




Large time-step shock-capturing techniques
for scalar conservation laws
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Abstract. For a scalar conservation law ut = f(u)% with f” of constant sign, the first order
upwind difference scheme is a special case of Godonov’s method. The method is equivalent to
solving a sequence of Riemann problems at each step and averaging the resulting solution over each
cell in order to obtain the numerical solution at the next time level. The difference scheme is stable
(and the solutions to the associated sequence of Riemann problems do not interact) provided the
Courant number u is less than 1. By allowing and explicitly handling such interactions, it is possible
to obtain a generalized method which is stable for v much larger than 1. In many cases  the resulting
solution is considerably more accurate than solutions obtained by other numerical methods. In
particular, shocks can be correctly computed with virtually no smearing. The generalized method
is rather unorthodox and still has some problems associated with it. Nonetheless, preliminary
results are quite encouraging.
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1. Introduction.

A scalar conservation law is a partial differential equation of the form

%(X9 t) = f (4% t))s (11).

where u : lRX[O,oo)+  IRandf: lR + IR. When u is a density and f a flux, (1.1) states that
the integral of u over some interval (~1, $1) changes only due to the flux through the endpoints,

d
J

21

at %1
u(x, t)dz =

= f (U(Q t)) - f (u(a, t)).

The theory of conservation laws is described, for example, by Lax[‘l] and Whitham[lO].
The most basic problem for a conservation law is the Riemann problem, which is (1.1) together

with piecewise constant initial conditions with a single discontinuity,

u(x,o) =
1
; - x < x0

x 2 so. (la.

The solution of a Riemann problem can often be found analytically. Various numerical schemes
for solving (1.1) with arbitrary initial data are based on solving a sequence of Riemann problems
exactly. As usual with finite difference schemes, we choose a spatial stepsiae h and a time-step Ic
and set xi = jh, t, = nk. We then approximate u(xi, tn)  by u?. But now we view the discrete
solution {u?} not as an approximation to some smooth function but rather as a representation of
a step function

u(x, t*) = ui” f o r  Xj-l/2 < X < Xj+l/l (13).

where xi+ l/a = xi +h/2. Each discontinuity defines a single Riemann problem. If the time-step
k is sufficiently small, the solutions to these Riemann problems do not interact in time k and
the solution to (1.1) with initial conditions (1.3) can be computed exactly. This is the case if the
Courant  number,

u = $ max f’(u(x, tJ),2
is less than 1. In order to continue this process we must project the exact solutions of the associated
Riemann problems onto the computational grid. This mapping can be defined in various ways.
Setting uy +’ to the average value of u(x, t,+l) over the cell (xj-l/a, xj+i/s)p i.e.

n+l
J

zj+l/l

3
z/g- ~(2, tn+ l)dx

2j-l/l

gives Godoaov’s metbod[li].  Setting uy+’ to the value of u(x, tn+l)  at some randomly chosen
point in (xj-l/s, xj+l/s)  gives Chorin’s version of Glimm’s scheme, also known as the random
choice method[l] [3]. This method has the advantage that shocks and contact discontinuities in the
solution remain sharp. However, their positions are no longer correct in general, although they
are in an average sense. Both of these methods can also be used more generally for systems of
conservation laws.

The aim of the present paper is to show how, for scalar conservation laws, the restriction
v < 1 can frequently be dropped by explicitly handling the interactions of the solutions to the
various Riemann problems. This has the obvious advantage of requiring less work to advance the
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solution to a given time. It also turns out to be more accurate in many situations. In particular,
for large values of Y, sharp shocks can be maintained even when using Godonov-type averaging.
The problems associated with random choice methods can thus be avoided. The resulting scheme
is conservative and shock locations are correct, at least for problems involving only shocks. The
procedure described below has also given very good results on nulnerous  problems involving shock-
rarefaction interactions, but there are still some difficulties to be resolved in this area. These will
be discussed in section 5.

In some ways the method is best thought of as a generalization of the first order upwind
difference scheme for a constant coefficient linear problem. Recently Roe[9] has advocated viewing
difference schemes for such equations in an “increment form” in order to generalize them to new
methods for systems of conservation laws. We will begin in the same framework, and generalize in
a different direction.

2. The constant coefficient linear problem.

*We begin by considering the constant coefficient linear advection equation

ut = cuz c > 0. (2 1).

We define
A: = t~j”+~ - UT,

u = ck/h, the Courant number.
Any explicit linear two-level difference scheme can be written in increment form as

n+lU.3 -ujn=-Yc 7dq+i (2 2).
i

for some choice of the coefficients 7;. The scheme is at least first order accurate if

c 74 = 1.
i

Further conditions on the 7; give higher order methods. See Roe[Q] for a more general discussion.
We now think of implementing (2.2) in the following way: for each j we compute uA7, split it up into
fractions proportional to 7+, and add the ith fraction to uyei.
as a formula for computing UT+‘,

. Thus rather than interpreting (2.2)
we can take it as a prescription for distributing the incremental

data uA7 over nearby meshpoints.
The choice of coefficients 7i can be motivated in the following way. For simplicity consider a

single Riemann problem

This is interpreted as a discretiaation of

U(X, ha) =
{;

= < v+r/a
x 2 v+1/2*

At time tn+l the solution of this Riemann problem is

(2 3).

U(X, L+l) =
X < x1+1/2  - uh
5 > 5J+1/2  - vh*



We would like our approximation un+1 to be some discrete representation of this jump. If v = 1,
the jump is at z J-l/2 and is represented by

j<J-1
j> J - l . (u= 1) (2 4.

On the other hand, if v < 1, the true position
jump over more meshpoints. One possiblility is

a
n+l

% = a +u(p - a)
P

of the shock can be represented by smearing the

j<J
j=J (u 5 1) (2 5).
j > J.

This agrees with (2.4) for u = 1 and has been chosen so that the discrete conservation law holds,

c hujn+l = c buy +kc(p  - a).
i i - I

Note that each uj is the average value of U(X, t) over the interval [xi-1,2, Xj+l/2]*
For arbitrary {UT} we apply (2.5) to each discontinuity in the step function (1.3). This yields

the standard first order upwind difference scheme

n+l
% = u; +A; (2 6).

obtained from (2.2) by taking 70 = 1 and all other ri = 0.
Other conservative representations of a jump at xJ+1/2 - uh are also possible. These lead to

other special cases of (2.2). For example, replacing (2.5) by

a j<J-1
a ++(I +u)(P - a) j = J
P ++u(l- u)(B - a) j = J +l
P i2J+2

,(2.7) -

leads to the general scheme

n+l
% = u; +fu(l +,)A; +fu(l- y)Ajll

which is the Lax-Wendroff scheme for (2.1). For smooth solutions this is often preferable to (2.6),
being second order accurate. For a single time-step on the Riemann problem, however, (2.7) is
clearly inferior to (2.5) since the discontinuity has been smeared over more mesh points than
necessary and since the approximation is no longer monotonic.

We will call (2.5) the optimal representation of a jump at XJ+~/S - uh, since it is monotonic
and involves as few mesh points as possible.

Implementing (2.6) can now be described as follows: interpret the data (~7) as being a sequence
of Riemann problems, solve the Riemann problems exactly, and then represent the resulting
discontinuities on the finite mesh via (2.5). This viewpoint will prove fruitful when dealing with
more general conservation laws.
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3. Upwind differencing with Y > 1.

Adopting the viewpoint proposed in the previous section allows us to extend the scheme (2.6)
for use with large time steps. Attempting to apply (2.6) directly with v > 1 is unstable. Instead
we again interpret the discrete data as a representation of a step function and solve a sequence of
Riemann problems. Again consider the single discontinuity

The discontinuity A’j = /3 - a! at zJ+1/2  propagates under (2.1) to 2J+1/2 - vh at time t,,+l.
Let p = IvJ, the integer part of V. Then 2~+1/3 - vh = z~-~+1/2 - (V - ,u)h. The solution to
the Riemann problem is

2 < “J-fi+l/2 - (u - Pb
x 2 XJ-p+1/2 - (u - p)h. (3 1).

which we must now represent on the discrete mesh. By again averaging the solution over each cell
we obtain the representation .

n+lU.3 = Q +(u - p)(P - a)I
‘2 j< J-p

j = J -p (3 2).
P j> J-p.

This is also the natural generalization of (2.6) if we read (2.6) not as “add ZJ times A: to the next
mesh point over” but rather as “add A; to the next ZJ mesh points over”. Applying (3.2) at each
discontinuity gives the following scheme for general (~7):

n+lU-I = ui” +Ai” +Ajl-1 +a l . +A:+, +(u - p)Ay+,+r.

Most of these terms cancel, leaving

u;+l = (1 - (u - P))ujn+,+z  +(u - 4q+p+2*

This is simply the method of characteristics with linear interpolation.

4. General scalar conservation laws.

Now consider a scalar conservation law

ut = f(u)z* (4 1).

We will always assume that f”(u) has constant sign for all u of interest. Suppose, to begin with,
that fN > 0 and that u(x, 0) is nondecreasing.

Again let A? = u:+~ - UT and set

CT = (p (u;+l) - f @))/A?
u; = c;k/h, ’
py = 1 Ju; .

for A; # 0, ’
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Figure  4.1. An example of shock propagation without explicit handling of interactions. The squares
represent the grid function, the solid Iine its interpretation. The arrows show the propagation of the Aj.
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Each c? is the propagation speed of the discontinuity A? according to the Rankine-Hugoniot
relation. We do not need to define cy if A? = 0; there is no need to propagate jumps of height
sero. In general the discontinuity A? is now a shock which travels at speed CT and should propagate
u3 grid points in one time step. For concreteness assume that it is propagating to the left. As a
first attempt at generalizing the procedure of section 3 we try adding AT to 2~7, z~jn_~, . . ., u?-~,,+~j
and (~7 - ,s?)A~ to uy+.i This gives a conservative scheme, since

c IL;+’ = c IL: +c ui”Aj”
i i i

so
c n+lhuj - C hU7 = k x( f (uy+‘) - f (uy))
i i

= 4(++ f(-4).
Again this scheme can be interpreted as the method of characteristics with linear interpolation.
The problem is that when some u? > 1 we may be allowing characteristics to cross, i.e. some
shocks may propagate right past their neighbors, rather than coalescing into a single shock as
should happen. An example will illustrate this.
Example 4.1. Consider f(u) = iu2 in (4.1), i.e. ut = uu%. Take the initial conditions

. 0
0u. =3

{

j<J
2 j=J (4 2).
3 j>J

and k = 2h. Then

A;-, =2 .c;-l= 1 uDJ+= 2
A;=1 COJ = 512 UDJ = 5

We thus add A;-, to the two mesh points u;,~ and utc2 and A; to the five mesh points
UOJ, . . .) UOJ-4. We find that

0 j< J - 4
1u.i
3

I
1 J-4<_jsJ-3 (4 3).
3 j> J - 2

This is illustrated in Figure 4.la. Rather than coalescing into a single shock, At has “passed right
by” AtBl. The resulting u1 is not the optimal representation of the true solution at time tl,

although it is a conservative representation. (The true solution is a single shock at x J-3 - h/6.)
Remarkably., the shock does not become further smeared out at subsequent times. In fact,

starting from (4.3) we compute that

{

0 j< J - 7
u;= 2 j= J-.7

3 j> J-7

as shown in Figure 4.2b. In this case the shock has sharpened and is, in fact, the optimal
representation of the true solution: a shock of height 3 at x J-s - h/6. It has precisely the same
shape as u” and at future times u3, u4, us,. . . will alternate between the shape of u1 and that of
u”, always being a conservative and monotonic representation of the true solution (although not
always the optimal representation). In this example the shock is never badly smeared and the
solution is quite acceptable for all t,. If we had taken k/h much larger, however, the resulting
solution would have been badly smeared, at least for some t,,.
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This problem can be greatly alleviated by explicitly handling the coalescing of shocks. This
is not as difficult as it sounds due to the following result.
PROPOSITION 4.1. Consider the conservation Isw ut = (f (u))z with f”(u) > 0 for a! < u < 7
and initiarl conditions

{
;

x < e1
u(2,o) = (1 5 x 5 (2

7 x > 62

for some & < 62, cy < /9 < 7. Let t, be the time at which the two shocks coalesce. Consider the
same problem vt = (f(v))% with initial conditions

VW) =. 1
a x < (07 x 2 co

where co = ((@-a)&  +('I - p)(a)/+ a). Then, fort 2 t,,

45 t) = v(x, t) vx.
The same result holds if ~1 > @ > 7 and f”(u) < 0 for 7 < u < ac.

This result is an immediate consequence of conservation. The implication is that whenever two
adjacent shocks A?-I and AT are going to coalesce at some time between t, and t,+l (i.e. when
kc”J > kc”Jml +h) we can simply merge them into a single shock A = AF-l +A3 at time t, and
propagate this merged shock. At time t,, 6 is located at 2 = (A3-1x~-1,2 +A~xJ+&~ and
it propagates at speed E = (f(uF+J - f(u3-l))/(u3+1 - u’J-J. We then optimally represent ’
the resulting shock solution at time t,+l on the discrete grid. Applying this procedure to example
4.1 give3

u; =
{

0 j< J-33n
2 j=J-33n V?I
3 j >  J - 3 n

which is always the optimal representation of the true solution.
For general data {u?} it may be necessary to merge several shocks at a time. Since the

propagation speeds of the shocks change as they coalesce, it is not always easy to write out the
appropriate equivalent problem a priori. The following procedure can be used, assuming A? is
nonaero for a finite number%  of points xj. Let 7 = (2”) be the set of ordered triples

where each 34 is the location of a shock, a discontinuous jump in u from the value u,~ on the left
to u,? on the right. The Ti are ordered from left to right so that %; < %;+I. For each triple we
define

2j = (f(Q) - f (U,))/(U~ - UT)
&=u+-u~.

Initially the T; are chosen as the triples (xj+l/2, UT, z$‘+~) corresponding to nonxero A?. We wish
to replace 7 by a new set of shocks S which do not interact in time k and which yield the same
exact solution at time t,+l as the original set. This can be accomplished by Algorithm 4.1, which
works from left to right and employs a stack of triples Si for i = 1,2,. . ., I. The rightmost shock
on the stack is represented by Sr, which is on top of the stack. The stack has the property that
at the beginning of each iteration the shocks represented by the Si would not interact in time k if
there were no disturbance to the right of 51 (i.e. if u G ut for x > 51). Each new shock is put
on top of the stack and then is merged as necessary with shocks already on the stack.
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ALGORITIIM 4.1.
I 1:=
Sl := TI
for j := 2,3,.  . ., N do

I := I+1
SI := Tj
while 0 < (!?I- ?I-#@ - 21-l) < k do

remove Sr and S1-1 from the stack and replace them by a single triple with
$= (c--l&-l +GL)/(&-1 -1-L)
u -  =  UT-1
u+=ut

I :-I--l

It looks as if this algorithm may require O(N2) steps in the worst case, because of the nested
inner loop. It is always linear, however, because the innermost step merges two shocks. Since we
begin with only N shocks this will be executed at most N times.
PROPOSITION 4.2. For any stepsize k, Algorithm 4.1 computes the qxact solution to (4.1)  for
piecewise constant initial data with a finite number of shocks.
Proof. Two shocks which appear to interact in time k when considered in isolation must also
interact in time k in the presence of other shocks. Since the merging procedure is associative, the
order in which we merge them is irrelevant. 1

In general, errors will be introduced interpreting and representing the solution. For “smooth”
portions of the solution the method can again be viewed as the method of characteristics with

- linear interpolation. The error in a single time step is thus O(h2), giving O(h2/k)  global error.
I A true discontinuity in the solution is propagated to exactly the correct location, providing the

solution is properly interpreted.

5. Rarefaction waves.

Now consider a jump for which Ayf”(u) < 0. Such a discontinuity should spread out into
a rarefaction wave. Unfortunately, applying the procedure of section 4 directly will cause A? to
propagate as a sharp discontinuity.

In dealing with shocks we sometimes found it necessary to merge several discontinuities into
a single shock. Rarefaction waves can be approximated by taking the opposite approach. The
discontinuity A? is broken up into several (say m) discontinuities each of height A?/m and all
located at xj+l/z. These discontinuities will then travel at different speeds, spreading out to
approximate the true rarefaction. ‘we should-choose m large enough that the resulting solution
looks smooth. Since the true rarefaction spreads over (f’(uy+J - f’(uy))k/h  meshpoints, it is
reasonable to choose m as an approximation to this quantity, e.g. as the integer part of some finite
difference approximation. In general rarefaction and shock waves may interact. It will again be
necessary to handle this interaction explicitly in order to obtain good results for large values of
k/h. These interactions can also be handled by Algorithm 4.1, at least approximately, if we define
m triples Ti, i = 1,2, . . ., m corresponding to each partitioned discontinuity with

Axi = xi+l/2.t -
%-=:ui”+ m-A;

.
+u. =a Ui”+, j’’ A”
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See Figure 5.1 for an example of this.

Example 5.1. In order to better understand this shock-rarefaction interaction, consider the problem
Ut = (4~~)~  with initial data .

02(. = 4 j=J
3 0 j# J. (5 1).

This is a representation of

ZJ-l/2 < = < xJ+l/2
otherwise. (5 2).

Take k = h. Then the true solution at time Ic is

u( 2, k) = (= J+W - =)ih =J+l/2 - fib < = < =J+1/2
0 (5 3).

otherwise.

The rarefaction has overtaken the shock, slowing it down and decreasing its strength. In the spirit
of Proposition 4.1 we can attempt to find a new set of initial conditions which give the same
solution at time k without any interaction. The desired initial conditions are

v(x, 0) = lb =J+l/2  - fib  < = < xJ+1/2
0 o t h e r w i s e (5 4.

This pulse is wider and shorter than the original pulse (see Figure 5.1). In the solution v(x, t)
there is no interaction before time k at which point the rarefaction wave just catches up to the

. shock. For t 2 k, v(x,t)  = U(X, t) for all x. Computing the exact equivalent set of noninteracting
discontinuities (such as (5.4)) for a general scalar conservation law with step function initial
conditions would be difficult but could be done. Taking this approach and then solving the resulting
Riemann problems exactly would yield the exact solution to such a problem, just as Algorithm 4.1
gives the exact solution for a pure shock problem.

Instead of following this course, we will concentrate on the more easily obtainable approximate
solution given by Algorithm 4.1 together with the previously described rarefaction partitioning
procedure. Taking m - 4 in the rarefaction gives us 5 triples !I!! in the set 7. These are

.
Tl = (=5-l/2, 0, 4),

T2 = (x5+1/2,  4, 3),
T3 = (=J+l/2, 3, 2),
T4 = (=J+1/2,  2, I),

T5 = (= J+1/2,  1, 0).

In applying Algorithm 4.1, we see that Tl and T2 interact. This is the only interaction and the
resulting set S consists of 4 triples. The first of these, 271, is derived from Tl and T2 and has

31 = 3(4=5-l/2 - =J+l/2)

= XJ - if h

Ui=O

4- -3. *
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7’5

XJ - .^

XJ

XJ

Figure 5.1. u(x,O) arc the origbai initial conditions for Example 5.1. These can be replaced by the
noninteracting initial conditiona  u(x, 0) which produce the same solution at time k. T is the original set of

: discontinuities.  Algorithm 4.1 replaces these by the nonin terac ting set S .

XJ

Figure 5.2. (a] shows the set S at time k. (b) shows the representation of S (as squares) and the true
solution at time k.
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Figure 5.1 shows the initial data both before and after merging. The original pulse has been
replaced by a wider and shorter pulse which approximates (5.4). We advance the solution to time
k by moving each S; at the appropriate speed. The final positions are

31  : (XJ - ah) - #h = XJ-2  -
3h

s2 : =J+1/2  - qh = 2J-2

s3 : =J+l/O  - #h = XJ-1

s4 : =J+1/2  - 3h = XJ

This is shown in Figure 5.2a. These discontinuities are then represented on the mesh in the usual
way, giving the solution

1u. =3
i

2 j =  J - 2
312 j =  J-1
l/2 j =  J
0 otherwise

which is shown together with the exact solution in Figure 5.2b.
* In practice it is necessary to modify this procedure slightly in order to maintain smoothness

in the rarefaction waves over several time steps. Rather than putting each jump in the partitioned
rarefaction at xi+l/a,  we spread them out between xj and xj+r by setting

6 ih
=i =Xj+-

m+l
i = 1,2, . . ., m.

This procedure, together with Algorithm 4.1, has given quite satisfactory results for a variety.
of problems. It must be stressed, however, that Algorithm 4.1 may not handle interactions properly
when several shocks and rarefactions are present. Consider, for example a problem involving two
shocks followed by a rarefaction. It may be that the two shocks, considered in isolation, would
coalesce in time k, whereas in reality the the rarefaction catches up to the second shock and slows
it down sufficiently that no further interaction occurs. Algorithm 4.1, which works from left to
right, would produce an incorrect result which may be quite bad for large Courant numbers.

Even more disturbing is the fact that monotonicity of the 2; may be lost when merging a
shock with a rarefaction. If 61 and 61-l have opposite signs then the new 3 defined in Algorithm
4.1 does not lie between $1 and 21-1 and hence may lie to the left of 21-2 or to the right of
the next xj+l/a. Currently this is handled by aborting execution whenever 21 < $1-1.  This has
never happened for moderate values of the Courant number on “reasonable” initial data.

6. Numerical results for 1D scalar conservation laws .

Before proceeding to briefly discuss several space dimensions and systems of conservation laws,
we pause-to present some computational examples.

Figure 6.1 shows several sets of initial data. The remaining figures show the results of applying
the method to problems with those initial conditions. In Figures 6.2 through 6.4, the true solutions
are known and are shown as solid lines. The numerical solutions are represented by the squares.

The other examples begin with more complicated initial data and use periodic boundary
conditions (achieved by applying Algorithm 4.1 to a larger interval with the mesh function suitably
extended). The numerical solutions are shown together with an “exact” solution computed on a
much finer mesh. These examples are included to show that the procedure can indeed handle
problems involving many interactions.

The method does have its limitations, of course. For problems beginning with the initial con-
ditions shown in Figure 6.le, taking values of k/h larger than 10 sometimes led to nonmonotonicity
of the i; as discussed in section 5.
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7. Several space dimensions and systems of conservation laws.

Scalar conservation laws in several space dimensions can be handled by means of a spatial
splitting or fractional step method. This is a standard way of extending one dimensional methods
to higher space dimensions. Crandall and Majda[2] discuss the use of fractional step methods for
computing weak solutions of conservation laws.

In two space dimensions, the general conservation law has the form

f-4% Yt t) = (fM? Y, t))), +(g(u(2, y, t))),. (7 1).

Let S,(k) denote the approximate solution operator for the problem ut = (f(u))% on a time-step of
length Ic as defined in the preceeding  sections. Similarly, let S,(k) denote the approximate solution
operator for ut =  (g(u))v. Then  un+l is computed by solving a sequence of one-dimensional
problems, alternating between the Z- and y-directions. Using a second order Strang-type splitting
as described in [8], we set

un+’ = Sz(k/2)Sy(k)Sz(k/2)u”. (7 2).

We now have to contend with errors both in the lD difference scheme and in the splitting (7.2).

Example 7.1. Consider the problem
.

ut = ($,, +(+qy f o r  OS&l, O<y<l

with initial data as shown in Figure 7.1. This test problem has been used by Gropp[4]. The true
solution at time 1 is shown in Figure 7.2.

In this case each 1D problem involves a single shock, and can be solved’ “exactly” by using
sufficiently large time steps. The resulting shocks in the full 2D problem are still sharp, but are
all parallel to the Z- or y-axes. The result is that shocks which have some other orientation, such
as the “diagonal” shocks in Figure 7.2, are represented by zig-zagging shocks. The number of zigs
and zags is directly proportional to the number of 1D problems solved to reach the given time. In
this case the best results are obtained by using moderately small values of u. But we still want
u > 1, or else the 1D procedure reduces to upwind differencing and the shocks are badly smeared.
Figure 7.3 shows some examples for various values of V.

At the present time it is not clear how to extend this method to handle arbitrary systems of
conservation laws. In general, a result like Proposition 4.1 will no longer hold, so that interactions
cannot be handled in the same simple manner. For problems in which the eigenvectors of the
Jacobian matrix af /au are nearly constant (as in some weak-shock problems), it may be possible
to handle interactions sufficiently well to generalize the methods of Roe[O].  Research is continuing
on this approach.
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Figure 6.1. Initial conditions for the test problems.

13



Figure 6.2. True and computed solutions for ut
cases h =

= ($u*)~ and initial conditions from Figure 6.Ia.  In all
l/80.  The numbers in parentheses  indicate the number of time-steps needed to compute each

solution.
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Figure 6.3. True  and computed solutions for ~(t = ( ;u”)~ and initial conditions from Figure 6.lb. Zn all
cases h = l/W. The numbers in pzw:hexs  indicate lzhe  m~tmb~:r  oi time-steps nwdcd to compute each
solu lion.
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Figure 6.4. True and computed solutions for ut = (-0.1~“)~ and initial conditions from’ Figure 6.k. In
all cases h = l/80.  The numbers in parentheses indicate the number of time-steps needed to compute each
sozu  t ion.
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Figure 6.5 Computed solutions for q = (3~~)~ and initiaf conditions from Figure 6.ld with h = l/80. The
“exact” solution shown at the bottom was computed using h = l/240. The numbers in parentheses indicate
the number of time-steps needed to compute each soMion. -

Figure 6.6. Computed solutions for ut = (-0.1~~)~ and iuitisl conditions from Figure 6.ld with h = l/80.
The “exact” solution shown at the bottom was computed using h = l/240. The numbers in parentheses
indicate the number of time-steps needed to compute each solution.
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Figure 6.7 Computed so1utiona  for ut = (fu2)= and initisl conditions from Figure 6.le with h = l/80.  The
‘extrct” solution shown at the bottom was computed using h = l/480.  The numbers in parentheses indicate
the number of time-steps needed to compute each solution.

I V L-v-d

/--I-
V Lvv

Figure 6.8. Computed solutions for ut = (-0.1~“) z and initial conditions from Figure 6.le with h = l/80.
The “‘exact” solution shown at the bottom was computed using h = l/480.  The numbers in parentheses
indicate the number of time-steps needed to compute each solution.
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Figure 7.1. hitial conditions for Example 7.1

c4

II
$ u = l/2

u = l/4

Figure 7.2. Solution at time t = 1. *
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Figure 7.3 Computed solutions to Example 7.1 at t = 1. In all cases h = l/25. The three cases shown are
k = h, k = 5h, and k = 25h.
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