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Bifurcation problens for discrete variational inequalities

H D. Mittelmann *,T

The buckling of abeamoraplate which are subject to obstacles is typica
for the variational inequalities that are considered here. Bifurcation is
known to occur fromthe first eigenvalue of the linearized problem For a
discretization the bifurcation point and the bifurcating branches may be
obtained by solving a constrained optimzation problem An algorithmis
proposed and its convergence is proved. The buckling of achnped beam sub-
ject to point obstacles is considered in the continuous case and some nuneri-
cal results for this problemare presented

Mos cl assification: Primary 7380S, 65K10; Secondary 65L15, 49G10, 65L15, 73K25

1. Introduction

In this work we are concerned with the nunerical solution of nonlinear varia-
tional problens of the form

(1.1) g(u) = kf(u ) = min (g(u) - kf(u)), k >0
o] [o] K

where f and g are functionals ona Hilbert space H and x « H isa clbsed convex
cone {0} =k % {o}.Asolution of (1.1) under suitable assunptions satisfies

(1.2) A(g'(u),u = u) > (£'(u),u - u), VoK, 1 = k1

where (.,.) denotes the inner product in H, i. e. a nonlinear variatioral in-
equality and bifurcation may occur for(1.2).

Instead of considering (1.1), (1.2) in an abstract setting we shall use here
and in the sequel a typical exanple fromelasticity theory. Assume a beamis
clanped at the points x = 0, x =1 and is supported from bel ow respectively
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fromabove in the sets C, D < (o,1). W define

(1.3 x = {ueB’lo,1], U(Q) 20, u(D) <o}

where Hi is the usual Sobol ev space including the zero boundary conditions
for u and u'.
Let further be

| 'l
(1.3b) £(u) = [(Y1+u'2-1)ax, g(u)a L [ u"?ax .

0 2
Then (1.1), (1.3) describes the displacenent u of the beam under the action
of an axial force k = P. Inthe case C=D=g this is Euler's fanbus beam-
buckling problem It has been considered very frequently in the literature
and for morerecent work on the nunerical solution of this problemwe refer

t 0 (5,17].

The above formulation is only one of the possible ways to treat the beam-
buckling problem W have chosen this problemfor the sake of simplicity.
It is possible without essential difficulties to treat other boundary con-
ditions in (1.3) or other problens as e. g. the buckling of plates.

The approxi mate solution of (1.2) was |isted as an open problemin [12]

since no nunerical literature on this subject was known to the authors.

A bifurcation theory, however, for problems of this formand particularly

for (1.3) was given in [6] and considerably generalized in [18]; for other re-
lated work cf. e.g. [1,2, 7,9, lo, 13, 15, 1s6].

In the following we shall |ook at discretizations of (1.1), (1.2) and give

a convergence proof for an algorithm solving these problenms as well as the

corresponding |inear eigenvalue problem W thus propose and investigate

a nunerical nethod for the conmputation of the bifurcation points and of the
bifurcating branches. Numerical results are finally given for a finite ele-
ment discretization of (1.3).



The contents of the follow ng sections are

The discrete bifurcation problem
The nunerical procedure

Conver gence proof

The beam problem

Discretization and results.

2. The discrete bifurcation problem

In the follow ng we assume that (1.1) is reduced to a finite-dinensional
probl em by a discretization nethod characterized by a paraneter h > 0.
A finite difference method with mesh width h orafinite elenment method
with intervals of maxi mal dianeter h yields

(2.1) qh(xo) - kfh(xo) = min(gh(x) - kfh(x)), k >0

%

wher enows_, x€ah, a finite-dimensional Hilbert space and again K < |-|h
a closed convex cone with vertex O.

In the following we shall assume that B may be identified with Euclidean
n-space and shall omt the subscript h. The corresponding variational in-
equality is therefore of the form(1.2)

(2.2)  A(g' (x)) ox=x ) 2 (£1(x ) ox=x ) s X =3~ ypeg,

Here and in the foll owing we use g'(x) = VgT(x), g'(x) = Vzg(x).
From now on we assume that f(o) = g(o) = 0 and f'(0) =g (0) = 0. For
all x>0 thus (2.2) has the trivial solution.

Definition 2.1 > 0 is a bifurcation point of (2.2), if there are se-
guences {An}, {xn}, n=1,2,..., solutions of (2.21, with An >0, xn€K-—{o}
andxn+10,xn+0for n+ =,




The followi ng results are easy consequences of the theory for the

i nfinite-dimensional casein [6,18].

Theorem 2.2 Assune that £, g€C2(U(o)) , U(e) € R" an open nei ghbor hood
of 0, f(0) = g(0) =0, f"(0) =g (0) =0, (g"(@)x, x) > v x]|2 v>o0,
vx€R®and that thereexists a y€k such that (£"(o)y, y) > 0. Then the
l'inearized variational inequality

(2.3) A(g"(o)xo, x-xo) > (f"(o)xo, x-xo), Vx€K

has a sol ution xoex - {0}, A, > 0. A, is the largest eigenvalue of (2.3)
and the largest bifurcation point of (2.2).

Theorem2.3 In addition to the assunptions of Theorem2.2 let (£'(x),x) > 0,

(g'(x) ,x) > O, Vx€K - {o} andletthere exist strictly increasing functions
si(t), continuous on [o,®) With 1im §,(t) = 0 and 1im 6 ,(t) = 4=, i =1,2
i i
t+o £t
such t hat 61<|l x[h < gx) < 62(” x|p, vx€x.
Then for every p, 0 <p < =, the problem

(2.4) f(x)-rraxf(x) = {x€R", g(x) <3-92}
KNS K =2
P
. . . (£’ (X),X)
has a solution x_ 4 0 which also solves (2.2) with A = (x_) =
[ P ('(x).X)

and further hol ds lim X = 0, lim prll = +=, lim A(x ) = X+

. 1
Ao as in Theorem 2.2, g(xp) 5 P<.

Therei s a subsequence {xp} with

|
(2.5) I|m ”m l 0,

X asin Theorem 2. 2.

If (2.4) is uniquely solvable for everyp > 0 then p+{e¢ A(x )):0< p<a},
X, = 0, A(xo) = a is a continuous curve in ®R"x®, which extends to infinity.



These theorens show that bifurcation occurs fromthe maximal eigenval ue Ay
of (2.3) and that points Xy on the bifurcating branch may be obtained by

sol ving

(2.6) £(x ) = max £(x),p > 0 , 3 = {x€R", g(x) -.21.02}
p KNS P

3. The nunerical procedure

In this section we consider the nunerical solution of the linear eigenvalue
probl em

(3.1) A(g"(_O)xo, x=x) > (f"(O)xo, x—xo)Vx€K

and the conputation of the branches bifurcating fromthe maxi mal eigenval ue
i. e. we determne X such that

14

(3.2) f(x ) = max f£(x),
P KN3S

x i n anei ghborhood of x for small p>o0.

VW restrict ourselves to the case that g iS quadratic in x. A further restric-

tion to g(x) = (x, x), however, will not be made here because it would not
allow the treatment of the physical-problem (1.3) in the usual setting. In-

fluenced by this exanple we consider for kthe set

3. K = " '
(3.3) {(x€R", x; 20, €3, % <O, €3},

J’I P ooy ? = PR = R .
1 JZ c {1 n} Jl {ilr 'inl}' Jz {j]. ljnz}



In the recent paper [3]a gradient nmethod was anal ysed for the sol ution
of (3.2) in case K = H,_ Han infinite-dimensional Hilbert 'space, and
sone references where given for earlier work on the approxi mate solution
of this unrestricted problem (in the sense that K= H).

W shall consider here the restricted problembut for dim(g) <e . W
thus prefer here the solution by first discretizing the continuous pro-
bl eminstead of first deriving a sequence of sinpler continuous problens
(variational equalities respectively unconstrained optim zation problens)
and then discretizing those. Since we have in mnd applications as e. ¢
(1.3) we do not give a nmethod to conpute smaller critical values of the
functional f, for theoretical results in this case cf. [8], but we con-
centrate on the physical relevant value A,

we make the followi ng assunptions. Let f in (3.1) be continuously dif-
ferentiable on Hand let g be of the form

(3.4a) g(x) "';' (Bx, x),

where B: H=+ His alinear, symetric and positive definite operator
Further let there exist a-M > 0 such that

(3.4b) (£'(x + h) - £'(x), h)< M ||n||2 vx, n€x
(3.4c) (£'(x+h) - f'(x), h) >0, ¥x, h€g, h # 0
(3.44) f(0) =0

(3.4e) £'(0) = 0

The norms used here and in the following are the Euclidean normfor x€g
and the spectral normfor matrices A€L(H).



W need some further notations. Let G= (gl""'gnl"'nz)' where gk = eik'
-e, , elemn the It-thunitvector. Then K in (3.3)

k-l,...,n1 and g 3,

n1+k =
my be rewitten as

K = {xB", G'x > O}.

For any €R" let I(x) = {1€{1,...,2n}, giTx = 0} and define G, = (gi)iel,
T - , : - ,

Q = E - GG, E the nxn identity matrix. For x = x denote I, = I(x,)

G = GIk and Q

anal ogously. Finally we introduce

B 2
B9 ht R amT,

where (.,.), denotes the scalar product induced by B and
(3.6) w = Pkark, £ = £' (xk) .

W observe that g"(o) = B and hence with A = £ (o) the maximal eigenval ue
Ay and the corresponding eigenvector may be conputed from

‘ (Ax, x 1
(3.7) A = max = max 3 (Ax, x) .
°© g-{o} (BX X) KN3s, 2

This problemis a special case of (3.2) and it suffices therefore to give
an algorithmfor that problem -

The al gorithm

Let ::161(1135p be arbitrary. Set k = 1 and W =0, uke{o,.l}



Step 1 Det er m ne Ik and termnate the iteration if GkTu <o and

T
Step 2 Compute "‘chl = max {Iukil’ (Gk uk)i > 0}.
If ((Qkuk, rk)B < l“kzl . || Qkuk”B and B = 0 or ”Qkuk” B~ 0) then

n, . n, n N, . n
set Ik Ik - {2} and deternine Qk, P, u otherw se | et Ik = 1

k
N =
B T Y%
step 3 Conput e P = Ek 1"5k ?z'k r, and deternine Ek as the maximal ad-
m ssible steplength in direction P, -

n
k' Tk = Pk’

_ X, +a P
Step 4  Set ak-min('&'k. ak),gkim) r Xy T k,,_k kl ’
co Mocrey Bl

where cond (B) = ||8]| . || 7} .

n
1, if ak = uk
Set Mee1 ™ % 0, ot heri se + k=k+ 1 and go to Step 1.

The fol l owing convergence result will be proved for this algorithm

Theorem3.1 Let the assunmptions (3.4) be satisfied for problem (3.%).
Assume that the set

2 = {xrexnzs, e*Tu* < 0, |[Q*u*|| = o}

G I ]

is finite and that ¢* u* < 0 for all x*€q . Then the sequence {’Sc}’k =1,2
generated by the above algorithm converges to a point x*€Q .

The points x* are Kuhn-Tucker points of the first order of f with respect
to the given constraints. In general, of course, we cannot be sure that
{xk} converges agai nst the maxim zing X¥. An easy consequence of Theorem 3.1
guaranteeing this will be stated at the end of the next section.

Wth the constant stepsize 3;( in Step 4 the above algorithmis nore of theo-
retical interest. In the conputations presented in the last section the step-
size was chosen by the Goldstein-Arnmijo rule (cf. e. g. [14]). This still



makes it not a very efficient algorithm since it is of gradient-projection
type.

v,
In Step 4 we determine then ak 2 where

-i -i-2_ T
j = min {i€ENU{o} : £(x +27p) - £(x,) 22 Py rk} .

In oxder to justify this choice for the constrained case we have to show
that

, 2
%, - (x, +ap)| =o065.

If we choose here the norm II.IE then we have
gy = g + o) llg = lix + oy lig- 1

<lix + oz - 1
- oZllpJI2 .

But "pk||§_”rk||and||rk” is obviously uniformly bounded on Bsp.

4. Convergence Proof

The essential tool for proving Theorem 3.1 will be the following lemma.

Lemma 4.1 Let xkexnasp be generated by the above algorithm. Then
xk+1€xnasp and

n “pk“z' if uk =1,
(4.1) £(x ) - f(xk) 2 ¢ D2
max {“Pk|h|uk2i1 otherwise,
Py N -
where S = c, > 0 for Mey = O and Cp ™ S0 ¢ Sy > 0, for Mgy = 1,
"N N N

Proof xk+1€xnasp is valid by construction of the algorithm. For a suitable
1€(0,1) we have from (3.4b)



! - - )
f(’ﬁwi) - f(:s‘) = (f (xk +1'(xk+1 xk)), Xert X

1 _e - ' - ' -
=- (£ (x +TX Ly XD+ ET0g) TR = X)) EN(R) XK X)
(4.2)
R N AT WY

jv

1 2 -1_,
- MBIl x - xllg T B () X - X))y
B'lrk

200|870 (x4 Ve B %0p Y = ulpe T

iv

Hence we have

£ix ) - £0x) 2 & x + v, o+ ap -l ol x

lptll
I ’ﬁz“akple _ |
righthand side i's nonnegative. Cbserving that (xy.p g = 0 this relation
my be rewitten as

where d = > o and we show next that the second termon the

[
(4.3) (1 - [[x+apdl ) (1 + (v ox)p) + a (y,p )y 2 0.
W have
-1
(4.4) m [|87}| (v g = lp, 1P
and

(45 lxrapll2=1+allnll <1 +allell kP

From(3.4b)and the fact that ”’%”s = 1 we concl ude that

2
" . L
WX g = TR Y — 2



-11 -

He
nee e, IP

M| Bl . 1lB7Yj2

2
(1 + (yk.xk)B) < 2(1 + (yk,xk)B) +

the | ast term being nonnegative and thus

1+ (y0%) 5 aklbkll’-
wl[z~ T+ am?[B7[2

"k“ Bl (1 + (yk.xk)a)zf.

whi ch gives

a b 12 §2

2 12 11 gl 2 -
. (1 + ak” pk|| il b (1 + (VX ) )% € (1 + (v %)y + IR

Taking the square root on both sides and using (4.4), (4.5) we finally arrive
at

Ix, +ap llg 1+ ‘Yk"ﬁc)s; 1t (yeex)gt oo ly.plg
whi ch proves (4.3).
Combining (4.2) and (4.3) we obtain with (3.4¢)
(48) £,y - £05) 2 (£105) ) X ym X

2 M“ )5(4'1- kaZ _>_0 .

In order to show (4.1) we estimte using (4.5)

(€0 X 0= %) = m Lix e %) el app [B) + oy (xye gy ]
akllpkllz(l-aku cond (B))

lix, + op, Il

F‘Ol‘”xk + akpklg a uniform ypper bound L is easy to obtain, hence o 5_3% yi el ds

alip, P
k'Fk
f(xk+1) - f (xk) > 7L
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whi ch proves (4.1) in the case W, = 1.

N n
If y =0 and I, $ I, then ka!." luk!.l and thus || pk|| > "L\ikg’| If u =0

and }‘k = I, then P = QU and because of the strategy in Step 2 we nust have

lbk'% = (pk'rk)g 2 lukzl ”Pk ”B

rl/z

and hence ”pkll > || 8] lw g, [which conpletes the proof of the lemma.

Proof of Theorem3.1 Let {xk}, {uk}, {Ik} be generated by the above al gorithm
As in [11] we distinguish two cases. Ass&e that thereis an infite subset J=m
with u, = u ., = 0 for x€3. Because of the conpactness of 85 and the finite
nunber of constraints in x an infinite subset J 5 may be chosen such that

% + x€xNas and || = 1T = I(x) for k€3 . Since £(x ) = £(x) >0 from

(4.6) fork > 1 and f(:s‘ﬂ) - f(xk) > clmax{“pk“ , l"ykzl}Z for ke;ro, we have.

“akgk“ -> o' lgkll hd O' k -+ ®, keJ'

NN . . . . -
Qu, s a continuous function of X, for fixed index set I and hence Qu = 0,

3, = 0, where u = qui , T = £(X). This implies x€Q. |f thereis a j€I-1

then kg 0 for k + =, KET and hence Ej =0 while Ej nmust not vani sh under

t he assunption G*Tu* < 0 for x*€Q . W conclude | =T .

From (4.6) we have ]]E_L;n “xk+1- ka = 0 and £(x, ) 2 f(x,). Since f has
only finitely many local nmaxima on Knésp, p >0, which are strict maxi na
according to (3.4c) and because }‘k =] for k€Jo, k > k, we finally obtain
t hat the whol e sequence {:5{}. k =1,2,... nust converge to x and that

Ik=1for k2 k-

In the case that for all k > k there is we=>1lorw =1 the proof
may be conpleted conbining the above argunments and those of the corres-

pondi ng part of the proof of Theorem 2 in [11], to which we refer.
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The ascent property (4.6) allows to state the follow ng sinple consequence
of Theorem 3.1.

Corollary 4.2 In addition to the assunptions of Theorem 3.1 we assune that
J\o is the largest critical value of f with respect to rcnasp and that there
is no other critical valuein (A ~€, A)), € > 0. If £(x)) > A - € t hen

t he sequence {ﬁ(}. k =1,2,... generated by the above al gorithm converges
to xoexnasp Wi th f(xo) = Ao.

5. The beam probl em

In this section we return to the problem of the conpressed clanped beam
and we first consider to some extent the linear eigenvalue problem i. e.
we search for A, u€K, K as in (1.3a),such that

1 1

(5.1) AfU (v-u) "dx > fu'(v-u)' ax
0 0

for all v€K. W restrict ourselves here to the case that the sets C, D
are finite

CUD = {xi,””xN}

wher e O—xO <x <X <X =1, For the variational inequality
of second order

| ‘1 :
(5.2) Ao (v-u)' dx > fu(v-u)ax,

0 0

u,v€K = {uEH,l[o,ll, “("i) >0, i =1,...,8} adescription of all the eigen-
val ues and cé&respondi ng ei genfunctions was given in [4] . For the problem
(5.1), where the situation is different, it is not our aimhere to do the
sanme. Instead we consider only problenms with a few obstacl es.
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In the usual way it can be shown that (5.1) is equivalent to the follow ng
set of conditions

(4)
(5.3a) Au' '+ u" =0 0n (xi.xi+1

(5.3b) u(0) = u'(e) = u(l) =u'(1) =0,

):i=0, ‘.V‘N,

(§.3¢) u, u' und u" continuous in Xy i=1],... N

_>_ 0, | f xiEC,

(5.34) u® (x + 0) = u¥ (x - 0){5_ 0, if x €D,

(5.3e) (u™ (xi+ ©) - u (xi- o))u(xi) =0, | =1,...,N,

(5.3f£) u(xi)_>_ 0, if xiec. u(xi) < 0 if »xiED.

For the sake of conpleteness we sketch the proof. W integrate (5 .1) by parts

N *1+1 (4)
I [ a4+ um) (veu)ax

i=o -xi

N
-2 ) (u"(x
i=1

N
+Aizl(u"' (xi+o)— u™ (xi-o)) (v(xi)- u(xi) )> o.

i+°) - u" (xi-O) Y(v! (xi) -u' (xi) )

Choosing v€x such that the last terms vanish we see that Ay unis ort hogonal
tow=v - uEHi[xi,xi+1], i =0,...,8which yields (5.3a) and the first term
vani shes. W have no restrictions on vix), 1= 1,...,N for v€K. If the |ast
termand all but the i-th in the second termis made zerothen we concl ude

that this nust vanish, too, i. e. u" has to be continuous. Finally, if

u (x,) $0for ani =1,...,n then we choose v such that vix,) = 0 respectively
v(x,) = 2u(x )and v(xj) =0, j 4, yielding (5.3e) while in the case

u(x,) = 0 the condition on v(x,) gi ves (5.34d).

A sinple conputation shows that the sets
(0) (x) = c, (1-cos(z x)), ¢ €ER' = R-{o}
"H‘ k k 14 k ?

(5.4a) xé°’= ZLZ’ 7 = zé‘:) = 2km, kK =1,2,...,



- 15 -

4

ck(sin(zkx)- —}cos(zkx) + (%- x)z)ginOo, =],

i
-u(k)(l-x) in [-;-, 1] , ckEJR'
(5.4b)
x(l) = ( L)Z’ k =1,2,..., 2z, =z1)

k zk k k

. z z
the sol utions of 3= tan (-2-)

are eigenfunctions and correspondi ng efgenval ues of the unrestricted problem

(K = H) and hence they are also solutions of (5.1) if they fit the condition

(5.3£).In Table 1 we have listed the first A;i), i =1,2.

(o) (1)
1 .0253302959 .0123819207
2 .0063325740 .0041890420
3 .0028144773 .0021026096
4 .0015831435 .0012635336

Table 1 The first four Aéi),

i =o,1according to (5.4)

In order to find eigenfunctions of (5. 1) which are not solutions of the
unrestricted problem we consider the sinplest case N = 1. Conbining the
sol utions on [o, x,] and [x,, 1] such that they satisfy (5.3a) - (5.3c)
and vanish in x, yi el ds

uk(x) - ck[(i-cos(zkxl)) (sin(zkx)- sz) - (sin(zkxl)-z xl) (1-éos(zkx)) 1.

k
. (zkx1 cos(zkxl) - sin(zkxl) ) on [0, xI],

.(5.5a) _
uk(x) = ck[(1-cos(zkx1»(sin(zk(1—x)) - zk(l-x))

- (1-cos(zk(1-x)))(sin(zkxl) - zkxl) | (zkx:l cos(zkxl)- sin(zkxl))

on [xl, 1],

- i -2 .
where xl = 1 < xq7 X, + 2’ Ao =2, 2.0 k=1,2,..., the solutions of
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(le sin(zxi) -—2(1-—cos(zx1))) . (za-c1 cos(z:—:l) -
(5.5b) sin(z;cl)) = (2(1- cos(z:-:l)) - z;cl sin(z:-(l)) .
(zx1 cos(zxi) - sin(le)).

[f X = % then there are the eigenfunctions and correspondi ng ei genval ues

D, af, o) W0, e,2,... . Additionally ve have
—_— - - i Zz - _Z -
u (x) zck[(l-coszzk )(sin(z,x) - z,x) = (sin “x = 2k (1-cos(z )]
(5.6) on [o, %],

u (x) = u (1-x) ON [ é— 11,

wher e z = 2 z):l) , k=1,...and A = z;z . Al these eigenvalues are
arranged i n decreasing order as ka, k=1,2,... wth the eigenfuncti ons%(z

(1)

If X +-§- there again remain certain of the eigenfunctions \f]‘:), o

The sign of the factor G, may be chosen such that uk(z) satisfies (5.3d).
In Table 2 we have listed the first tenof the resulting eigenval ues and
the correspondi ng ei genfunctions for xlec, i. e. we have given the range in

- L (2) -
whi ch ¢, in ™" my vary, i f x1€C.

k A]im (x1 = %) e )‘I<<2) (x1 = %) .
1 .0253302959 R!  .0253302959
2 .0123819207 R .0146620910 R!
3 .0063325740 R'  .0123819207 R
4 .0041890420 R .0070318908 R
5 .0030954802 R, .0063325740 R!
6 .0028144773 R. 0041944379 R!
7 .0021026096 R' .0041890420 R'
8 .0015831435 R .0028144773 R'
9 .0012635336 R .0021035607 ]R;_
1o .0010472605 R 0021026096 R

- (2) _ -
Table 2 The first )‘k ,ckfor C—{xl},n 9 .

)
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In the case X, =-— the | argest eigenval ues correspond to eigenfunctions
(1)

of the unrestrlcted probl em The elgenfunctlon u, cZEng_,for x, = é
is also a solutionin the case Ca={ } Dag and it still is if we
e. g. .add the condition D = {—} to excl ude the solution u§°), clem;.

It is then, however, not the solutlon to the largest eigenvalue, which

isul? to the ei genval ue Aéz’ = (0.146620910. This solution satisfies

2
(5.3) but it is not a solution of the unrestricted problem In Figure 1
we have plotted u(z) u§2)

Figurel

For mul ae (5.5), (5.6) are valid for 0 < x, < 1 and in Table 3 we have

listed the [argest eigenvalue for varying x

X, )‘1(2)

-i- .0168642027
5 .0183671473
% .0194295691
7 .0202150233
P,

8 .0208177576

Table 3 Largest eigenval ue forvarying x1€C, D= {%}.
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For0<x1<1 and A > 0 we define

()™ (2)™

w(l) = w(l;xl) = u (x1 +0)-u (xl- o)

(2) -1/2

where u is the function (5.5), (5.6) to the given X, and z, = A

= 1. w()) has sinple zeroesat the A whi ch coincide wth )‘i(O)’ A;”,

(2) (1) . (2)_ . (o)
1 £3 2 1 2 M

and e. g. w(Ag"); %) IS positive as a conputation shows. W can thus state

°x

For 0 < x 5-1- the value of A" (x,) varies inthe range x "'< A

Lemma 5.1  For 0 < x, 5-21 (%ix < 1) the functions u, according to (5.5),
(5.6) with C1€i!'(c1€m:) are eigenfunctions of (5.1) where C = {xl} :

Continuing this argument we can explain the choice of ¢ _in Table 2. If e. g.
x, = % and the eigenvalue is derived from(5.6) as e. g. xéZ), xg’ in Table 2,
Lo _oum L 3 . 2% ,

t hen w(Ak, 3 2u.k (3 0) = 4ckzk sin“(/ . Hence ck€m+ has to be chosen

in this case.

Ve did not exclude the case oo # ¢ . If e. g. C=D = {x,} then (5.3) shows

that also the third derivative of an eigenfunction nust be continuous. The

formof the eigenfunction shows that the fourth derivative is continuous to-

gether with the second and only the eigenfunctions of the unrestricted problem

remain. |f X, = f’l- + P <q, p, €N, then we have the'eigenfunctions and -val ues
1)

s k=3(p +9q,3=1,2,... For certain x, al so some of the u]i

(©) (o)
A 1

e
are eigenfunctions.

The branch bifurcating fromthe solutions of (5.1) may be conputed from

(5.7) f(u )= nmax f(u)
P KN3S

K,f and g as in (1.3). W refer to theoretical results of [6]. It may,
however, not be expected that analytic expressions for up, A(up) coul d be
derived. For the largest eigenvalues the existence of a continuous branch
extending to infinity is assured by the results in [6, 181. Hence in the
foll owing we concentrate on the maxi nal eigenvalue for the restricted case
and conpute the branches.
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6. Discretization and results

As in 3. it suffices to consider the problem (5.7). W use a finite el enment
method to obtain a finite-dinmensional problem Instead of doing this in an
abstract setting we again give a concrete application. In order to discretize
(1.3), (5.7) we use a subdivision of [o,1]: 0 = x <x1l <. . . < xg =1

which for the sake of sinplicity we assune to be equidistant with distance h,
V¢ use the Bermite cubic finite el ement functions w - In(1.3b)it is also
necessary to integrate numerically. on each subinterval [xi, xi+1].

i=0,..., Nl we use the Qpoint Gauss-Lobatto formula with Xyv Xypq 8

two of the nodes. W obtain a problemfor the vector y = thJRZN“2 of unknowns
uh(xl) ' u]"(xl) v (xe ). For the second integral in (1.3b) we have

12 0 -6 3h
0 4h? -3h n?
-6 -3h 12 o -6 3h

(6.12) g, (y) =-r-113—y"' 3h n2 0 4n? -3h n2 %

L. o -
and for the general integrand F(w) inthe first term

N-|

(6. 1b) £ = ] [2F(y,) +5E) + reiP)
im0
wher e zj(_j) = ¥yt 2yj£j(_” + 3-1; i,(z) . 3 =1,2,
Eil) = % ¥93417 Ya1-1) = Wy ™ Ypi42°
g - : (Y2517 Ya341) + Y21 + Yay42

1 1 ’
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- (1) . (2)
VW shal|l use the notation fh (y) when Flu)) = > %2 and £ (y) when

Fly) = /1+uk'12'- 1. Qoviously we have fl_‘!“ (y) = —;—(f"(o)uh, ). The problem
2N-2
R

of determning a y°€ With
(6.2) £ (y) = max f_(y)
h' 7o Khnash h
P
2N-2 . .
1% {yER » ¥5y.420 if xi€c, Yoi-1 <o if xien, I =1,...,N}

2N-2

h 1
s = = 1,2
s, {yER G (¥) = 0% > o}

may now be solved by the algorithmof section 3.

Ve remark that in the finite-dimensional case it is easy to describe the set
of all solutions by considering the eigenvalues and -vectors of the general
ei genval ue problem Ay = ABy together with those for certain submatrices of
A and B.

In the following we shall restrict ourselves in the choice of nunmerical exanples
as we did in the continuous problemin section 5.

The functi onal fril)(y) has a finite nunber of critical points with respect to
xﬂle and in general the algorithmconverges only locally. If e. g. h = % ,

(o)

C= {%—} , D= {%} and we choose the vector y'' = (1, 0, -1, 0)T after norna-

lization according to ||3 ll, = 1 as starting vector then fl'(xl) ) "°“11111<>‘f1)

and the sequence {y(k)} generated by our algorithm converges to a solution of

(1)
1

the sane function value, lea& to 1512)- Since we are interested in bifurcation

the formof u ~'. The starting vector y(°’= (o,o,-l,o)T . however, which has

fromthe |argest eigenvalue for restricted problems we [ook at this case in nore

. . y .
detail. Denoting f;h = f}(ll)(yh) and recal l'ing that uh(%) =0 w list in Table 4

the values of the approximate solution for different h and the exact solution
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which is normalized by choosing

1
. (2)"92., . =1/2 _ | (2)|-1
¢, ( g[% 1°ax) —Jui lz
in (5.5).
(2) Y 2 'V (2
h Alh uh(3) uh(3 uh(3)
3 21432293 -.133851 -.043313 .050980
Ll 3
6 .01459822 -.138142 =-.042493 .056045
12 .01465767 -.137874 -.042402 .055918
ex. .0 1466209 -.137853 -.042396 .05598/ 0

Table 4 Approximate and exact values for C = {%4, D = {§&

\\& have then conputed the solutionsyhp of (6.2) with £ = 5;2? i. e. points

(2)
ih

of the eigenval ue problemand using an increasing sequence {pk}. k=1,2,....

on the branch bifurcating from A by starting with the approximte solution

In Table 5 we have |isted the values of P, = ( A ))'1, i. e. of the

ho n Yno
axial force applied to the beam and Yo at the sane points as in the |ast

table (h =<% y. W have p_ = 68.5015

ho
L 2 V2
) Php uhp(3) ‘ uhp(3) uhp(3)
1 68. 9679 -.138252 -.042496 .055980
2 70. 3172 -.277074 - .085001 . 111859
5 78. 3242 -.702718 -.212236 .277923
1o 98.0209 -1. 43655 -.421930 .552830

Table 5 Approximte values for the buckled beam
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In order to show the change in the solution and to check (2.5) we list the

- 1
val ues of Yo = g Upp fOT B = é-and for p = 0 that of the eigenval ue pro-

blemin Tabhle 6.

- 1 - 2 -, 2
()] uh°(3) “hp(3) uhp(so
0 -.138142 -.042493 .056045
1, -.138252 ~.042496 .055980
2 -.138537 -.042501 .055930
5 9. 140544 -.042447 .055585

1o ~.143655 -.042193 .055283

Table 6 Normalized values on the bifurcating branch

It presented no difficulties to follow the branch up to larger values of p

but then, ofcourse the variational inequality (5.1) ceases to decribe the

actual behavior of the bheam

Finally we have plotted the buckled beam for two different values of the force

and the branch for 0 < p<lo.

Figure 2

Figure 3

VW have seen that both problems which have been attacked in this paper, namely
the approxi mate conputation of bifurcating branches for nonlinear variationa
inequalities and the determnation of the bifurcation points may be sol ved
satisfactorily. Already for rather crude discretizations, the conputations
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were performed in BASIC on a cbm 3032, reasonable accuracy was obtained
in the solution of the linearized problem

For the numerical treatment of simlar problens in higher dinmensions, as

e. g. the buckling of plates, the efficiency of the algorithm should be
increased. For variational inequalities a preconditioned cg-nethod was
considered in [11]. The nonlinear restriction u€ds in (5.7) shoul d even-
tually be handled in an indirect way. VW would.suggest an augnented Lagrangi an
met hod. Especially for the follow ng of the branch good starting values for
this algorithmw ||l be available after the linear eigenvalue problem has

been solved. Finally, another question-which was not considered here is

the convergence of the discrete approximtions for h - 0.
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Figure-legends

Fig.tl two eigenfunctions in the case C = {%} , D= {é-}

Fig. 2 Approximate deflection of the buckled beam P =68.9679 and P = 70.3172

Fig. Bifurcation diagram obtained for h = % :
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