CPUs (120; 92.9) (103; 9.6) checkpoints
 16 CPUs (80; 68.8) (68; 6.9) checkpoints
 32 CPUs (58; 50.4) (51; 5.1) checkpoints

Table 19. Timer-triggered Checkpoints: (number for processor #3; average for

other processors)

90

building the checkpoint tree consumes much time and prevents these 2 apparatus from scaling

well with the number of processors.

9.8.2. Number of Negative Acknowledgments (NAKs)

Figure 35 shows that both DRSM-C and DRSM-H have a large number of NAKs. DRSM-C has

the largest number of NAKs for the following reason. If the 2nd-level cache of processor ÒPÓ

attempts to retrieve a dirty memory block last written by another processor ÒQÓ, ÒPÓ receives

NAKs from the directory controller (managing that block) until ÒQÓ establishes a checkpoint.

Figure 34. Delay for Establishing Checkpoints per Processor

91

Since this type of communication (i. e. the transfer of dirty data) occurs often, NAKs occur at a

high rate, and DRSM-C establishes checkpoints at a high rate.

In addition, DRSM-H has a relatively large number of NAKs for the following major reason. Table

18 shows that a large number of reads to DIRTY_SHARED data does not hit in the memory

cache. If the 2nd-level cache of processor ÒPÓ attempts to retrieve a DIRTY_SHARED line that

does not reside in the memory cache, then the directory controller managing that

DIRTY_SHARED line must expend considerable time in requesting a copy of the

DIRTY_SHARED line from a remote processor, say ÒQÓ. When the directory controller waits for a

reply from ÒQÓ (which is holding a copy of the DIRTY_SHARED line), if the 2nd-level cache of

Figure 35. Number of Negative Acknowledgments (NAKs) per Processor

92

another processor, say ÒRÓ, attempts to retrieve the same DIRTY_SHARED line, then the

directory controller sends NAKs to ÒRÓ. (For each memory block, the directory controller can

handle at most 1 pending data-access from a processor.)

Also, tables 1, 2, 3, and 4 show that DRSM-H Ð among DRSM, DRSM-C, DRSM-H, and DRSM-L

Ð has the 2nd-largest number of checkpoints. Such a relatively large number of checkpoints

tends to increase the number of NAKs experienced by DRSM-H, but the impact (on the number

of NAKs) of this relatively large number of checkpoints is much weaker than the impact (on the

number of NAKs) of the large number of reads (to DIRTY_SHARED data) that do not hit in the

memory cache.

Figure 36. Number of Upgrade Misses per Processor

93

9.8.3. Number of Upgrade Misses

Figure 36 most closely resembles figure 25 in terms of the relative heights of the bars in the

graphs. Since figure 36 is the graph of the number of upgrade misses, this resemblance proves

that the number of upgrade misses is the principal factor differentiating the performance of

DRSM, DRSM-C, DSRM-H, and DSRM-L for a TCMP with our parameters. (See section 8.1. for

the parameters.)

9.9. High Rate of Checkpoints for All Processors

In appendix B, we present the performance data for DRSM, DRSM-C, DRSM-H, and DRSM-L for

a timer that expires per 2,000,000 cycles. DRSM and DRSM-H perform notably worse than they

perform for a timer that expires per 20,000,000 cycles. The performance of DRSM-C and DRSM-

L remains the same.

For DRSM-L, when the timer interval decreases from 20,000,000 cycles to 2,000,000 cycles, the

rate at which each processor establishes checkpoints increases by a factor of 10. In fact, timer-

triggered checkpoints become the only type of checkpoints experienced by all the processors. A

timer-triggered checkpoint occurs well before either the line buffer or the counter buffer has a

chance to overflow. If we assume that the rate (i. e. entries per unit time) at which each buffer

fills is constant, then we can reduce the size of each buffer by a factor of 10 (i. e. the factor by

which the rate of checkpoints increases) without affecting the performance of the processor.

Since the memory system works with powers of 2, we would reduce the size of each buffer (by a

factor of 8) from 8192 entries to 1024 entries.

94

Chapter 10. Conclusions

10.1. DRSM-C

Among the 4 apparatus and algorithms for establishing checkpoints, DRSM-C generally performs

worst. The communication delivering dirty data from either a processor or a memory module to

another processor causes a typical processor to establish checkpoints at a high rate. In order to

establish many checkpoints, the typical processor frequently flushes its 2nd-level cache and,

hence, suffers many upgrade misses after each checkpoint.

10.2. DRSM and DRSM-H

Both DRSM and DRSM-H perform better than DRSM-C since they have a much lower rate of

establishing checkpoints. They suffer less upgrade misses than DRSM-C. Nonetheless, these

algorithms in the class of the loosely synchronized method exhibit a type-1 interference (in

reference to section 9.2) that is approximately as worse as the type-1 interference exhibited by

DRSM-C. The reason is that both DRSM and DRSM-H spend much time in establishing each

checkpoint. For example, they spend much time in creating the checkpoint tree; in particular, the

processors in DRSM-H must complete their permanent checkpoint before the memory modules

may complete their permanent checkpoint. Hence, the algorithms in the class of the loosely

synchronized method scale poorly. Also, DRSM-H performs worse than DRSM because the set

associativity of the very large 2nd-level cache is not large enough to eliminate all conflict misses.

As a result, a small number of the conflict misses ejects the last copy of a dirty (i. e.

DIRTY_SHARED or EXCLUSIVE) 2nd-level-cache line and triggers the establishment of a

checkpoint. DRSM-H ends up in establishing more checkpoints than DRSM.

10.3. DRSM-L

Among the 4 apparatus and algorithms for establishing checkpoints, DRSM-L performs best.

Specifically, DRSM-L performs significantly better than DRSM when 1 processor tends to

establish checkpoints at a high rate. (See section 9.7.) Such a scenario can arise when

applications are structured in the following way. One processor, "P", in the TCMP performs I/O (i.

95

e. communication) with the environment outside of the TCMP. Each of the other processors in

the TCMP performs the core computation of the application and periodically sends results to "P".

"P" sends many messages (containing those results) to the environment outside of the TCMP

and, hence, must establish (external-communication-triggered) checkpoints frequently. When "P"

does so, it will not interfere with the core computation being performed by the other processors Ð-

if the TCMP uses DRSM-L.

This good performance of DRSM-L depends on it having a line buffer and a counter buffer that

are large enough to effectively minimize line-buffer-triggered checkpoints and counter-buffer-

triggered checkpoints. Our line buffer with 8192 entries and our counter buffer with 8192 entries

are adequately large; each buffer infrequently overflows and, hence, infrequently triggers the

establishment of a checkpoint. The number of bits of storage used by the combination of both the

8192-entry line buffer and the 8192-entry counter buffer is approximately the same number of bits

of storage used by our 2nd-level cache. Hence, the sizes of the line buffer and the counter buffer

are reasonable, and they can fit comfortably within the memory module.

The good performance of DRSM-L also depends on it having a counter (in each 2nd-level-cache

line) that is wide enough to effectively minimize overflow. Our counter with 32 bits is adequately

wide since the 32-bit counters never overflow in our simulations.

Overall, we conclude that DRSM-L is a good checkpointing apparatus and algorithm for TCMPs.

DRSM-L is the first algorithm in the class of the unsynchronized method for a TCMP. Unlike

current algorithms, DRSM-L allows independent establishment of a checkpoint and independent

roll-back from a fault and, hence, is much more scalable than DRSM, DRSM-C, or DRSM-H.

Also, DRSM-L is substantially cheaper to implement than the other apparatus for checkpointing.

In particular, DRSM-L requires only a single bank of memory, but RSM [2], DRSM, and DRSM-C

require 2 banks of memory.

10.4. Future Work

We suggest some avenues of future research that extends our work.

10.4.1. Simulation

In this dissertation, we focused on the relative performance of DRSM, DRSM-C, DRSM-H, and

DSRM-L on a TCMP. To obtain precise timing information about their absolute performance, we

should evaluate them by simulating a memory system that is more sophisticated than the one that

96

we used. Specifically, the memory system should have a write buffer between the 1st-level

cache and the 2nd-level cache and should use weak consistency (like release consistency) for

the memory model.

10.4.2. Proof of Concept

Even with a sophisticated memory system, the simulations will confirm what we conclude in this

dissertation. Namely, the DRSM-L performs best. In order to validate the simulations, we should

actually build a computer with DRSM-L; building a 4-processor system with DRSM-L should

suffice for a proof of concept. The hardware of DRSM-L requires a new 2nd-level cache, a line

buffer, a counter buffer, and a checkpoint-state buffer. To simplify matters, we should focus on

recovering from only transient faults.

In addition, we must expend considerable effort to create the new software supporting DRSM-L.

To simplify matters, we should omit the virtual-machine monitor but should select a simple

operating system (like Linux) into which we code support for DRSM-L. In order to support

establishing a checkpoint, we must modify both the code handling context switches and the code

handling interrupts to invoke the establishment of a checkpoint. In order to support rolling back to

the last checkpoint to recover from a fault, we must add a new section of code to the operating

system. Writing this new section of code to support the recovery process is probably the most

complicated aspect of building our fault-tolerant computer system because we (in designing the

DRSM-L) simplified the checkpointing process by moving its complexity into the recovery

process.

97

Appendix A. Precise Description of DRSM-L

Below, we use C-like code to precisely describe how the various pieces of DRSM-L work. For the

sake of brevity, we designate the 2nd-level cache as simply "cache", and we occasionally

designate a processor as a ÒCPUÓ, the acronym for Òcentral processing unitÓ. We use the

following additional acronyms.

Also, we try to restrict our description to only those activities that occur in a TCMP with DRSM-L

but that do not necessarily occur in a base TCMP without DRSM-L. For example, we do not

describe the updating of the fields in the 2nd-level-cache line when an upgrade miss (i. e. write

ÒhitÓ on a line with status being SHARED) is processed.

Finally, we do not explicitly identify the activities that can occur in parallel for increased

performance. The parallel activities should be obvious from the context. For example, when the

cache installs an incoming memory block (satisfying a data access) into a 2nd-level-cache line,

both (1) resetting the counter to 0 and (2) setting the IDF to 1 can occur in parallel.

 IDF = instruction/data flag
 SF = 2-bit-status flag

 CF = 2-bit checkpoint flag
 CSB = checkpoint-state buffer

 RLC = recovery-logic circuit

98

explanatory notes

States of cache line are INVALID, SHARED, and EXCLUSIVE.
Number of entries in line buffer is 8192 (which can be changed).
Number of entries in counter buffer is 8192 (which can be changed).
Width of counter is 32 bits (which can be changed).

execution mode: normal

switch (event) {

 /*--*/
 /* Upgrade miss occurs in cache data line. */
 /* */
 /* Upgrade miss occurs when data-write ÒhitsÓ in cache */
 /* line with status being SHARED. */
 /*--*/

 data_write_has_upgrade_miss_in_cache_data_line: {

 /*---*/
 /* Data-write stalls until Òcache_line.status_of_lineÓ */
 /* becomes EXCLUSIVE in response to upgrade miss. */
 /* */
 /* After local processor retries stalled data-write, */
 /* it then will hit in cache data line and will */
 /* generate Òdata_access_hits_in_cache_data_lineÓ */
 /* as next event. */
 /*---*/

 ;

 break;
 }

 /*--*/
 /* Access misses in cache data line. */
 /*--*/

 data_access_misses_in_cache_data_line: {
 if (index_LB_ == 0x2000) {

 /*--*/
 /* 8192-entry line buffer is full, so empty it. */
 /*--*/

 stall data access;
 establish_checkpoint();
 retry data access;
 }
 break;
 }

 memory_block_arrives: {
 if (original access is data access) {
 log_memory_block_into_line_buffer();

99

 install_memory_block_into_cache_data_line();
 }
 else {
 install_memory_block_into_cache_instruction_line();
 }
 break;
 }

 /*--*/
 /* Access hits in cache line. */
 /*--*/

 data_access_hits_in_cache_data_line: {
 if (cache_line.counter == 0x0FFFFFFFF) {

 /*--*/
 /* 32-bit counter overflows. */
 /*--*/

 stall data access;
 if (index_CB_ == 0x2000) {

 /*---*/
 /* 8192-entry counter buffer is full, so empty it. */
 /*---*/

 establish_checkpoint();
 }
 else {
 index_CB_++;
 log_counter_into_counter_buffer(cache_line, "V");
 }
 retry data access;
 }
 else {
 cache_line.counter++;
 }
 break;
 }

 /*--*/
 /* Eviction or invalidation of cache line occurs. */
 /*--*/

 evict_cache_line:
 invalidate_cache_line: {
 if (index_CB_ == 0x2000) {

 /*--*/
 /* 8192-entry counter buffer is full, so empty it. */
 /*--*/

 stall event, which is Òevict_cache_lineÓ or
 Òinvalidate_cache_lineÓ;
 establish_checkpoint();
 retry event, which is Òevict_cache_lineÓ or
 Òinvalidate_cache_lineÓ;
 }

100

 else {

 /*--*/
 /* No additional delay is incurred. */
 /*--*/

 index_CB_++;
 log_counter_into_counter_buffer(cache_line, "E");
 }
 break;
 }

 /*--*/
 /* Remote processor reads local dirty cache line. */
 /*--*/

 remotely_read_local_dirty_cache_line: {
 if (index_CB_ == 0x2000) {

 /*--*/
 /* 8192-entry counter buffer is full, so empty it. */
 /* */
 /* Write-back is response by local processor to remote */
 /* processor reading local dirty cache line. */
 /*--*/

 stall write-back;
 establish_checkpoint();
 retry write-back;
 }
 else {

 /*--*/
 /* No additional delay is incurred. */
 /*--*/

 index_CB_++;
 log_counter_into_counter_buffer(cache_line, "R");
 }
 break;
 }

 /*--*/
 /* Timer expires, or context switch or I/O occurs. */
 /*--*/

 timer_expires:
 context_switch_occurs:
 communication_between_CPU_and_environment_outside_TCMP_occurs: {
 establish_checkpoint();
 break;
 }

 default: {
 do nothing special;
 }
}

101

log_memory_block_into_line_buffer()
{

 /*--*/
 /* Update local memory module. */
 /*--*/

 line_buffer[index_LB].extended_tag <= extended_tag(memory_block);
 line_buffer[index_LB].line_of_data <= data(memory_block);

 index_LB++;
}

install_memory_block_into_cache_data_line()
{

 /*--*/
 /* Update cache. */
 /*--*/

 index_LB_++;

 /*--*/
 /* Update cache line. */
 /*--*/

 cache_line.tag <= tag(memory_block);
 if (data access == read) {
 cache_line.status_of_line <= SHARED;
 }
 else {
 cache_line.status_of_line <= EXCLUSIVE;
 }
 cache_line.line_of_data <= data(memory_block);

 cache_line.counter <= 0;
 cache_line.IDF <= 1;
 cache_line.SF <= "N";
}

available_cache_line()
{
 /*--*/
 /* Get cache line (from set of set-associative cache) to */
 /* hold incoming data. */
 /*--*/

 if (set has cache_line where cache_line.status_of_line == INVALID) {
 get cache_line where cache_line.status_of_line == INVALID;
 }
 else if (set has cache_line where cache_line.IDF == 1 and
 cache_line.counter == 0 and
 cache_line.SF == ÒEÓ) {
 get cache_line where cache_line.IDF == 1 and
 cache_line.counter == 0 and
 cache_line.SF == "E";
 }
 else if (set has cache_line where

102

 cache_line.IDF == 1 and
 cache_line.counter == 0 and
 cache_line.SF == ÒVÓ and
 sorted_counter_buffer[entry].counter == 0 and
 sorted_counter_buffer[entry].SF == ÒEÓ and
 extended_tag(cache_line) ==
 sorted_counter_buffer[entry].extended_tag
 for next matching entry in sorted counter buffer) {

 /*---*/
 /* Set can have cache_line where */
 /* */
 /* cache_line.IDF == 1, */
 /* cache_line.counter == 0, */
 /* cache_line.SF == ÒVÓ, */
 /* sorted_counter_buffer[entry].counter == 0, */
 /* sorted_counter_buffer[entry].SF == ÒEÓ, and */
 /* extended_tag(cache_line) == */
 /* sorted_counter_buffer[entry].extended_tag */
 /* */
 /* for next matching entry in sorted counter buffer. */
 /* */
 /* Situation can arise, for example, if immediately after */
 /* establishing checkpoint, processor resumes normal */
 /* execution and issues data access that experiences */
 /* conflict miss, which evicts cache line. */
 /*---*/

 get cache_line where
 cache_line.IDF == 1 and
 cache_line.counter == 0 and
 cache_line.SF == ÒVÓ and
 sorted_counter_buffer[entry].counter == 0 and
 sorted_counter_buffer[entry].SF == ÒEÓ and
 extended_tag(cache_line) ==
 sorted_counter_buffer[entry].extended_tag
 for next matching entry in sorted counter buffer;

 /*---*/
 /* Retrieve and discard matching entry mentioned */
 /* in directly preceding statement. */
 /*---*/

 retrieve and discard next entry from sorted counter buffer,
 which matches cache_line;
 }
 else {
 get cache_line where cache_line.IDF == 0;
 }

 return cache_line;
}

install_memory_block_into_cache_instruction_line()
{

 /*--*/
 /* Update cache line. */

103

 /*--*/

 cache_line.tag <= tag(memory_block);
 cache_line.status_of_line <= SHARED;
 cache_line.line_of_data <= data(memory_block);

 cache_line.counter <= 0;
 cache_line.IDF <= 0;
 cache_line.SF <= "N";
}

log_counter_into_counter_buffer(cache_line, event)
{

 /*--*/
 /* Update local memory module. */
 /*--*/

 counter_buffer[index_CB].extended_tag <= extended_tag(cache_line);
 counter_buffer[index_CB].counter <= cache_line.counter;

 /*--*/
 /* "event" can be one of {"V", "E", "R"}. */
 /* */
 /* "V" = overflow of counter */
 /* "E" = ejection of cache line due to eviction or */
 /* invalidation */
 /* "R" = (remotely) reading local cache line */
 /*--*/

 counter_buffer[index_CB].SF <= event;

 index_CB++;
}

establish_checkpoint()
{
 CSB.CF <= TENTATIVE_CHECKPOINT_IS_ACTIVE;
 wait until all pending memory accesses are completed or negatively
 acknowledged;
 negatively acknowledge all cache-coherence messages until checkpoint
 is established;
 establish_tentative_checkpoint();

 CSB.CF <= PERMANENT_CHECKPOINT_IS_ACTIVE;
 establish_permanent_checkpoint();

 /*--*/
 /* Established checkpoint. */
 /*--*/

 CSB.CF <= CHECKPOINT_IS_NOT_ACTIVE;
}

establish_tentative_checkpoint()
{
 /*--*/
 /* CSB.toggle_flag toggles between 0 and 1. */

104

 /*--*/

 i <= 1 - CSB.toggle_flag;
 save tag, status_of_line, line_of_data, and IDF of all cache lines
 into CSB.checkpoint_area[i].cache;
 save internal state of processor
 into CSB.checkpoint_area[i].processor_state;
 CSB.checkpoint_area[i].status <= TENTATIVE_CHECKPOINT_AREA;

}

establish_permanent_checkpoint()
{
 /*--*/
 /* Establish permanent checkpoint. */
 /*--*/

 index_LB_ <= 0;
 index_CB_ <= 0;

 index_LB <= 0;
 index_CB <= 0;

 for (each cache_line in cache) {
 cache_line.counter <= 0;
 }

 i <= CSB.toggle_flag;
 CSB.checkpoint_area[i].status <= NULL;

 i <= 1 - CSB.toggle_flag;
 CSB.checkpoint_area[i].status <= PERMANENT_CHECKPOINT_AREA;
 CSB.toggle_flag <= i;
}

complete_permanent_checkpoint()
{
 /*--*/
 /* Establish permanent checkpoint. */
 /*--*/

 index_LB_ <= 0;
 index_CB_ <= 0;

 index_LB <= 0;
 index_CB <= 0;

 for (each cache_line in cache) {
 cache_line.counter <= 0;
 }

 j <= CSB.toggle_flag;
 if ((CSB.checkpoint_area[j].status == PERMANENT_CHECKPOINT_AREA) &&
 (CSB.checkpoint_area[1 - j].status == TENTATIVE_CHECKPOINT_AREA)) {

 i <= CSB.toggle_flag;
 CSB.checkpoint_area[i].status <= NULL;

105

 i <= 1 - CSB.toggle_flag;
 CSB.checkpoint_area[i].status <= PERMANENT_CHECKPOINT_AREA;
 CSB.toggle_flag <= i;
 }
 else if ((CSB.checkpoint_area[j].status == NULL) &&
 (CSB.checkpoint_area[1 - j].status == TENTATIVE_CHECKPOINT_AREA)) {

 i <= 1 - CSB.toggle_flag;
 CSB.checkpoint_area[i].status <= PERMANENT_CHECKPOINT_AREA;
 CSB.toggle_flag <= i;
 }
 else if ((CSB.checkpoint_area[j].status == NULL) &&
 (CSB.checkpoint_area[1 - j].status == PERMANENT_CHECKPOINT_AREA)) {

 CSB.toggle_flag <= 1 - j;
 }
 else {
 do nothing special;
 }
}

fault detection

if (RLC detects fault in processor module) {

 if (fault == permanent) {
 replace processor module with spare processor module;
 reset spare processor module, invalidating all entries
 in both 1st-level cache and 2nd-level cache;
 }
 else {
 reset processor module, invalidating all entries
 in both 1st-level cache and 2nd-level cache;
 }

 trap to virtual-machine monitor;

 query all memory modules to find lost cache-coherence messages;
 negatively acknowledge all cache-coherence messages
 until recovery is complete;

 if (CSB.CF == PERMANENT_CHECKPOINT_IS_ACTIVE) {
 complete_permanent_checkpoint();

 i <= CSB.toggle_flag;
 if (CSB.checkpoint_area[i].status != PERMANENT_CHECKPOINT_AREA) {
 i = 1 - CSB.toggle_flag;
 }

 load internal state of processor
 from CSB.checkpoint_area[i].processor_state;
 for (each cache_line in cache) {
 load cache_line from CSB.checkpoint_area[i].cache;

 cache_line.counter <= 0;
 }

 return from trap to virtual-machine monitor;

106

 exit and resume normal execution;
 }

 if (CSB.CF == TENTATIVE_CHECKPOINT_IS_ACTIVE) {
 i <= 1 - CSB.toggle_flag;
 CSB.checkpoint_area[i].status <= NULL;

 CSB.CF <= CHECKPOINT_IS_NOT_ACTIVE;

 discard tentative checkpoint;
 }

 read all valid entries from line buffer;
 group all entries according to cache index but, for each cache
 index, maintain the temporal order in which the entries were
 originally inserted into the line buffer;
 place grouped entries into sorted_line_buffer;

 read all valid entries from counter buffer;
 group all entries according to cache index but, for each cache
 index, maintain the temporal order in which the entries were
 originally inserted into the counter buffer;
 place grouped entries into sorted_counter_buffer;

 i <= CSB.toggle_flag;
 if (CSB.checkpoint_area[i].status != PERMANENT_CHECKPOINT_AREA) {
 i = 1 - CSB.toggle_flag;
 }

 load internal state of processor
 from CSB.checkpoint_area[i].processor_state;
 for (each cache_line in cache) {
 load cache_line from CSB.checkpoint_area[i].cache;

 cache_line.counter <= 0;
 cache_line.SF <= "V";
 }

 return from trap to virtual-machine monitor;

 enter recovery mode of execution;
}

execution mode: recovery

switch (event) {

 /*--*/
 /* Upgrade miss occurs in cache data line. */
 /* */
 /* Upgrade miss occurs when data-write ÒhitsÓ in cache */
 /* line with status being SHARED. */
 /*--*/

 data_write_has_upgrade_miss_in_cache_data_line: {
 stall data-write;

 cache_line.status_of_line <= EXCLUSIVE;

107

 /*---*/
 /* Retry data-write. */
 /* */
 /* It then will hit in cache data line and will generate */
 /* Òdata_access_hits_in_cache_data_lineÓ as next */
 /* event. */
 /*---*/

 retry data-write;

 break;
 }

 /*--*/
 /* Access misses in cache data line. */
 /*--*/

 data_access_misses_in_cache_data_line: {
 stall data access;

 trap to virtual-machine monitor;
 cache_line <= available_cache_line();
 get_entry_from_sorted_line_buffer(cache_line)
 get_entry_from_sorted_counter_buffer(cache_line);
 return from trap to virtual-machine monitor;

 retry data access;

 exit_recovery_upon_completion();

 break;
 }

 memory_block_arrives: {
 if (original access is data access) {

 /*--*/
 /* Data is supplied from sorted line buffer. */
 /*--*/

 ;
 }
 else {
 cache_line <= available_cache_line();
 install_memory_block_into_cache_instruction_line();
 }
 break;
 }

 /*--*/
 /* Access hits in cache line. */
 /*--*/

 data_access_hits_in_cache_data_line: {
 switch (cache_line.SF) {

 "N": {

108

 cache_line.counter <= 0;
 break;
 }

 "E": {
 if (cache_line.counter != 0) {
 cache_line.counter--;
 }
 else {
 stall data access;

 trap to virtual-machine monitor;
 cache_line.status_of_line <= INVALID;
 get_entry_from_sorted_line_buffer(cache_line)
 get_entry_from_sorted_counter_buffer(cache_line);
 return from trap to virtual-machine monitor;

 retry data access;
 }
 break;
 }

 "R": {
 if (cache_line.counter != 0) {
 cache_line.counter--;
 }
 else {
 stall data access;

 trap to virtual-machine monitor;
 cache_line.status_of_line <= SHARED;
 get_entry_from_sorted_counter_buffer(cache_line);
 return from trap to virtual-machine monitor;

 retry data access;
 }
 break;
 }

 "V": {
 if (cache_line.counter != 0) {
 cache_line.counter--;
 }
 else {
 stall data access;

 trap to virtual-machine monitor;
 get_entry_from_sorted_counter_buffer(cache_line);
 return from trap to virtual-machine monitor;

 retry data access;
 }
 break;
 }
 }
 exit_recovery_upon_completion();
 break;
 }

109

 default: {
 exit_recovery_upon_completion();
 break;
 }
}

write_back_and_invalidate_cache_lines()
{
 i <= CSB.toggle_flag;
 if (CSB.checkpoint_area[i].status != PERMANENT_CHECKPOINT_AREA) {
 i <= 1 Ð CSB.toggle_flag;
 }

 for (each dirty cache_line in CSB.checkpoint_area[i].cache) {
 write cache_line back into main memory;
 }
 for (each cache_line in CSB.checkpoint_area[i].cache) {
 cache_line.status_of_line <= INVALID;
 }

 tell the directory controller of each memory module
 to change the status of any memory block (i. e. cache line)
 held by the cache (of the local processor) to indicate that
 the cache no longer holds the memory block;

 for (each cache_line in cache of local processor) {
 cache_line.status_of_line <= INVALID;
 }
}

exit_recovery_upon_completion()
{
 if ((sorted_counter_buffer has no entry where SF is ÒEÓ or ÒRÓ) &&
(counters in all valid cache data lines where SF is ÒEÓ or ÒRÓ are 0)){

 /*---*/
 /* Completion of recovery is imminent. */
 /* */
 /* Update state of cache. */
 /*---*/

 for (each valid cache_line in cache) {
 switch (cache_line.SF) {
 "E": {
 cache_line.status_of_line <= INVALID;
 break;
 }
 "R": {
 cache_line.status_of_line <= SHARED;
 break;
 }
 default: {
 break;
 }
 }
 }

110

 establish_checkpoint();

 write_back_and_invalidate_cache_lines();

 /*---*/
 /* Recovery is complete. */
 /*---*/

 exit recovery and resume normal execution;

 }
 else {

 /*---*/
 /* Completion of recovery is not imminent. */
 /*---*/

 ;
 }
}

get_entry_from_sorted_line_buffer(cache_line)
{
 /*--*/
 /* Get matching entry from sorted_line_buffer. */
 /*--*/

 get next matching entry from sorted_line_buffer;

 cache_line.tag <= tag(sorted_line_buffer[entry].extended_tag);
 if (data-access == write) {
 cache_line.status_of_line <= EXCLUSIVE;
 }
 else
 cache_line.status_of_line <= SHARED;
 }
 cache_line.line_of_data <= sorted_line_buffer[entry].line_of_data;
}

get_entry_from_sorted_counter_buffer(cache_line)
{
 /*--*/
 /* Get matching entry from sorted_counter_buffer. */
 /*--*/

 get next matching entry from sorted_counter_buffer;

 if (no matching counter) {
 cache_line.counter <= 0;
 cache_line.IDF <= 1;
 cache_line.SF <= "N";
 }
 else {
 cache_line.counter <= sorted_counter_buffer[entry].counter;
 cache_line.IDF <= 1;
 cache_line.SF <= sorted_counter_buffer[entry].SF;
 }

111

}

112

Appendix B. Results for Timer Expiration per 2,000,000 Cycles

B.1. Overall Performance of Benchmarks

Figure 37. Benchmark #1

113

Figure 38. Benchmark #2

114

Figure 39. Benchmark #3

115

Figure 40. Benchmark #4

116

Figure 41. Benchmark #5

117

Figure 42. Benchmark #6

118

B.2. Performance Impact of Establishing Checkpoints

B.2.1. Checkpoints

 8 processors 16 processors 32 processors
Cholesky 134.12 88.44 64.28 checkpoints
 134.12 88.44 64.28 checkpoints
 15.911 9.791 6.622 x 1e+6 cycles
 5.688 5.571 5.259 % of run time
 7.746 7.057 6.304 % of base runtime

 FFT 22.25 13.12 12.16 checkpoints
 22.25 13.12 12.16 checkpoints
 2.709 1.836 1.188 x 1e+6 cycles
 5.885 7.048 4.447 % of run time
 6.503 7.223 4.296 % of base runtime

 LU 90.62 51.19 41.62 checkpoints
 90.62 51.19 41.62 checkpoints
 6.620 4.535 3.408 x 1e+6 cycles
 2.501 2.353 1.953 % of run time
 2.854 2.596 2.094 % of base runtime

 ocean 292.50 222.38 400.59 checkpoints
 292.50 222.38 400.59 checkpoints
 55.517 33.179 26.368 x 1e+6 cycles
 8.798 6.928 2.991 % of run time
 11.903 8.739 3.364 % of base runtime

 radix 20.38 19.94 19.81 checkpoints
 20.38 19.94 19.81 checkpoints
 2.620 2.694 1.463 x 1e+6 cycles
 5.725 6.061 3.400 % of run time
 7.043 7.094 3.544 % of base runtime

 water 86.62 52.31 47.91 checkpoints
 86.62 52.31 47.91 checkpoints
 0.973 0.794 0.676 x 1e+6 cycles
 0.573 0.813 0.722 % of run time
 0.583 0.830 0.753 % of base runtime

Table 20. Checkpoints for DRSM

119

 8 processors 16 processors 32 processors
Cholesky 482.5 542.2 692.1 checkpoints
 (44.8 + 437.8) (16.2 + 525.9) (9.4 + 682.7) checkpoints
 (2.246 + 5.948) (0.364 + 4.616) (0.077 + 4.468) x 1e+6 cycles
 (0.760 + 2.014) (0.191 + 2.418) (0.052 + 3.002) % of run time
 (1.093 + 2.896) (0.263 + 3.327) (0.073 + 4.253) % of base runtime

 FFT 35.1 27.1 27.0 checkpoints
 (17.1 + 18.0) (7.0 + 20.1) (2.7 + 24.4) checkpoints
 (1.009 + 0.216) (0.219 + 0.245) (0.037 + 0.327) x 1e+6 cycles
 (2.183 + 0.468) (0.812 + 0.910) (0.136 + 1.209) % of run time
 (2.422 + 0.519) (0.861 + 0.965) (0.133 + 1.183) % of base runtime

 LU 138.5 104.9 93.8 checkpoints
 (63.9 + 74.6) (28.2 + 76.8) (12.4 + 81.3) checkpoints
 (1.948 + 0.963) (0.685 + 0.777) (0.213 + 0.967) x 1e+6 cycles
 (0.741 + 0.367) (0.355 + 0.402) (0.120 + 0.546) % of run time
 (0.840 + 0.415) (0.392 + 0.445) (0.131 + 0.594) % of base runtime

 ocean 2565.5 3181.4 4164.1 checkpoints
 (88.4 + 2477.1) (19.3 + 3162.1) (58.8 + 4105.3) checkpoints
 (5.984 + 21.706) (0.862 + 22.225) (0.087 + 32.463) x 1e+6 cycles
 (0.801 + 2.906) (0.125 + 3.213) (0.005 + 1.979) % of run time
 (1.283 + 4.654) (0.227 + 5.854) (0.011 + 4.141) % of base runtime

 radix 391.1 599.4 610.6 checkpoints
 (10.8 + 380.4) (5.9 + 593.5) (3.2 + 607.5) checkpoints
 (0.149 + 6.549) (0.075 + 6.562) (0.032 + 4.971) x 1e+6 cycles
 (0.123 + 5.377) (0.073 + 6.377) (0.042 + 6.661) % of run time
 (0.401 + 17.606) (0.197 + 17.276) (0.077 + 12.041) % of base runtime

 water 234.9 772.8 587.6 checkpoints
 (62.5 + 172.4) (14.9 + 757.8) (7.3 + 580.2) checkpoints
 (0.189 + 0.872) (0.037 + 2.758) (0.010 + 3.092) x 1e+6 cycles
 (0.109 + 0.503) (0.033 + 2.475) (0.007 + 2.182) % of run time
 (0.113 + 0.522) (0.039 + 2.882) (0.011 + 3.444) % of base runtime

Table 21. Checkpoints for DRSM-C

120

 8 processors 16 processors 32 processors
Cholesky 137.5 93.6 72.8 checkpoints
 (129.6 + 7.9) (83.4 + 10.2) (51.2 + 21.5) checkpoints
 (17.699 + 0.926) (10.686 + 1.027) (6.376 + 2.744) x 1e+6 cycles
 (6.265 + 0.328) (6.024 + 0.579) (4.727 + 2.034) % of run time
 (8.617 + 0.451) (7.702 + 0.740) (6.070 + 2.612) % of base runtime

 FFT 22.9 13.0 12.9 checkpoints
 (22.9 + 0.0) (13.0 + 0.0) (12.9 + 0.0) checkpoints
 (3.213 + 0.000) (2.046 + 0.000) (0.967 + 0.000) x 1e+6 cycles
 (6.976 + 0.000) (7.771 + 0.000) (3.697 + 0.000) % of run time
 (7.713 + 0.000) (8.050 + 0.000) (3.498 + 0.000) % of base runtime

 LU 89.2 57.1 41.2 checkpoints
 (89.2 + 0.0) (52.1 + 5.0) (41.2 + 0.0) checkpoints
 (6.889 + 0.000) (5.216 + 0.057) (3.391 + 0.000) x 1e+6 cycles
 (2.586 + 0.000) (2.635 + 0.029) (1.942 + 0.000) % of run time
 (2.970 + 0.000) (2.986 + 0.033) (2.084 + 0.000) % of base runtime

 ocean 291.4 226.5 394.8 checkpoints
 (289.9 + 1.5) (224.5 + 2.0) (394.8 + 0.0) checkpoints
 (66.688 + 0.543) (38.108 + 0.469) (29.244 + 0.000) x 1e+6 cycles
 (10.524 + 0.086) (7.863 + 0.097) (3.384 + 0.000) % of run time
 (14.299 + 0.116) (10.037 + 0.124) (3.731 + 0.000) % of base runtime

 radix 25.0 21.0 20.4 checkpoints
 (17.0 + 8.0) (19.0 + 2.0) (19.4 + 1.0) checkpoints
 (2.110 + 2.375) (2.978 + 0.352) (1.329 + 0.083) x 1e+6 cycles
 (4.221 + 4.752) (6.643 + 0.784) (3.042 + 0.190) % of run time
 (5.672 + 6.385) (7.841 + 0.926) (3.221 + 0.201) % of base runtime

 water 85.0 49.1 46.8 checkpoints
 (85.0 + 0.0) (49.1 + 0.0) (46.8 + 0.0) checkpoints
 (1.320 + 0.000) (0.963 + 0.000) (0.786 + 0.000) x 1e+6 cycles
 (0.775 + 0.000) (0.986 + 0.000) (0.828 + 0.000) % of run time
 (0.791 + 0.000) (1.006 + 0.000) (0.876 + 0.000) % of base runtime

Table 22. Checkpoints for DRSM-H

121

B.2.2. Negative Acknowledgments and Upgrade Misses

 8 processors 16 processors 32 processors
Cholesky 102.25 69.12 50.31 checkpoints
 (102.25 + 0.00 + 0.00) (69.12 + 0.00 + 0.00) (50.31 + 0.00 + 0.00) checkpoints
(86.994 + 0.000 + 0.000) (58.812 + 0.000 + 0.000) (42.806 + 0.000 + 0.000) x1e+4 cycles
(42.302 + 0.000 + 0.000) (42.269 + 0.000 + 0.000) (40.848 + 0.000 + 0.000) x0.01% time
(42.354 + 0.000 + 0.000) (42.391 + 0.000 + 0.000) (40.751 + 0.000 + 0.000) x0.01% time

 FFT 20.88 12.81 10.69 checkpoints
 (20.88 + 0.00 + 0.00) (12.81 + 0.00 + 0.00) (10.69 + 0.00 + 0.00) checkpoints
(17.760 + 0.000 + 0.000) (10.901 + 0.000 + 0.000) (9.093 + 0.000 + 0.000) x1e+4 cycles
(42.485 + 0.000 + 0.000) (42.361 + 0.000 + 0.000) (33.284 + 0.000 + 0.000) x0.01% time
(42.630 + 0.000 + 0.000) (42.885 + 0.000 + 0.000) (32.889 + 0.000 + 0.000) x0.01% time

 LU 73.62 42.12 34.16 checkpoints
 (73.62 + 0.00 + 0.00) (42.12 + 0.00 + 0.00) (34.16 + 0.00 + 0.00) checkpoints
(62.640 + 0.000 + 0.000) (35.840 + 0.000 + 0.000) (29.060 + 0.000 + 0.000) x1e+4 cycles
(26.906 + 0.000 + 0.000) (20.423 + 0.000 + 0.000) (17.762 + 0.000 + 0.000) x0.01% time
(27.003 + 0.000 + 0.000) (20.514 + 0.000 + 0.000) (17.858 + 0.000 + 0.000) x0.01% time

 ocean 232.38 186.69 330.34 checkpoints
 (232.38 + 0.00 + 0.00) (186.69 + 0.00 + 0.00) (330.34 + 0.00 + 0.00) checkpoints
(197.705 + 0.000 + 0.000) (158.834 + 0.000 + 0.000) (281.056 + 0.000 + 0.000) x1e+4 cyc
(42.138 + 0.000 + 0.000) (41.414 + 0.000 + 0.000) (36.972 + 0.000 + 0.000) x0.01% time
(42.390 + 0.000 + 0.000) (41.835 + 0.000 + 0.000) (35.855 + 0.000 + 0.000) x0.01% time

 radix 17.62 17.94 16.38 checkpoints
 (17.62 + 0.00 + 0.00) (17.94 + 0.00 + 0.00) (16.38 + 0.00 + 0.00) checkpoints
(14.995 + 0.000 + 0.000) (15.261 + 0.000 + 0.000) (13.932 + 0.000 + 0.000) x1e+4 cycles
(40.212 + 0.000 + 0.000) (39.843 + 0.000 + 0.000) (34.524 + 0.000 + 0.000) x0.01% time
(40.313 + 0.000 + 0.000) (40.181 + 0.000 + 0.000) (33.750 + 0.000 + 0.000) x0.01% time

 water 83.62 47.75 32.09 checkpoints
 (83.62 + 0.00 + 0.00) (47.75 + 0.00 + 0.00) (32.09 + 0.00 + 0.00) checkpoints
(71.148 + 0.000 + 0.000) (40.626 + 0.000 + 0.000) (27.305 + 0.000 + 0.000) x1e+4 cycles
(42.364 + 0.000 + 0.000) (42.051 + 0.000 + 0.000) (32.307 + 0.000 + 0.000) x0.01% time
(42.602 + 0.000 + 0.000) (42.464 + 0.000 + 0.000) (30.414 + 0.000 + 0.000) x0.01% time

Table 23. Checkpoints for DRSM-L

 8 processors 16 processors 32 processors
 base DRSM-L base DRSM-L base DRSM-L
Cholesky 127.2 170.9 331.2 289.8 736.4 737.0 neg. ack.Õs
 9036.1 64585.8 4954.6 26824.4 3268.2 14067.5 upg. misses

 FFT 86.6 107.2 278.9 290.0 911.0 962.9 neg. ack.Õs
 6374.4 12265.6 3427.0 5691.7 1754.6 2388.5 upg. misses

 LU 982.4 509.9 1848.3 1288.0 3239.0 3229.1 neg. ack.Õs
 2058.8 23492.1 1041.1 11402.5 519.2 5783.7 upg. misses

 ocean 6222.2 6451.9 15936.6 16843.9 50931.9 54036.7 neg. ack.Õs
 41021.2 150327.5 28386.2 96502.4 14449.4 59981.5 upg. misses

 radix 66.9 103.1 225.5 282.3 969.9 924.7 neg. ack.Õs
 105.4 6164.5 203.7 3453.1 176.1 1391.9 upg. misses

 water 399.6 434.5 954.2 999.8 3042.1 3217.1 neg. ack.Õs
 884.6 3934.2 1220.0 2987.1 704.3 1674.7 upg. misses

Table 24. Negative Acknowledgments and Upgrade Misses for DRSM

122

 8 processors 16 processors 32 processors
 base DRSM-C base DRSM-C base DRSM-C
Cholesky 127.2 5103.2 331.2 4755.4 736.4 4988.9 neg. ack.Õs
 9036.1 71565.1 4954.6 33776.4 3268.2 20056.6 upg. misses

 FFT 86.6 408.1 278.9 648.5 911.0 1316.3 neg. ack.Õs
 6374.4 12198.9 3427.0 5767.9 1754.6 2263.6 upg. misses

 LU 982.4 2225.6 1848.3 2318.0 3239.0 4068.8 neg. ack.Õs
 2058.8 24051.5 1041.1 12034.9 519.2 6070.7 upg. misses

 ocean 6222.2 29824.9 15936.6 58306.8 50931.9 133081.4 neg. ack.Õs
 41021.2 215429.4 28386.2 138535.4 14449.4 77272.7 upg. misses

 radix 66.9 5418.0 225.5 7190.0 969.9 5996.7 neg. ack.Õs
 105.4 50680.6 203.7 29124.8 176.1 14964.6 upg. misses

 water 399.6 1538.4 954.2 4386.1 3042.1 8955.1 neg. ack.Õs
 884.6 5651.1 1220.0 12855.9 704.3 7688.3 upg. misses

Table 25. Negative Acknowledgments and Upgrade Misses for DRSM-C

 8 processors 16 processors 32 processors
 base DRSM-H base DRSM-H base DRSM-H
Cholesky 127.2 1845.4 331.2 1951.9 736.4 3402.5 neg. ack.Õs
 9036.1 66744.9 4954.6 29019.8 3268.2 17318.2 upg. misses

 FFT 86.6 199.0 278.9 330.8 911.0 1004.8 neg. ack.Õs
 6374.4 12423.9 3427.0 5864.4 1754.6 2382.7 upg. misses

 LU 982.4 1604.6 1848.3 3064.2 3239.0 3786.6 neg. ack.Õs
 2058.8 24702.2 1041.1 13262.6 519.2 6497.5 upg. misses

 ocean 6222.2 9031.6 15936.6 18794.8 50931.9 53470.0 neg. ack.Õs
 41021.2 152459.1 28386.2 100467.2 14449.4 62255.3 upg. misses

 radix 66.9 234.8 225.5 516.4 969.9 1091.3 neg. ack.Õs
 105.4 9125.5 203.7 3932.8 176.1 1431.5 upg. misses

 water 399.6 557.0 954.2 1179.9 3042.1 3583.8 neg. ack.Õs
 884.6 4297.4 1220.0 3180.0 704.3 1889.5 upg. misses

Table 26. Negative Acknowledgments and Upgrade Misses for DRSM-H

123

B.3. Checkpoint Data

 8 processors 16 processors 32 processors
 base DRSM-L base DRSM-L base DRSM-L
Cholesky 127.2 180.1 331.2 368.1 736.4 676.2 neg. ack.Õs
 9036.1 9090.1 4954.6 4942.4 3268.2 3294.9 upg. misses

 FFT 86.6 141.0 278.9 301.4 911.0 910.6 neg. ack.Õs
 6374.4 6401.9 3427.0 3440.9 1754.6 1760.5 upg. misses

 LU 982.4 925.6 1848.3 1845.8 3239.0 3224.4 neg. ack.Õs
 2058.8 2066.2 1041.1 1041.1 519.2 519.2 upg. misses

 ocean 6222.2 6614.6 15936.6 17224.5 50931.9 49420.3 neg. ack.Õs
 41021.2 41163.6 28386.2 28646.3 14449.4 14637.3 upg. misses

 radix 66.9 116.9 225.5 327.5 969.9 973.5 neg. ack.Õs
 105.4 105.4 203.7 209.5 176.1 175.6 upg. misses

 water 399.6 487.9 954.2 1087.1 3042.1 2772.0 neg. ack.Õs
 884.6 914.8 1220.0 1239.0 704.3 715.7 upg. misses

Table 27. Negative Acknowledgments and Upgrade Misses for DRSM-L

 8 processors 16 processors 32 processors
 cholesky 499.0 307.1 209.5 dirty cache lines
 509.1 323.2 227.0 dirty mem. blocks

 FFT 525.4 384.2 153.6 dirty cache lines
 532.7 405.0 178.6 dirty mem. blocks

 LU 270.3 233.9 143.1 dirty cache lines
 281.2 242.0 150.8 dirty mem. blocks

 ocean 671.4 422.7 138.1 dirty cache lines
 692.5 448.2 146.2 dirty mem. blocks

 radix 461.1 343.3 177.6 dirty cache lines
 464.2 348.5 179.3 dirty mem. blocks

 water 41.4 38.6 23.8 dirty cache lines
 44.0 42.8 25.6 dirty mem. blocks

Table 28. Data Saved per Processor per Checkpoint for DRSM

124

 8 processors 16 processors 32 processors
cholesky 66933.0 27159.5 13464.2 dirty cache lines
 68277.5 28586.8 14592.4 dirty mem. blocks

 FFT 11689.4 5042.4 1867.1 dirty cache lines
 11852.2 5315.2 2170.8 dirty mem. blocks

 LU 24499.4 11973.5 5954.8 dirty cache lines
 25483.5 12386.1 6276.8 dirty mem. blocks

 ocean 196388.1 93998.0 55337.7 dirty cache lines
 202566.2 99668.2 58551.6 dirty mem. blocks

 radix 9394.4 6843.6 3517.8 dirty cache lines
 9458.0 6947.5 3553.1 dirty mem. blocks

 water 3590.2 2018.3 1139.4 dirty cache lines
 3811.5 2239.9 1226.1 dirty mem. blocks

Table 29. Data Saved per Processor for DRSM

 8 processors 16 processors 32 processors
Cholesky (757.6; 97.1) (425.7; 57.3) (152.8; 31.0) dirty cache lines
 (757.6; 97.1) (426.0; 57.3) (144.6; 31.1) dirty mem. blocks

 FFT (587.6; 131.4) (441.9; 136.1) (198.0; 73.8) dirty cache lines
 (587.6; 131.4) (437.5; 137.6) (198.0; 73.8) dirty mem. blocks

 LU (306.1; 88.0) (287.7; 65.0) (240.9; 45.0) dirty cache lines
 (306.1; 88.0) (287.7; 65.0) (240.1; 45.1) dirty mem. blocks

 ocean (798.3; 84.2) (755.8; 44.2) (12.5; 20.1) dirty cache lines
 (798.3; 84.2) (756.1; 44.2) (12.5; 20.1) dirty mem. blocks

 radix (98.2; 149.0) (88.5; 66.5) (69.4; 38.2) dirty cache lines
 (98.2; 149.0) (88.5; 66.5) (69.1; 38.2) dirty mem. blocks

 water (21.3; 25.4) (16.2; 16.7) (6.3; 13.4) dirty cache lines
 (21.3; 25.4) (15.8; 16.7) (6.3; 13.4) dirty mem. blocks

Table 30. Data Saved per Processor per Checkpoint for DRSM-C

125

 8 processors 16 processors 32 processors
Cholesky (33903.0; 42517.6) (6918.2; 30131.9) (1432.8; 21146.3) dirty cache lines
 (33903.1; 42517.9) (6923.2; 30127.1) (1355.2; 21224.1) dirty mem. blocks

 FFT (10062.6; 2365.4) (3093.6; 2729.8) (525.9; 1799.1) dirty cache lines
 (10062.6; 2365.4) (3062.6; 2760.8) (525.9; 1799.1) dirty mem. blocks

 LU (19552.2; 6566.9) (8109.1; 4992.1) (2989.1; 3659.0) dirty cache lines
 (19552.2; 6566.9) (8109.6; 4992.1) (2979.0; 3669.1) dirty mem. blocks

 ocean (70546.6; 208601.4) (14596.4; 139736.6) (735.2; 82382.7) dirty cache lines
 (70546.6; 208601.4) (14602.7; 139730.2) (736.6; 82381.3) dirty mem. blocks

 radix (1055.1; 56685.9) (525.4; 39455.1) (218.9; 23219.1) dirty cache lines
 (1055.1; 56686.0) (525.4; 39455.1) (218.2; 23219.8) dirty mem. blocks

 water (1328.8; 4376.4) (242.6; 12679.1) (46.4; 7788.6) dirty cache lines
 (1328.8; 4376.4) (236.0; 12685.7) (46.2; 7788.8) dirty mem. blocks

Table 31. Data Saved per Processor for DRSM-C

 8 processors 16 processors 32 processors
Cholesky (526.3; 296.9) (350.6; 271.3) (249.2; 273.3) dirty cache lines
 (512.5; 287.0) (317.7; 262.0) (198.9; 235.0) dirty mem. blocks

 FFT (526.0; 0.0) (479.8; 0.0) (185.5; 0.0) dirty cache lines
 (519.5; 0.0) (449.7; 0.0) (179.9; 0.0) dirty mem. blocks

 LU (305.1; 0.0) (281.2; 37.3) (193.2; 0.0) dirty cache lines
 (287.0; 0.0) (240.9; 37.0) (154.3; 0.0) dirty mem. blocks

 ocean (715.4; 1294.2) (477.7; 666.0) (163.2; 0.0) dirty cache lines
 (692.7; 1291.7) (447.6; 664.9) (151.4; 0.0) dirty mem. blocks

 radix (370.9; 841.6) (365.8; 468.1) (174.4; 206.5) dirty cache lines
 (349.4; 841.6) (354.4; 468.1) (169.8; 205.5) dirty mem. blocks

 water (54.9; 0.0) (56.2; 0.0) (29.8; 0.0) dirty cache lines
 (47.7; 0.0) (45.0; 0.0) (25.5; 0.0) dirty mem. blocks

Table 32. Data Saved per Processor per Checkpoint for DRSM-H

126

B.4. Audit-Trail Data

B.5. Extent of Checkpoint Dependencies

 8 processors 16 processors 32 processors
Cholesky (68221.5; 2338.1) (29252.3; 2763.6) (12762.7; 5884.4) dirty cache lines
 (66435.1; 2260.4) (26508.2; 2669.2) (10186.1; 5059.4) dirty mem. blocks

 FFT (12031.1; 0.0) (6236.8; 0.0) (2400.2; 0.0) dirty cache lines
 (11883.1; 0.0) (5846.5; 0.0) (2327.8; 0.0) dirty mem. blocks

 LU (27233.1; 0.0) (14657.2; 186.3) (7971.2; 0.0) dirty cache lines
 (25612.5; 0.0) (12555.2; 185.2) (6365.5; 0.0) dirty mem. blocks

 ocean (207378.1; 1941.2) (107247.1; 1331.9) (64445.6; 0.0) dirty cache lines
 (200794.1; 1937.5) (100484.6; 1329.8) (59782.7; 0.0) dirty mem. blocks

 radix (6305.8; 6732.6) (6950.9; 936.2) (3389.2; 206.5) dirty cache lines
 (5939.1; 6732.6) (6734.4; 936.2) (3299.8; 205.5) dirty mem. blocks

 water (4667.0; 0.0) (2759.6; 0.0) (1396.3; 0.0) dirty cache lines
 (4057.5; 0.0) (2210.9; 0.0) (1190.6; 0.0) dirty mem. blocks

Table 33. Data Saved per Processor for DRSM-H

 8 processors 16 processors 32 processors
Cholesky (35455.9; 28447.5; 0.80) (24396.6; 16922.2; 0.69) (18816.0; 11460.8; 0.61)

 FFT (8786.0; 6337.6; 0.72) (4598.6; 3149.4; 0.68) (2666.3; 1867.2; 0.70)

 LU (10573.0; 4477.1; 0.42) (6788.9; 2807.5; 0.41) (5263.1; 2116.5; 0.40)

 ocean (124494.4; 116504.1; 0.94) (61847.1; 54733.2; 0.88) (39630.0; 35430.2; 0.89)

 radix (8379.4; 5214.1; 0.62) (12241.8; 10349.9; 0.85) (10348.1; 8938.8; 0.86)

 water (4888.0; 3974.0; 0.81) (5131.6; 4336.8; 0.85) (4338.8; 3707.3; 0.85)

Table 34. Audit-Trail Data (entries in line buffer; entries in counter buffer; ratio)

 8 processors 16 processors 32 processors
Cholesky 2.948 10.560 25.085 # of proc. per chkpnt

 FFT 3.236 13.125 27.786 # of proc. per chkpnt

 LU 2.843 6.769 13.592 # of proc. per chkpnt

 ocean 6.078 14.232 31.266 # of proc. per chkpnt

 radix 2.810 10.633 21.133 # of proc. per chkpnt

 water 1.703 5.694 19.405 # of proc. per chkpnt

Table 35. Extent of Checkpoint Dependencies for DRSM

127

B.6. Memory Cache and Dirty-Shared Data

 8 processors 16 processors 32 processors
Cholesky (2.938; 7.875) (9.271; 13.583) (13.890; 31.318) # of proc. per chkpnt

 FFT (3.519; ---) (9.905; ---) (31.846; ---) # of proc. per chkpnt

 LU (2.281; ---) (5.278; 1.455) (14.194; ---) # of proc. per chkpnt

 ocean (6.217; 4.000) (15.285; 16.000) (31.907; ---) # of proc. per chkpnt

 radix (1.889; 8.000) (7.238; 16.000) (21.448; 32.000) # of proc. per chkpnt

 water (1.511; ---) (4.052; ---) (14.257; ---) # of proc. per chkpnt

Table 36. Extent of Checkpoint Dependencies for DRSM-H

Figure 43. Performance of Memory Cache

128

 8 processors 16 processors 32 processors
Cholesky 0.000 0.438 0.031 dirty-shared "write-backs"
 450.125 1412.500 2158.312 dirty-shared reads
 204.375 252.250 446.719 fast dirty-shared reads

 FFT 0.000 0.000 0.000 dirty-shared "write-backs"
 0.000 0.000 0.000 dirty-shared reads
 36.375 97.188 307.500 fast dirty-shared reads

 LU 0.000 0.000 0.000 dirty-shared "write-backs"
 215.625 405.938 350.562 dirty-shared reads
 521.125 1385.938 1701.875 fast dirty-shared reads

 ocean 0.125 0.000 0.000 dirty-shared "write-backs"
 676.250 3278.562 1426.375 dirty-shared reads
 2913.625 7134.562 13766.344 fast dirty-shared reads

 radix 0.000 0.000 0.000 dirty-shared "write-backs"
 174.375 104.562 39.625 dirty-shared reads
 32.250 77.438 302.031 fast dirty-shared reads

 water 0.000 0.000 0.000 dirty-shared "write-backs"
 280.250 299.375 70.250 dirty-shared reads
 109.250 298.500 1048.000 fast dirty-shared reads

Table 37. Statistics about Dirty-Shared Data

129

B.7. Additional Observations

Figure 44. Delay for Establishing Checkpoints per Processor

130

Figure 45. Number of Negative Acknowledgments (NAKs) per Processor

131

Figure 46. Number of Upgrade Misses per Processor

132

List of References

 1. R. E. Ahmed, R. C. Frazier, et. al., "Cache-Aided Rollback Error Recovery (CARER)

Algorithms for Shared-Memory Multiprocessor Systems", Proceedings of the 20th International

Symposium on Fault-Tolerant Computing Systems, pp. 82-88, 1990.

 2. M. Banatre, A. Gefflaut, et. al., "An Architecture for Tolerating Processor Failures in Shared-

Memory Multiprocessors", "IEEE Transactions on Computers", vol. 45, no. 10, pp. 1101-1115,

October 1996.

 3. E. Bugnion, S. Devine, et. al., "Disco: running commodity operating systems on scalable

multiprocessors", "ACM Transactions on Computer Systems", vol. 15, no. 4, pp. 412-447,

November 1997.

 4. S. Herrod, M. Rosenblum, et. al., "The SimOS Simulation Environment", Stanford University,

pp. 1-31, February 1997.

 5. D. B. Hunt and P. N. Marinos, "A General Purpose Cache-Aided Rollback Error Recovery

(CARER) Technique", Proceedings of the 17th International Symposium on Fault-Tolerant

Computing Systems, pp. 170-175, 1987.

 6. G. Janakiraman and Y. Tamir, ÒCoordinated Checkpointing-Rollback Error Recovery for

Distributed Shared Memory MulticomputersÓ, In Proceedings of the 13th Symposium on

Reliable Distributed Systems, pp. 42-51, October 1994.

 7. B. Janssens and W. K. Fuchs, ÒThe Performance of Cache-Based Error Recovery in

MultiprocessorsÓ, ÒIEEE Transactions on Parallel and Distributed SystemsÓ, vol. 5, no. 10, pp.

1033-1043, October 1994.

 8. G. J. Narlikar and G. E. Blelloch, ÒPthreads for Dynamic and Irregular ParallelismÓ,

Proceedings of Supercomputing 98: High Performance Networking and Computing, November

1998.

 9. G. F. Pfister, In Search of Clusters, Prentice-Hall, Inc., Upper Saddle River, New Jersey,

1998.

10. G. Richard III and M. Singhal, "Using Logging and Asynchronous Checkpointing to Implement

Recoverable Distributed Shared Memory", Proceedings of the 12th Symposium on Reliable

Distributed Systems, pp. 58-67, October 1993.

11. T. J. Slegel, R. M. Averill III, et. al., ÒIBM S/390 G5 MicroprocessorÓ, ÒMicroÓ, vol. 19, no. 2,

March 1999.

133

12. D. Sunada, D. Glasco, M. Flynn, "ABSS v2.0: a SPARC Simulator", Proceedings of the

Eighth Workshop on Synthesis and System Integration of Mixed Technologies, pp. 143-149,

October 1998.

13. D. Sunada, D. Glasco, M. Flynn, "Hardware-assisted Algorithms for Checkpoints", technical

report: csl-tr-98-756, Stanford University, pp. 1-38, July 1998.

14. D. Sunada, D. Glasco, M. Flynn, "Novel Checkpointing Algorithm for Fault Tolerance on a

Tightly-Coupled Multiprocessor", technical report: csl-tr-99-776, Stanford University, pp. 1-50,

January 1999.

15. G. Suri, B. Janssens, et. al., "Reduced Overhead Logging for Rollback Recovery in

Distributed Shared Memory", Proceedings of the 25th International Symposium on Fault-

Tolerant Computing Systems, pp. 279-288, 1995.

16. S. C. Woo, M. Ohara, E. Torrie, J. Singh, A. Gupta, "The SPLASH-2 Programs:

Characterization and Methodological Considerations", Proceedings of the 22nd Annual

International Symposium on Computer Architecture, pp. 24-36, June 1995.

17. K. Wu, W. Fuchs, et. al., "Error Recovery in Shared Memory Multiprocessors Using Private

Caches", "IEEE Transactions on Parallel and Distributed Systems", vol. 1, no. 2, pp. 231-240,

April 1990.

