
.
Numerical Analysis Project
Manuscript NA-85-33

.‘”

August 1985

.

M’ultitasking the conjugate gradient
on the CRAY X=MP/48

bY

G’erard Meurant

Numerical Analysis Project
Computer Science Department ,

Sianford University
Stanford, California 94305

-.

Multitasking the conjugate gradient

on the CRAY X-MP/48

Gerard MEURANT

--
Centre d'Etudes de Limeil-Valenton

BP 27

94190 Villeneuve St Georges, France

The reproduction of this report was supported'by the United States Army
Research Office under Contract No, DDAG 2983-K-0124.

Ii
- :

Ikbstract

We showhowto efficiently implement the preconditioned conjugate gradient method

on a four processors computer CRAY X-MP/48.

We solve block tridiagonal systems using block preconditioners well suited to

parallel computation.

Numericalresultsarepresentedthate~ibitnearlyo~~speedupandhighMflops

rates.

1, - i o n

In this paper we show how to efficiently implement the preconditioned conjugate

gradient method on the CRAY X-&E/48 using the four_ processors in parallel.

We considerblocktridiagonallinearsystemsthatarise fromthediscretizationof

partial differential equations.

Let

A x - b

be such a linear system, where

A *

D1
A2

AT2
D2
.

AT3
.
.

A being a symrmtric BHnatrix.

In the prototype two dimensional model problem matrices Di, i=l,...,n are

tridiagonal and matrices Ai, i=2,...,n are diagonal.

.We use the preconditioned conjugate gradient (PCG) method to solve this linear

system But if this method has been used successfullyon vector computers, see for

instance /lo/, it is not well suited to parallel computation because of the data

dependancies inthe algorithm. Wewillshow, inasimilarwaythan/l2/,/13/howXG

canbemodifiedto reduce the dependancies andhowtogetamoreparallelalgorithm.

Anotherproblemistodevise apreconditionerwelladaptedtoparallelcomputation.

J

To solve this problem we will use modifications of the block preconditioners

introduced in /4/, as vectorized in /lo/.

me outline of the paper is as follows:

-insection 2 webrieflyrecall the mainfeaturesofthe CRAYX-MP/48 andshowhowto

synchronize the processors. -

- section 3 gives acomputationalvariantofthemethod introducedin /12/,/13/to

reduce data dependancies in PCG.

- section 4 def&es,firstly for two and then for four processors, parallel block

preconditioners well adapted to the X+P/48.

-insection5wepresentnumericalresults forawdelproblem. Withtwo processors

weget a nearlyoptimAtspeedupbutwithfourprocessorsmemoryconflictsreducethe

potential speed up.

2,ol7emiew0fcRaxx-=~48 .

CRAYX-IQ/48 is apowerfulcomputer with fourtightly coupled processors sharing a

largememory. EachprocessorisavectormachinewithaCRAPllikearchitecture,but

many improvements have been done that give a much more efficient computer.

Each processor has

Improved chaining

functional units.

Cnmanyvectorized

. .

four accesses to memory including two for vector loads and an

mechanism allowing to exploit the full potenLial of the

codes one CRAYX-MPprocessor

the CF4AY 1 although the clock period is only 1.33 times faster. The maximum

is twotothreetimes fasterthan

performance of the four processors altogether is 840 Mflops.

The most novel_,feature of CRAY X-MP is that the four processors can be used

stlt~~uslyIlnasFnqlejdb.~ressionofparallel~isdoneinsidetheFortran

codes through callstoamultitasking library.

There are some low level primitives that allow

l)to start a task and eventually to wait for its completion (TSKSTAKLTSKSAZT)

2)todefine criticalregionsthatmustbe executedbyonlyoneprocessorat,atime

(UCICON,LOCXOFP) b\
3) to synchronize processors waiting for som events to happen

(EVPOSr,EVWUT,WCLEAR).

For a more detailed description of these routines see /6/,/2/,/U/,

IHerewe justwanttodescribehowwe cansynchronize severalprocessors usingthese

primitives.

The Portran list of subroutine SYNC is given in figure 1 below, /2/.

3

SUBFUXJTINE SYNC(ID) me

DIMENSION ID(6)

CaIJi ==QwW3))

iEVN=ID(6)

ID(S)=ID(5)-1

IF(ID(S).EQ.O)m!Em -

--XD(S)=ID(4)

l!asmmy3-NEvN

fD(6)+EXEVN

- -ID(-))

CAIiL EVPOST(ID(NEVN))

CALL IQCKOFP(ID(3))

CALL, UXKOFP(ID(3))

CALL EVWMT(IDNENN.))

ENDIP

P i g u r e 1

ID is a 6 words arraythathas been initialized before. ID(l) and ID(2) are events

whichareusedinturn, ID(3)isthelockof the critical region, ID(4)isthe nuniber

of tasks to be synchronized, ID(5) is the nuniber of tasks not yet arrived at the. .
synchronization point and ID(6) is the event used for synchronizing.

We used two events in turn because it is safer to have different events used in

consecutive synchronization points, see /2/.
.

A synchronizationbarrier on the X-I@/48 is done by n processors, 2ti44, calling

SYNC with the same array ID (which must be in common in the calling program).

There is anoverheadthatcomeswiththe synchronization, thisimpliesthatthecode
.

mustbelargeenpugf;betweentwosynchronizationbarziersforthecomputationnotto .

be overhead dwated, see/3/. PreTlious attempts to usePCG on the CRA;PX-MPwere

partly unsuccessful1 because of that problem /U/L. .

5

3,!Eh43conjugategradientalgoritbn *

The preconditioned conjugate gradient (PCG) method for solving a linear systemof

equations is as follows :

Let $ be given, r" = b - A a6 and p-1 arbitrary,

For k-0,1,... until convergence, perform the s+eps
*

Misa positive definite preconditioning matrix.

PCG is very well suited for vector computers if the preconditioner M is chosen

gc = (M zk, zk) / (A pk. $1

carefully, see /lo/ and the references therein (see also /l/).

. .

Previous workontheuse of ECG on parallelcomputerswas done in/g/. Unfortunately

there is a very low degree of parallelism in PCG as all the steps arise in a very

sequentialway, leadingto-manysynchronizationpotits andalargeoverftead. The two

6

scalaxproductscannotbedoneinparallelandweneed&oco&puteQk~Regardless.'

ofMzk=rktheonlythings that canbe done inparallel(atleastwithanacceptable

granularity for the given computer) are the computations of xk+l and rk+l.

Of courseitcanbe said that usually, most of thetimeis spent in the solution ofM

zk = rk and that is does not really matter that the remaining parts are done in

seqentialumde. But remember that if only 10% of the algorithmis notpaxallelthen

the speed up cannot be greater than 1.82 with two processors and 3.1 with four.
processors. Hence it is interesting to try to increase the parallelism of FCG.

Some proposals inthiswayhavebeenmadebySaad/l2/andVanRosendale/13/without

numericalresults. Theideaisbasedonthe followingremark : inexactarithmeticwe

have, see IS/ --.

(M zi, 23) - 0 vi,j i *j

therefore using orthogonality

(M zk+l, zk+l) = aj$ (b+ A pk, A pk) - (M zk, zk,

This implies that (theoretically), we can compute (M zk+l, zk+l)before computing .

zk+l. The algorithm can then be conveniently recast in the following form :

Let Ito be given, r" = b - A fi, M z" = r", po = 20, so m (ro, ~0).

For k=O,l,... until convergence perform the steps

2) compute (vk, A pk), (A $, pk)

pk+1 = (zk - 9cvk)+pk+ldc

In this algorithm there is one more vector to store but the parallelismhas been

greatly increased. Regardless of stepl), both scalarproducts *be computed in

parallelandafterthescalarstep3)the fourvectorsx, r,z,p canbesplitiimsmany

subvectors as the number of available processors, so step 4) is fully parallel.

Onemayaskwhywe donot make the change ofvariableAm<1Aandb8=W1b. This can

savetheneedtocomputevectorz. We arekeepingzbecausetheconvergencecriteria

weusedinPCGis (Mzk,zk)/(MzO , z")6 c andwewanttokeepexactly the sameone

in the modified algorithm.

Themaindrawbackofthelastalgorithmisits numericalinstability. Skissupposed
-.

totendto zero as does o(k and rounding errors frequently give a negative value of

++I for some k. Then the aIgorithm breaks down.

However there is a way to fix this problem, the trick being to use ~k+~ as a

predictorforthetrue value ofthescalarproductandto~~it,recomputing

(rk+, @l), at the end of the iteration.

The modified algorithm HFCG becomes : a

Let # be given, r" = b - A #, M 20 - ro, fl II 20.

For k=O,l,... until convergence perform the steps

4)

There is only one more scalar product in this algorithm.

Although wearenotabletotheoretically prove its stability, itworkquitewellfor

.
10

all the examples we tried. .

We usually get the same number of iterations as for the standard algorithm.

!Ve will see later on how the computations are organized.

.

4.Parallelpr#mrYlrtimi4
.

In/4/blockpreconditioningwas introduced(seealso /l/)in which&Was chosenas

follows 3

let A be a block diagonal matrix with diagonal blocks + i=l,...,n then

M = (A + t) A-l (A + L*)

where L is the blocklowertriangularpart of A.

Tridiagonalmatrices Ai are computed recursively by
e
Al = Ol

4 - Di - Ai ni,l(l) q 24FGn

--_
q(j') is a symmetric banded matrix with 2j+l diagonals whose elements within the

band are the same as those ofql.

This preconditioner is not vectorizable, therefore in/lo/ when solving My = c,

q1 was replaced by SZi(3). But even if now completely in vector mode, this

preconditioneris notparallelasthereremains~block recursionswhensolvingM

z-r. We now showhowtowdifythispreconditione~ foruseon aparallelwter

with a fewvectorprocessors. For the sake of simplicity let us begin with two

. processors and assume n is even (but there is no loss of generality).

We use the so called "twisted factorization*, see /7/, /0/.

Mistaken inthe form

where

-m.
II -

.

A1
A2

0

A2 0
. . .

0 A AT

. . .

. A ATn-l n

When doing the product one can easily see that the resulting matrix is block
.

tridiagonal, that is to say there is no block fill in.

Matrices A.i are computed by

Ai m Di - JQ %-l(l) Aft 2 4 i< n/Z

An'Dn.

%-Di- AT+1 ni,l(l) ++I, im,..., n/2-1

Onecanremarlcthatwedonotgetthese fomulasbydirectidentification, in factwe-.

neglect a coupling term in the computation of w2, but as we only need an

approximationand as the numericalexampleswillshow, thishasno influenceon the

results. Hence the computation of 4 can be done in two completely independant

pieces. .

TheexistenceofthedecompositionmybeprovenusingthesaPPetechniquesas in/4/

and /lO/.
.

The solveofMy-=c ispar&Uelammll. Inordertovectorize, eachtinu,we have to

sol~atridiagonalsystem,wereplace~1by~(3)asin/1O~. Hencewithobvious -

block notations, the solution y is given by

1) w1- q3) Cl

Wi = Qi(3) (CL - Ai Wi-I), i=Z,.,=.,n/Z-1

2)

3)

Wn's(3) +J

Wi - %(s) (Ci - Af+l W&+1), i-n-1 ,...,n/2+1

wn/2 = %/z(3) (%I -An/z wnj2 - q/2+1 %/2+1)

14

4) Yi * Wi - "i(3) Az+l yi+;f i==n/Z-l,...,l

Yi * Wi - CZi(3) Ai Yi-1 , i-n/2+1,. l -4

. .

It is obvious that steps 1) and 2) canbe executed in pardLlelaswellas 4)and 5).

Only step 3) requires the synchronization of both processors.

This method is similar to the dissection techniques used in /9/, except we are

considering block methods instead of point ones.

Letusnowlookathowwecanorganize the computationinMPCG.Supposethatboth

processorsaresynchronizedatthebeg inningofl)(althoughthisrequir~ntcan~

weakened). =

Processor 1 mnputes :

Ci * CA $I%, i=l,...,n/Z

wi, i=l,...,n/Z-1

(I: A pkli, t pkli)

i -
s1 * i-1X (t rkii. t zk’i)

Processor 2 computes in parallel :

.

ci * CA $li, i=n/Z+l,...,n

Wit i=n,...,n/Z+l

n
1

'2 - > (t Apkl
i-2+1

i8

. n
2

'2 = > (C rkl,,
i=n/2+1

t Zkli'

T!%enbothprocesers are synchronized, each one calling routine SYNCof section 2.

and processorlcoragutes tvkIw2 (note that in awre refined organization, after .

synchmnization, each processor may compute one half of tvkln/2).

After this sequential step, processor 1 computes :

c+1p i-n/z-l,...,l

3 z
5 - i-1

(C Vkli, c PklL,

.

Processor 2 computes in.parallel : . -

.

C+lir i=n/Z/l,...;n

n.
3

$2 - > (t vkli, c p~‘i)
i-+2+1

Thenbothprocessors are synchronized and afterthebarrier each processor is able

to compute its own copy of :

This is done to avoid one useless barrier and more overhead.

‘m77ag computed the scalars, Processor 1 cOmptttes

C&+‘li, C++‘li, CS+‘li, t$+lli, i-1,. . . ,n/2

and Processor 2 computes

C&+‘li, CS+‘li, tZk+‘li, t$+‘li, i-n/Z+l,...,n.

This ends one iteration.-

As the stopping criteria is (I]c, =k) 1 (r0, =O) 4 6, the test canbe donebyboth

processors, if the test is satisfi,ed ?rocessoq 2 executes a return, Processor 1

waits for Processor 2 doing a TSWAIT. *

One can see that except for solving for CvkIW2 everything is done inparalleland
. .

there is only 3 synchronization barriers in one 'iteration.

Wewill denote thismethod using twoprocessor~by INVZP.

Uat us zmwlookatwhatue Can ach&Wedwith fourprocessors.w

The preconditioner is taken as

where8has the follouiigstructure

TL=2

fi3-

t

A
+l

A
+
A
+

in An
5 5

AT
+

. .
.

A
+
. .

L1 Ng o- 0
0 LT2 0 0

0 N3 L3 NT4
0 0 0 Ia*4

0 . .

.

ATn
z
An
?

A A.3n 3n
4 Q

I

N=3

0 . .

L*
. .

0
;+1

0 .

0 .

. .

0 ‘-.

clr
c A-

y+l
0

.

.

.

.

.

l

.

.

0

.

.

IN-4 .

0 *.
b

.

.

.

.

.

.

.

.

O1

.

0

.

.

.

.

LT4

AT
=+n,,4

-.

ATn

Here 9has the followingblockpattern, points shauingblockswhere thereare non-
. .

zero elements. --_

. I

Matrices Ai are computed by :

Al 7 Dl

Ai * Di - Ai q-1(1) Ax, 2<iSn/4

Ai * Di -sAT+l %+1(l) Ai+lr i=n/2-1 ,...,n/4+1

a

4 * Di - A-i ni,lW A&

4mDi- A(f+l %+I(1) Ai+ i-n-1,...,3n/4+1

A8ystemMy-c is solved inthe followingobviousway

1)%/z -"n/22(3) 92
--.

2) Wl = n,(3) Cl

Wi * Q(3) (Ci - Ai Wi-1)~ i-2 ,...,n/4-1

3) Wi * q(3) (c% - AT+1 Wi+l), .ir11/2-18...,n/9tl

4) Wi * %(3) (Ci-A~Wi-l)r i-n/2+1,...,3np+1

5) Wn -lm(3) cn

Wi * %,(3) (CL - AT+1 W&+1), i-n-1 ,...,3n/4+1

-6) wn/4 * z)n/4(3)(cn/4 - An/4 wn/kl- G/W-l Wn/*l)

.
.

,*I yn/4 * wn/4, y3n/4 * w3n/4

9) yi * Wi - "it 3, A'f+l Yi+l8 i=m/+l,...,l

-.

loI Yi "wi O%(3) 4 yi-18 i=n/*l,...,n/z-1

11)yi' Wi’ "it 3, Arf+l Yi+l8 i-3n/+1 ,...,n/2+1.

J-2) Yi * Wi - q(3) Ai Yi-18 i=3n/Wl,...,n

. .
=.13) Yn/2 * Wn/2 - %/2(3) @l/2 yn/z-1 + q,2+1 Yn/2+1)

~identlywhenstepl)iscoupleted, steps~), 3), 4)and~)can proceedinparallel,

then Steps 6) and 7) and again steps 9), lo), 11) and 12). solving is completed by

seqential step 13).

Aswith~processors,partsoffhescalarproductscanbe~tedduringsteps9),

lo), 11) and 12).

Therearetwosynchronizationsoftwoprocessorsandoneglobal synchronization of

the four processors at the end.

Note that when doing the product 8 AD1 &, the resulting matrix is block

tridiagonalexcept fortwoblock fillsinthatwehaveneglectedtithecomrprtation,

therefore we must be prepared ta have a larger number of iterations than in the

standard algorithm. We denote this method with four processors by INVW.

IQotethatherethemethodisdifferentofthe one in/g/, apart fromthe fact thatwe

use block algakithms, because the blocks are not nunibered in the same way.

23

5, Ruperical resulb

In this section we give numerical results for the model problem viz. the

discretization by a five point finite difference scheme of the Poisson equation

- A U - f zn n * 10, I[: x 108 1c

u - o on g2

Let h = l/(n+l) be the stepsize. The matrices Di of order n are

.

4

-1

-1

4

.

-1

.

.

.

.

-1

.

4

-1

--i= -1, I being the identity matrix.

The chosen stopping criteria was 10-K

he givedetailed results for two cases, asmll one with n-SO and a large one with
- -

m-150. Further results can be seen on Figaxes 2; 3, 4 and 5.

For each case we give results for the standard algorithm XNV and the two parallel

ones INV2P and~~.Resultsincludethecomgutertirrre(CRAP.X~)inseconds,the

number of iterations to reach the given criteria, the Megaflops rates and for

parallelmethods twodifferentvalues of the speedup. The firstone Sl is the ratio

of times for the execution of the parallel code on one processor and on several

i I

processors,thesecondoneS2istheratioofthetime forthestandardalgorithmINV

computer(bothhardwareandsoftware)toexecuteacodeonseveralprocessors. S2is

w>realgorithmorientedandmeasureswhatwecangainoverwhatwasthoughttobethe. .
best sequential algorithm.

method 1 time I &mops 1 iter 1 Sl 1 s2
INV --. I 0.0199 l

I

108.86 1 17 1 - f -
INVZP I 0.0115 I 187.55 1 19 1 '1.86.1 - 1.73
INv4P I 0.0127 I 220.7 I 22 1 2.75 f 1;56
.

n-50

!Fable 1

Alltime mmsurements havebeen done indedicated,~~usingtherealclocktimcr.

They do not Include the computation of the preconditioner.

The first thing to note in this small problem is that it pays more to use two

processors. The loss due to the increasing number of iterations and the‘larger.
:overhead(a,sthevectorlengthesaretwotimes shorterandthereare fourprocessors

tosynchronize)giveapoorresultwith fourprocessors, butnotethatthe situation

changes rapidly as n grows.

Hehod 1 time I Mflops 1 iter 1 Sl 1 s2

I 0.3185 I 136.9 I 38 I - I
IwzP I 0.1859 I 246.9 I 40 1 1.92 f -1.71I I I , I
INWP -1 0.131 I 401.8 I % 3.29 f 2.43

m-150

Table 2

.--.

Table2~~thatfor~eproblemsitd~spay'tousefour procemors although the

thinkthatthisproblemcomes frommemorycontentionduringvector operations.When

~run~~on~processors~getaspeeduplargerthan 1,gindicatingthatthe

algorithm is well paraUelized, but the contention between processors is larger

with four processors than with tape,

.
numberofiterationsversus a(theorder ofAbeingn2).

.

It is clear that with four pxoces8oxs we have not reach the full ~potential of the.
machine and that with larger prrrblems we can go beyond 420 Mflops but clearly the

speedupisbounded.T!hesituation forcoqutingtijPeismtasgoodbecause ofthe

increase~tbenrrr;pberofiterations~ingf~tPzotofourprocessors.

NEURFINT r0F00 28106185 16.31.31.

360 t

340

320

300

280

260

240

220

200

180

160

140

120
lt3Fruu

80 t
60

40

i20 ’

\
I NV4P

al I I I I I 1 I I I I I I I50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
N

MFLOPS
FIGURE 2

a7i

NEURRNT I OF00 28/06/85 16.39.47.

a8

NEURANT 10F00 28/06/8S 16.49.19.

TIME .60 , I I I I I 1 I I I I I L I
A.S8 _

.56 _

.s4 -

.52 -
so -
.A8 _
. A 6 -
.AA _
.A2 _
.40 _
.38 _
.36 _
.34 _
a32 -
.30 _
.28 _
.26 _
.2A _
22 -
20 -
.18 -
* 16 _
. 14 -
. 12 -
. 10 -
.08 _
.06 _
.0A _
.02

0 1 I I I I I I I I ISO I60 I70 I80 90 100 I110 120 130 140 150 I160 170 180 19-0
N

TIME [SEC.]

.

NEURRNT 1 OF00 28/06/85 16.58.32.

. .

ITER

A8
A6
44
A2
40 i

INV4P

38 --
36 t
34
32
30
28
26
24
22
20
18
16
1A _
12 -
10 -
8 -
6-
A _
2 ,

’ I
I

INV

01 I I I I I I I I I I I I I50 60 70 80 90 100 1 L0 120 130 140 150 160 170 180 190

NB OF ITER
FIGURE 5

30

.

6. inclusions

Wehave shownhowtoefficientlyusethepreconditionedconjugategradientmethodon

. .
With two processors we reach almost the maximum efficiency we can.

Using the four processors the situation is alittlebitwrst, firstly speed up is

boundedbymmimrycontentionand secondlyareneedparallelprecoaditioners givinga

better rate of c& wvezgmce as itseemsdifficultto gemmlue Itw~tomorethan

f o u r processOrs.

The author is indebted to CR2IY Research Rance for their help during these

coqutations, 8peciaZ thankstOAl~~.mnythanks aUotomycolleagueJacques

DAvIDmcEA.

31

References

/l/ 0. IUCELSSOM

Incomplete blockmatrix factorizationpreconditioningxmth~s.!I!heultimateansuer

3

J. of camp. and z&l. math. ~12.13 (198S)pp 3-18

RQexiences numeriques sur le--.
Eote CEA (1985)

J. of parallel and disk camp. vl (1984) pp 22-31
\

/4/ P. -, G. E. GOUIB c; G. -

Block preconditioning for the conjugate gradient method

SlXH J. on stat. and sci. amp. vb nl (198s) pp 220-252

/5/ P. aJlUCUS, G.E. OOZXJS & D.P. 0' IZ.ARX

A generalized conjugate gmdient mthod for the numerical solution of elliptic

'partial differential equations

in Sparse Matrix Computations, pp 309-332

32

Eds J.R. Bunch 61 D.J. Rose, Academic Press (1976)

/6/ CRAY Multitasking User's Guide sN-0222

. .

/7/ D. FISCHER, G. H, GOLUB, 0. HALD, C.IEIVA C 0. WIDLUND

On Pourier+beplitz methods for separable elligtic prdblems

Math. canp. ~28 nl26 (1974)pp 349-368
a

/8/ T.L. JORDAN

Aguidetoparallelaqmtations andsomeQ?Xflexpexiences

in Parallel mQpuatioru3 pp l-50

G. Rodrigue ed., AcadeBaic Press (1982)

/9f A . Iit-

Some vector and parallel implementations of preconditioned

a2goritham

in High speed c%mputations pp 343-359

J. s. xcmalik ed.. Springer Verlag (X984)

conjugate gradient

/IO/ G. EEURWT .

i!he bZockpreconditioned conjugate gradient method on vecbr computers

BIT ~24 (1984) pp 623433 e

fllf G. -

Numericalexperiments forthepreconditionedoonjugategradieatrPethodontbeC=RAY

x-HP/2

33

Lawrence Berkeley Laboratory LBL-18023 (X984)

/12/ Y. SAAD

Practical use of polynomiaI preconditioning for the conjugate gradient method

Research report Yale university/DCS~kR-282 (1984)

/x3/ J. w4H -

Minu hmerproauct data dependandes in conjugate gradient iteration

Ia5sH Hasa Langley IIresearcfr Center 3.72178 (1983)

.

34

