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1. Introduction

In this paper, we consider iterative solution procedures for solving
singular |inear systems
(1 Ax = b, b € Range (A)
where Ais an n by n, Hermtian, positive semdefinite (hereafter HPSD) matrix.
Qur aimis to consider variants of the block Jacobi, SOR and SSCR iterations.
The fundanental paper of Keller ([1965]) considers nethods based on splittings
A=B-C
with B a nonsingular matrix. Here we allow B to be singul ar

Thi s paper concerns block iterative methods. W suppose that A has the

k by k block structure:
(2 A = .

Ve call the matrix D = diag (All, ...."., A,) the block-diagonal of A

For any subspace S of ¢, Sl denotes its orthogonal conplenment. For any
matrix A we let N(A) be its null space, R(A) its range, A* its conjugate
t ranspose, and A+ its generalized inverse. Recall that
N(AH) = N(A) = R(A)
Al'so, recall that AA+ is the orthogonal projection onto R(A)

We shall consider iterations of the form

3 XM oAty n=o0 1,

where N(HYIR(A) = {0}.



Letting T =1 - HA we have, for any solution x of (1),

(xn+| - X) = T(x"-x%).

Thus, we are concerned with the matrix Q= lim T".
e

Definition: The square matrix S is an Rmatrix if
rank (82) = rank (9).

If Sis an RRmatrix, then S is nonsingular on its own range, and
¢ = R(S) ®) N(S).

Theorem 1.  [Kutznetsov [1975]]): Qexists if and only if

(i) (1) =sup Al <1
Aeo(T)
A¥1

(ii) HAis an Rmatrix

where a(T) is the set of T's eigenvalues. In this case, Qis the projection

onto N(A) parallel to R(HA).

Wien H and A satisfy the hypotheses of the theorem we say that the nethod

(3), or the matrix T, is convergent for A

.2, Miin Results

W shall now obtain conditions on a possibly singular matrix B that guaran-
tee convergence for A of the matrix | - BYA. V& then apply these results to
anal yze block Jacobi overrelaxation, SOR and SSOR iteration for matrices
whose diagonal bl ocks may be singular.

Lenma 0: Let A be HPSD. Then (x, Ax) = 0 if and only if Ax = 0.

Proof: Sufficiency is trivial. For necessity, expand x in the eigen-

vectors of A
W collect here several properties of partitioned HPSD natrices.

Dahl qui st [1979] and Al bert [1969] obtain like results.



Lemma 1: Let the HPSD matrix A be partitioned as in (2). Let D'be
its block-diagonal and let E = DA Then:
(i) ND) = N, ) @N@,)D..... @nea s
(ii1) Dis HPSD, as are each of itsdiagonal bl ocks;
(iii) if, for some 1 <j <Kk, Ajjxj= 0, then Aijxj= 0 for all 1 <i <.k;

(iv) if E=L + L* where L is strictly lower triangular, then

Dx = 0 only if Lx = L*x = 0; i.e.

(4) (a) NDYT N(L)
(b) N(D)C N(L*)
(c) N(D)CT N(E)
(d) NOD)C N(A).

(v) For each o € [0,1), |et A(a) be defined by
A(@) 2 D -~ oE
Then A(a) is HPSD and
(5) N(A(a))CN(D).

Proof: (i) and (ii) are obvious. To prove (iii), suppose A .z =0, while
: Aijz =c ¢ 0.
Let x(6) be partitioned conformably with (2),
mE:o = i*’:,....it_ji:«w q*, Taeseens ;1-1 -5?*, ca v awamy 0)%
position 3~ position

Then for & sufficiently large

x(8)* Ax(S8) = c*A, ,c-28c*c <0,

11°
a contradiction. (iv) is a trivial consequence of (i) and (iii). To prove (v),
assume that for some x,

0 > x*A(a)x = x*Dx-0ox*Ex.



By (ii),
ox*Ex > x*Dx > 0,
and, therefore,
x*Ex > x*Dx, 0 > x*Ax,
a contradiction. This shows that A(a) is HPSD. If A(a)x = 0, then
0 < x*Dx = ax*Ex < x*Ex
with strict inequality and a contradiction unless 0 = x*Dx = x*Ex, By Lemm O,

Dx = 0 then, so we have the inclusion (5).

Lemma 2: If Ais Hermitian and B is any matrix such that
(6) B+B* is HPSD
and
(7) (B+B*)x = O only if Ax = 0O
then BAis an Rmatrix. If in addition
(8) (B+B*)x = 0 only if Bx =0

t hen B+A is an RRmatrix.

Proof: Suppose (Bx,x) = 0. Then

0= (Bx, X) = (B*x,x)=((B+B*)x,x).

By Lemma 0, (B+B*)x = 0, SO by (7) Ax = 0. Thus N(B)C N(A) and N(B*)C

N(A) by the same reasoning. Hence B is nonsingular on R(A) and rank (BA)2 =
rank (BA) unless ABz = 0 for some nonzero z € R(A).. But for any such z,

(Bz, z) =0
since N(A) | R(A), so z e N(ANR(A) = {0}. This shows that BA is an R-nmatrix.
For B+A, B" i's al so nonsi ngul ar on R(A) since N(B+) = N(B*)C N(A). Now
suppose BTz ¢ N(A) for z e R(A). Then, letting u = B+z, we have Bu = BB'z = z,

since



R(A) = N(&)'C NE%)' = R(B).
Thus,
0 = (u,z) = (Bu,u),
so that u e N(B+B*). By hypothesis, then, z = Bu = 0. QED
The next lemma provides sufficient conditions for satisfaction of the
first hypothesis of Kuznetsov's theorem  Qur proof parallels Keller's for
the case of a nonsingular matrix B (Keller [1965]).
Lemma 3: Let A be HPSD and let T = I-B A, 'where B is such that
(9 N(B+B*)C N(A)
the matrix P defined by
(10) P = B+B*-A
i's HPSD, and
(11) N(P)C N(B).
Then §(T) < 1.

Proof: Using (9) we can show, as in the proof of Lemma 2, that
(12) N(B) C N(A)
and
(13) N(B*)CN(A).
Thus, B*, and hence B+ i's nonsingular on R(A). Thus Tx = x if and only

if Ax =0. Now, let u be an eigenvector of T corresponding to the eigenval ue

A#1. Thus,
(1 = A)u = B Au;
left-multiply by B and take the inner product with u to obtain

(Bu,u) 1

(BBtAu,u) = TI-%

Now R(AXC R(B) since as we have seen, R(B)' = N(B*)CN(A); thus BB+A = A



Thus, with A = a +i8,

20y -2l v
2 1

(l—a)2 + B
By (11) and (12), (Pu,u) >0 if u ¢ N(A). Thus the last expression on the

right is positive. The inequality obtained by dropping it vyields

2

|xJ2 =a? 482, QED.

W now obtain necessary and sufficient conditions for convergence when B

is HPSD, as is the case for Jacobi-like methods.

Theorem 2. Let B be an HPSD matrix such that N(B)&Z N(A). Let C=B-A and

let T=1-B"A. Tis convergent for Aif and only if
(1) B+C is~HPSD

and
(i1) N(B+C)C N(A) .

Proof: Sufficiency follows from Theorem 1, since the hypotheses of Lemmas 2

and 3 are easily verified. For necessity, note first that since N(B)EN(A),

if Bx = 0, then &x = Bx-Ax = OO =0, so N(BXCN(C) al so. Thus R(B) is invariant

under all of A B, and C.  For (i) suppose that B+C is indefinite. An xeR(B)

can be found for which

((B+C)x,x) < 0,

so that
(14) (Cx,x)/(Bx,x) < - 1.
Consi der the generalized eigenval ue problem Cx = ABx for xeR(B), a problem

whi ch makes sense since B is nonsingular on R(B) and R(B) is GCinvariant. By

(14), an eigenvalue A < -1 exists. Let x be the eigenvector. Then

Tx = x - BT(B-C)x
= Btex

= Ax,



so that 5(-1-) > 1. For (ii), suppose (B+C)x = 0 while Ax # 0. Take xeR(B)
by removing its orthogonal projection on N(B) if necessary---x remains nonzero
since if x had no conponent in R(B), Ax would have been zero---the resulting
x still is anull vector of B+C and Ax is not changed. Now

-Bx = (X,
and since BVBx = X,

-X = B+CX

x - B'Bx + B ex

= TX,

sop(T) > 1. QED

As an example,~we consider the bl ock-Jacobi overrelaxation (BJOR) nethod,
based on the choice B = wD where D is the bl ock-diagonal of A
Corollary: The BJOR nethod is convergent for Aif and only if 2wD-A is HPSD
and N(2wD-A)C N(A).

By choosing w sufficiently large, these conditions are necessarily satis-
fied.

Next, let A = D L-L* where L is strictly lower triangular, and consider

the (symretric) bl ock-SSOR nmethod, defined :for w # 0 or 2 by

e oo
c -(2;"’)" (1;°° D+L) o (1_;9 m*)

Corollary: The block SSOR nethod converges for Aif and only if 0 <w < 2.

Proof: A straightforward conputation, naking use of Lemma 1(iv), shows that

! -1 2
(15) B+C = i-g-;—‘”) [lj'_s_lw-_wk D - (L+L*) + 21p'ix
I .
from which the hypotheses of Theorem 2 can be verified. For w outside [0,2],

B+C nust be negative semdefinite, as (15) shows.



W call the case w = 1 in the BJOR the bl ock-Jacobi nethod. W consider
the case of block Z-cyclic matrices.
Theorem 3: If A-Dis block Z-cyclic, then the block-Jacobi method is convergent
for Aif and only if N(D) = N(A).
Proof: Every eigenpair of T is an eigenpair of (E,D), for if
Tu = Au
then since DD'E = E,
Tu = u-D' (D-E)u = Au,
so that

Eu = ADu.

[f ue NA then X = 1; otherwise Du # 0 and 0 < (Au,u) = (Du,u) - (Eu,u) =
(1 = A)(Du,u) so that A < 1. Since Eis Z-cyclic, -xis also an eigenval ue, so
A > -1 (see Varga [1962].) If N(A) = N(D), we have convergence. But if
N(A) - N(D) is nonenpty, we have
Eu = Du
for some weR(D), so 1 and -1 are both eigenval ues.
QED
We now consi der the bl ock-SOR splitting
B=u iDL
¢ = w t(1-w)DHL
Theorem 4: Bl ock-SOR is convergent for an HPSD matrix Aif and only if 0 < w < 2.
Proof: Let 0 <w< 2. According to Lemma | (v), since
B+B* = 20 lA(w/2)
we have that B+B* is HPSD and N(B+B*)¢ N(D)& N(A). Mreover, by Lemma 1(iv),
N(D)& N(L), so N(B+B*)& N(B). The matrix P of (10),
P =B*+ C = w L(2-0)D,
is HPSD and its null space is contained in N(B),as shown above. Thus Lemmas 2

and 3, and hence Theorem 1, apply.



Qur proof that convergence requires 0 <w < 2 mimcs the proof of Lemma 3.
First we dispose of the case w = 0. Actually for w =0, our definition of the

met hod is nonsense. But the "blockw se" definition.

~n + n+l n
3" Ajj("j - {*:j Ak - Ej Ayi"

n ~n n
X =x. + w(x, - X,)
J <J J

makes perfect sense. In fact, for w=0, T=1and B=0. T is convergent for
Aif and only if A-is the zero matrix. For w outside of [0,2), we shall show

t hat ;('1‘) > 1 unless A=0. First we showthat N(B+)CN(A). Let B'x = 0.

Then B*x = 0. B* is block-upper triangular and its diagonal bl ocks are nonzero
mul tiples of those of A Partition x as (xl,...,xk)* conformably with A Then
Akkxk = 0. By Lemma 1 (iii) , Aikxk =0 for 1 <41 < k-I; these are the bl ocks

in the kth block-colum of B*. Hence, 0 = B*x = B*(xl,... 0*. W can

’xk_l’
repeat this argument to show, eventually, that Dx = Ax = 0, as required.

We now proceed as in the proof of Lemma 3 to show that if Tx = Xx and

"A#1 t hen
1 (Px, x)
2Re T3 1 +_(Ax,x)
Pis a negative scalar nultiple of Dif wf[0,2] and is zero for w =2, In the

former case, since x¢N(A), (Px,x) < 0 and this inplies that p(T) > [A] > 1.
In the later, we have p(T) = |A] = 1.

QED



- 10 =

Concerning necessary and sufficient conditions for a general splitting
A= B-C, we have only partial results. Sufficient conditions are provided
by Lemmas 2 and 3. \Wen all conditions except (10) are satisfied, we have
that if B*+C is negative semdefinite then T is not convergent for A unless

A= O--this was shown in the precedinguproof. Wien B*+C is indefinite, we

cannot say. For exanple, when

1 1 o
A=A(a)= 1 1 s ]
o a 2

and B =D = diag (1,1,2), then for la| i/?._ Ais HPSD (its nonzero eigen-

values are 2+ v2 a); unless a =0, B*+C is indefinite: since its trace is 4

and its determinant is -4a2 < 0, it has'exactly one negative and two positive
eigenvalues. Finally, T(a) = I -D"1A(a) has the ei genval ues 1, (1(1-4a2)% - 1) /2}

so that

<1for |a] <1
@) ( =1 for a=1

>1 for |a] > 1
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