’: 5....,..;4_;4‘_:)

Numerical Analysis Project . i ' , March 1983 ™
ManuscriptNA-83-02

Adaptive MeshRefinement
for Hyperbolic Partial Differential Equations

by
o MarshaJ. Berger

Joseph Oliger

-~ Numerical Analysis Project
~ Computer Science Department
Stanford University
Stanford, California 94305

oy Py o N

Adaptive Mesh Refinement
for Hyperbolic Partial Differential Equations

Marsha J. Berger*
Cou rant Institute
New York University
New York, N.Y. 10012

Joseph Oliger*
Computer Science Department
Stanford University
Stanford, CA 94305

Abstract

We present an adaptive method based on the idea of multiple, component grids fcr the solution of
hyperbolic partial differential equations using finite difference techniques. Based upon Richardson-
type estimates of the truncation error, refined grids are created or existing ones removed to attain a
given. accuracy for a minimum amount of work. Our approach is recursive in that fine grids can
themselves contain aven finer grids. The grids with finer mesh width in space also have a smaller
mesh width in time, making this a mesh refinement algorithm in time and space. We present the
algorithm, data structures and grid generation procedure, and conclude with numerical examples in
one and two space dimensions.

*This research was supported in part by Office of Naval Research Contract NOOOQIi4.75C-1132 and in part by the National
Science Foundation under Grant No. MCS77-02082.

1. | NTRODUCTI ON

In this paper we describe an adaptive finite difference method for
systems of hyperbolic partial differential equations. The solutions of
these equations are often smooth and easily approximated over |arge
portions of their domains but contain boundary |ayers or locally
isolated internal regions with steep gradients, shocks, or
di scontinuities where the solution is difficult to approxinmate. .W
adaptively place finer grids 1in these regions over a coarse grid
covering the donain. The solution on each fine subgrid can then be
approxi mated by standard finite difference techniques, as done on the
coarse grid. If we are solving a time dependent problem the difficult
regions will change in time, and thus our grids nust adapt in tinme in
response to the solution. Ouralgorithmis very general, and nmakes no
assumptions about the nunber or type of these irregular regions, nor
about their direction of notion.

The grid refinements we introduce in tw space dinensions are
rectangles of arbitrary orientation. Qur algorithmis recursive, in
that subgrids with finer and finer mesh width can themsel ves be nested
in other subgrids. W use oriented rectangles for two reasons: (1) it
allows us to approximately align our coordinates with singular surfaces
such as shocks, and (2) it allows us to reduce the size of the refined
region and the nunber of nesh points introduced. Furthernore, this
allows us a very sinple wuser interface, and requires very little
overhead to maintain. Qur strategy for grid refinement is to maintain
a constant nmesh ratio of time step to space step on all grids. Ve
refine intine as well as space, so large tine steps are taken on

coarse grids and small time steps on fine grids. Val ues on the

--
boundaries of the finer grids are defined wusing i nterpolation
procedures applied to the coarser grid in which the refinenent is
enbedded. W believe that our adaptive methods are the first to use
such a space-time grid structure and find that this is a major factor
in the efficiency of the nethod.

W have only implemented these nethods for problems in one and two
space dimensions over rectangular domains. Howeover, they can Se
extended to general regions using techniques |ike those used by Starius
[1980] and B. Kreiss [1982]in a straightforward way. These approaches
break up general domains into subdomains which are mapped onto
rect angl es. Qur mesh refinement approach allows wus to easily use
different methods in different regions -- e.g., hi gher order
approxi mations where the soiution is snooth, and special |ower order
methods specifically designed for shocks were they occur. our
algori thm, which deconposes the conputation into regular blocks, can
also be easily used for parallel or concurrent processing.

Adaptive methods have | ong been used as standard practice in mny
of the classical problens of nunerical analysis such as quadrature and
ordinary differential equations . Qur methods are close in spirit to
those discussed by Pereyra and Sewell [1975] for boundary val ue
problems. The original notivation-for our adaptive method can be found
inQiger [1979].

Qther adaptive nmethods have now been proposed for both tine
dependent and boundary val ue problens for partial differential
equat i ons. Adaptive nultigrid nethods have been proposed by Brandt
[1977] for elliptic problens. Adaptive finite el enment methods have

been devel oped by Babuska and Rheinboldt [1978] and Rank [1981] for

-3-

these same problenms. Ext ens ive theory has been devel oped for these
adaptive nme thods . Recently adaptive finite element methods have
started appearing for parabolic equations as well (Davis and Flaherty,
[1982]), Gannon { 198], Sherman and Seager [1981]). Mller et al.
[1981] have derived noving finite el enent nethods which they have
applied to both hyperbolic and parabolic equations. Adaptive grid
met hods for hyperbolic equations in one space dinension have also been
cosidered by Hyman [198l] and Harten and Hyman [1982]. Bol stad [1982]
has devel oped a one dinmensional adaptive nesh refinenent algorithm
using nmethods wvery simlar to ours. - Dwyer et al. [1980] and Winkler
[1976] have al so done adaptive finite difference cal cul ations, but
their grid refinement is done in only one dinension. Qur algorithns
and data structures are for problems in two space dinmensions, and are
readily extended to three dinensions since there are no new topol ogical
difficulties.

In section 2 of the paper we describe our grid structure. Section
3 describes the integration algorithmfor this grid structure. This
includes the interactions between the grids as well as the technique
for estimating the local truncation error, upon which our adaptive
strategy rests. In section 4 we describe our nethod of subgrid
generation, ard in section, 5 the data structures used in our nethod.
Mumerical results obtained using our prograns in one and two space
dimensions are presented in section 6. Qur conputational results
obtained with the adaptive prograns are conpared with conputations on
uniformgrids with mesh intervals which are the same as the finest used
in the adaptive conputation. Ye have been able to achieve conparable

accuracy with considerably | ess cost using the adaptive method.

-l

2. CGRID DESCRIPTION

In this section we describe the type of grids we use in solving a
probl em with our adaptive mesh refinement strategy. W also develop
the notation and termnol ogy needed to discuss these grids.

At the start of a conputation only the coarsest, or base grid is
specified by the user, This base grid, denoted 'GO , Wll remain fixed
for the duration of the conputation. We use the termgrid to refer to
the convex hull of the point set of the grid, rather than the point set
itself. Gy itself may be conposed of several possibly overlapping
conponent grids. Thus, we say that grids overlap if their convex hulls
"have a nomempty intersection. W call each conponent grid GO’.

i
| oosely say that G, is the union of its conponents G, . . Each
b e

, and

conponent grid is required to be locally uniform in sone coordinate
system They need not form a sinply connected domain. In addition,
these grid compornents do not necessarily have the sane mesh width. For
exanple, we nmight use a grid over a region with a boundary |ayer that
has a much finer discretization than that of the grid covering the
interior of the domain. Furthernore, within each grid the nesh spacing
in the coordinate directions need not be equal. For sinmplicity of
exposi tion, however, we ignore these points and assune Gy has nesh
spacing h, = h = hy on all conponents Go, 5 -

During a conputation, refined subgrids will be created adaptively
in response to sone feature in the transient solution, such as the
estimated error in the solution or the appearance of shock fronts. Qur
goal is to generate the subgrids to best fit the area of the domain
where they are needed. The subgrids we create are rectangl es of

arbitrary orientation. By keeping the subgrids locally uniform

-5-

integration on these subgrids can be very efficient. By allowing the
arbitrary orientation, it is possible to have a coordinate system which
is locally approximately normal and tangent to some feature in the
solution, for exanple a shock front. For sone nunerical methods, for
exanple in fluid dynamics problens, it is inportant to have the flow
basically along a coordinate direction. Qur rotated grids easily allow
for this. In addition, storage requirenents can be significantly
smaller by allowing rotated rectangles.

It is inportant to realize that these subgrids are not patched
into the coarse grid. Rather, a subgrid should be thought of as
overlaying a coarser grid. Each grid is defined independently of the
other grids, with its own solution vector, storage, etc. In this way,
each subgbrid can be integrated (alnost) independently of the other
grids. It also easily allows for the possibility cf using noving
subgrids, even if the coarsest grid is stationary. By keeping the
grids independent, the a lzori thm can be viewed as a method of donain
deconposition, aod is well suited for nultiprocessor architectures
currently under devel opnent. Q her authors (Sinpson, [1978]) have

created refined meshes which are connected into the underlying coarse

grid to mke one global grid. In their approach, fine grid points are
merged into the set of coarser grid points. In several dinensions this
is difficult to do. It destroys-the local uniformty of each grid

substantially slowing down and conplicating the integrator, as well as
preventing its vectorization, In addition, it requires st orage
overhead and processing which is typically proportional to the nunber

of refined grid points, instead of the nunber of refined grids

It is possible that the fine subgrids will thenselves contain even

_6..

finer subgrids Wwithin their boundaries, i.e., subgrids can be
recursivel ygenerated. W say that a point in one grid is contained in
another grid if it lies in the convex hull of that grid. Agrid is
contained in another grid if all points in that grid are contained in
the other. Simlarly, a point of one grid is an interior (boundary)
point of another grid if it lies in the interior (on the boundary) of
the convex hull of the other grid. W define the level of a grid to be
the number of coarser grids the fine grid is contained in. The coarse
grid Gy is at level 0 in the grid hierarchy. The subgrids of G, are
part of G; and they are said to be level 1 refinenents. Refined grids
within the G, grids are at level 2, denoted G, , and so on. In this
way, a nested sequence of grids with finer and finer discretizations
may be created over sone portion of the spatial dommin. Each such grid
is one grid conponent, denoted’Gz i of Gy » where G, consists of
those grids at level 2 in the hierarchv haviag mesh width h),z . A point
in the problem domain may therefore be interior to several grids, but
the approximate solution at that point is defined by interpolation from
the finest grid to which that point is interior.

In practice, we assune a set of possible mesh discretizations

{ho,hl,hz,...,h has been specified in advance where each hy is an

max}
integral mltiple of h, ., . A good choice for this refinement ratio
wi || depend on how nuch of the domain needs what amount of refinenent.
If only one part of the domain needs to be in a fine grid with mesh
wi dt h h.J = hg/r , it is nore efficient to create one |evel of
refinement with hy = hy/r than two levels each with a ratio of /T, In

general, however, not all areas needing refinement will need the same

amount of refinement, arguing for smaller values of the refinement

-7
ratio r. Since there is some overhead associated with refined grids, we
prefer a refinement ratio of 4 over the ratio of 2 typically used with
mltigrid net hods. In special cases Wwhere it is expected that all
areas needing ref inement Will need a lot of it, higher values of r can
be used efficiently.

W enphasize two points about the grid hierarchy. |f at some tine
during the conputation there is a grid with nesh width hy , we require
that it be contained in a grid at level RI, Wich in turn is required
to be contained in a level L-2 grid, and so on to the coarsest grid.
‘ALl intermediate grids between the finest and coarsest are naintained.
Furthermore, each point in a fine grid at level £ mst be in the
interior, not just on the boundary , of a grid at the next coarser
level, unless it is on the physical boundary of the domain.

Second, not all. points in a fine grid are interior to the same

coarse grid. We call this type of nesting level nesting. Figure 2.1

G o1

Figure 2.1 Sanple Gid Structure

-8~

illustrates how the grid at level 2 is nested in the union of grids
Gl,1 and G1,2 at level 1. Figure 2.1 also illustrates the conplication
in two or nore dinmensions of overlapping refined grids, which we
di scuss |ater. In one dinension, Where a grid is just an interval
| evel nesting is identical to straightforward grid nesting, and
overlapping of fine grids does not occur. Gids at the same |evel of
refinement with the same mesh width are either disjoint or ©lse they
are nerged into one grid spanning a larger interval.

In sum using the ideas of independent conponent grids and
recursive refinement, a hierarchy of nested 9rids is formed. The

conplete grid structure is denoted

G=;IGa,
where the grid structure at level & is the union of rectangular
conponent s
G2=L.JG2’j.

]

-9~
3. | NTEGRATI ON ALGORITHM

In this section we describe the integration algorithmthat we use
to solve a hyperbolic pde using mesh refinement. There are three nain
conponents to this algorithm They are (i) the actual tine integration
using finite differences that is done on each grid, (ii) the error
estimation and s ubseq uent grid generation, and (iii) the special
grid-to-grid operations that nust be done every time step during the
integration that arise because of mesh refinenent itself. W describe
these three conponents in turn.

Since each grid is defined as an independent conputational entity,
with its own solution vector, each grid can be integrated in tine
i ndependently of the other grids, except for the determination of its
boundary val ues. VW nust then consider the question of which grids to
integrate when, and deternine the order of their integration. This is
made easy however by t' he follow ng requirenent.

Recal |l from section 2 that in our grid formulation, the mesh
widths h, of grids at level 2 are an integral factor r of the mesh
wi dt h hy 4 of the next coarser level. W use the same factor to set
the time step on the level 2 grids, k& = kg,-l/r' In this way we keep
the mesh ratio X of time step to space step constant on all grids.
Thi s nmakes ocur al gorithm one ofmesh refinement in time and space, One
of the main reasons our nmethod is efficient is because the overly
restrictive snall time step of the finest grid is not applied over the
entire domain.

This constant nesh ratio x nmakes it easy to determine the order of
grid integration. The steps are interleaved so that before advancing a

grid, all its subgrids are integrated co the same time. At every

...10...
coarse grid step, all grids should be at the same time. One coarse
grid cycle is then the basic unit of the algorithm Fig. 3.1
illustrates this in one space dinension and tine.

Since our refined grids are rotated rectangles, the difference
equations must be transformed into the rotated coordinate system This
can be done in an automatic way, so that the integrator, which is
supplied by the user, can be separated from the adaptive mesh routines.
For standard finite difference equations, this can even be done in a
conservative way (Viviand, [1978]), which is inportant for problens

with discontinuous solutions. To solve

.. £ LY
{ A Gz}l 4

G, —

)

N

Figure 3.1 1n SPACE TI ME MESH

-11~-

u, = f(u)x + g(u)y

under the nore general coordinate transformation

r = r(x,y)

s = s(x,y)

. we solve
up = ECu) F gludg
wher e
- (rxf + ryg).
J
é } (sxf + syg)
J
and J is the determ nant
T r
J=det [* Y |.
SX 3

We point out that it is sometimes not necessary to transform the
di fference equations for each grid. If the physical problemis
invariant to translation and rotation, we can use the identical
di fference equations on each grid. It can also happen that the

difference scheme itself is invariant under rotation. Jameson [1974]

-]12~
has proposed a rotated difference scheme for transonic flow
cal cul ations. The rotation is built into the schene to be able to
properly difference the potent ial equations in the streaniine and
normal direct ions.

Finally, we note that it is sonetinmes beneficial to use different
integrators in different regions of the solution. For exanple, in a
shock problem one nmight use a first order integrator on a refined grid
, around 2 shock, and a higher order method el sewhere. Another approach
could be to use a nore expensive method such as the G inmm scherme only
on refined grids, and a |less expensive integrator on the coarse grid.
One can also solve different equations on different grids. For
exanple, it is possible to only add artificial viscosity on a fine grid
(around a shock zone), or solve boundary |ayer equations oaly on a
separate grid in the boundary layer. Several integration nodules can
be easily supplied by the user without any further changes to the nesh
refinement program

Error estimation and the subsequent regridding operation is the
second mjor task of the nmesh refinenent algorithm This is where nost
of the canputational overhead of the method lies. Every several time
steps, we estimate the error at all grid points and possibly create new
fine grids or renove those no longer needed. If a new fine grid is
created, 1its initial values are interpolated using the finest grids
fromthe already existing grid structure. No thing need be done to
remove a grid that is no longer needed except reclaimits storage
space.

We first discuss how of ten the error estimation should be done,

and then the procedure we use to do it. In hyperbolic problenms, one

..13_

can estimate the speed of propagation and calculate how fast sone
phenomenon needing to be in a fine grid will nove. If we add a buffer
zone around the fine grid we can lengthen the time interval over which
grids are appropriate, and thus lengthen the interval between the
regridding operations. The larger this buffer zone the less often we
have to regrid, but the more work it is to integrate the extra points
in the tuffer zone.

Typi cal cal cul ations give an optinmal regridding frequency of

approxi mately every 3-4 steps. |f there are many |levels of refinenent,
we apply this result at each level. The finest ‘grids nust be noved
more often than the coarsest grids. W “call the sane regridding

procedure with a base level which is finer than the coarsest |evel.
The base grids stay fixed, and finer subgrids will be created within
the boundaries of the grids at the base |level according to the proper
nesting restrictions of section 2.1. The potential problem here is
that a refined grid mght nove off its base or not stay sufficiently
far away from the base grid boundaries. [f this happens, it is
probably time to nove the base grids as well.

Finally, we use estimates of the local truncation error to decide
where to refine the grid. There are two reasons for this. First, we
were notivated by the convergence results of (Custafsson, [1975]) for
initial boundary value problems for hyperbolic sys tems. Under some
assumpt ions that are nostly about the Cauchy stability of the
difference approximations and stability in the sense of Kreiss for the
initial boundary value problem Gustafsson shows that if

1) the local truncation error < khmd\)(t)

~14~

(ii) the initial error of the approximation = hse\) (cat), o =
01,...,s

(iii) the error for the boundary approxi mation = nd £, (t)
where d, e, f are bounded functions, and if 8 > m then the convergence
rate is order m Mesh refinement can control these errors by decreasing
k and h in those regions where |h™d,(t) | or lhe’fv (t) ! are too large.

Cust af sson’ s results are for nonadaptive , uniform grid
calculations. Mre recently , Oiger [198] has a convergence result
for adaptive nesh refinenment under sone stronger hypotheses than those
of Qus taf sson. Experinentally, the expected rate of convergence is
observed along wth the expected decrease in constants when the | ocal
truncation error tolerance (that is, the refinement criteria) is
reduced.

To estimate the error, we use a nmethod based on R chardson
extrapol ation. For sinplicity, let Q be a t wo- | evel explicit
difference operator. If the solution is snooth enough, the | ocal

truncation error is

qy+1 qy+1
(e, t14) = Qu(x,) = k(kL alx,£) + ho2 b(x,0)) +k O k1 +h2)

(3.1)
+1 +1
=1 +k o(kT 42T

where we denote the leading termby . |If u is snooth enough, then if

we take time two steps with the nethod 0, to leading order the error is

21,

+1 +1
u(x, t+2k) = Q@ u(x,t) =2+ k 0(k71T + 127

-15-
Let Qp be the same difference me thod as Q but based on mesh widths of
2h and 2k. Al'so, assume the order of accuracy in time and space are

equal . q; =q5 . Then

ulx, t+2k) = Qopu(x, t) = (2k)((2K) g a(x, t) + (2h)9 b(x, t)) + 0(hd*2)
= 29%1 ¢ + o(n?%2) .

Since u(x+2k) - Qzu(x,t) Z 2t , by fornming the difference

Qzu(x,t)—QZhu(x,t)

PES] =1 + 0(hq+2) , (3.2)
2 -2

we get an estimate of the local truncation error at time t. In words,
w. take one giant step based on nesh widths of 2h and 2k using the
solution at time t, amd conpare it with the solution obtained by taking
two regular integration steps to obtain the pointwi se error estimate.
This is illustrated schematically in Figure 3.2.

This procedure has several points to recomrend it. First, it is
not necessary to know the exact form of the truncation error to apply
it. Te functions a(x,t) and b(x,t) in (3.1), which invol ve higher
derivatives of the solution, need not be known explicitly. Especially
for systems of equations in several variables, it can be quite
difficult to conpute the exact formof the error. Not only is our
estimator independent of the pde, the error estimation procedure is
i ndependent of the difference method. This is inportant if mesh
refinement is going to be generally applicable to a wide variety of

problenms wthout an inordinate amount of programming. The exact same

-16-

Figure 3.2. Richardson Error Estimation Procedure

user-supplied nethod of integration can be used for the error
estimation. The restriction of this procedure, that the accuracy in
time and space be the same, is not a severe one. Mamy popular finite
difference nethods fall into this category, for exanple, second order
met hods |i ke Lax-Wendroff or MacCormack’s method, and Leap Frog, and
first order nethods such as upstream differencing. For nethods where
the accuracy in space and tine isS not the sane, a nore expensive
variant of this procedure is possible. For exanple, one could estinate
the spatial and temporal error separately, by first keeping k constant
and taking a step based on 2h differences, then keep h constant and
take a step with tine step 2k. Qher variations are possible too.
Finally, we nention that for nonsnooth solutions we no |onger have
an accurate error estimate. However, the Richardson estimates still
provide a good criterion for refinement since near a singularity the

estimate will probably be |arge. For piecewi se constant initial

-17-
conditions, the Richardson algorithm gives an estimate proportional to
the junp in the solution.

The last nmgjor conponent of the mesh refinenent algorithm concerns
the interaction between the conponent grids. There are three tasks
which fit under this headi ng. The first of these deals wth
boundaries. Refined grids have boundaries which are in the interior of
the problem domain, aod so they will need boundary val ues not supplied
with the pde. These values can be calculated in three ways. First, if
a boundary point is in the interior of a different fine grid, we can
get the boundary value at the next tine step fromthe interior
integration of the intersecting grid. |If there are no intersecting
fine grids, the bounda ry values are calculated uUsing val ues from
underlying coarse grids. We use either the Coarse Mesh Approximation
Method (Cinment, [1971]) or interpolation froma coarser grid to get the
boundary values. In Berger [1982] we prove that if we use Lax \éndroff
as the interior difference schene with either of these interface
equations, ~mesh refinement in tine and space by any integer is stable
in the sense of Kreiss. In addition, stable boundary conditions have
been derived which maintain the conservation form of the difference
schene at the interface between the fine and coarse grid. These will
al so be reported el sewhere

The second item of intergrid comunication is updating. |f afine
grid is nested in a coarse grid, then when they are integrated to the
same point in time the coarse grid values are updated by injecting the
fine grid solution values onto the coarse grid points. If grid points
do not match up at regular intervals, interpolation is used to find the

value fromthe fine grid which replaces the coarse grid value. For

18

explicit nmethods, it is only necessary to update as many coarse grid
points at the perimeter of the fine grid as the nunber of points in the
stencil for the coarse grid integrator. For inplicit methods, it is
necessary to update the entire coarse grid, and in fact, some sort of
averaging mght be desirable before injection onto the coarse grid.
This is similar to the residual weighting used in multigrid nethods
(Brandt, [1977]).

Updating is necessary for two reasons. |If the coarse grid is not
. updated, the solution can become so dispersed and dissipated that after
a while it will look as if refinenent is no longer necessary. Second,
this prevents a train of bad values on the coarse grid f rom spreading
into the buffer zone and contaminating the values that will be used for
the boundary approvina tion for the fine grid.

The last grid comunication task is that of averaging. This only
arises when two subgrids at the same | evel of refinement overlap. In
general, the region of overlap is at nmost a few coarse nesh widths
wi de. Still, the question arises when updating the underlying coarse
grid, which fine grid should inject the solution values. The solution
on either fine grid is as accurate as the other. Since they are only
overlapping by Qh) wdth, and they are coupled through the boundary
values, the solutions do not diverge from each other. However, if one
is not careful about injecting onto the coarse grid, thee can be a junp
in the solution representation on the coarse grid. So far, this has
only been inportant for graphical output.

The overall nesh refinement algorithmis presented in Figure 3.3

in outline form It can be witten quite sinply as a recursive

-19-
procedure. O course, in witing the nesh refinement pregram in

Fortran, we have converted it to an iterative procedure.

Recursive Procedure Integrate (level)
Repeat (hf/hc)i.?ﬁ]; times
Regridding time? -- error estimation for grids at level level and finer
Step Aty ye1 ON all grids at Jevel (level)
I 'f (ILM_+1 exi sts)
Then Begin
Integrate (level + 1)
Update (Level, level. + 1)
End
end
¥evel (*coarsest grid level*)

Integrate (level).

Figure 3.3. Coarse Gid Integration Cycle

=20~
4, CLUSTERING AND GRI D GENERATION

Muich of the success of this adaptive mesh refinenment algorithm
lies in the generation of efficient subgrids. The idea is to estimte
the error at all grid points in level & grids, and flag those points
where the error (or some other neasure for determining the need for
refinenent) exceeds a tolerance €. The grid generation procedure
creates a new |evel of grids with mesh width h, ., so that every fiagged
point is in the interior of a fine grid. The cost of deciding where
fine grids are needed, and generating them is snall since it is
proportional to the nunber of coarse grid points. The nost expensive
cost is the cost per step of integrating the fine grids, which is
proportional to their area. Thus we seek to minimize the total area of
these refined grids. In addition, we want to create grids whose
coordinate lines are approxinmately aligned with the solution

More precisely, when it is time to regrid, a newgrid level nmay be
created, an existing level recreated, or no longer necessary existing
levels renoved. Tven if afine grid should sinply be translated in
sone direction we use the nore general approach of creating a new grid,
and initializing it with solution values taken fromthe old refinenment
before it is deleted.

The outline of the regridding algorithmis as follows. Suppose
the current grid structure G has & levels. Based on the error
estimates of level &, we mght create new grids at |evel 2+l1. Next,
based on estimates fromthe (larger) level R grids, we recreate a new
level 2, making sure it includes the new level £+1. Cont i nui ng, t he
error estimates on |level £-2 are used to generate level £-1, maki ng

sure level & is properly nested, and so on to the coarsest Ilevel. It

-21-
is inportant to work from the finest to the coarsest levels, even
though this entails the extra work of ensuring proper |evel —nesting.
This way, grids are generated using the nost accurate error estimtes
taken from the finest grid at any given point.

Thus, for each existing level of grids, we apply the sane
procedure to generate the next finer level. This regridding procedure
consists of four steps:

(1) flag points needing refinement

(2) cluster the flagged points

(3) generate a grid for each cluster

(4) evaluate, possibly repeat.

Steps (2) and (3) are the difficult steps.
The first step in the algorithmis to identify those grid points

at level % which need to be in a finer grid at level £+1. In section 3

X = FLAGGED POINT

2
| R T I N N N PO | | I I I R O N
T T XX X1 G, T XXX T T
i | i i 1 | | | | | |
f] X X X T G X X X
OLD GRI D STRUCTURE NEW GRI D STRUCTURE

Figure 4.1. 1D Regridding Al gorithm

-22-

we discussed the use of local truncation error estimates in deciding
where these refined meshes are needed. Using the procedure described
there, we estimate the error at all grid points at level &, flagging
those points x where e(x) >e. At this step we also flag grid points
inlevel & grids which are interior to grids at level &+2, even if e(x)
< ¢ based on the level 2 grid. Since each flagged point at |evel &
will bein alevel &+1 grid, proper level-nesting is assured

The second step of the algorithmis the separation of flagged
points into distinct clusters. In step three, each cluster wll be fit
with a fine grid containing all the flagged points of the cluster. e
describe the procedure for the one dinensional case here separately.
Since in one dinension a grid is just an interval, clustering is
trivial and can be done concurrently with grid generation. The
| eftnost and rightmost flagged points of the coarser grid formthe left
and right boundary of the new subgrid. The cluster in this case would
consist of all flagged points between and including the leftnost and
rightmost flagged points. Possibly, if a | ong enough gap of unflagged
points is found, two or nore separate subgrids may be formed instead.
The exact definition of long enough depends on the size of the buffer
zone. After a grid is created, it will be enlarged to include a safety
zone around all its flagged points. Recall fromsection 3 that this
buf fer zone determines how often grids nust be exami ned versus how
large they are. The size of this buffer zone is what deternines how
large the intergrid spacing should be. Flagged points which are closer
together than twice the size of the buffer zone should be in the sane
grid refinenent.

Figure 4.1 illustrates the regridding procedure in one dinension

-23-
On the left is the grid structure before regridding, and on the right
is the new grid structure. The x's are the grid points which have been
flagged with high error estimates. The grid structure is illustrated
schematically by drawi ng each grid separately, instead of superimposing
them We have used a buffer width of one coarse grid point in this

illustration.

2D Gid Generation
The clustering algorithm serves two purposes: one is to separate
spatially distinct phenonena so that different features of the solution

will be in separate grids. The second purpose is to subdivide points
when one rather large region should be fit wichh several grids. This
situation is illustrated in Figure 4.2. if the entire front

(represented by the darkened 1ine) were fit with one large grid, it

; g

Figure 4.2. Miltiple Gids - One Front

-2 4=
woul dhave an unacceptably large area of refinenent. |f we had some
information about the directional |ayout of the points, a smart
subdivision of the points could be made.

It is very tricky to find a general clustering algorithmthat is
al nost fool proof and is not very expensive. Qur approach is to start
with a sinple algorithm which works in the easy cases, and try to
detect when it does a bad job of clustering. In these cases we use a
nore expensive algorithm and try to tailor it to the special cases
when the first approach fails. W are lucky to be able to draw on the
large literature in pattern recognition and Artificial Intelligence
(see, for exanple, Duda and Hart, [1973]; Hartigan, [1973]). There are
algorithms for feature extraction or edge detection as well as nore
general clustering algorithms Wth goals simlar to ours. W report
here on the sinplest clustering algorithmin two dinmensions, and refer
the reader to Berger [19&] for a detailed discussion of alternatives.
However, this is still an open problem where nore research is needed.

The first approach we use to cluster points is the nearest
nei ghbor al gorithm The nearest neighbor algorithm forms clusters
which are distinguished by having interpoint distances for points in
the same cluster smaller than the intercluster distances. W start
with one point forming a new cluster. Successive points are included
in this cluster if the distance fromthe point to the cluster is less
than sonme specified tol erance, whch we usually take to be two nesh
wi dt hs.

The nearest neighbor algorithmis very successful in acconplishing
the first goal of clusteing, but fails in the second. In these cases

we use special data structures, such as miniml spanning trees and

-2 5=

rel ative neighbor graphs, to organize and process the points into
separate clusters. These data structures possess certain properties
that should also hold for points in the same cluster. For exanple, two
points in the relative neighbor graph are connected if no other point
is closer to both of them Once the points are connected to each other
in an organi zed way, We use an iterative method of grid generation.
Starting with a core group of points, the algorithm proceeds by nerging
the points connected to the core cluster through the data structure and
i medi ately generating the fine grid to the new cluster, until no nore
nerges can be successfully done. A nerge is considered successful if
it has an acceptable efficiency evaluation. This is step 4in the grid
generation algorithm

Qur practical criterion for measuring the efficiency of a new grid
uses the fraction of the area of the rectangle which is unnecessarily
refined. This can be estimted quickly by taking the ratio of flagged
points to the total number of coarse grid points in the new fine grid
If this ratio falls below a cutoff tolerance, typically between 1/2 and
3/4, the nmerge is rejected, and the previous cluster renains. The
pictures in Figure 4.3 illustrate the different subgrids that are
formed using the efficiency paraneter indicated.

A last inportant observation is that once we have good clusters
they do not change very fast. |If at some initial tinme an expensive
clustering algorithmis used, the same clusters can continue to be used
for many time steps. Flagged pints can be grouped in the same clusters
they were grouped in at the previous step, and only the orientation of

a new refined grid need be calculated. If grid points are flagged on a

-26~

.45

(ayeff.

Efficiency of Subgrids

Figure 4.3.

=27~
section ofa coarse grid not previously refined, the flagged points
shoul d be added to the nearest cluster.

Gven a cluster of flagged points, the next step is to generate a
rectaﬁgul ar grid so that grid lines are in some sense aligned with the
points. The rectangle should have as snmall area as possible to
mnimze the work of integrating that grid in time. The algorithm we
use for this first determines the orientation of the rectangle, and
then the length of the sides needed to enclose the points . For
simplicity we present it in two space dinensions, but it generalizes
i mredi ately to higher dinensions.

Let A be the n-by-2 matrix of the coordinates of the n flagged
poi nts, and AL the matrix of the sane dinmension with the x and y
coordinates of the nean of the points, (xm,ym). The matrix M™ =

(A—Am)t(A-Am), ’Wher e

21 N *m Ym
A= Am =
{ *n yn, Fm ym
and
[P A T A L

Mt = l

o 2 _ .2
Lyxgy 4 Xp¥n I1 Y1~ Yn

contains the second rimnts of the points about their mean. This
matrix M*M deternines an ellipse with the same first and second noments

as the original set of points (Cramer, [1951]), and so provides a good

_28-

approxi mati on of the layout of the points. Since M™ is real and
symmetric, it has two real eigenvectors. These eigenvectors are the
maj or and minor axes of the ellipse. We use these eigenvectors to
determine the orientation of the rectangul ar subgrid. This algorithm
is invariant under translations and rotations of the points, and is
extremely Sinple. It is easy to find the eigenvectors since MM is a
2-by=-2 matrix. Furthernmore, if clustering is done concurrently with
grid generation, the first and second nonents can be updated instead of
recal culating them for every additional point. A simlar technique of
clustering and fitting ellipsoids has been used by (Gennery, [1979])
for stereo vision processing. The goal of his work is obstacle
avoi dance for exploring vehicles, for exanple, the Viking Lander's
exploration of Mars.

Once the grid orientation has been determined, the dimensions of
the rectangle are calculated to include all points in the cluster.
This is the expensive part of the algorithm W take the dot product
of apoint with the orientation vectors for every point in the cluster.
(Sone of this work can be avoided if the convex hull of the set of
flagged point is kept. For iterative algorithnms, there are al so ways
to update the convex hull of a set of points for the addition of new
points.) Once the dinmensions of-the rectangle are calculated, a buffer
zone of predetermned size is added around the rectangle perineter to
conpl ete the new subgrid.

Two additional points wll conplete the discussion of the
regridding algorithm As outlined above, this algorithm creates one
new | evel of refinenent for each invocation. For time dependent

boundary conditions, if no assunptions are made on the smoothness of

-2 Q=
the boundary data, an inconming wave mght need several new |evels of
refinement for it to be well resolved. To handle this case, the error
estimation and grid generation procedure can bhe re-applied to a newy
created fine grid at the boundary to see if even finer new grids are
needed.

Finally , we nmention that the initial grid creation at time £¢=20
enploys a slightly different strategy than the regridding procedure
used at later tines. Only at this time can we take advantage of the
initial conditions specified with the problem. For exanple, when a
level 1 refinenment is created, it is initialized using the initial
conditions rather than interpolation. The error estimation and
regridding procedure can then be applied again on the level 1 grids to
see if even finer subgrids are needed, and so on, until a pointw se

error estimate e(x) <z holds at all points.

-30~

5. DATA STRUCTURES

The data structures in our adaptive nesh refinement strategy turn
out to be surprisingly sinple, although crucial to the feasibility of
the entire approach. A structure is needed which keeps track of the
rel ationships between the grids, as well as the solution storage for
each grid.

W will first describe the data structure we use in one dinension.
A generalization of this data structure is what we use in tw or nore
di nensi ons.

Recall fran section 2 the nesting requirenent for one dinensional
mesh refinement: each fine grid nust be entirely contained in a coarser
grid at the next level. W wuse this to define a tree data structure,
*where each node represents a grid, and make a correspondence between a
parent (of a) node, amd a coarser, parent grid. Subgrids are
considered the offspring of their parent grid. Siblings are subgrids
within the sane coarser grid. |If fine grids are at the same |evel of
refi nement with different parents, we call t hem nei ghbors.
Technically, we use an ordered tree data structure where each node can
have miltiple descendents. In this representation, we see that a node
will have nultiple descendents if the coarse grid corresponding to that
node has several fine grids contained in it. In this one dinmensional
case, it is also possible to order the nodes using the coordinate value
of the left-most grid point in the associated grid. Figure 5.1 shows a
grid structure and its related tree structure.

Al the grid-to-grid operations, such as fine grids updating
coarse grids and setting internal boundary values for fine grids, have

an information flow which follows path links in the tree. The only

-31-

TR itk
TTHTTT 1 T HHH

Figure 5.1. 1D Data Structure

nonstandard link in the tree is for the neighbor pointer we described
above. Tis thread is indicated by the dashed |line in Figure 5.1.
This additional |ink makes it easy to inplenent tke operation of taking
one integration step on all grids Wwhich are at the sane level of
refinement.

Because this tree structure can grow or shrink dynamcally, sone
form of dynamic storage allocation is needed, both for the grid
information in each node, and the solution storage for each grid.
Since Fortran does not provide such a facility, the storage nanagenent
mst be explicitly provided by the mesh refinement program We keep a

linked list of free nodes which are assigned to newly created grids and

-32-

reclaimed when a grid is renpved. Sonetines when the regridding
procedure is called, it is to nove grids on only the finest |evels.
The coarser level grids stay fixed. In this case, the top half of the
tree wWill remain as is. A newbottomhalf will be generated, and the
two hal ves connected. Although the nunber of nodes in the tree vary,
we would |ike each node to contain a fixed amount of information to
represent each grid. Since the nunber of offspring of each node is
variable, the tree is inplenented with each ncde having an offspring
"pointer only for the first descendent, with one sibling pointer per
node to connect the rest of the subgrid nodes (Xnuth, {1968]).

A grid then is characterized by the following pieces of
information stored in each node of the tree.

1) Grid | ocation

2) Number of grid points

3) Level in tree

4) O fspring pointer

5) Sibling pointer

6) Parent pointer

7) Pointer to the next grid at the same |evel

8) Time to which this grid has been integrated

9) Index into main storage array where approxi mate sol ution val ues
are stored.

The same information characterizes two dinmensional grids as well.
However, the two di mensional version of this data structure is nore
intricate than the one dinensional version since in two dinmensions a
grid can be partially nested in nore than one coarser grid. An

additional conplication i{s that grids at the sane level of refinenent

-33
can intersect. Finally, in two dimensions there is the possibility of
having several base grids Go,j in an initial domain specification. Ve
have generalized the ne dimensional data structure to account for these
differences in the following way. W start with an n-tuply rooted

tree, where each of the n root nodes correspond to a canponent grid in

the coarsest nmesh. Technically, a tree with more than one root is
called a forest, which is sinply a collection of trees. Next, since a
subgrid can have many possible parent grids, we replace this single
slot of infornmation in each node with a pointer to a short linkeinst
of parent grids. Lastly, we add to the information for each grid a
pointer to another linked list of intersecting grids at the sane |evel
of refinement. Schematically this data structure is illustrated in
Figure 5. 2.

The final data structure used in our nesh refinement program
manages the large array which is the storage area for the solution
values on all grids. For problems in p space dimensions, we use a
p-di mensional array. For vector rather than scalar problems, we use a
ptl dinmensional array where the extra dinmension is the nunber of
variables in the problem This storage area is managed as a |inked
list of used and avail abl e bl ocks of storage. Wen a grid is created,
contiguous storage space is reserved fromthe sorted list of free
bl ocks using a first-fit algorithm (Knuth, [1968]). In this algorithm
the list of free blocks of storage is scanned until a |arge enough
bl ock is found. The requested space is allocated, and the unused
portion returned to the list. Reclained space, which occurs when a
grid is no longer necessary, is inserted back into the linked list of

free space. For quick nmenory access, space is never allocated in a

~34=

level 0 -»
Go.r
G11 G2 level 1 >
NS
Gi1.2
Go.lz i

Figure 5.2. 2D tata Structure

.circular fashion across the array boundary: all nenory allocation mst
be contiguous. A conpaction, or garbage collection, routine could be
included to provide for case where there is enough total but
nonconti guous space available in this array to satisfy a storage
request. However, as -Knuth [1968] reports, if storage is (00
fragmented to service a request, canpaction usually adds only a few
more transactions before space is exhausted. A routine which woul d

allow the user to restart with a larger nenory area would be nore

useful .

-35-
6. COMPUTATI ONAL EXAMPLES

In this section we will present some numerical experiments in one
and two dimensions to illustrate how our adaptive nesh refinement
algorithmworks. Qur procedure for conparing results is the followi ng.
W solve each problem with nesh refinement with a specified coarse
grid, a maximum nunber of l|evels of refinement, and an error tolerance
which is the criterion we use in deciding to refine a grid. W conpare
the solution to that obtained on a uniformgrid with first the
coarsest, then the finest (if possible) mesh spacing used in the nesh
refinement calculation. W measure the conmputer time without I/0O costs
(when possible) and the error in the solution. |In all these cases, we
conpute the 2 normof the error at only the coarse grid points. |n one

dimension, this means we conpute

error(x =ihc)2 ’
1

[T et]

lerrod, =/ !
C n

i

"and sinmlarly intw dinmensions. For the fine grid this nmeans we
compute the error only at every hc/hf grid points. The one dinensional
exanples were run on an | BM 370/168 using the Fortran H Extended
conpiler, optinmization |evel 3. The two di mensional exanples were run

using the same conpiler on an | BM 370/3081.

Exanpl e 1. Shock Tube Problem

In this exanple, we conpute the solution to the shock tube problem
in one space dinmension. This Riemann problemis taken from Sod [1978]
where it was used to conpare a nunber of methods for solving gas

dynami cs probl ens. The initial conditions are chosen so that the

-36-
solution contains a shock, contact discontinuity, and a rarefaction

wave. The problemis:

u, = f(u)x

for 0<x< 1, and 0 <t < 0.15, where

p pu
2
u=| pu . f= EL.+-p
o]
n
e — (e + p)
| 5 P

Here, p i s the density, e is energy per unit volune, u is velocity, and
m is the nomentum density pu. The equation of state is p = (y-1l)pe,
where we take y = l.4-and € is the internal energy per unit mass e = e

- -;-puz. The initial conditions we use are

u(x,0) = 0
1.0, if <0
p(x%,0) =
0.1, if x>0
1.0, if x<o
p(x,0) =
0.125 , if x>0

The integration nmethod we use is the two-step Lax-Wendroff schene.
The coarse grid step size is the same as in Sod [1978]. Refl ecting
boundary conditions are used. Hopscotch artificial viscosity is used
to smooth the solution. The coefficient of the hopscotch artificial
viscosity was the sane for all but the uniform coarse grid run. For

the coarse grid this led to too nuch snearing and so a smaller

coefficient is used.

-37-

The paraneters for the nesh refinement calculation are shown

bel ow

buffer size 4

grids mve every 5 steps
error tolerance 0. 0005
refinenent ratio 10

A 0.1

In Figures 6.1 and 6.2 and Table 6.1 we show the results of our
tests. TFlgure 6.1 shws the solution, and Figure 6.2 the plots of the
errors. In this experiment, we have done two uniformgrid runs with a
mesh spacing of 0.C1l, and 0.001. We conpare this to a two |evel mesh
refinement run with a refinement ratio of 10, and a three |evel
refinement run, which neans the mesh spacing on the finest gridis
0. 0001. During the calculation, the amount of the coarse grid which
was refined varied from20 %to 70 %.

The nost interesting results here are that in less than one fourth
the time, nesh refinement is able to calculate a solution which is as
accurate as the uniformfine grid calculation. As we see in Figure
6.2, mnost of this error is due to the smearing of the corners of the
rarefaction and contact discontinuity. To inprove the calculation of
the contact discontinuity, a better nethod than Lax-Wendrof f should be
used.

Table 6.1 shows the conputation tine and the ¥<1, errors for the
c

~38~

Coarse Only Soln For t=.15 Fine @nly Soln t=.15

LT L2 pree T
1.0 E -3 10 f—\ -
0.8 = 0.8 £ =
0.6 - - 0.6 - —=
0.4 & = 0.4 - -
o.é%— 3 0.2 - =
0.0 Emimimei s RN PR p 0_00...,!(...1....!.,,,II.L

0 0.2 04 086 08 1 0.2 0.4 0.6 08 1

- 2 level Mesh Refinement, ¢=,15 3 level Mesh Refinement, t=.12
1.2 -

1.0 |
0.8
0.6
0.4
0.2
00 e 0

L)
-

llllllltllllll|.l

1.2 :TTlIIIll]llli‘lllslilllll

1.0
0.8
0.6
0.4
0.2
0.0

A|||||||11|1||||||111||i
l||l1'1lIlllllr‘lll'lll‘ll
llllllllllllllll'llllll

'I'HT‘TTTl’r‘lTllnllinu Y

PP P R

0.2 0.4 0.5 0.8 1

¥
-
-

o
—

Figure 6.1. Solutions for Riemann Problem

-39-

Error For Coarse only Error For Fine only

0.04 FT Ty T]TT T lTrll T !rrTTIL: 0.04 T IITIIIIII‘YTII lllll
0.02 , 0.02 F
()-()() . ()-()() \~"J\-"-'-"

=

lll]llllllllllIII‘llllllll

-0.02
-0.04
‘()u()fs

-0.02
-0.04
-0.06

Il'l'[l‘l'l'TYI ltTllr'l'[‘

ll"'l'TT'Il||"l‘ll|'llll

L Ll l Li 1.1 l Lt 1.1 I LI l Ll Ll

2 0.4 05 0.8 1

L2 , Ll il l 111 ll i Ll l Ll

0.2 04 0.6 0.8

Onpr
Ll S
=

Error For MR 2 levels Error For MR 3 levds

lI7[lllIll‘f¥lri‘l!Illll 1
P T) | S W 1 2 4 111 ll 15 ll’ 2

0 02 04 0.6 0.8 1!

-IIII‘T]TQIYTIi‘llll‘blllll:

LIS
-4

0.04

0.22

0.00
-0.02
-0.04
-0.06

] 0.04
0.02
0.00
-0.02
-0.04
-0.06

lllllllllllllllllIllllllll
lIll!llllllIllll-llllllllll

'l'll'l""lll'l‘Illl'lll‘il

-

d

L
-

Figure 6.2. FErrors for Riemann Problem

=40~

four computati ons. There are a large nunber of floating point
underflows, each of which is handled very inefficiently as an interrupt
to the processor. This skews the tinmings and so the correct asynptotic
ratio of fine to coarse timngs of 100 is not observed.

An inportant feature to note here is that while a refinenent by hg
(which is a factor of 100) is possible by using mesh refinement (given
our computing resources), a conputation with a uniform hg grid would

not be possible (it would take about 3474102 seconds, or about 9 and a

hal f hours).

nmet hod h lerrord , time
C
(secs)
coar se 0.01 2.14 E - 2 7.36
fine 0.001 1.15 E - 2 347
MR 2 |ev hf=0.001 1.15 E - 2 79.9
MR 3 lev hf = (.0001 6.53 E - 3 591

Table 6.1. Results of Computations for 1-D Nonlinear Exanple.

Exanple 2. 2D Rotating Cone
The rotating cone probl em has been used by Gottlieb and Orszag
[1977) to compare nunerical methods for convection problens. The

problem is:

Up = yuy - Xug

. 132 1
o, if (x 7)-1-1.5y2>7

u(x,y,0) =
1-2((x-%)2+1.5y2), if(x-%)2+l.5y2<%

=41~
on a recangular domain -1 < x <1, -1 <y <1 and 0 <t < 3.375. The
solution to this problemis a cone with elliptical base, which rotates
countercl ockwi se about the origin. We integrate the solution until the
cone is approximately halfway through the first revolution.

W use Lax-Wendroff as the integrator,., The boundary conditions
are zero inflow and first order extrapolation outflow. The paraneters

for the nmesh refinenent calculation are:

buffer size 2

grids nove every 8 steps
error tolerance 0.001
refirement ratio 4

A 0.25

In Figure 6.3 we show snapshot views of the location of the one subgrid
in this problem at various intermediate tine steps.

The results of this computation are what we would expect. The
nmesh refinement conputation achieves about the sane error as the
uniform fine grid in about one sixth of the time. In this exanple, we
can also gt a rough estimate of the overhead of the method. A uniform
fine grid run should asynptotically take 64 times the conputer tine for
the coarse grid run. This is because the grid is refined by 4 in both
coordinate di rections, and there isa factor of 4 for refinement in
time as well. In this rotating cone problem roughly 12 % of the grid
is refined during the conputation. Adding ! 2 %of the cost of the fine

grid run to the coarse grid time gives an estimated tine of 78 seconds,

-42-

]‘O_"“‘l_““l"“l‘
o.o.f—
-osé—
T -0.5 0 0.5

Figure 6.3. Subgrids for Rotating Cone Problem

=43
and so 9 seconds of the total mesh refinement conputation time are
spent on other things bes ides integrating the grids. This is roughly
12 % of the conputing time, nost of which is present estimating the
error and generating the subgrids. Yowever, the entire run costs only
16 %Z of the cost of a run on the uniformfine grid with the sanme
accuracy.

Notice that in the nesh refinenent conputations, the wake behind
the cone is greatly reduced over the wake in the coarse grid
‘conput ati ons. This shows that the moving grid is correctly conputing
the solution and keeping the coarse grid computation under the cone
from contanminating the solution. This also shows why the coarse grid

mst be updated fromthe fine grid.

me thod h lerrod, tim
C
(secs)
coar se 1/20 5.27 E = 2 6. 86
fine 1/80 9.34 E -3 588.
MR Mg = 1/80 9.78 E - 3 86. 6

Table 6.2. Results for conputation of the solution to 2-D linear

exanpl e.

Exanple 3. 2-D Burgers Equation

Sy

(D)
w
—
©
o
o

nmesh refinenmeng

Rotating Cone Problem

Sol utions for

Figure 6.4.

-45-

For a nonlinear exanple we have chosen a problem from G opp
[1980]. This problem contains conplicated shock interactions, and is
the nost difficult exanple for the clustering and grid generation

algorithms . The problemis:

ut+uux+uuy=0

where
1 1 1
—2- ’ if x < E. and Yy < i
u(x’ 7.0) = - %‘ > | f x > l and y > %—
% R otherwise

on the unit square 0 < x<1, 0<y C 1. At the discontinuities x = 1/2
or y= 1/2, the initial data is taken to be the average of the val ues
on either side.

W use MacCormack’s nmethod to integrate the problem W specify
the inflos boundary conditions to nmintain the piecewise constant
solution, amd use first order extrapolation for the outflow boundaries.

The paraneters for the mesh refinenent calculation are shown bel ow.

buffer size 1
grids nove every 4 steps
error tolerance .001

refinement ratio 10

X 0.5

In Figure 6.5 we show the solution, and in Figure 6.6 the error.
The plots for this problemnmght be a little msleading. Because of

the limtations in graphics packages, both the error and {ne solution

46

coarse

exact

)
§
..“’“....
QXA
R0
— .““. e —l|
X - .w.“..
B s 0
= =
I
e ——— ..“&..)
wwﬁ,lx\fmf = YO
N s
—0 10— <
f
AN

refinenent

mesh

fine

Burgers Equation

Solutions for

Figure 6.5.

-47-

coarse

refi nenent

h

nes

fine

Burgers Equations

Errors for

Fi gure 6.6.

~48-

plots for all runs are done with the resolution of the coarser grid.
For the runs with a finer grid, this means the solution is plotted only
every 10 fine grid points. In a problem with discontinuities like
this, the size of the overshoot is independent of the mesh width h
(Hedstrom [1976]). However, it appears as if the error on the fine
grids (both the uniform and mesh refinement calculations) is smaller.
This i s because the overshoot in the solution is confined to the region
close to the discontinuity, and 10 fine grid points away from the
discontinuity the oscillation has decayed.

This problemis a hard test for mesh refinenment because such a
large fraction of the region is refined. However, even in this
exanple, the nesh refinenent calculation is faster than a uniformfine
grid. In Figure 6.7, we show the subgrids the al gorithm generates at
the initial timet = 0, and at the final tine when we output the
sol ution. In this case, we have the slightly surprising result of the
error for the nesh refinement run being slightly better than the
uniform fine grid run. This is due to the grid rotation (Figure
6.7(b)). When the fine grid values are injected onto the coarse grid
(both for updating and graphics), we use linear interpolation for the
rotated grid, since the grid points do not match up. This has the
effect of smoothing the solution in this region, which contains nost of
the discontinuities. This is why the error is less for the nesh

refinenent run.

TIME

= 0.0

¢ o o o

PPN

Figure 6.7.

-49-

T ME

0. 500

X x x K

Subgrids for Burgers Equations

met hod h lerrord 2 time

secs
coarse 1/20 8.0E =~ 2 0.18
fine 1/200 3.86E =~ 2 155
VR he = 17200 2.7 -2 109

Table 6.3. Results of conputations for 2-D nonlinear exanple.

-51-
7. CONCLUSI ONS

We have presented an algorithmfor the nunerical solution of pdes
using automa tic grid refinenents. Several novel features nmake this
al gorithm possible. An automatic procedure which estimates the [ocal
truncation error deternmines the points to be includedin finer
subgrids. Qur method of generating the subgrids is a key feature of
the algorithm W cluster the parts of the domain needing refinenent,
using a nearest neighbor algorithm for sinple regions or an all nearest
nei ghbors graph with an iterative procedure for conplicated shapes, and
to each cluster we fit a rotated rectangul ar subgrid. Another feature
of this algorithmis our use of data structures, which has made such an
automatic algorithm posible. W have inplenented the mesh refinement
algorithm in both one and two space dinensions, and it generalizes
imrediately to three (or nore) dimensions. W have denons tated with
several numerical experiments that with our grid structure, we can do
calculations with the sane accuracy for a fraction of the cost of a
cal culation on a conventional, uniform grid.

There are several areas in mesh refinement still needing research.
W |ist some of the nore inportant ones. The best solution strategy
for steady state conmputations is still unknown. For example, is It
better to iterate to near convergence on the coarse grid before
int roduc imz a refinement , or should the solution on two grid levels be
mxed. ‘The use of inplicit finite difference nethods with our grid
structure needs to be devel oped further. The devel opment of data
structures for conponent grids in differeant coordinate systens is an
i nportant project, with applications beyond our adaptive nesh

refinement strategy. Finally, adaptive subgrid generation is a

-52-
relatively new topic, and the best grid generation procedure is an

i nportant open questi on.

ACKNONLEDGVENTS

W thank WIlliam Gopp for many hel pful discussions, and for providing

the graphical output for this paper. conputer time for this work was provided

by the Stanford Linear Accelerator Center of the U S. Departnent of Energy.

-53-

1. Babuska and W ®heinboldt, Error Estinmates for Adaptive Finite

El enent Conputations, SIAM J. Numer. Anal. 15 (1978), 736- 754.

R Bank, A Milti-Level Iterative Method for Nonlinear Elliptic

Equations, in Elliptic Problem Solvers, M Schultz (ed.),
Academ ¢ Press (1981), 1-16.

M Berger, Ph.D thesis, Departnment of Conputer Science, Stanford
University, 1982.

J. Bolstad, Ph.D. Thesis, Computer Science Departnment, Stanford
University, 1982.

A Branmdt, Milti-Level Adaptive Solutions to Boundary Value Problens,

Math. Coup. 31 (1977), 333-390.

M Ciment, Stable Difference Schemes with Uneven ?lesh Spacings, Mth.

Comp. 25 (1971), 219-227.

H Cram&r, Mathematical Methods of Statistics, Princeton University

Press, 1951.

S. Davis and J. Flaherty, An Adaptive Finite E enent Method for
Initial-Boundary Val ue Probl ens for Partial Differential
Equations, SIAM J. Sci. amnd Stat. Comp. 3 (198), 6-27.

R I&da and P. Hart, Pattern Cassification and Scene Analysis, Wley,

1974.

H Dwyer, R Kee and B. Sanders, -Adaptive &id Method for Problens in

Fl uid Mechanics and Heat Transfer, AIAA J. 18 (1980), 1205-1212.

D. Gannon, Self Adaptive Methods for Parabolic Partial Differential
Equations, Dept. of Conputer Science, Univ. of Iliinois-U C.,
UIUCDCS-R-80-1020, 1980.

D. Gennery, (bject Detection and Measurenent Using Stereo Vision,

Proc. 6% [JCAI (1979), 320-327.

D.

=54~

Gotlieb and S. Orszag, Nunmerical Analysis of Spectral Methods:

Theory and Applications-, SIAM 1977.

W D. Gopp, A Test of Mving Mesh Refinenent for 2-D Scalar

J.

J.

Hyperbolic Problenms, SIAMJ. Sci. and Stat. Comp. 1 (1980),

191-197.

Gustafsson, The Convergence Rate for_Difference Approximations to

Ceneral M xed Initial Value Problens, Math. Comp. 29 (1975),

396-406.

Harten and J. Hyman, Sel f - Adj usting Gid Mthods for
One- Di mensi onal Hyperbolic Conservation Laws, to appear in J.
Comp. Physics, 1983.

W, Hedstrom Yodels of Difference Schemes & or u, * = 0 by

Partial Differential Equations, Math., Cormp. 29 (1975), 964-977.

Hartigan, Clustering Alsovithns, Academic Press, 1973.

Jameson, lterative Solution of Transonic Flows over Airfoils and

Wngs, Including Flows at Mach 1, Conm Pure Appl. Math. XXVI|

(1974), 283- 309.

Knut h, The Art of_ Conmputer Programming, Vol. 1, 2nd ed.,

Addison-Wesley, 1973.

Kreiss, Constructi on__(_)_f_ a Curvilinear Gid, preprint, 1982.

Submited to SIAM J. Sci. and Stat. Comp.

Mller and R MIller, Moving Finite Elements. |, SIAM .J. Nuner.
Anal. 18 (1981}, 1019-1032.

Qiger, to appear.

Oiger, Approximate Methods for Atnospheric and Oceanographic

Circul ation Problems, in Lecture Notes in Phycsics 91, R

Qowinski and J. Lions (eds.), Springer-Verlag (1979), 171-184.

-55-

Pereyra and E. Sewell, Mesh Selection for Discrete Solution of

Boundray Problenms in Odinary Differential Equations, Numer.

Math. 23 (1975), 261- 268.

Sherman and M Saeger,_An_Approach to Automatic Software for

Parabolic Partial Differential Equations, in Advances in Conputer

Methods for Partial Differential Equations = |V, Vichnevetsky and
Stepl eman (eds.), (1981), 88-92.

B. Sinpson, Autonatic Local Refinenment for Irregular Rectangul ar

Meshes, Reearch Report CS-78-19, Department of Conputer Science,
University of Waterloo, 1978.

Sod, A Survey of Several Finite Difference Methods for Systenms of_

Nonl i near Hvpebolic Conservation Laws, J. Comp. Physi cs 27

(1978), 1- 31.

Starius, On Conposite Mesh Difference Methods for Hyperbolic
differential Equations, Nuner. Math. (1980), 241-255.

Vivfand, Conservative Forms of Gas Dynami ¢ Equations, La Recherche

Aerospatiale, No. 1, Jan./Feb. 1974, 65-68.

H Winkler, A Numerical Procedure for the Calculation of Nonsteady

spherical Shock Fronts with Radiation, Ph.D. Thesis, Max Planck

Institute for Physics and Astrophysics, 1977.

