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1. INTRODUCTION

If a partial differential equation admits plane’wave solutions of the form exp(i(wt-
&)I, but the speed at which these waves travel is not independent of c, then the
PDE is said to be dispersive. In studying the behavior of solutions to a dispersivd
PDE, a key concept is that of the group velocity C(c), the velocity with which energy
associated with wave number c propagates. Now even if an equation is nondispersive,
any finite difference model of it will be dispersive. Therefore the notion of group velocity
is important to understanding the behavior of finite difference models. The purpose of
this paper is to substantiate this claim by presenting a variety of applications of group
velocity to the study of finite difference schemes. Probably none of the material here is
new, with the possible exception df some observations about stability in Section 5, but
it is not as widely known as it ought to be.

Let us begin by sketching the derivation of the group velocity in one space dimen-
sioneby a stationary phase argument. (This and other explanations of group velocity
are excellently described in the books of Whitham  [13] and Lighthill [8]; the latter’s
discussion in sets. 3.6-3.8 is paiticularly worth reading.) ‘Suppose that a scalar, linear
PDE with constant coefficients admits solutions of the form

u( 2, t) = ,i(w*--ez). (11).

For each real wave number (, assume there is a corresponding real frequency w such
that (1J) is a solution. The relation

W * w(c) (12).

is called the dispersion relation
rightward with t at the speed

which is called the phase speed. Btit the evolution of a wave packet containing several

for the PDE. Now it is obvious that (1.1) propagates

(13).*

wave numbers will be more complicated. Let an initial distribution y(z, 0) located
approximately at the origin have -the Fourier transform F(c) . Then at time t 2 0,
the solution (ignoring normalization factors) can be written

(14).

Suppose z/t is held fixed as t + 00. This corresponds to moving our eyes rightward
at a fixed speed z/t = const. After a long time, what will we see? The answer comes
from observing that as t increases, the exponential in (1.4) oscillates more and more
rapidly with c, hence tends to cancel to 0 as t + 00. Such cancellation will evidently
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take place everywhere except for any f of stationary phase, at which

&f) - h/t) = 0,

i.e.

As t + 00 , therefore, our eyes will see only any wave numbers that satisfy this equation.
In other words, energy associated with wave number f moves asymptotically at the
group speed a

(15).
Consider now the simplest hyperbolic PDE, the one-dimensional wave equation

ut z-u2’ (16).

This equation is nondispersive: its dispersion relation is the linear equation

u(f) =‘f, (17).

and therefore c(f) E C(E) _ 1. Let (1.6) be modeled by a linear finite difference
scheme implemented on a uniform. z - t grid with mesh size h > 0 in the z direction
and k _ > 0 in the t direction, related by a mesh ratio X = k/h. Let Uz denote the

numerical solution obtained at (2, t) = (vh, nk) . For each jh let D&h) denote the
. centered differen’ce operator in z ,

Familiar difference schemes that we shall consider are leap frog,

Crank-Nicolson

LF : CT”+’ - U”-’ = -2kDo(h)Un,

(an implicit scheme),

CN : U”+l - U” = -;Do(h)(Un + Un+l),

and fourth-order leap frog (fourth ‘order in space, second order in time),

LF4 : U”+‘- U”-’ = -2k ;Do(2h) Un.1

(1.8a)

(1.8b)

(1.8~)

Any of these difference schemes, like the original PDE (1.6), imposes a relation
between values of f and w . To determine what the relation is, one need only insert
the solution (1.1) in the difference formula and cancel common factors. The dispersion
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relations turn out to be
LF : sin wk = X sin fh, (1.9a)

CN:
wk

atany = X sin fh,

LF4 : sinwk = 4x3 sin fh x
- s sin 2fh. (1.9c)

The most fundamental difference between these relations and (1.7) is &hat because the
grid is discrete, they are multiple-valued and 27r -periodic in fh and wk . It is enough
to consider the fundamental domain (f, w) E. [-n/h, r/h] X [-r/k, n/k] ; any other
frequency is an alias of a frequency in this domain. The second important feature of (1.9),
is that each relation is dispersive. Near (f, w) = (0,O) , w(f) = f , but away from this
origin the dependence is far from linear. Figure 1 shows the dispersion relations for LF,
CN, and LF4 plotted for mesh ratio X = 0.5 . By (1.5) the slope at any point (f, w)
is the group velocity for the corresponding wave (1.1). Because these curves are not
straight lines through the origin, wave packets -till disperse under any of these schemes,
and understanding their behavior will require the consideration of group velocity.

The remainder of the paper is divided into five sections. Section 2 considers group
velocity in the context most familiar to a physicist-the propagation in one dimension
of pulses, wave packets, and wave fronts. This amounts to a study of the deviation from
linearity of numerical dispersion relations near the (f, w) origin. Section 3 considers the
generation and propagation of parasitic waves by difference schemes, and the reflection
and transmission of waves at interfaces. These matters involve the outlying regions .
of the dispersion relation near f = &x/h and/or w = &r/k . Section 4 discusses .
group velocity in two dimensions -where the finite difference model introduces not only
dispersion, but anisotropy. Section 5 shows that there is a natural connection between
the stability of difference methods for initial boundary value problems and the group
velocity of parasitic waves. Finally, Section 6 gives a brief discussion and a summary of
the earlier sections.
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Figure 1; Dispersion iklations fqr difference models LF, CN, and LF4.
of ut = -u, , plotted for mesh ratio X = .5. Each plot shows the
region [-r/h, v/h] X f--n/k, Irjk] of (f, w) - space. The slope of
the curve at a point (f, w) is the group velocity for energy of that
wave number and frequency. Consistency requires that each curve .
have slope 1 at the origin.

h
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2. PULSES, WAVE PACKETS, AND WAVE FRONTS

.

For a direct observation of group speed, it is simplest to look at a wave packet as in
Figure 2a. The region shown is the interval [0,‘3] , on which. a mesh of size h = l/160
has been placed. The initial packet is a sine wave modulated by a Gaussian centered at
2 = l/2,

u&,0) = e-16(z+)2 sin fs,

with f chosen so that there are 8 grid points per wavelength: fh = 2n/8 m 39,
f = 125.7 . The exact solution of (1.6) should move right. at speed 1. Figure 2b shows
the actual result after the packet has propagated to t = 2 under LF with X ‘= 0.4.
(The exact solution was used to provide values at t = k .) Instead of having reached
2= 2.5, the packet is centered at z = 1.97 , having traveled at speed roughly 0.74 .

This is just the group speed for fh = 27r/8 under LF. First let us confirm that it
is not the phase speed. Applying (1.3) to (1.9) gives

LF : c(f) = 1 si&(X sin ch) m 1 - q(fh)l,
Xfh

CN: 2
c(f) = -

x
Xfh- .

2 + x2-‘(; sin fh) NN 1 - -&f h)2,

(2.la)

(2.lb)

LF4 : x- i sir;2fh x2RS 1 + ,(Eh)2. (2.lc)

(In each case “ = n indicates equality up to C(( fh)4) .) (2.la) predicts a phase speed
c m .91 for the present problem, and clearly this does not account for Figure 2b. On
the other hand applying (1.5) to (1.9) gives the group speeds

LF : C(f> =
cos fh 1-x2 2m - -

dl - X2 sin’ fh
1 2 (fh) 9

CN: C(f) =
cos fh 2+x2 2- -l+ysin’fh w 1 4 Cfhl 3

(2.2a)

(2.2b)

LF4 : C(f) = +- cos fh - -4 cos 2fh x2
41 - (9 sin fh - $ sin 2fh)l m 1 + --i-(fh)2*

(2.2c)

To order (fh)2 each C is 3 times as far from 1 as the corresponding c ; this factor
would become 5 for a scheme fourth-order. accurate in both space and time, 7 for a
sixth-order scheme, and so on. For the experiment of Figure 2’ (2.2a) predicts C =
.737, just what was observed.

This simple example demonstrates the principle that makes analysis of group velocity
errors in difference schemes worthwhile: there is more to the inaccuracy of a difference
scheme than truncation error. The wave in Figure 2b differs completely from the correct
solution pointwise, and so an estimate of accumulated truncation error would lead to the

,
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! Figure 2. Propagation of a wave packet with fh = .79 under ut =
-uz modeled by LF with X = .4. The packet moves not at the _
ideal speed. 1, ‘but at the group speed C M .74.

( 1a

la
0.2

a.6
0.4
a2

(b)

Lo
a8
a6
a4

Figure 3. Propagation and dispersion of a narrow pulse under ut =
-uz modeled by LF with X = .4. Higher wave numbers have lower
group speeds and lag behind the mai’n signal.
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conclusion that the computation had been useless. But in fact, it has been qualitatively
correct. Errors caused by differencing are not random perturbations, but a systematic
superposition of dispersions and possibly dissipations of various orders. Understanding
behavioral features such as group velocity errors can yield various benefits: it can help.
one recognize that a mesh has been too coarse by the nature of the numerical solution
produced; it can guide the initial choice of difference scheme and mesh size to minimize.
such errors; and it can enable one to make the most of an imperfect solution when
further refinement of the mesh would be too expensive.

However, note that although the packet in Figure 2 has moved 26% too slowlyj
it has broadened very little between t = 0 and t = 2-less than 10%. A packet
disperses with time only to the extent that its Fourier transform is broad enough to
include frequencies whose group speeds differ significantly, and in this case the Fourier
transform is a fairly narrow spike. Thus the absence of conspicuous dispersion in a wave
packet is no guarantee that it has traveled at the right speed.

To focus on the dispersion of different wave numbers we can observe the propagation
of a signal that is thoroughly polychromatic, such as the pulse of Figure 3a, This
experiment takes place in the same laboratory .as the last one: z E [0,3] , h’= l/160,
A- 0.4, scheme = LF. But the initial distribution is now

U(2,O) = e-32OO(z--3)' ?

which is much narrower than before and has central wave number f = 0. Since the
pulse is narrow, its transform is broad, and Figure 3b shows that it disperses quickly into
a train of oscillations. Such oscillatory effects of finite difference schemes are common
and well known. What is interesting from our point of view is to see how-much of the
oscillation can be pedicted  by considering group speed. At the front of the wave train,
the low wave numbers travel at speed nearly 1, as they must. The further back one
looks, the higher the wave number one sees; measurements in an enlargement of Figure
3b confirm that the relationship is that of (2.2a) . This example illustrates that group
speed may help explain effects introduced by finite difference schemes even when the
problem being modeled does not contain waves.

Group speed is only a first step in the-analysis of a problem asin Figure 3. More
precise statements involving amplitudes as well as wave numbers can be arrived at by .
extending the stationary phase argument of Section 1 to a steepest descent integration
that takes into account the nature of F(f) .as well as the exponential in (1.4). In this
manner Chin and Hedstrom have derived excellent estimates sin terms of generalized
Airy functions for the dispersion of point discontinuities as they propagate [3]. For
many purposes, however, the much simpler consideration of group speeds will suffice.

The last two examples involve the propagation of a signal whose initial spatial
distribution is given. Equally important are problems in which the temporal behavior
of the signal at a boundary is primary. For example, Figure 4 shows an experiment
in which a sinusoidal forcing oscill’ation  at the left boundary radiates a wave into the
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interior of the interval [0,2] . Here h = l/250, X = 5, and the scheme is CN. The
wave

u(0, t) = sin 50t

has been turned on at t = 0. At t = 1.5 , only a low-frequency forerunner has
reached z = 1.5 ; the main oscillation of amplitude 1 has reached only z = 1.0 or 1.1,
suggesting that the wave front propagates at a speed roughly 0.7. Now to analyse a
problem like this we need to know how C depends on w , not f . Instead of (2.2b),
therefore, we need the formula

CN: C(w) = cos2 $\I1 - ($‘tan2 $ (2 3).

which can be derived by solving (1.9b)  for f(w) instead of w(f) and then setting C =
[df/do]-’ . For the given problem wk = 1, and (2.3) predicts C = .75 . This explains
Figure 4.

These examples show that, depending on the application, either C = C(f) or
C = C(o) may be required. ’ Both (2.2b) and (2.3) are unattractively complicated,
however, compared to the mixed forms

cos fh
L F :  C=-cos wk ’

CN: wkC = cos fh cos2 2,

(2.4a)

(2.4b)

LF4: C =
# cos fh - 8 cos 2fh

cos wk 9 (2.4~)

which follow directly from (1.9) if one differentiates implicitly on both sides, rather than
solving first for w or f . These mixed forms show the separate effects of time and’
space differencing as plainly as possible, and their simplicity often makes them the best
equations to use in calculations involving group velocity, at-least during the intermediate
steps. Indeed, with more complicated difference formulas it would often be impossible
to solve the dispersion relation for w or f, except numerically.

8



Figure 4. Propagation of a wave forced at the left boundary with
wk = 1 under Us = -u, modeled by CN ‘with X = 5. The wave
front travels at the group speed C zz .75 .
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3. PARASITES, INTERFACES., AND MESH REFKNEMENT

The last section showed that since the dispersion relation of a finite difference
scheme is not exactly linear near the t - w origin, waves whose wavelength is not large
compared to the mesh travel at false speeds and disperse. Now we move to questions
related to parasitic waves, which are artifically generated rather than part of the given
problem, and whose frequencies lie near the extremes c = j$/h or w = +t/k.
Parasitic waves are completely nonphysical, but still propagate according to the group
velocity.

Figure 5 shows a typical appearance of a parasite. The domain is [--1, I] with
h = .Ol , x = *.5. On f-1,0] the equation ut = -uz is modeled by LF4. At z = 0
this changes abruptly to ut = -.7ur on (O,l] , modeled by LF4 with the obvious
change of coefficient. (A more careful scheme would use modified difference formulas at
the interface; see Sundstr6m  [lo].) At t = 0 a forcing function

u(-1, t) = sip 40t

is turned on at the left boundary; this oscillation generates a wave slow enough to be
well represented in the given mesh. At t = 1 the wave encounters the interface. The
exact solution would continue through .with no change but an increase in wave number,
but the finite difference scheme introduce8 a reflected parasite of *high wave number,
which appear8 a8 wiggles in [ -.8,0] in Figure 5b.

The fundamental principle to ‘use in analyzing this problem is that in the steady
solution obtained after the initial transients have died down, w must be the same
everywhere. What sine wave8 of frequency w can LF4 support? Figure lc gives the
answer: a small positive w can correspond to two values of t, one near 0 and one
near r/h. The former has C % 1. The latter must have C w -5/3, for the slope of
the di8per8iOn  relation is -5/3 at f = r/h (cf. (2.2~) ). Returning to Figure 5b, one
Sees that the reflected parasite has indeed traveled at speed roughly L5/3 from t = 1
tot- 1.5 ., Incidentally, it would be an easy matter to predict the amplitude of the
parasite, but this is only indirectly. related to group velocity.

In a problem like this the notion of phase speed would be not just inadequate, but
ill-defined. According to (1.3) the phase speed is

but for the reflected parasite this formula gives a speed small and positive if c is
considered to be slightly less than w/h, or small and negative if [ is slightly less
than --n/h*. The difficulty is that since the wave is only observable at discrete time
intervals, it cannot be said whether a sine wave ha8 moved left or right to get from one
configuration to the next. But whatever phase speed one selects will fail to capture the
basic fact, that the edge of the parasite moves left at speed 5/3.

This parasite, arising from the (n/h, 0) corner of the dispersion plot, is of “saw/-
smooth” form-sawtoothed in z and smooth in t . Figure8 la-c suggest that smooth/saw
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0a t ,’ 0.5

Figure 5. Generation of a leftgoing parasite at an interface between
uUt = -uz and ut = -.7u,, both modeled by LF4 with X = .5.
The wave is forced with wk = 0.2 at the left boundary. The parasite
travels left at speed c a 0.80. _

wk - 0

Figure 6. Generation of left- and rightgoing parasitic waves by a
8inu8Oidal  forcing function at the middle of an interval under uz =
-u& modeled by LF with X = .5. (a) ~(0, nk) E 1; (b) ~(0, nk) =
sin(.ln) ; (c) ~(0, nk) = (-1)“. Each plot shows t = .66.
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and saw/saw parasites, arising from near (0, n/k) and (n/h, n/k) respectively, are also
possible (under LF or LF4, though not under CN). Figure 6 confirms this for the scheme
LF. In the same ‘mesh as before, sinusoidal forcing fuxictions  with wk = O,O.l, 7r are
now turned on at t = 0 in the middle of the domain:

(6a) ~(0, nk) E 1,

(6b) ~(0, nk) = sin(.ln) ,

(6~) ~(0, nk) = (-1)“.

This is an artificial experiment, since it amount8 to specifying data on the outflow
boundary of the interval I-1, 0) , but it highlights the completely predictable behavior ’
of parasites. In Figures 6a and 6b one Bees saw/smooth and smooth/smooth waves on
the left and right, respectively, just as in Figure 5. In Figure 6c the waves have become
smooth/saw and saw/saw, although to display the sawtooth behavior in t it would be
necessary to show an additional plot for t = .66 + k . All of these waves travel at
group speeds approximately &l . The remarka’hle z-symmetry in each plot is due to
the c -symmetry about c = n/2h of Figure lc, and the t-symmetry relating i?igures
6a and 6c is due to the corresponding w -symmetry. These details are unimportant,
for they would change with the difference scheme. What is important is that smooth
behavior in either z or t is no guarantee of smooth behavior in the other variable; that
even extremely unphysical waves obey a group speed; and that this speed can easily

_ have the wrong sign.
All of the dispersion plots of Figure 1 leave large gaps of w values for which there

is no corresponding c. A difference scheme is incapable of propagating a wave of such
a frequency. In a problem containing an interface, it may happen that a wave incident
from one side has a frequency not sustainable on the other side, and in thilr .event only
an evanescent signal will be transmitted (cf. [2], Figure8 3-5). Such an interface might
mark a coefficient change (as in Figure S), a change of diflerence scheme, or a refinement
or coarsening of the mesh. To compute the cutoff frequency for transmission, one need
only compute the value of w at which c become8 0 for the scheme at the far side.
Of course, frequencies just below this cutoff, though they do get through the iiterface,
will travel much too slowly. - _

In a problem solved with adaptive or fixed mesh refinement, artificial interfaces
appear at irregular places. As in Figure 5, these interfaces may generate parasitic waves,
which when the mesh refinement involves t- as well as z can be sawtoothed in either
variable. This problem is usually overcome by the use of dissipative difference formula8.
But the possibility remains, in more than one space dimension especially, that a careless
refinement strategy might cau8e substantial degradation of the qualitative nature. of a
wave solution due to errors in simulating the primary (non-parasitic) wave. Suppose for
example that part of a wave packet passes through a region of mesh refinement, and
an adjacent part doe8 not. If the two halves rejoin in the coar8er mesh on the far side
of the refined region, and if the meshes are not fine enough, then the first portion of
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the packet may have pulled substantially ahead of the second. This would be. an effect
of group speed. In a less severe case, the two haives may not separate significantly but
may move apart in phase enough to cause interference when they rejoin. This would be
an effect of phase speed. The latter problem is brought up at the end of the paper on
mesh refinement by Browning, Kreiss, and Oliger [2]. They do not however make the
distinction between ‘phase and group speed, even though an earlier derivation in that
paper amounts to a calculation of the group speed, which is not the speed relevant to
their interference discussion.
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4. GROUP VELOCITY IN TWO DIMENSIONS

The extension of group speed to more thanone dimension is surprisingly easy. In
72 dimensions, z and c become n-vectors Z and t, the dispersion relation take8 the
form

W = w(Z),

and C becomes a vector group velocity c given by the vector analog of (1.5),

c=v,w (4 1).
( V, denotes the gradient with respect to t .) This formula is readily established by *
a stationary phase argument as in Section 1 [8, set 4.4; 13, sec. 7.91. Most nontrivial
physical applications, of course, require more than one dimension. Moreover, problems
in several dimension8 will usually be modeled on a regrettably coarse mesh, so group
velocity errors will be hard to avoid. (One important application area, in which group
velocity problems are indeed conspicuous, is geophysical modeling of waves in the earth-
see the book by Claerbout [S].) Because of the anisotropy of the finite difference grid
itself, (4.1) will imply that coarsely represented waves in multidimensional difference.
models travel not only at the wrong speed, but also in the wrong direction. In this
respect a finite difference grid is analogous to a solid crystal, which also has preferred
directions, and the effects we will discuss have well understood analogs in the crystal

- optics and acoustics literature [l,?].
For simplicity let us confine ourselves to two dimensions. Consider the second-order

wave equation, .
utt = %z + uyy , (4 2).

which we will model by the leap frog scheme LF2 :

on a rectilinear ‘mesh with step siie h in both z and y . The dispersion relation for
(4.2) is the system of concentric circles. .

w2 = c2 + q2 (4 4.

(with z = (t, 7) ), but for LF2 this becomes after some easy trigonometic  manipulations

sin2
wk- = X2

2 (4 5).

From .a contour plot of this numerical dispersion relation, one can see the errors in
group velocity that LF2 will give rise to (cf. [l, chap. 71, [7, chap 151). Figure 7 shows
curves of constant w in c-space for wh = 7r/8,. . . , lln/8. For simplicity X has been
taken here equal to 0, so that LF2 is reduced to a semi-discrete or “method of lines”
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Figure 7. Dispersion’ plot for scheme LF2 in the limit X 3 0.
The region shown is the domain .[-n/h,r/h] X [--7r/h,n/h] of the
t = ([, q) plane. The concentric curves plotted, beginning at the
innermost near-circle, are lines of constant w for wh = 7r/8*,* 2n/8,
. . . , lln/8. The normal to such a curve at a point 5 is the group
velocity direction for a packet of w&e number $ . For an explanation
of the dashed line see the ray propagation example at the end of
Section 4.
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approximation. The full domain portrayed is ([, 7) c [-n/h, r/h] X [-r/h, r/h] ; any
other wave number vector is an alias of a vector in this region. The figure shows that as
w increases, the curve of corresponding t vectors becomes less like a circle and more
like a diamond. Now (4.1) implies that the group velocity for any wave number z points
in the direction of the normal to -the line of constant w through t. By contrast the
phase velocity, since it is normal to the wave front, lies along the ray from the origin
through 7, and so would the ideal group velocity for (4.2). Thus Figure 7 indicates that
poorly resolved wave packets will travel more along a Gagonal  under LF2 than they
ought to. The figure also shows an increasing separation between curves of constant
w as w increases. By (4.1) this indicate8 that poorly resolved packet8 will travel too
slowly, as in the one-dimensional case, and evidently this effect will be more pronounced
at 0’ or 90” than at 45’.

Applying (4.1) to (4.5) recapitulates these phenomena algebraically. Here it is
definitely simplest to perform the differentiation implicitly and settle for mixed forms
involving both w and c, as discussed at the end of Section 2. One obtains the group
velocity components

c, =
Xsin ch Xsinqh
sinwk ’

c
Y
=

sin wk l ( 4  6)
.

Therefore the group propagation angle (from the z axis) and speed for the wave number
vector (c, ?j) are

icl = X&in’ <h + sin’ qh
sin wk .

.) For infinitesimal Eh (4.7) reduces to the isotropic and

but for finite $h it confirms that there is anisotropy and dispersion. Let 8 denote the
angle from the z axis of the normal to a given plane wave. Then to second order

_I(%\ 3 cos4l9- - 1 +- - -4 12 1 9
-0 m 8 + y. sin 40.

(4.8a)

(4.8b)

(4.8a) show8 again that waves will travel more slowly than the correct speed 1, lagging
twice as much (for small X) at 8 = 0” (mod 90’) as at 8 E 45’ (mod 9OO). (4.8b)

.

confirms that waves with f? _ 0” (mod 45’) will propagate perpendicularly to the wave
front (a fact obvious from the symmetries of the grid), but that all other waves will
propagate obliquely, preferring diagonals to horizontals and verticals. The details would
change if the z and y mesh spacings were not equal. ,
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2.0

,a.5

a.0 -a a.5

.

Figure 8. Propagation of a wave packet with l@z = 1.6, 8 = 22.5O
under utt = uzz + aYY modeled by LF2 with X = A. The packet
is shown at both t = 0 (lower left) and t = 1.4 (upper right).
Dots mark the ideal starting and ending positions, and the square the
predicted positon under LF2 .
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0.5 1.5

Figure 9. Propagation of an initial thin quarter-circular pulse to t =
1.4 under utt = uzz + uYy modeled by LF? with X = .4. The
dispersion is twice as great-& 0” and 90” ‘as it ‘45”

2-O

1.5

1.0

0*5

0.0
0 0.5 1.5

Figure 10. Same as Figure 8 but with LF2
isotropic scheme. See text.

replaced by a more nearly
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Figure 8 confirms these predictions. Here a Gaussian wave packet

u(z,O) = sin(Z . i+D30i5i2

with 6 = 22.5O a n d  Izlh = 1.6 has been set up at t = 0. The experiment takes
h- .Ol, x = A, scheme = LF2 . Superimposed on the same plot is the packet at the
later time t = 1.4 . Ideally it should have traveled a distance 1.4 at an angle .22.5’ .
In fact, it has closely matched the predictions of (4.7): 8 = 30.0’ , ICI = .81 .

A second illustration of anisotropy under LF2 appears in Figure 9, the two:
dimensional analog of Figure 3. In the same grid as for Figure 8, an initial quarter-
circular pulse has been made to expand. The two levels of initial data were

u( 5,o) = G -3600(lZl-.3)2
3

u(Z, k) = e -3600(13el-(.3+k))2,

The figure shows the distribution at t = 1.4 . The outer edge, containing low-frequency
energy, has traveled at speed close to 1 and remains a circle. Within this shell, however,
increasingly non-circular rings of higher wave number energy are visible. One can see
that group speeds are greater at 45” than at 0” or 90” by the fact that a given
separation between rings (hence wave number j$l) appears farther from the origiri at
45” than in other directions.

For comparison, Figure 10 shows the same experiment conducted with a difference
scheme designed to be more nearly isotropic. Let LFs denote the LF2 scheme applied
on the same grid with a stencil inclined at 45” - hence with mesh size’ fib . Taking
a linear combination of i,F2 and, LF2 will tend to smear out the anisotropy of LFY ,
and it is straightforward to show that the particular combination

2 1
3LF2 + 3LF2

is isotropic to order (Itlh)’ . Figure 10 shows the difference this makes in the expanding
shell problem. The new scheme disperses waves at all angles as much (to fourth order) as
LF2 does at its worst angles, B e 0” (mod -9OO) ; thus it is entirely worse than LF2 from
the point of view of truncation error. Yet it is easy to imagine that in some applications
Figure 10 would be a more satisfactory outcome than Figure 9. The importance of
isotropic difference formulas-is. considered in a paper of Watts and Silliman (12) for the
problem of modeling flow in petroleum reservoirs. . *

In realistic problems, coefficients will usually vary in space. If the wavelengths of
concern are small on the scale of the spatial inhomogeneity, then well-known ray tracing
formulas will make it still possible to predict the errors introduced by finite differencing.
Let the PDE or difference approximation now have the dispersion relation

W = w(z,  t).
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Then the ray tracing formulas for propagation of a wave packet are (7, sec.. 4.51

(4.9u)

2=-o w

dt z #

w(t) S const.

(4.9b)

(49 1. C

The significant change here is that a refraction formula- (4.9b) has been added to the
group velocity formula (4.9u).  These equations reduce the ray tracing problem, for
either the PDE or the difference approximation, to the job of integrating an ordinary
differential equation in Z and t.

As an example here is a problem in a stratified medium in two dimensions. Suppose
that a wave packet at the origin, initially oriented at an angle 0(t = 0) to the z-axis,
is made to propagate in the direction of increasing z under the equation

utt = a2(Y)(uzz ;t UyJ. (4.10)

L e t  7 = (Ed) again* Because the problem is stratified, (4.9) can be simplified by
observing that as the packet propagates, c(t) as well as w(t) will remain constant.
Given y(t) 2 ~(4 can therefore be determined without integrating (4.9b) from the
dispersion relation

w2 = a2(y)(t2 + v2>

for the PDE or (in extension of (4.5))

sin’ ok- = a2(y)X2 sin 2 0
2 2 + sin2 1 (4.11)

for LF2. This amounts to an application of Snell’s Law. 5(t) and t(t) are then
determined by (4.94). Thus in the stratified case (4.9a - b) reduce to an ODE for Z
alone.

In particular, take 0(O) = 45* ‘and

U(Y) = 1+ y’*

For the PDE, straightforward manipulations based on Snell’s Law give the ray equations

g(t) = $P + Y?(t))?, (4.12a)

?xt) = (1 + Y2(q2
d(l- 2y3 - y4)/2’

For the approximation LF2 , one gets

(4.126)

(4.13a) .



Tj(t) = (1 + y2(t)) x ;n;;)h, (4.13b)

with 7 = ~(w, c, y) determined by (4.11). Figure 11 shows numerically calculated ray
paths predicted by (4.13) with X = .25 for wave numbers’ Itlh = 0 , 1.5 , 3 . The*
ideal solution, corresponding to Itlh =. 0, is an oscillatory path that varies smoothly

between &sia- m k.6436. A s  IElhincreases, indicating a more and more
coarsely resolved wave packet, the ray approximates a zig-zag between the same limits
instead. This is another reflection of the favored role of diagonals under LF2 .

The dotted line in Figure 7 gives a more intuitive explanation of where the zig-zag
behavior comes from (although Figure 7 represents X = 0, not X = .25 ). The initial
packet with ltlh =’ 3.0 has the wave number vector marked A. As the packet traverses
the ray up, down, and up again, t crosses the [ axis, hits point B, then returns to the
c axis. The path in z -space is a straight line segment because t(t) remains constant.
The frequency w(t) is also constant, but as a2(y(t)) changes, the frequency that each
contour line in Figure 7 corresponds to changes, so the line AB appears to cross frequency
contours. One can see that the group propagation angle will begin at 8 = 45”, then
actually increase siightly above this figure before falling below it. Sure enough, this
effect is visible in Figure 11. Computational experiments with a wave packet like that
of Figure 8 also confirm all of these predictions.
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Figure 11. Predicted rays for the wave packet of Section  4 when
modeled by LF” with X = -25 for IQh = 0 (exact solution), 1.5
and 3.0. Each ray goes from t = 0 to t = 6. -4s the mesh become;
coarser the group speed reduces and the path approaches  a zig-zag.
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5. GROUP VELOCITY AND STABILITY

For a finite difference model to be useful it must be stable as well as accurate,
which means that small errors (such as rounding errors) must have no possibility of ~
growing uncontrollably and thereby obliterating the correct solution. For pure initial
value problems (m’s), in which a PDE is solved in an unbounded spatial domain, the
question of stability is well understood theoretically [9,11]. For initial boundary value
problems @VP’s), however, the situation is much more complicated. The purpose of
this section is to point out that the stability or instability of an IBVP difference model
has a natural connection with what group velocities the model can support.

The best available theory for stability of IBVP models appeared a decade ago in ’
an important but difficult paper’ of Gustafsson, Kreiss, and SundstrGm-henceforth
“GKS”[6]. This theory is truly complicated, so our remarks will not attempt rigor or
full generality, but will focus on the simplest (and most important) case that it resolves.
Several of the cases that remain are associated with group velocities C = 0, and are
not well treated by the GKS theory, which because of an unnaturally strict stability
definition rules at least some su;ch problems unstable that are really stable. An example
of this kind will be given at the end.

Consider the first-order hyperbolic system

ut = Au, + F(z, t) (5.10)

on the quarter-plane z, t 2 0 , where u and F are N -vectors and A is a constant
N x N matrix. Assume that A has the form

where AI is Nr X Nr , An is Nrr X Nn , and both are hermitian and positive definite.
Appropriate initial and boundary conditions for this system are

U(& 0) = f(z), u’(o, t) = Su”(O, t) + g(t), (5.lb)

where ux and  u* make up a partition of -u corresponding to the partition of 4, and
S is a constant Nr X Nrr . matrix. Let (5.1) be modeled on a uniform h - k grid by a
fixed “interior” formula at all points zV 2 rh together with 7 “boundary” formulas
for the points 20, . . . , ~~-1. Assume that the interior formula is Cauchy stable-that
is, it would be stable if applied for all z in a pure initial value problem. Denote the
combined difference operator in the homogeneous case by (P , so that

un+l = au”

when
size h

gso. For simplicity assume that Q, is constant
that k = Xh for all tr with X constant.

independent of, the m e s h
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The basis of most stability, theories for difference models is normal mode analysis,
the study of eigensolutions of the difference operator: that is, of spatial distributions $,,
with the property that UE = z”& is a solution of the homogeneous difference model,
for some complex constant z . The idea is that if an eigensolution with Izl > 1 exists ’
that might be excited -by random errors, then the model is unstable. The mathematical
complexities come in pinning down what it means to be excitable -by such errors, and in
determining how close the criterion IzI 5 1 is to being a sufficient as well as necessary
condition for stability.

Let us begin with the easiest case, which requires neither group velocity nor the GKS
theory. Suppose there exists an eigensolution 4 = (#o, 41, . . .) E J2 of the difference
model Qi , i.e.

(W)Y = d” VQO, (5 2).

with Izl > 1. This equation must hold not only in the interior, but also at the boundary
points 20, . . . , zV,l . Since Q E 12 , the rounding error at a given step might in principle
be a small multiple of 4 ; in ‘general,1 a random- error distribution must be expected to
include a small component of 4. This component will immediately begin to grow like

I Izn, and for small enough h, k, the growth is more rapid than eat for any fixed CY.
This is an unambiguous kind of instability, and in practice if such an eigensolution exists.
in an IBVP computation, it will almost always overwhelm the correct solution rapidly.
We have shown:

Godunov-Ryabenkii (G-R) condition[g]: A necessary condition for stability of
an IBVP model is that there exist no eigensolution + E & with 121 > 1 .

Now consider the pqssibility  ItI = 1 . Suppose that for some complex number tc
with Iti1 = 1, the difference model admits an eigensolution of the form

for some N.-vector $ . In this case 4 e e2, so it is no longer clear whether random
errors must contain a component of 4, and since Izl = 1, it does not appear that such
errors will grow anyway. Let us sidestep these issues by considering the function

u* I
h= for zy 5 M

Y 0 for zy > AA

for some constant M. U* is not an eigensolution of Q!, for it will change form at
each time step. Near z = 0 , it will behave like’ Q , and for z ‘>> M it will remain 0 .
What happens near z = M , however, depends on the group velocity. Write z = eiwk
and R = eieh . Since 4 is an eigensolution, w and [ satisfy the dispersion re1atio.n for
the interior scheme, and under normal circumstances the corresponding group velocity
C- dw/dc exists and is real. Then as. t i 00, the wave front at z = M will retreat
into the boundary if C < 0 and advance steadily into 2 2 0 if C > 0. In the latter
case, we have a polynomially growing instability. The initial L2 norm is then llU*ll2 =
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~ll$llz  , b t ‘d tl ‘t ‘11u evl en y 1 WI grow as t + 00 according to IIU”lls = dm ll+llg.
Since A4 may be arbitrarily small (provided h is decreased correspondingly to maintain
h < M ), this growth is an unbounded function of the initial distribution.

More generally, suppose that the difference model has an eigensolution

(5 3).

with I/c;1 = 1 for each i and Izl = 1. Assume that for each i , Ci exists and satisfies.
Ci > 0 . Then again we have a polynomially giowing instability. One may express this
as follows:

G-R condition extension: A necessary condition for stability of an LBVF model
is that there exist no eigensolution of the form (5.3) consisting entirely of

5 outgoing waves- that is, of waves with Ci > 0 .

In practice an instability of this kind will often but not always cause trouble in a
realistic computation, since its polynomial growth is relatively slow. When more than
one boundary is present, however, repeated reflections back and forth may sometimes
convert the polynomial growth to exponential [6].

Let us now look at an example, then turn to the GKS theory proper and to some
of the complexities we have glossed over, and finally concentrate on some difficulties
associated with C = 0.

Suppose we set out to solve the scalar IBVP Q = u, on z, t 2 0 by applying .
LF or CN for zy 2 h. With either of these schemes we need a boundary formula for
the point 50 = 0. AlmoSt any formula will satisfy the G-R condition, but many will
violate the extension. In particular, consider I the possibilities .

BCl: U,*+I = U;+‘,

BC2: U.*+I =.UT, .

BC3: U.*+I = U;-’ + (X i l)(U; - U;).

From Figure 1 it is apparent that CN admits a rightgoing parasite with (ch, wk) =
(q 0) , and LF admits this and also a rightgoing parasite with (t/x, W/C) = (Oj n) . If
either of these waves satisfies the boundary condition, the model is unstable. Now the
(q 0) wave is sawtoothed in 2 and constant in t , so it does not satisfy BCl or BC2. .
But it does satisfy BC3, from-which we conclude.

Unstable: LF or CN with BC3.

Similarly, the (0,~) wave satisfies both BCl and BC3, which implies .

Unstable: LF with BCl or (again) BC3.

Of course we have not examined all potential outgoing eigensolutions, nor shown that
the absence of them implies stability, but it turns out that the cases not excluded above
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are indeed stable: LF or CN with BC2, and CN with BCl 16, Sec. 61. Note especially
that the wave with (ch, wk) = (~F,T) is an eigensolution of LF with BC2, but it has
c - -1 < 0, so this is not an indication of instability. The same goes for the constant
wave (ch, wk) = (0,O) with any scheme and any boundary condition.

How does all of this relate to the GKS theory? The theory is built around a rigorous
treatment of eigensolutions 9 with ItI = 1. It shows first every such # can be resolved
algebraically in terms of characteristic values G of the interior difference formula, as
in (5.3). But where we have asked whether Ci > 0 for the case Izl = IQ] = 1, GKS
consider the algebraic question: when ]z] = 1 is perturbed to the outside of the unit
circle, does K+ move to ]~;l < 1 or to ]KJ > 1 ? (The possibility loci]  = 1 is excluded
by the Cauchy stability of the interior scheme.) It is easy to see that when C; = dw/d&
exists and is real, with t = eiwk and tc; = eitih , then Ci > 0 implies the former
and C; < 0 the latter. Thus the GKS condition is, roughly, a condition on group
velocities. The difference is that there are many cases covered by the GKS approach
that do not directly fit the group velocity formulation. First, (5.3) is generalized to
allow the possibility of defective characteristic values tc; . Second, the theory allows for
the possibility I&J < 1 , ItI = 1 , which it holds to be unstable. Third, it does not
require C = do/d< to exist or be real, and when C exists but is zero it rules the model
stable or unstdble according to the behavior under perturbation. All together, the main
theorem states:

GKS theorem: The IBVP model is stable if and only if there exists no eigen-
solution with 121 2 1 and lx;] 5 1 j where in the case 121 = Iql = 1 one
admits onlya those n; which perturb !o In;] < 1 for 121  > 1.

Eigensolutions of the latter kind are properly called generaiiaed  eigensolutions.
On the face of it, then, whereas the G-R condition and its extension are only partial

results, the GKS theory completes the study of stability by establishing a necessary and
sufficient condition. But it turns out that in order to achieve this, the theory adopts
a very strict definition of stability (Defn. 3.3 of [6]), under which some eigensolutions
with C; = 0 are found to be unstable that in fact do not grow with t in the 4 norm.
Here is an example.

Let utl, = ut be solved by LF on the-entire real line z E (--00, 00) . This is not
a boundary value problem, but we can pretend it is one by writing it as the equivalent
vector system

u(0) = v(o)

on z, t 2 0, and solving this with the LF formula for zy 2 h together with boundary
conditions that mimic LF at zo = 0,

*+I n-
Uo -4

1
= x&f;  - V;l),
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V *+l n-
0 .  -v,

1
= Vu;’- VT).

This trick of “folding” an M? into an IBVP is a standard one for analyzing stability
in problems with discontinuities or interfaces [2, 4, lo]. Here we have the degenerate
case of a completely transparent interface. Now LF is well known to be stable in the
& norm for ut = u, on (-oo,&) . Yet according to the GKS theory; our model for
(5.4) is unstable! The numbers rc, = &i, ICY = Fi , z = exp(&isin-’ A) can be
seen to define an eigensolution such that when z is perturbed to Izl > 1, the effect is
litUl < 1 and In,,1 < 1. This is a case with CU = C, = 0.

The explanation for the apparent paradox is that the GKS stability definition
essentially requires the norm

IlUll 2 = k 5 lu;;12 + hk e lU;12
w-0 u,n=O

(5 5).

of the computed solution to be uniformly bounded in. terms of the initial data. This
norm is unusual in that it measures ’ U not only in the field z, t 2 0 , but also as an
integral along the boundary z = 0. For any difference model that permits C(e) = 0
for some c, hence for almost any nondissipative method, the possibility exists that an
initial distribution dominated by such .c will accumulate in a sharp stationary spike at
2 = 0, and then it will be impossible to contain the growth of the left-hand sum in
(5.5). Figure 12 shows an experiment contrived to make exactly this happen. The idea
is that if one sets up initial data with a local wave number distribution satisfying

C( E(4) = --t/T, (5 6).

then energy from each point will have moved to th,e origin at time 7’. For LF C(t) is
given by (2.2~) , and (5.6) becomes after some manipulations

Eh=sin-‘{z.

An initial signal with this wave number distribution,

U(q k) =-U(z, 0) = 0.1 sin [I” C(W],

appears in Figure 12a (with T = 35 ). (The integral was evaluated numerically.)
Figures 12b-d show the configuration at times t = .9T = .675, t = T = .75, and- .a--
t- l.lT = .825 . As intended, a spike of magnitude approaching

u(0, t) = Oal
a77

evidently forms at z = 0, and since this function diverges in the norm (5.5) as k + 0,
the LF model for (5.4) is indeed unstable in the GKS norm, even though it is stable in
t2 '
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Kreiss, and Sundstriim, this possibility makes LF unstable for the
Cauchy problem if 2 = 0 is thought of as an interface point.
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It is clear enough that this transparent interface problem is a degenerate one, since
we can show itis & -stable by the more elementary theory of IVP models. But one
can devise boundary formulas that permit eigensolutidns with C = 0 which are not
susceptible to such an argument. One example of this appears with the equation ut =.’
uz on z, t > 0 modeled by LF with X = .5 and the (bizarre) boundary condition
UO

n-i-1 = q-2. The GKS theory calls this model unstable, btit it is not clear what
kind of growth there is redly a danger of.

To summarize this section, we have found a connection between the instability of
an IBVP model and the possibility that a set of waves with C > 0 can radiate from
the boundary without being stimulated by incoming waves with C < 0. Since group
velocity governs the flow of energy in a difference model, and instability is related to
the uncontrolled creation of energy, it is not surprising that there should be such a
connection. We have also found that borderline cases with C = 0 are not satisfactorily
treated by existing theory. This is also not surprising, as these cases are the numerical
analogs of IMP’s with characteristic boundaries, and the theory of such problems is
well known to have complications of its own.
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6. SUMMARY

why worry about group velocity in finite difference schemes? One answer is that
by doing so, one can obtain a great deal of insight with a small amount of effort. We
have done little here besides write down dispersion relations and differentiate them, yet
the result has been a quantitative understanding of differencing errors in wave wave
propagation problems, of the appearance of parasitic waves, of the anisotropic behavior
of multidimensional difference schemes, and of instability-in initial boundary value prob-
lems. Many more matters related to group velocity could also be pursued, particularly
with regard to amplitude and energy propagation; as usual, the difference model intro-
duces systematic errors here, which become particularly interesting in problems involv-
ing reflection and transmission at real or artificial interfaces.

The major omission from the practical point of view has been our neglect of
dissipative difference formulas. All finite difference models are dispersive, but many are
dissipative as well. Dissipation makes wave pack-ets not only travel at the wrong speed,
but also decay with time. It also eliminates most parasitic waves by turning them into
rapidly attenuating waves. Nevertheless, boundaries can still introduce instability. For
many difference schemes (such as .Lax-Wendroff), dispersion dominates dissipation, and
the effects of dissipation on group velocity can be added as higher-order corrections to
the results obtained by ignoring it. However, an exact treatment is more complicated.
One must now consider a complex dispersion relation, and replace the stationary phase.

- argument with an argument of steepest  descent.
It is worth mentioning explicitly that the examples given here have involved larger

errors than would be tolerated in realistic computations. In a finer grid, group speed
errors might be I%, not 25%; parasites generated at interfaces might be ten times
weaker than in Figure 5; dispersion as pronounced as in Figures 3 and 8 would be out
of the question. We have focused on pathologies to bring out the general principles.

Here is a summary of the points that have been raised here. Once .again: h =spatial
grid size, w = frequency, [ = wave number.

Section 1: Introduction
l Difference models, even of nondispersive PDEs, are dispersive
l Their dispersion relations are periodic, nonlinear, and in general multiple-valued
l Wave crests travel at the phase sped c = w/t
l Energy travels at the group speed C = dw/d(

Section 2: Pulses, wave packets, and wave fronts
l c typically lags the correct speed like ([h)’
l C typically lags by 3 times as much
l Wave packets and wave fronts travel at the group speed .
l Wave number dependent group speeds account for numerical dispersion
l Lack of conspicuous dispersion does not ensure correct propagation speed
l Some analyses require C = C(c), others C = C(w)
l The simplest formulas for C mix both c and w
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Set tion 3: Parasites, interfaces, and me@ refhemen t
l Sawtoothed parasitic waves also obey a group speed, which often has the wrong

sign
l Smoothness in z or t does not imply smoothness in the other variable
l Group speed is the only meaningful speed for parasites
l C(w) = 0 defines a cutoff frequency for transmission through an interface
l InsufEciently cautious mesh refinement can cause distinct problems related to

., both phase and group speed

Section 4: Group velocity in two dimensions
l Difference methods in several space dimensions are anisotropic
l Wave packets travel atthe vector group’ velocity C = Vt w
l Poorly resolved packets travel at the wrong speed and direction
l Differencing errors in heterogeneous media can be predicted by standard ray

tracing formulas
l A numerical Snell’s Law holds for stratified problems
l Group velocities can be inferred from a contour plot of the vector dispersion

relation

Section 5: Group velocity and stability
l An algebraic condition of Gustrafsson, Kreiss, and Sundstrijm can be partially

interpreted as a condition on group velocities
l Instability of an IBVF model is related to the possibility of radiating outgoing

waves at the boundary ( C > 0) that are not stimulated by incoming waves
l Different wave form and group speed combinations correspond to qualitatively

different kinds of instabilities
l When all group speeds are zero a GKS instability may be spurious
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