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1. Introduction

In the following wc arc concerned with the numerical computation of critical points of a functional
f: H—=R, H areal Hilbcrt space, with respect to the intersection of a closed convex set KC H and
the level surfaces

(1.1) 3S, = {u€H, g(u)= Yp2}

of another (cvcn) functional g. For thcorcticsl results concerning cxistence, characterization of
critical points, and relations to bifurcation theory we refer to the literature (see, for cxamplc, [1, 15,

19])).  Under suitable assumptions a critical point u, satisfies the variational inequality
1.2) Ao(Velug)u— uy) > (VAup,u— ug), Yu€k, A ER
and we are interested in the case Ay>0.

Instead of treating the most general case we describe a class of such problems which is
important in physical and mechanical applications. Some examples of this type will be considered.
later. H will denote a function space of functions 1 defined on a domain C RV, N21, and is

usually a Sobolev space Hy™(2) where only for simplicity the zero boundary conditions are

included. The set K will be either the whole space or a subset of the form
1.3) K = {u€H, u>0 a.e. in C, u<0 a.e. in D}
where C,DCH, so that K is in fact a closed convex cone with vertex O.

While in the case K= H several agorithms have been proposed for the determination of
the critical points (see, for example, [ 9] and the papers cited there) and a vast literature deals with
the corresponding differentia equation problem, the theory for the case K# H has only been
developed recently (cf. [12] and the references in [13]). A numerical agorithm was given in [13].
Since this method as well as the algorithm to bc presented below attack the discrctized problem and
have no simple analogue in the continuous case we shal restrict ourselves to finite-dimensiona

Hilbert spaces.

In [13] the problem of computing bifurcating solutions of variationa’ inequalities was
reduced to a standard optimization problem. A simple gradient-projection type method was used for

its numerical solution. In scction 4 wc describe a Newton type method for the general problem



considered in [13} and show in scction 6 that it may bc used very cfficiently for following the
bifurcation branches for variational incqualitics. Since the method is aso attractive for the solution
of a class of nonlinear cigcnvaluc problems, wc formulate the method for the case K= H first in the

next scction and present some numcrical results in scction 5.
The contents of the following scctions are

An agorithm for variational cqualities
Convcrgence proof
An algorithm for variational incqualitics

Path following in turning point problems

o o~ w N

Path following in bifurcation problems for variational inequalities

2. An Algorithm for Variationa Equalities

As indicated in the introduction from now on we shal assume that the functionals fand g are either
dcfined on a finite-dimensional Hilbert space H or a problem of the class described above is
discretized by, for example, a finite-difference or a finite clement method yielding functionals f,, g,
defined on a space H,, where h denotes the discretization parameter. We shall assume that H, may

be identified with Euclidean n-space and we shall omit the subscript h.

In this and the following section we treat the case K= H in which inequality (1.2)
reduces to the variational equality

Q1) A(Velpw) = (Vfluw),  Vu€H.

The original problem is the determination of critical points u, of the functional f* with respect to
level sets (1.1) of the functional g.

Wc make now afew general assumptions on f g and wc refer to the last sections where
the examples show that the resulting class of problems covers interesting applications. Let the

functional f be twice Frechet differentiable on H and let g be of the form

(2.2a) gx) = %(Bxx), x€H,



where B: H—H is a lincar, symmctric and positive definitc operator. The clements of the finite-

dimensional space H will henceforth be denoted by x, y etc..
Let there cxist a constant M=A{{p)>0 such that
(2.2b) 0 < (VAx+y)—-VAxy < My VXES,, VyES,, y*0,
and for simplicity let M bc chosen such that also the following incquality holds
(22¢) (V) < MIP, Vy€as,

here wc have uscd the notation Sp = {x€H, g(x)< l/épz}. The norms used here and in the following

are the Euclidean norm for x€ H and the spectral norm for matrices A€ L(H).
If (2.22),(2.2b) and
2.3) A0y = 0, VA = 0

arc satisfied then (2.1) always has the trivial solution and it is well-known that branches of solutions

exist bifurcating from the cigcnvalucs of the linearized problem (cf. [12] and the references in [13]).

We now present an agorithm for the determination of local maxima off on the level

surfaces (1.1) which is well defined under the assumptions of Thcorcm 2.10 below.

The algorithm for variational equalities

Let x,€05,, p>0, be arbitrary.
1. For k= 1,2.... compute

(2.4a) p=—Hry,

where (formally) H, is the mxn principa submatrix of the inverse of

(2.4b) D =
—kaB 0



and we have used the notation r,=VAx,). F,=Vlx), A, =rTx,/p

2. Dectermine a stcplength ak=2‘j where

(2.4c) j=min{i€NU {0}, flx,+ 27 p)—fx)>2"""2p, Tr}.

3. Set

(2.4d) X 1= P+ o p ) llx +apllip

where || . lz=( , )B% and ( , )p denotes the scalar product induced by B.

Remark 2.5 Algorithm (2.4) consists of a damped Newton step for the solution of the Kuhn-

Tucker eguations
(2.6) VAx) — ABx = 0, —%xTBx + p22 = 0,

for updating x, starting from x=x,, A= A, and a subsequent normalization to return to the level
surface 9S,,. The Lagrange multiplier is updated by A, ;= 7, 1%, ,1/p%. Hence our method
corresponds to the inverse iteration method with Raylcigh-quotient shift, while the Picard iteration
considered in [ 6] corresponds to simple inverse iteration. For the matrix cigenvalue problem, i.e.
S)= %(Ax,x), A symmetric, it is well known that the latter process exhibits linear convergence
([22] p. 619) while the first possesses locally cubic convergence properties ([22] p. 636, see also [18]).
In the generalization to the nonlinear case considered here and in [ 6], the order stays the same for

the ordinary inverse iteration while algorithm (2.4) will be shown to be quadratically convergent.

Remark 2.6 In order to show how a continuous anaog of agorithm (2.4) would look, we derive it

for the class of problems from [ 6]:
(2.72) AL(w) = p(xu(x)), x€9Q, ux) =o, x€9%Q,

where L(u) = — 9(a,(x)a,ux)) + a(x)u(x) with suitable assumptions on g a,, f (and using

summation over repeated indices in the definition of L). We add the normalization

(2.7b) (wu) : = <Lw = p?



where < , > denotes the L2-scalar product on €. If now, for simplicity, we consider only the

undamped case, a function u, satisfying (2.7b) would be replaced by

1
weyy . PG Nugtpll I L ()%

where p, is the first component of the solution v=(v,v,) of

(@, (D)~ ALV ()= vy L) = = p(xu(), x€Q, »(x)=0, x€3Q,

() =0, A, =<o(. ,up)u>/p?,

which may be obtained by determining y, z, from the two boundary value problems
(2.8a) (q)u(x,uk)—?\kL)yk(x)=—L(uk(x)), x€Q, y(0)=0, xEBQ,
(2.8b) (tpu(x,uk)—)\kL)zk(x)z—<p(x,uk(x)), x€Q, z,(x)=0, x€0%Q
and then setting
(2.9) P = zk—(uk,zk)(uk,yk)'lyk.

We observe, however, that the operator on the left-hand side of (2.8) becomes singular a a turning
point and that equation (2.8a) cannot be satisfied there. Hence we are treating problem (2.7a) with a
special form of the normalization as used in [ 8]. Then we apply a Newton step, however only for
updating u,. The normalization (2.7b) is responsible for some simplifications in (2.8), (2.9) compared

with other choices.

We now state a local convergence theorem for agorithm (2.4). By {x}-L we denote the

orthogonal complement of x€H with respect to the scalar product ( , )g

Theorem 2.10. Let the assumptions (2.2) be satisfied for problem (2.1) and assume that x; is a solution
of (2.1) for the parameter Ay and that F{xg) — A, B is negative definite on {xo}'L. For x, sufficiently
close to x, the sequence {x}, k=1,2,... generated by (2.4) converges to x, and, if j€C3(U(x0)), then

the asymptotic (Q-)order of convergence is two.

Remark 2.11 We have formulated this local theorem for the unrestricted case since the numerical

applications we will treat in sections 5 and 6 essentially nced only this result. The theorem will be



proved in the next scction.

3. Convergence Proof

For the proof of Thcorcm 2.10 we nced the following lemma. It suffices to prove it in the case

p=1

Lemma 3.1. Under the assumptions of Theorem 2.10 let U(x,) be a neighborhood of x, such that for
all x€ U(xg) and A(x) = VAx)Tx/p?

TR)— A@By < —BIME B>0, Vye{x}t
(3.2) y (Rx (x)B)y BIMIE, B>0, Vy€{x}—.

Let x,€U(xy be chosen such that {x€aSp, SO x}C Ulxp. If kaBSp is generated by
algorithm (2.4) with
(3.33 a, = B/(2Mcond( B)),

- 1
where cond(B)=||B|| |IB}|l, then xk+1€aSp and

(34) fxe )—Axp) 2 dipdl >0,

Proof: Consider the case p =1. xk + 1easp is vaid by construction of the algorithm. The following
analysis is similar to that in the proof of Lemma 4.1 in [13} and is therefore given in concise form.
For a suitable 7€(0,1) we have from (2.2b)

SO )= fx)= =1 U= VAx +7(x = XD+ VX100 = XD+ (VX)X 1= X))
(3.5) >-Mlix, - x P+ (VAxYx, 1~ X
>IMIB X+ X 1= X)p V=B r/QMIBHY).
Hence
SO D-Ax) 2 dlxtypx+op=lix+oapliz)s

where dk=2M|lB“lll/||xk+akpk|| >0 and we show next that the second term on’ the right-hand

side is noncgative. This condition may be rewritten as



(3.6) (1—||xk+akpklln)(l+(yk,xk)3) + anp)p 2 0.

Writing the inverse of D, in (24b) as

Hy by
-
&N)) D~ =
T

b A _

WwC deduce that
Tp _ [

(3.8a) H(F,-\B) - bx'B = E,
(3.8b) H.Bx, =0,
where E, is the identity matrix on R". Hence (x,p,)p=0 and for y= —H,z we have

(0.x)p=0 and from (3.2), (3.8a) IYIP<B~1(n2). Applying this result for z= r, we derive
(39 lpd? < B~ ppry)
and (3.8b) gives
(310 Ixe+ ol < 1+a 2Bl IR
From (2.2c) we conclude that (y,x,)z<'%. Hence
A+03x)p” < 20+0px0p) + pIPB>/@MH|BHPBI
the last term being nonnegative and thus
A+ PIBINL+0px) P < A+0px) g+ Baylind7@MIBDY
from which now (3.6) immediately follows by taking sguare roots and using (3.9), (3.10).
Combining (3.5), (3.6) we obtain with (2.2b) the inequalities
(311 S D) 2 (X=X 2 Milx, —x > > 0.

In order to show (3.4) we estimate using (3.9), (3.10) and (2.2c)



(’k’xk+1—xk) = [(’kvxk)(l""xk+akpkng)"’“k(’knpk)]/llxk"'akPk"B
(312) > a,Blpl>/CL)

where L is an upper bound for |lx,+a,p,llz on U(xy). The proof of the lemma is now complcte.l

In order to justify the choice of the Goldstein-Armijo stepsize rule instcad of the

constant &, as in Lemma 3.1 we note that it may be shown as in [13] that
"xk.,.l—(xk“}.'akpk)" = O(akz),

while (3.11), (3.12) yield an estimate linear in a;. The proof of the first part of Theorem 2.10 is
now an immediate consequence of (3.4), (3.11).

It remains to show the asymptotically quadratic convergence. In U(xy) the matrix D, in
(2.4b) is regular as a ‘bordered’ matrix. We next recall (cf. [ 6]) the expression for the derivative of

an iteration function ® as in (2.4).
The derivative of ®(x)=yx)/||/x)ll5 y€CL, is given by
(3.13) () = y(x)/IU)lzP,
where PzzEn—zzTB/IIZHBZ is the orthogonal projector on {z}’L.
Now we show ®'(xy) =0 from which the quadratic convergence follows using Lemma 10.1.7 in [16].

Lemma 3.M Under the assumptions of Theorem 2.10 the iteration function ® of algorithm (2.4)

satisfies
.<D'(x0) = 0.

Proof. We note that in (2.4c) j=O will be chosen asymptotically and that then ®(x) may be
rewritten as (cf. (3.8b))

D(x) = py(x)/INM g Ax) = x- HONVAx)— A(x)Bx).
The regularity of D,, (3.8a) and Lemma 10.2.1 in [16] yield

Y(xp) = E, — Hy(Fy= AyB) = — byx, 7 B.



Axp=xa and (3.13) then finally give

4. An Algorithm for Variationa Inequalities

In this section we consider problem (1.2), (1.3). We present a globally convergent algorithm in the
sense that it is not necessary as in Theorem 2.10 to choose x, in a sufficiently small neighborhood

of alocad maximum. Thus the following agorithm and thcorem also generdize those of section 2.

Woc look for loca maxima of the functional f defined on H=R" over the set KﬂaSp,
aSp as in (1.1), with g as in (2.2a) and K a discrete analog of (1.3):

K ={x€R", x>0, i€J}, x<0, i€},
Jl,ch{I.nu,n},Jl={il,..n,inl},.lzz{il,....,jnz}-
We introduce some further notation (cf. [13]). Let G=(g1,...,g"1 + "2)’ where g, = €y k= 1,.,n),

gn1+k=€jk, k=1,...n,, e,.€IR" the i-th unit vector. Then K in (4.1) may be rewritten as

(42) K = {x€R? GTx>0}.

For any x€R" let I(x)={i€{l....2n}, g,.Tx=0} and define G;=(g);¢p Q,=En—G,GIT. For x=x;
denote I,=1I(x,), G,= le and @, analogously. We can now define

The algorithm for variational inequalities

(4.3) Let xIGKHBSp be arbitrary. Set k=l and p,=0, p,€{0,1}.
1. Determine I, and w=r,—A Bx;, A, = rka/pz. Terminate the iteration if GkTukSO and
12,1l =0.

2. Compute Iukjlzmax{lukll, (GkT“k)i>0}' If {(Qkuk,rk)<|ukjl NQuill and p, =0} or [|Q.ull=0
then set 7;: I— {j} and dctermine ak. Otherwise set 7,;: I, é;: O

10



3. Replace Fy— A, B in (24b) by Fy— N B—1,E,, where 7,=max{0,§ + o,} and o, is the largest
cigenvauc of Fi—X,B on {xk}-Lﬂ{XGIR", @;x=x}, 8>0 a given congtant. Compute p, as the
dircction vector given by (2.4a) but in the variables x;; with (’é’k)ﬁz 1 (the free variables) only,

fixing the others.
4. Dctermine the maximal admissible stcplength E'k and the stcplcngth Qlk as in (24) and sct

Xer1 = Pyt tapllp

. - N
where a, =min{a;,a,}.

Theorem 4.4. Let the assumptions (2.2) be satisfied for problem (1.2). Assume that the set
I = {x*€XN3s, G*'x*<0, [IQ*x*||=0}

is finite and that G*Tx*<0 for all x*€T and 0<8< —o* (¢f 3. in (4.3)). Then the sequence {x.}.

k=1,2,..., generated by algorithm (4.3) converges to a point x*€T. If FECYU(x*)) then the asymptotic

(Q-)order of convergence is two.
We first prove the analogue of Lemma 2.8 in the case p=L

Lemma 4.5. Let under the assumptions of Theorem 4.4 xkEKﬂaSp be generated*by algorithm (4.3)
with steplength a, = 8/(2Mcond(B)) then x, . ;€ KN asp and

p P if =1
(46) S )-fx) =
‘ max{|lp,Jl, |ukjl}2 otherwise,

where §,=¢,>0 for p, ;=0 and Tp=c, @ >0, for py, =L

Proof: The proof of (4.6) in the case u, =1 follows closely the lines of the proof of Lemma 2.8. It
is therefore not necessary here to give the -details. We remark only that p, in (4.3) satisfies

%)) (xpP)p=0, @;(F K~ MB- TkEn)é.'kpk: - é;c’ k

and the analogue of (3.9) holds with B replaced by 6. Let now p,=0 and ?,:ilk. Since the
analogue to (3.8b) shows that @'krk in (4.7) may be replaced by 6kuk’ which contains the
component Ugp the assumptions of Theorem 4.4 assure that for a positive constant
cllpk|l2||@'kuk||2|ukjl. This proves (4.6) for ']:;t I If 7;: I, then the strategy in 2. of (4.3)
guarantees that |lerk||2|ukjl while (4.7) gives cllp JI>11@,r]l. This completes the proof of the

1



lemma.l

The proof of the first part of Thcorcm 4.4 nced also not be given in detail here since it
follows from combining the arguments of the proofs of Thcorcm 2.10 above and Thcorcm 3.1 in
[13]. This shows that, for all sufficiently large &, I, = I(x*), x*€T and 7, =0. Thus the stcplcngth a,
will finally be chosen equal to 1 and the asymptotically quadratic convergence then follows as in the
proof of Theorem 2.10.

Remark 4.8 For a practical application of algorithm (4.3) a way of choosing the regularization
parameter 7, has to be given. For a more general class of optimization problems a procedure for
this purpose is described in [20].

5. Path Following in Turning Point Problems

In this section we consider the same class of problems as in [ 6], namely the nonlinear eigenvalue
problem (cf. (2.7a))

(5.1) AL(y) = @(xu(x)), x€Q, u(x)=0, x€9%,

where A€ER, DO, and L is a uniformly eliptic formaly selfadjoint differential operator on the
bounded domain QCR". Generalizations, for example, to higher order differential operators or
other boundary conditions are possible. Conditions (2.2) have to be satisfied in the continuous case

and for the discretization. We shall restrict ourselves to the example (cf. e.g. [ 4]
(5.2) L) = - Au, p(xu) = exp(u/(1+ EU)), 0.
and N=2. For ¢ = 0 (5.1), (5.2) . is usudly caled Bratu's problem.

There has been a great interest in the numerical solution of similar problems, see, for
example, the papers mentioned in scction 5.6 of [14]. For theoretical results on problems of the type
(5.1) see, for example, [ 5, 7,191. It is well-known that (5.1), (5.2) has a solution diagram as shown in
Fig. 1 in dimensions N= 1, 2. The points marked in the figure represent for e< £* one or two

(quadratic) simple turning points respectively a nonsimple turning point for ¢ = &*.

The problem of following the solution branch and also the problem of dctermining the

simple respectively the nonsimplc turning points numerically presents in principle no difficulties

12



(cf. [ 2,14,21)). However, using e.g. Keller's pscudo-arclength-continuation technique the stcpsize has
to be suitably controlled near the limit point and the question of cfficicncy arises in particular if the
lincar systems are solved by elimination methods. Jn [ 2] a multigrid(MG)-method was suggested for
the approximate solution of (5.1), (5.2). The pscudo-arclength normalization was added (cf. [ 8 ])
and the resulting system was solved by block-elimination as utilized also in Remark 2.6. Hence a
differential operator was discrctized, which becomes singular in the turning point. The
corresponding singularity of the discrete operator on one of the grids used in the MG-method made

it necessary to modify this algorithm considerably in order to be able to pass the limit point.

&

L £-0 osc<€™ €=¢
[l

£> ¢

Fig. 1. Solution diagram for problem (5.1). (5.2) for different values of e.

These modifications may not have been necessary, if instead the inflated system would have been
treated directly. The resulting system has a regular matrix in the neighborhood of solutions.
However, the matrix is not definite on the whole space, so that it is open how the MG-method
would perform. This question will be investigated in the future. For an application of MG using

Rayleigh-quoticnt iteration to the lincar eigcnvaluc problem cf. [11].

It is a well-known procedure to use a horm of u as a continuation parameter and a
numerical method for this is, for example, the Picard iteration of [ 6]. The algorithms of sections 2
and 4 can be used analogoudy. They have the advantage of quadratic convergence while Fast-
Poisson-Solvers in the special case L= — A could in gencral not be utilized. It should, however, as

pointed out above, bc possible to use MG-agorithms.

13



Wc compare now agorithm (2.4) and that of [ 6] on the above problem. Since it is not
our aim to compute the solution to a high accuracy wc have chosen a low order finite element

method on a relatively coarse mesh. Problem (5.1), (5.2) may be written in the variationa form

MV gw)n)=(VW,Y), YvEH (),
(5.3)

g(u) ='/J (u 2+ uf)dxdy, f(u) = _f exp(u/(1 + eu))dxdy.
Q )

Q was taken as the unit square and linear finite elements were used on the standard triangulation
obtained from a square mesh with meshwidth h. f was evaluated by numerica intcgration with
weights #2/6 and the midpoints of the edges of a triangle as integration points. This gave rise to the
usua five-point difference matrix B and a seven-band matrix A. Table 1 shows the results for two

values of e<e*.

¢ p A Alg(2.4) Picard
0.0 30 6.712380 44 917
0.0 36 6.910483 203) 8 (16)
0.0 42 6.882701 2(3) 8(16)
0.0 48 6.681038 2(3) 9(16)
0.2 72 9.278187 303) 10 (18)
0.2 80 9.291875 2(3) 9(18)
0.2 88 9.265477 2(3) 9(18)
0.2 9 9.211836 2(3) 8(18)
0.2 360 7.341984 2(3) 9(20)
0.2 440 7.237885 203) 9(20)
0.2 520 7.230358 203) 9(20)
0.2 600 7.285922 2(3) 8(20)

Table 1. Computed points on the solution branch for problem (5.1). (5.2) near the turning points and necessary number

of iterations for different agorithms.

14



For cither method the number of itcrations is given required to compute the solution to about ecight
decimal places with the number of iterations for maximal accuracy (Double precision FORTRAN
on an IBM 370-168) given in parantheses. The starting vector for p =30 and for both algorithms
was xy= e/llell. e=(1,...,.)TER™, n=((1—h)/ k) h=1/12. The approximate solution for each p-
valuc was then, after normalization, used as starting guess for the next p(e)-value. Algorithm (2.4)
could in each case be used with a,= 1. The lincar system for the symmetric but in genera
indefinite matrix D, in (2.4b) may bc solved, for example, by any conjugate gradient method
applicable to such problems (see, for example, [ 3]) and even special elimination procedures arc easy
to derive. We used agorithm SYMMLQ ([17]) which without any scaling or preconditioning needed

about 35 iterations to solve the system in each step.

The iterates of our algorithm converged quadratically from the beginning. The steps in
p for (2.4) could be chosen large as the results show, but not arbitrarily large, while the Picard
iteration did not seem to have similar restrictions. So an aternative to damping in (2.4) could be to

first execute some Picard steps and then to use algorithm (2.4) with stepsize 1.

In this section we have seen that algorithm (2.4) may be used very efficiently in the
following of solution branches for problems of the type (5.1). For more general bifurcation
problems a natural procedure would be to use alternately continuation with respect to A or to the
norm of x (cf. section 6) switching when the steplength in one of the methods has to be chosen
below a suitable tolerance. The use of MG-methods may be possible, however, conjugate gradient
algorithms provide an efficient and generally applicable procedure for the solution of the linear
systems.

6. Path Following in Bifurcation Problems for Variationa Inequalities

In this section we again restrict the numerical computations to a simple but illustrative example. We
apply agorithm (4.3) to the discretization used in [13] of the buckling problem for an axialy

compressed beam with lateral supports. The variational inequality is

AVg(ug)u—uy) 2 (V. flug)u—up), Yu€Kk,

1 .
(6.1) fw) =S‘[(1 + “'_2)% —1]dx, gu)= ‘/zfu"zdx,
0 . 0

15



k= {u€H0,1], (C)>0, u(D)<0}.

Hermite cubic finite elements on an equidistant grid of width h and suitable numerica intcgration
are used yiclding the discrete functionals f;, g, (cf. [13]). Of physical interest are the solutions u,,
branching from the trivial solution at the largest eigenvalue A,; with cigenvector uy, of the

linearized problem.

To our knowledge no reasonably efficient agorithms are available which are globaly
convergent to u,, if K# H, except in special cases (see, for cxample, Corollary 4.2 in [13]). In [10] a
constructive existence proof for the restricted solutions has been given in which they are obtained as
bifurcating solutions of a penalized version of the unrestricted problem (K= H). In that paper,
however, only eigenfunctions can be determined corresponding to eigenvalues which are smaler
than the largest eigenvalue of the unrestricted problem for which the corresponding cigenfunction

with suitably chosen sign is in the interior of K. Hence the physically intcresting case is excluded.

We assume now that (A,,u,,) and the corresponding set of active constraints are
known and try to follow the branch bifurcating from (A,;,0). In [13] it was suggested that
augmented Lagrangian methods could advantageously be used for this purpose. The following
results, however, show that algorithm (4.3) which here essentially reduces to (2.4) in the subspace of
the free variables is the most efficient method among several agorithms. We compared it with
SALMNA, an augmented Lagrangian type algorithm using Newton’s method from the NPL-library
and aso part of the NAG-library. Another natural candidate for a comparison is X-continuation

(see, for example, [ §]) which in this case should not be inferior to pseudo-arclength-continuation:
Let (u®, X% on the branch be given. Compute u (%A% from
(Fu®)—AOB)uy = Bid.
Then set uy= 0+ (A - Ao)u.;\ and for k=0,1,.... iterate according to
(Rup)—ABXuy  —u)=—Vflu)+ABu,

Hence after an Euler predictor step several Newton steps are executed to compute the solution for

the given A. Finally, Picard iteration is applied here, too.

Wc have restricted the computations to the problem (6.1) with C= {1/3}, D={2/3}.
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Largest cigcnvaluc and corresponding cigenfunctions for this case, there are two symmetric
eigenfunctions, have been computed analytically in [13]. Table 2 shows some typical results for
h=1/24. Again the number of iterations is given required to compute the solution to eight dccimal
places respectively to the maximal attainable accuracy. For SALMNA the numbers represent for the

latter case only the number of second order derivative (function value and first order derivative)

evaluations.
p A hp Alg. (4.3) Picard A-cont. SALMNA
1 144644 E- 1 2 (3) 14 (28) 5(6) 2
2 139243 E-1 2 (3) 15 (28) 4(5) 2 @®
10 799582 E~2 34 16 (30) 5(6) 9 (14)
100 103968 E -2 34 14 () 7(8) 70 (104)

Table 2. Computed points on the bifurcating branch for problem (6.1) and iteration counts for different algorithms.

For each agorithm the normalized eigenfunction of the linear eigenvalue problem was used as
starting solution for p =1 and the corresponding Rayleigh-quotient was used as starting value for
the Lagrange multiplier in SALMNA. Then the solutions on the branch for the given sequence of
p-values were computed by continuing analogoudy to p =2, 10, 100. The corresponding X-values

were used as the sequence for the X-continuation.

The results show that our method is also very efficient for following bifurcating
branches of variational inequalities. The behavior of the Picard iteration is similar to that in section
5, while for X-continuation the convergence of the Newton iterates was not quadratic from the start
which resulted in considerably more iterations especidly for larger p-steps. The iteration counts for
this method in Table 2 do not include the predictor step. Finaly the performance of the generd
purpose routine SALMNA suggests that augmented Lagrangian methods are not able to compete
with algorithm (4.3) for the specia class of optimization problems considered here. By modifying
the subroutine suitably it should, however, be possible to reduce the extremely high expense needed

for larger p-steps.

For the solution of the linear systems again SYMMLQ was used which even dfter a
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scaling of the system nccded more than # itcrations. The number of itcrations, however, was only
dightly larger than that for the solution of the system in the Picard iteration which has a definite
matrix. So this difficulty is caused by the unfavourablc cigenvaluc distribution for this fourth-order
problem and, if conjugate gradicnt methods are to be uscd for the linear systems, a suitable

preconditioning should be chosen to further reduce the necessary work.
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