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1. lnlroduction

In the following WC arc concerned with the numerical computation of critical points of a functional

f: N-*iR, H a real Hilbcrt space, with rcspcct  to the intcrscction of a closed convex set KC H and

the lcvcl surfaces

(1.1) asP = @EN, g(u)= 'hp2)

of another (cvcn) functional s. For thcorcticsl results concerning cxistcncc, chamctcrization of

critical points, and relations to bifurcation theory we rcfcr to the literature (see, for cxamplc, [l, 15,

191). Under suitable  assumptions a critical point u. satisfies the variational inequality

(1.2) ?pM@~U--  y)) > (vf(u$u-  u,), VUEK, h,ElR

and we are interested in the case X,>O.

Instead of treating the most general case we describe a class of such problems which is

important in physical and mechanical applications. Some examples  of this type will be considered.

later. H will denote a &nction space of finctions  td defined on a domain QC iRN,  ZQl, and is

usually a Sobolev space Ho”(Q)  where only for simplicity the zero boundary conditions are

included. The set K will be either the whole space or a subset of the form

(1.3) K = {I.&H, u>O a . e .  i n  C ,  u<_O a . e .  i n  D}

where C,DCQ, so that K is in fact a closed convex cone with vertex 0.

While in the case K= H several algorithms have been proposed for the determination of

the critical points (see, for example, [ 91 and the papers cited there) and a vast literature deals with

the corresponding differential equation problem, the theory for the case K# H has only been

developed recently (cf. [12] and the ieferences in [13]).  A numerical algorithm was given in [13].

Since this method as well as the algorithm to bc prescntcd below attack the discrctizcd problem and

have no simple analogue in the continuous cast we shall restrict ourselves to finite-dimensional

Hilbert spaces.

In [13]  the problem of computing bifurcating solutions of variational’ inequalities was

rcduccd to a standard optimization problem. A simple gradient-projection  type method was used for

its numerical  solution. In section 4 WC describe a Newton type method for the gcncral problem



considcrcd in [13] and show in section 6 that it may bc used very cfficicntly for following the

bifurcation branches  for variational incqualitics. Since the method is also attractive for the solution

of a class of nonlinear cigcnvaluc problems, WC fomnllatc the method for the cast K= H first in the

n e x t  section a n d  prcscnt some numerical results i n  section 5 .

The contents of the following sections are

2. An algorithm for variational cqualitics

3. Convcrgcncc proof

4. An algorithm for variational incqualitics

5. Path following in turning point problems

6. Path following in bifurcation problems for variational inequalities

2. An Algorithm for Variational Equalities

As indicated in the introduction from now on we shall assume that the functionals  fand g are either

defined on a finite-dimensional Hilbert space H or a problem of the class described  above is

discretized by, for example, a finite-difference or a finite clement method yielding ftmctionals 4i gh

defined on a space Hh’ where h denotes the discretization parameter. We shall assume that Hh may

be identified with Euclidean n-space and we shall omit the subscript h.

In this and the following section we treat the case K= H in which inequality (1.2)

reduces to the variational equality

The original problem is the determination of critical points uO of the functional f with respect to

level sets (1.1) of the functional g.

WC make now a few general assumptions on f: g and WC rcfcr to the last sections where

the examples show that the resulting  class of problems covers interesting applications. Let the

functional f be twice Frechet differentiable on H and let g be of the form

(2.2a) s(x) = ‘h( Bx,x), xEH,
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whcrc B: H-+H is a linear, symmetric and positive dcfinitc operator.  l’hc clcmcnts of the fmitc-

dimensional space H will hcnccforth bc dcnotcd  by x, y etc..

Let there exist a constant M=M(p)>O  such that

(2.2b) 0 < (Vflx+y)-Vflx),y) < ~illYl129  VxESp,  VYE$ r*.Q

and for simplicity let M bc chosen such that also the following inequality holds

(2.2c) u?m~Y)  < MlYl12, VYEqy

here WC have used the notation SP = {xEH, g(x)<%p2]. The norms used here and in the following

are the Euclidean norm for xf H and the spectral norm for matrices AC L(H).

If (2.2a),(2.2b)  and

(2.3) f(O) = 0, y-(O) = 0

arc satisfied then (2.1) always has the trivial solution and it is well-known that branches of solutions

exist bifurcating from the cigcnvalucs of the linearized problem (cf. [12]  and the references in [13]).

We now present an algorithm for the determination  of local maxima off on the level

surfaces (1.1) which is well defined under the assumptions of Thcorcm 2.10 below.

The algorithm for variational equalilies

Let x,E&$ p>O, be arbitrary.

1. For k= 1,2,...  compute .

(2.4a)

whcrc (formally) Hk is the tzxn principal submatrix of the inverse of

(2.4b)



a n d  w e  have used the n o t a t i o n  rk=vf(xk), I’k=v2flxk). xk=rk’xk/p2.

2. Dctcrmine a stcplcngth ak=2-’ whcrc

(2.4~)

3 .  Set

j= min(iENU (01, j&+ 2-‘l’k)-fTxk)22-‘-2~k~rk~.

(2.4d) Xk+ I= dxk+ akPk)/llxk+  akPkllB

where II . llB=( , )i’ and ( , )n denotes the scalar product induced by B.

Remark 2.5 Algorithm (2.4) consists of a damped Newton step for the solution of the Kuhn-

Tucker equations

(2.6) VAX) - ABX = 0, -‘hxTBx  +  p2/2 =  0 ,

for updating Xk starting from x=xk, A= xk and a subsequent normalization to return to the level

surface X$. The Lagrange multiplier iS updated by Xk+l= ‘k+ 1Txk+1/p2.  Hence our method

corresponds to the inverse iteration method with Raylcigh-quotient shift, while the Picard iteration

considered in [ 61 corresponds to simple inverse iteration. For the matrix cigenvalue problem, i.e.

j(x)= %(Ax,x), A symmetric, it is well known that the latter process exhibits linear convergence

(1221  p. 619) while the first possesses locally cubic convergence properties ([22] p. 636, see also [lS]).

In the generalization to the nonlinear case considered here and in [ 61, the order stays the same for

the ordinary inverse iteration while algorithm (2.4) will be shown to be quadratically convergent.

Remark 2.6 In order to show how a continuous analog of algorithm (2.4) would look, we derive it

for the class of problems from [ 61:

(2.7a) u(x) =o, xfai2,

where L(u) = - a,(aik(x>akufx))  + a(x)u(x) with suitable assumptions on 4 ajti f (and using

summation over repeated indices in the definition of L). We add the normalization

(2.7b) (u,u) : =  <L(u),u>  = P2,
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where < , > dcnotcs the L2-scalar  product on Q. If now, for simplicity, we consider only the

undamped case, a function Uk satisfying (2.7b) would be replaced by

‘k+l = d�k +P k)/ lb k +P k ll.  1 1  l 1 1  = (  s 1 �.

where pk is the first component of the solution v=(v1,v2)  of

which may be obtained by determining ylc zk from the two boundary value problems

and then setting

We observe, however, that the operator on the left-hand side of (2.8) becomes singular at a turning

point and that equation (2.8a) cannot be satisfied there. Hence we are treating problem (2.7a)  with a

special form of the normalization as used in [ 81. Then we apply a Newton step, however only for

updating uk’ The normalization (2.7b) is responsible for some simplifications in (2.8),  (2.9) compared

with other choices.

We now state a local convergence theorem for algorithm (2.4). By {x}l we denote the

orthogonal complement of xEH with respect to the scalar product ( , )B

Theorem 2.10. Let the assumptions (2.2) be satisfied for problem (2.1) and assume that x0 is a solution
of (2.1) for the parameter A, and that fix&-XOB is negative definite on (x0]‘. For x1 sujj7ciently.
close to x0 the sequence {x,>, k=1,2,...  generated by (2.4) converges to x,, and $fic3(U(xd),  then

the asymptotic (Q-)order  of convergence is two.

Remark 2.11 We have formulated this local theorem for the unrestricted case since the numerical

applications we will treat in sections 5 and 6 essentially riced only this result. The thcorcm will be
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proved  i n  t h e  next section.

3 .  Convergence Proof

For the proof of Thcorcm 2.10 we need the following lemma. It suffices to prove it in the case

p=l.

Lemma 3.1. Under the assumptions of Theorem 2.10 let U(xO) be a neighborhood of x0 such that for

all XE U(x& and X(x) = Vfi~)~x/p~

(3.2) uT(I;Tx>-  Mx)l3lr S -pllyl12, p>O,  vyC{x}l.

Let xlEU(xd be chosen such that {xE&$,,  flx)Axl))C U(x& If xkcas, is generated by

algorithm (2.4) with

(3.33 ak = /3/(2Mcond( B)),

where cond(B)=IIBII  llR’ll,  then Xk++$, and

(3.4) fixk+&-dx&  2 cbkl12,  &O*

Proof: Consider the case p =l. xk+ 1 G3SP is valid by construction of the algorithm. The following

analysis is similar to that in the proof of Lemma 4.1 in [13] and is therefore given in concise form.

For a suitable &(O,l) we have from (2.2b)

(3.5) 2--MlX~+l-xkli2- + (vflxk)‘xk+l-Xk)

Hence

where dk--2MIIB-‘ll/llxk+olkpkll,>O  and we show next that the second term on’ the right-hand

side is noncgative. This condition may be rewritten as
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(3.6)

Writing the inverse of D, in (2.4b) as

(3.7)
Hk ‘k

‘k-1 =

[ -bkT qkr

WC  deduce that

(3.8a) Hk(Fk-hkB)  - bkXkTB  = En,

(3.8b) Hk8Xk = a

where En is the identity matrix on m”. Hence (x&&=0  and for y= -Hkz we have

&x&=0 and from (3.2), (3.8a) Il~12~IV1(y,,z). Applying this result for z= rk we derive

and (3.8b)  gives

(3.10)

From (2.2~)  we conclude that (y&@. Hence

the last term being nonnegative and thus

from which now (3.6) immediately follows by taking square roots and using (3.9), (3.10).

Combining (3.S),  (3.6) we obtain with (2.2b) the inequalities

(3.11)

In order to show (3.4) we estimate using (3.9), (3.10) and (2.2~)
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(rkvxk+l-Xk) = [@kxk)(l - Ilxk+akPkll~)+ak(rk~Pk)l’llxk+  akPkllB

(3.12) 2 ak/%$l12/(2L)

where L is an upper bound for Ilxk+Qk&llB  on U(x,). The proof of the lemma is now comp1cte.I

In order to justify the choice of the Goldstein-Armijo stcpsize rule instead of the

constant ak as in Lemma 3.1 we note that it may be shown as in [13]  that

II Xk+ l- txks: a&ll = o(a,2),

while (3.11),  (3.12) yield an estimate linear in ak. The proof of the first part of Theorem 2.10 is

now an immediate consequence of (3.4),  (3.11).-

It remains to show the asymptotically quadratic convergence. In U(xd the matrix D, in

(2.4b)  is regular as a ‘bordered’ matrix. We next recall (cf. [ 61) the expression for the derivative of

an iteration tinction <p as in (2.4).

The derivative of @(x)=l(x)/lly(x&, y&, is given by

where Pz= En - ~z~B/ll~l,~ is the orthogonal projector on {z}-k

Now we show Q/(x& =0 from which the quadratic convergence follows using Lemma 10.1.7 in [16].

.

Lemma 3.M Under the assumptions of Theorem 2.10 the iteration fitnction @ of algorithm (2.4)

satisfies
-@‘(x0)  =  0 .

Prooj: We note that in (2.4~) j=O will be chosen asymptotically and that then Q(x) may be

rewritten as (cf. (3.8b))

Q(x) = pr(x)/l&)llp Ax) = x- H(x)(Vflx)-  X(x)Bx).

The regularity of DO, (3.8a) and Lemma 10.2.1 in [16]  yield

y’(xo>  = E,, - HO(FO- X,B) = - bOxOTB.
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y(xd=xO and (3.13) then finally give

@‘(x0) = - pbOxO*BPXO  = 0.1

4. An Algorithm for Variational Inequalities

In this section we consider problem (1.2),  (1.3). We prcscnt a globally convergent algorithm in the

sense that it is not necessary as in Theorem 2.10 to choose x1 in a sufficiently small neighborhood

of a local maximum. Thus the following algorithm and theorem also generalize those of section 2.

WC look for local maxima of the functional f defined on H=W over the set KEMP,

X$, as in (l.l), with g as in (2.2a)  and K a discrete analog of (1.3):

K = {xEIR", ~~20. iCJp Xj<_O, iEJ2},

J1, J2CC1,....,n},  J1={il  ,...., inl},  J2=G1 ,... .,jn2}.

We introduce some further notation (cf. 1131).  Let G=(gl,...,gnl+n2),  where gk= ejk, k= l,...,nl,

gnl+k=ejk’ k=l,...,n2, eiEIR” the i-th unit vector. Then K in (4.1) may be rewritten as

(4.2) K = {xElR”,  GTx>O).

For any xflR” let I(x)={iE{1,...,2n}, gjTx=O}  and define G,=(si)jEl, QI=E,-GfilT.  For X=Xk

denote $=I(+), Gk= G1
k

and Qk analogously. We can now define

The algorithm for variational inequalities

(4.3) Let xlumasp be arbitrary. Set k=l and j+=o, @(091)’

1. Determine Ik and Uk=rk-XkBxk,  A,= tkTxI(p2. Tclminate  the iteration if G$.@ and

lk&ukll =o-

2. Compute lukj=maxbk,k  (Gk’Uk)i>OI.  If ~(Qk+r,><lukj  IlQkukll  and pkzo}. or Ik&“kll=o
then set <= Ik- ci) and determine &. Otherwise set q= Ik’ e”,= Qk
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3. Rcplacc I;;( -X,B in (2.4b)  by /;k- h,B-T,J?$,  where 7k=max(0,6  + ak) and ak is the largest

cigcnvaluc of Fk -X,13 on (&-n(xElR”.  &X=X}, 6>0 a given constant. Compute pk as the

direction vector given by (2.4a)  but in the variables xki with (irk&=  1 (the free variables) only,

fixing the others.

4. Dctcrmine the maximal admissible stcplcngth rk and the stcplcngth gk as in (2.4) and set

where ak = min(ZA,Z$}.

%~~crn  4.4. Let the assumptions (2.2) be satisfied for problem (1.2). Assume that the set

r = {x*EH-MSp,  ffTx*<O, IIQ*x*ll=O}

is finite and that oCTx*<O  for all x*Er and 0<6f - u* (cf: 3. in (4.3)). Then the sequence {x,),
k= 1,2,..., generated by algorithm (4.3) converges to a point x*EI’. If jEC3(U(x*)) then the asymptotic

(Q-)order  of convergence is two.

We first prove the analogue of Lemma 2.8 in the case p=l. .

Lemma 4.5. Let under the assumptions of Theorem 4.4 x,EKflX$,  be generated’ by algorithm (4.3)

with steplength ak = S/(2Mcond(B)) then xk+ ,E Kn X$, and

(4.6)
bkl12. if pk=L

max{llpJ, II+]}~ otherwise,

where rk= c,>O for P~+~=O  and F-c Zk- 2 k) c2>0, fo r  pk+$

Proof: The proof of (4.6) in the c+e ,&k--1 follows closely the lines of the proof of Lemma 2.8. It

is therefore not necessary here to give the -details. We remark only that pk in (4.3) satisfies

(4.7) (x&B = O* e”,cF,-  X,B-7,En)i$#k=  - QNk’k

and the analogue of (3.9) holds with /.? replaced by 6. Let now pk=O and <*$. since the

analogue to (3.8b)  shows that &rk in (4.7) may be replaced by &.Q, which contains the

component ukf the assumptions of Theorem 4.4 assure that for a positive constant

cl~kll~ll~kukll~luk~.  This proves (4.6) for ?k* Ik If <= Ik then the strategy in 2. of (4.3)

guarantees  t h a t  llQkrkjl>lUk,/  Whik ( 4 . 7 )  gives  Cllpkll>l&rkll.  ?Ilis compktcs  the  p r o o f  o f  t h e
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1cmma.l

The proof of the first part of Thcorcm 4.4 need also not be given in detail hcrc since it

follows from combining the arguments of the proofs of Thcorcm 2.10 above and Thcorcm 3.1 in

(131.  This shows that, for all sufficiently  large k, +I(x*), x*ET and 7k=O. Thus the stcplcngth ak

will finally be chosen equal to 1 and the asymptotically quadratic convcrgcnce then follows as in the

proof of Theorem 2.10.

Remark 4.8 For a practical application of algorithm (4.3) a way of choosing the regularization

parameter Tk has to be given. For a more general class of optimization problems .a proccdurc  for

this purpose is described in [20].

5. Path Following in Turning Point Problems

In this section we consider the same class of problems as in [ 61, namely the nonlinear eigenvalue

problem (cf. (2.7a))

(5.1) u(x)=O,  XfaQ,

where AfIR, DO, and L is a uniformly elliptic formally selfadjoint differential operator on the

bounded domain QCIR”. Generalizations, for example, to higher order differential operators  or

other boundary conditions are possible. Conditions (2.2) have to be satisfied in the continuous case

and for the discretization. We shall restrict  ourselves to the example (cf. e.g. [ 41)

62) L(u) =  7 A u , q&4 = exp(u/(l+ EU)), e20.

and N=2. For E = 0 (Xl), (5.2) _ is usually called Bratu’s problem.

There has been a great interest in the numerical solution of similar problems, see, for

example, the papers  mcntioncd in section 5.6 of [14]. For thcorctical results on problems  of the type

(5.1) see, for example,  [ 5, 7,191. It is well-known that (5.1),  (5.2) has a solution diagram as shown in

Fig. 1 in dimensions N= 1, 2. The points marked in the figure represent for e< e* one or two

(quadratic) simple turning points respectively a nonsimple turning point for E = e*.

The problem of following the solution branch and also the problem of dctcrmining  the

simple respcctivcly the nonsimplc turning points numerically presents  in principle no difficulties
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(cf. [ 2,14,21]). Howcvcr, using e.g. Kcllcis pseudo-arclcngth-continuation  tcchniquc the stcpsizc has

to bc suitably controlled  near the limit point and the question of cff!cicncy arises  in particular if the

hear systems are solved by elimination methods. Jn [ 21 a multigrid(method was suggcstcd for

the approximate solution of (5.1) (5.2). The pseudo-arclength normalization was added (cf. [ 8 1)

and the resulting system was solved by block-elimination as utilized also in Remark 2.6. Hence a

differential operator was discrctizcd, which becomes singular in the turning point. The

corresponding singularity of the discrctc operator on one of the grids used in the MG-method made

it necessary to modify this algorithm considerably in order to be able to pass the limit point.

.
II u

Fig. 1. Solution diigram  fat problem (5.1). (5.2) for different values of e.

These modifications may not have been necessary, if instead the inflated system would have been

treated directly. The resulting system has a regular matrix in the neighborhood of solutions.

However, the matrix is not definite on the whole space, so that it is open how the MG-method

would perform. This question will be investigated in the future. For an application of MG using

Rayleigh-quotient iteration to the linear eigcnvaluc problem cf. [ll].

It is a well-known procedure to use a norm of u as a continuation parameter and a

numerical method for this is, for example, the Picard iteration of [ 6]. The algorithms of sections 2

and 4 can be used analogously. They have the advantage of quadratic convergence while Fast-

Poisson-Solvers in the special  case L= - A could in gcncral not be utilized. It should, however, as

pointed out above, bc possible to use MG-algorithms.
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WC compare now algorithm (2.4) and that of [ 61 on the above problem. Since it is not

our aim to compute the solution to a high accuracy WC have chosen a low order finite element

mctbod on a relatively coarse mesh. Problem (5.1) (5.2) may be written in the variational form

W’&),v)=(vf(u),v), VvEH,‘(Q),
(5.3)

g(u) = ‘15I
52

(uz+ u;)dxdy, f(u) =Iexp(u/(l + eu))dxdy.
cl

Q was taken as the unit square and linear finite clemcnts were used on the standard triangulation

obtained from a square mesh with meshwidth h. f was evaluated  by numerical integration  with

weights h2/6 and the midpoints of the edges of a triangle as integration  points. This gave rise to the

usual five-point difference matrix B and a seven-band matrix A. Table 1 shows the results for two

values of e<e*.

&

0.0

0.0

0.0

0.0

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2
_

P x Alg(2.4) Picard

30 6.712380 4(4)

36 6.?10483

42 6.882701

48 6.681038

72 9.278187

80 9.291875

88

96

360

440

520

600

9.265477

9.211836

7.341984

7.237885

7.230358

2 (3)

2 (3)

2 (3)

3 (3)

2 (3)

2 (3)

2 (3)

2 (3)

2 (3)

2(3)

7.285922 2 (3)

9 117)

w6)

8 (16)

9 (16)

10 (18)

9 (18)

9 (18)

8 P-9

9 m

9 (20)

9 (20)

8 (20)

Table 1. Computed points on the solution branch for problem (5.1). (5.2) near the turning points and necessary number

of iterations for diffcrcnt algorithms.
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For either method the number  of iterations is given rcquircd to compute the solution to about tight

decimal places with the number  of iterations for maximal accuracy (Double precision FORTRAN

on an IBM 370-168) given in parantheses.  The starting vector for p =30 and for both algorithms

was x0= e/llel]s, e=(l,...., l)%Rn, n=((l-h)/h)2,  h=1/12. The approximate solution for each p-

value was then, after normalization, used as starting guess for the next &)-value. Algorithm (2.4)

could in each case be used with ak = 1. The linear system for the symmetric but in general

indefinite matrix D, in (2.4b) may bc solved, for example, by any conjugate gradient method

applicable to such problems (see, for example, [ 31) and even special elimination procedures arc easy

to derive. We used algorithm SYMMLQ ([17])  which without any scaling or preconditioning needed

about 35 iterations to solve the system in each step.

The iterates of our algorithm converged quadratically from the beginning. The steps in

p for (2.4) could be chosen large as the results show, but not arbitrarily large, while the Picard

iteration did not seem to have similar restrictions. So an alternative to damping in (2.4) could be to

first execute some Picard steps  and then to use algorithm (2.4) with stepsize 1.

In this section we have seen that algorithm (2.4) may be used very efficiently in the

following of solution branches for problems of the type (5.1). For more general bifurcation

problems a natural procedure would be to use altcmateIy continuation with respect to h or to the

norm of x (cf. section 6) switching when the steplength in one of the methods has to be chosen

below a suitable tolerance. The use of MG-methods may be possible, however, conjugate gradient

algorithms provide an efficient and generally applicable procedure for the solution of the linear

systems.

6. Path Following in Bifurcation Problems for Variational Inequalities

In this section we again restrict the numerical computations to a simple but illustrative example. We

apply algorithm (4.3) to the discretization  used in [13] of the buckling problem for an axially

compressed beam with lateral supports. The variational inequality is

(6.0 flu)=f[(l+ut2)?+]d+ g(u)  = ‘h
I’

u’12d,,
0 . 0
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K= {uEHo2[0,1], u(c)zO, u(D)<O}.

Hermite cubic finite elements on an equidistant grid of width h and suitable numerical integration

are used yielding the discrete functionals j& gh (cf. [13]). Of physical intcrcst are the solutions uh

branching from the trivial solution at the largest eigenvalue X,, with cigcnvector uhl of the

linearized problem.

To our knowledge no reasonably efficient algorithms are available which are globally

convergent to uhl if K* H, except in special cases (see, for example, Corollary 4.2 in [13]).  In [lo] a

constructive existence proof for the restricted solutions has been given in which they are obtained as

bifurcating solutions of a penalized version of the unrestricted problem (K=H). In that paper,

however, only eigenfunctions can be determined corresponding to eigenvalues which are smaller

than the largest eigenvalue of the unrestricted problem for which the corresponding cigenfunction

with suitably chosen sign is in the interior of K. Hence the physically interesting case is excluded.

We assume now that (Xhl,uhl)  and the corresponding set of active constraints are

known and try to follow the branch bifurcating from (X,,O). In [13]  it was suggested that

augmented Lagrangian methods could advantageously be used for this purpose. The following

results, however, show that algorithm (4.3) which here essentially reduces to (2.4) in the subspace  of

the free variables is the most efficient method among several algorithms. We compared it with

SALMNA, an augmented Lagrangian type algorithm using Newton’s method from the NPL-library

and also part of the NAG-library. Another natural candidate for a comparison is X-continuation

(see, for example, [ S]) which in this case should not be inferior to pseudo-arclength-continuation:

Let (u’,hq on the branch be given. Compute u~(u~,hq  from

(E(u+X”B)u,  = Bd?

Then set uo= u”+(X - X($x and for k= O,l,.... iterate according to

Hence after an Euler predictor step several Newton steps are executed to compute the solution for

the given X. Finally, Picard iteration is applied here, too.

WC have restricted  the computations to the problem (6.1) with C= (l/3), D={2/3).



Largest cigcnvaluc and corresponding  cigcnfunctions for this cast, thcrc are two symmetric

eigcnfunctions, have been computed  analytically in 1131.  Table 2 shows some typical results for

h= l/24. Again the number of iterations is given required to compute the solution to tight decimal

places respcctivcly to the maximal attainable accuracy. For SALMNA the numbers rcprcsent for the

latter case only the number of second order derivative (function value and first order derivative)

evaluations.

P xhP Alg. (4.3) Picard X-cant SALMNA

1 .144644 E - 1 2 (3) 14 (W 5 (6) 2 (9)

2 J39243 E - 1 2 (3) 15 m 4 (5) 2 (8)

10 .799582 E - 2 3 (4) 16 (Jo) 5 (6) 9 (14)

100 .103%8 E - 2 3 (4) 14 m 7 (8) 70 (104)

Table 2. Computed points on the bifurcating branch for problem (6.1) and iteration counts for different algorithms.

For each algorithm the normalized eigenfunction of the linear eigenvalue problem was used as

starting solution for p =l and the corresponding Rayleigh-quotient was used as starting value for

the Lagrange multiplier in SALMNA. Then the solutions on the branch for the given sequence of

p-values were computed by continuing analogously to p =2, 10, 100. The corresponding X-values

were used as the sequence for the X-continuation.

The results show that our method is also very efficient for following bifurcating

branches of variational inequalities. The behavior of the Picard iteration is similar to that in section

5, while for X-continuation the convergence of the Newton iterates was not quadratic from the start

which resulted in considerably more iterations especially for larger p-steps. The iteration counts for

this method in Table 2 do not include the predictor step. Finally the performance of the general

purpose routine SALMNA suggests that augmcntcd Lagrangian methods are not able to compete

with algorithm (4.3) for the special class of optimization problems considered here. By modifying

the subroutine suitably it should, however, be possible to reduce the extremely high expense needed

for larger p-steps.

For the solution of the linear systems again SYMMLQ was used which even after a



scaling of the system nccdcd more than n iterations,  The number  of iterations,  however, was only

slightly larger than that for the solution of the system in the Picard iteration which has a definite

matrix. So this difficulty is caused by the unfavourablc cigenvaluc distribution for this fourth-order

problem and, if conjugate gradient  methods  are to be used for the linear systems, a suitable

preconditioning  should be chosen to further reduce the necessary work.
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