Numerical Analysis Project ‘ August 1985
Manuscript NA-85-33

Multitasking the conjugate gradient
on the CRAY X-MP/48

by

Gérard Meurant

Numerical Analysis Project
Computer Science Department .
Stanford University
Stanford, California 94305

Multitasking the conjugate gradient

on the CRAY X-MP/48

Gerard MEURANT
) Centre d'Etudes de Limeil-Valenton

BP 27

94190 Villeneuve St Georges, France

The reproduction of this report was supported by the United States Army
Research Office under Contract No. DDAG 2983-K-0124,

Abstract

we showhowto efficiently inplenent the preconditioned conjugate gradient method
on a four processors computer CRAY X-MP/48.

W sol ve bl ock tridiagonal systens using bl ock preconditioners well suited to
paral l el conputation.

Numerical results are presented that exhibit nearly optimal speed up and high Mflops

rates.

e T e—

i. - i o0 n

In this paper we show how to efficiently inplement the preconditioned conjugate
gradi ent nethod on the CRAY X-MP/48 usi ng the four processors in parallel.

W consi der bl ocktri di agonal | i near syst enst hat ari se from the discretization of

partial differential equations.

Let
AXx - b
be such a linear system where
D, ar
2 o
A, D, A
A Ll (] L] L]
. L) L] T
n—an—].An
A
n n]

A being a symmetric M-matrix.

In the prototype two dinensional nodel problem matrices Dj, i=1,...,n are
tridiagonal and matrices Aj, i=2,...,n are diagonal.

.We use the preconditioned conjugate gradient (PCG nethod to solve this |inear
system But if this method has been used successful | yon vetorcomputers, see for
instance s/10/, it is not well suited to parallel conputation because of thedata
dependanci es in the al gorithm Wewi | | show, in a similar way than /12/,/13/ how PCG
canbenodi fi edt o reduce t he dependanci es and how to get a more parallel algorithm.

Anot her probl em st odevi se a preconditioner well adapted to parallel computation.
/

To solve this problemwe will use nodifications of the block preconditioners
introduced in /4/, as vectorized in /10/.

THe outline of the paper is as follows:

-insection 2 webriefly recall themain features of the CRAY X-MP/48 andshowhow o
synchroni ze the processors.

- section 3 gives aconputational variantofthenmethod introducedin /12/,/13/ to
reduce dat a dependancies i n PCG.

- section 4 defin.es,firstly for two and then for four processors,parallel block
preconditioners well adapted to the x-Mp/48.

- in section 5 we present numerical results for a model problem. With two processors
we get a nearly optimal speed up but with four processors memory conflicts reduce the

potential speed up.

2. Overview of CRAY X-MP/48

CRAY X-MP/48 i s apowerful conputer with fourtightly coupled processors sharing a
large memory. Each processor is a vector machine with a CRAY 1 like architecture, but
many i nprovenents have been done thaE give a nuch nore efficient conputer.

Each processor has four accesses to nemory including two for vector |oads and an
| mproved chaining nmechanismallowng to exploit the full potenLial of the
functional units.

On many vectorize.d codes one CRAY X-MP processor | S twotothreetimes fasterthan
the crAY 1 al though the clock period is only 1.33 tinmes faster. The maxi num
performance of the four processors altogether is 840 Mflops.

The nost novel feature of CRAY X-MP is that the four processors can be used
simultaneously in a single job. Expression of parallelism is done inside the Fortran
codes t hrough calls to a multitasking |ibrary.

There are sone low level primtives that allow

|)to start a task andeventually to wait for its conpletion (TSKSTART,TSKWAIT)

2)todefine criticalregionsthatnustbe executed by only one processor at a time
(LOCKON, LOCKOFF) .

3) to synchronize processors Wwaiting for some events to happen
(EVPOST,EVWAIT, EVCLEAR).
For a nore detailed description of these routines see /6/,/2/,/11/.
‘Here we | ustwanttodescri behowwe cansynchronize several processors usingthese
primtives.

The Portran |ist of subroutine SYNCis given in figure 1 below, /2/.

3

SUBROUTINE SYNC(ID) _

DI MENSI ON 1D(6)

CALL LOCKON(ID(3))
NEVN=ID(6)

ID(5)=ID(5)-1

IF(| D(5).EQ.O)THEN
~ID(S)=ID(4)
NEXEVN=3-NEVN

ID(6 }=NEXEVN

CALL EVCLEAR(ID(NEXEVN))
CALL EVPOST(ID(NEVN))

CALL LOCKOFP(ID(3))

ELSE
CALL LOCKOFF(ID(3))
CALL EVWAIT(IDNEVN))

ENDIF

Pigure 1

IDis a 6 words arraythathas been initialized before. ID(l) and ID(2) are events
whi char eusedi nturn, ID(3) is the lock of the critical region, ID(4) is the number
of tasks to be synchronized, ID(5) i s the number of tasks not yet arrived at the
synchroni zation point and ID(6) is the event used for synchronizing.

W used two events in turn because it is safer to have different events used in
consecutive synchronization points, see /2/.

Asynchronizatioﬁbarrier on the x-Mp/48 is done by n processors, 2<n<4, calling
SYNC with the same array ID (which nmust be in conmon in the calling program
There is anoverheadt hat comeswi t ht he synchroni zation, thisinpliesthatthecode
must be large engpgl; between two synchronization barriers for the camputation not to
be overhead dominated, see /3/. Previous attenpts t o0 use PCG on t he CRAY X~-MP were

partly unsuccessful 1 because of that problem /11/.-

3. The conjugate gradient algorithm
The preconditioned conjugate gradient (PCG) nethod for solving a linear system of

equations is as follows :

Algorithm PCG
Let x0 be given, @ = b - A x@ and p~1 arbitrary.

For k=0,1,... until convergence, performthe steps

M zK = X
B = (M 2K, zK) / (M z k-1, 2k-1), =0
ox = (M zK, zX) / (a P, pK)
WKL = K 4 oy PR
X+l = K — o A pK
M is a positive definite preconditioning matrix.
PCG is very well suited for vector conputers if the preconditioner M is chosen
carefully, see s/10/ and the references therein (see also /1/).
Previ ous wor kont heuse of PCG on parallel computers was done in /9/. Unfortunately

thereis a very |low degree of parallelismin PCG as all the steps arise in a very

sequenti al way, leading to many synchronization points and a large overhead. The t wo

scalar products cannot be done in parallel and we need PX ¢ commpute Gy . Regardless

of M zX = rK the only things t hat can be done in parallel (at least with an acceptable
granularity for the given conputer) are theconputations of x¥*1 and rk+1,

O courseitcanbe said that usually, nost of thetineis spent inthe solution of M

zK = ¥X and that is does not really matter that the remaining parts are done in
seqgential mode. But renenber that if only 10%of the al gorithm s not parallel then
the speed up cannot be greater than 1.82 with two processors and 3.1 with four

processors. Hence it is interesting to try to increase the parallelismof PCG.

Sonme proposals in this way have been made by Saad /12/ and Van Rosendale /13/ without

nunerical results. Thei deai shasedonthe follow ngrenark : in exact arithmetic we

have, see /S5/ _

Mz, zly=0 vi,31i2#2]

zk-l-l-zk.,_aku—lapk
MKl - M zZK = — o A PK
t herefore using orthogonality

(M 2Ktl, Zktly = o2 (M1 A PR, A PK) - (M 2K, 2K)

This inplies that (theoretically), we can compute (MzK+l, zk*1) pefore conputing .

zX*1, The al gorithm can then be conveniently recast in the following form:

Let x% he given, r® = b - Ax0, M 20 = 0, pOa 20, sg = (x0, 20).

For k=0,1,... until convergence performthe steps
1) M vk = p pK

2) compute (vklApk)c (Apklpk)

3) ax = sy / (A pX, pPX)

"3k+1"“§(vkvhl’k)'3k

Bx+1 = Sx+1 / %

4) xk"'l-xk+cxkpk
T
zk"'l-zk-akvk

PRl = (X - o vE) + gy PE
Inthis algorithmthere is one nore vector to store but the parallelism has been
greatly increased. Regardless of step 1), both scal arproducts can be computed in
parallel and after the scalar step 3) the four vectors x, r,z,pcan be split in as many
subvectors as the number of available processors, so step 4) is fully parallel.

One may ask why we do not nake the change of variable A'=M"1A and b*'=M"1b. Thi s can

3

savet heneedt oconput evectorz. We arekeepi ngzbecauset heconvergencecriteria
we used in PCG is (M zK, zK) / (M 20, 20) < e andwewant t okeepexactly the same one
in the nmodified algorithm

Thenmai ndr awbackof t hel astal gorithm sits nunericalinstability. sy is supposed
totendto zero as does o« and rounding errors frequently give a negative value of
Sx+1 for some k. Then the algorithm breaks down.

However there is a way to fixthis problem the trick being to use sy4; as a
predictor for the. true val ue of the scalar product and to correct it, recomputing

(xXt, zZK*ly, 4t the end of the iteration.

The nodified al gorithm MPCG becones :

Let x0 be given, ° =b - A x0, M 20 = ¢0, g0 = 20,

For k=0,1,... until convergence perform the steps
1) M vK = a pk
2) compute (v, A %), (A B, ?‘). (%, z¥)
3) a = (%, z%) / (a Pk, P¥)
«--’k+1 = of (vK, A pK) - (X, 2X)
Brs+1 = %41 / (2K, 2K)
a) WKL = K 4 o PE
X+l = gk - o A Pk
P R S

Pk""]"h'(zk“'*k"k)"‘5k-|-]_Pk

There is only one more scalar productin this algorithm

Al t hough we are not able to theoretically proveits stability, it work quite well for

/10

all the exanples we tried.
We usual ly get the sane number of iterations as for the standard al gorithm

we Wi ll see later on how the conputations are organized.

"

4. Parallel preconditioning

In /4/ block preconditioning was introduced (see also /1/) in which M was chosen as

follows s

let A be a block diagonal matrix with diagonal blocks &4 i=1,...,n then
M=(A+1L) a1 (A% LT

where L is the block lower triangular part of A.

Tridiagonal matrices a; are conputed recursively by

Al =Dy

A{ =D = Ay 043(1) AT 2<i<n

R3(3) is a symetric banded matrix wth 23j+1 diagonals whose elenents within the

band are the same as those of ajl.

Thi s preconditioner i s not vectorizable, therefore in /10/ when solving W = c,
A§_‘1 was replaced by 83(3). But even if now completely in vector node, this
precondi ti oneri snot parallel as there remains two block recursions when solving M
Z-r. W now show how to modify this preconditionexr for use on a parallel computer
Wi th a few vector processors. firthe sake of sinplicity let us begin with two
processors and assune m i s even (but thereis no |oss ofgenerality).

W use the so called "twi sted factorization*, see /7/, /8/.

M st aken in the form

M= a1T

/2

wher e

Al 0
Az A2 0
. . o
- A n A'rrt
o - z 2z 2t
° A9-+1 A';-z
2 2

An-I A'r!]'
0 An J

When doi ng the productone can easily see that the resulting matrix is block
tridiagonal, that isto say thereis no bl ock fillin.
Matrices a4 are computed by

Al - Dl

A; = Dy - A; 05-1(1) AT, 2< i< n/2

4p = D

a; = D3 - AT,y 0347(1) Aj4y, i=m,..., n/2-1

Onecanr emar | ct hat wedonot gett hese fonul asbydirectidentification, in factwe
negl ect a coupling termin the conputation of bny2: but as we only need an

approximation and as the nuneri cal exanpl eswi | | show, thishasno influenceon the

results. Hence the conputation of A3 can be done in two conpletely independant

pi eces.

The existence of the decomposition may be proven using the same techniques as ip /4/
and /10/.

The solve of M y-=c is parallel as well. In order to vectorizé. each time we have to
solve a tridiagonal system, we replace A7l by 8;(3) a8 in /10/. Hencewi t hobvi ous

bl ock notations, the solution y is given by

1) W = 01(3) c

wi - 01(3) (ci = A’i wi‘l)l 1.20 0“0.’n/2_1

2) ¥n = n(3) ¢n

wi - ﬂi(3)(Ci - Ai{.bl Wi+1), jsm-1,...,0/2+1

3) Wn/2 = Qn/2(3) (Sn = Bnsz Wns2 = AL 24 Wns241)

Yn/2 ® ¥ny/2

|

- - T . . _
4) yi=wi - 2(3)A5,, y;,,y, i=n/2 1,...,1
yi = wi - 84(- Aj ¥ij-1, 1=n/2+1,. . .,n

I't is obvious that steps 1) and 2) can be executed i n parallel as well as 4) and 5).
Only step 3) reirest he synchroni zation of both processors.

This method is simlar to the dissection techniques used in /9/, except we are
consi dering bl ock nethods instead of point ones.

Let us now look at how we can organize ... cogputation in MPCG. Suppose that both

processors are synchronized at the beginning of 1) (although this requirement can be

weakened) .

Processor 1 computes :
c; = CA Pklio i=1,...,n/2

wil i’lp oo o 'nlz—l

n/2
st - O (L APL.L PF1L)
1 fm1 1 i

n/2
2 X x
s, = iz]:. (C r]i. L z]i)

Processor 2 conputes in parallel :

IS

ci = [A pXl;, i=n/2+1,...,n

Wi' i‘n,...,n/z+l

n
% - 2 (C Apk]i. C pk]i)
i=n/2+1
n
% - 2 (C rk]i. C z"]i)
i=n/2+1

Then both processors are synchroni zed, eachone calling routine SYNC of section 2
and processor 1 computes tvk]n/z (note that in amore refined organization, after
synchronization, each processor may conpute one half of[vkln/z).

After this sequential step, processor 1 conputes :

rvk]i, i’n/z—l; e oo 'l

n/2
si - 2 (C vk]i, [pk]i)
fm1

/6

Processor 2 conputes in parallel :

tvk]i. i=n/2+1,n

n
2= 2 (r v, P
i=n/2+1

Then both processoxs are synchronized and afterthebarrier eachprocessor isable

to conpute its own copy of :

sl = s} + s3

82 = s + 83

83 = s8] + 33

s Sx+1s P+l

This is done to avoid one usel ess barrier and more overhead.
‘Having computed the scalars, Processor 1 computes

La®*11, Co%*Lly, (2541, (PRt i=1,. . . ,n/2

and Processor 2 conputes
Cak¥lly, [o%4lyy, (2K*lyy, [pk*lyy, dien/2+1,....nm

Thi s ends one iteration.-

117

As the stopping criteria is (r¥, zky , (£0, 0y ¢ ¢, the test can be donebyboth

processors, if the test is satisfied Processor 2 executes a return, Processor 1
waits for Processor 2 doing a TSKWAIT. -
One can see that except for solving for [vK1,,, everythingis done in parallel and
there is only 3 synchronization barriers in one "iteration.
wWe will denote thismethod using two processors by INV2P.
Let us now lock at what we can achizved with four processors.
The preconditioner is taken as
M=0 alel

where © has t he follawirfg structure

(4

o . . o
m.
An 20 o
o n. o . . - L]
« O ()
- -
+ o O o < o o
o . T.nn_a.
L}]
) <t
; Neo TN
o~
TN.
ol
<
=1 An_
[] am <
<
<
An. N
o by n‘_.Z
.ink g cle <
[
o~
o G Fu o
o ol gl glo
< << . < <
[————
[" |
m
e B A

9

T
L4 -
. A
n
A
n

Hereo® has t he fol | owi ngbl ockpattern, points showing blocks where there are non-

zero elenents.

20

Matrices Aj are computed by :

A =D

Aj = Dj - A5 037(1) AT, 2<i<n/4

4n/2 = Dny2

&j = Dj = AT 0441(1) Aj4q, i=n/2-1,...,n/4+1

A3 = Dy - Ag 05_3(1) A3,

4n = Dy

43 = Dy - ATy 0343(1) Ageq,

i.n-l P

n/2+1<i<3n/4

e r3/4+1

A system My =c | S sol ved in the following obvious way

2‘1) Wns2 = Ons2(3) Cny2
2) W = H(3)
wi = 85(3)(ciy — Rj Wi-1),
3) wi = 25(3) (1 - Ay win),
4) wi = Q3(3) (¢4 — Aj Wi),

5) wp = On(3) ¢y

wi = 05(3) (¢ - A4y W),

i '2' L) .,1'1/4—1
ism/2-1,..

. /41

i=n/2+1,...,30/4-1

i=n—-1,...,30/4+1

6) Wnsa = Onsa(3)(Cnsa — BAnys "'n/e—;l = 33/44»1 WYn/4+1)

7) W3nsa = Q3n/4(3) (C3n/4 — A3n/e Vansa-1 — Agn/‘H-l Wan/4+1)

a2

]

'8) Yn/a = Wn/4. Y3nsa = Vansa

9) ¥i = wi - 05(3) AT,y yi4y, i=n/4-1,...,1

10) y4 = w; - 01(3)“51 Yi-1- i=n/4+1,...,n/2-1

11) y5 = wy - 95(3) ATy yi43. i=30/4-1,....n/241

12) yi = Wi - 85(3) Aj Yi—3, i=3n/4+1,...,n

~13) ¥ns2 = Wns2 = fny2(3) (Ans2 Yns2-1 + A'1]-"1/2+1Y1-;/2-0-1)

Evidently when step 1) is completed, steps 2), 3), 4) and 5) can proceed in parallel,
then steps 6) and 7) and again steps 9), 10), 11) and 12). solving is conpleted by
segential step 13).

As with two processors, parts of the scalar products can be computed during steps 9),
10), 11) and 12).

There are two synchronizations of two processors and one globalsynchroni zat i onof
t he four processors at the end.

Note that when doing the product e a1 &T, the resulting matrix i s bl ock
tridiagonal except for two block fills in that we have neglected in the computation,
therefore we nust be prepared to have a larger nunber of iterations than in the
standard algorithm W denote this nmethod with four processors by INV4P.

Note that here the method is different of the ONne in /9/, apart from the fact that we

use bl ock algorithms, because the bl ocks are not numbered in the sane way.

23

5. Numerical resulls

In this section we give nunerical results for the model problemviz. the

discretization by a five point finite difference scheme of the Poisson equation

—aAu=¢finn =130, 1 x 10, 1[

u- o on sa

Let h = 1/(n+l) be the stepsize. The matrices Dy of order n are

and Ay = -1, | being the identity matrix.

The chosen stopping criteria was 1076,

We give detailed results for two cases, a small one With n=s0 and al arge one with
n=150. Further resul tg c;;m be seen on Pigures 2, 3, 4 and s.

For each case we give results for the standard al gorithmINv and the two parallel
ones INV2P and INV4P. Results include the computer time (CRAY X-MP) in seconds, the
nunber of iterations to reach the given criteria, the Megaflops rates and for

parallel methods two different values of t he speed up. The first one s1istheratio

of times for the execution of the parallel code on one processor and on several

24

processors, the second one S2 is the ratio of the time for the standard algorithm INV

to the time of the parallel algorithm. It is clear that S1 measures the ability of the

computer (both hardware and software) to execute a code on several processors. S2 is

more algorithm oriented and measures what we can gain over what was thought to be the

best sequential algorithm
nmet hod | tine \ Mflops | iter | s1 | s2
mwv - | o019 .| 1088 | 17 | - | -
e | UULD | 187.55 | 19 | 1.8 |. 1.73
INVaP | 0.0127 I 22007 | 22 | 2.75 | 1.s6
n- 50
Table 1

All time measurements have been done in dedicated,mode using the real clock time.

They do not Include the conputation of the preconditioner.

The first thing to note in this small problemis that it pays nore to use two

processors. The | oss due to the increasing number of iterations and the'larger

‘overhead (as the vector lengthes are two times shorter and there are four processors

to synchronize) give a poor result with fourprocessors, butnotethatthe situation

changes rapidly as n grows.

as

method | time | Mflops | iter | s1 | s2

INV | 0.3185 | 1369 | 38 | - |
INV2P 0. 1859 246.9 40]} 1.92 | -1.71
INVaR © 0.131 401. 8 46 | 3.29 | 243
n=150
Table 2

-

Table 2 shows that for large problems it does pay to use four processors al t hough t he
speed up is not as great as we have expected. From different experiments see /2/, we
think that this problem comes from memory contention during vector operations. When
we run INV4P on two processors we get a speed up larger than 1.9 indicating that the
algorithmis well parallelized, but the contention between processors is |arger
Wi th four processors than with two.

FPigures 2, 3 4 and 5 give the Mflops rate, the speed up S1, the computing time and the
number of iterations versus n (the order of A being n2).

It is clear that w t.h four processors we have not reach the f ul | potential of the
machine and that with larger problems we can go beyond 420 Mflops but clearly the
speed up is bounded. The situation for computing time is not as good because of the

increase in the number of iterations going from two to four processors.

&8 206

MEURANT

[BFB0

28/856/85 16.31.31.

MFLOPS

449

420 L
420 |
3808 L

360
340
320
300
280
260
240
220
200
180

160 L
148 |
120 L
188

80 L
60 L
40 |
20 L

INV4P

INV

1 H 1]

100 118 120 130

MFLOPS

FIGURE 2

140

150

|
168 1

70

180

K7

NEURRNT 10F 32 28/06/85 16.39.47.

SPEED UP

s o

Q~NWANONOOR~NWAUONOOR~NWAUIONNDOR—~NWAUITR 0O

gllllllllllllIlllllllllllllllllllllllllll

INV4P

INV2P

S NN NN GO0 W0 W @@ w w s

s o o
-
1 1 I3 1.1 1 1 1 1 1 1 i 1 1.1 'l 1 1 [L i 1 L4 1 /] (1 1 i 1 l/l i i L 1 i i

1 a "I |

80 70 80 99 100 10 120 130 140 150 160 70 180 190
N
SPEED UP
FIGURE 3

28

NEURANT [6FB2 28/06/85 16.48.19.

TIME .60
.58 |-
.56 |-
.54 |
.52 |.
.58 |
.48 |
A6 |.
44 |
42 |
.40 |
.38 |
.36 |
.34 |
32 L
.30 |
.28 L
.26 L
24 L
22 |
20 L
A8 |
16 L

.04 L

.82 »]
0Sg 60 70 8 90 100 Ilp—120 - . .

130 140 158 160 170 180 190

TIME (SEC.)

FIGURE 4

a9q

NEURRNT [OFO0 28/06/85 16.58.32.

ITER 6@ ' . _ _ . ' . , i — : :

S8 L -

56 :
54
52
5@
48
A6
44 |
A2
40
38
36
34
32
30
28
26
24
22
20
18

ool /70 80 90 100 11@ 120 130 140 150 160 178 180 190
N

NB OF ITER

FIGURE 5

6. Conclusions

We have shown how to efficiently use the preconditioned conjugate gradient method on
the CRAY X-MP/48.

Wth two processors we reach al nost the maxi num efficiency we can.

Using the four processorsthe situation is a little bit worst, firstly speed up is
bounded by memory contention and secondly we need parallel preconditioners givinga
better rate of convergence as it seems difficult to generalize INV4P to more than
four processors.

Pespite these facts, for large problems, we get interesting improvements over the

Acknoar]ledgements

The aut hor isindebted t 0 CRAY Research Prancefor their help during these
computations, special thanks to Alex AZAR. Many thanks also to my colleague Jacques

DAVID from CEA.

31

Ref er ences

/1/ 0. AXELSSON
| nconpl et e block matrix factorization preconditioning methods. The ultimate answer
?

J. of comp. and appl. math. w12,13 (1985) pp 3-18

/2/ Y. CHAUVET, J. DAVID & G. MEURANT
Experiences numeriques SUr | € CRAY X-MP/48 (in Prench)

Note CEA (1985)

/3/ S. CHEN, J.J. DONGARRA & C.C. HSIUNG
Multiprocessing linear algebra algorithms on the CRAY X-MP/2 : experiences with
small granularity |

J. ofparallel and dist. comp. v1 (1984) pp 22-31

/4/ P.concus, G H. GOLUB & G. MEURANT
Bl ock preconditioningfor the conjugate gradient nethod

SIaM J. on stat. and sci. anp. v6 nl (1985) pp 220252

/5/ P. comcus, G.H. GOLUB & D.P. 0' LEARY

A generalized conj ugate gradient method for the numerical solution ofelliptic
"partial differential equations

in Sparse Matrix Conputations, pp 308-332

32

Eds J.R Bunch & D.J. Rose, Academ c Press (1976)

/6/ CRAY Mul titaski ng Usexr's Gui de SN-0222

/7/ D. FISCHER, G H. GoruB, 0. HALD, C.LEIVA & 0. WIDLUND
On Pourier-Toeplitz net hods for separabl e elliptic problems

Math. comp. v28 nl26 (1974) PP 349- 368

/87 T.L. JORDAN
A guide to parallel computations and some CRAY 1 experiences
in Paral | el Computations pp 1-50

G Rodrigue ed., Academic Press (1982)

/9/ A . LICHNEWSKY

Some vector and parallel inplenentations ofpreconditioned conjugate gradient
algorithms

i n Bigh speed Computations pp 343-359

J. S. Kowalik ed., Springer Verlag (X984)

/10/ G MEURANT
The block preconditioned conjugate gradi ent nethod on wector conputers

BIT vze (1984) pp 623433
/11/ G MEURANT

Numerical experiments for the preconditioned conjugate gradient method on the CRAY

X-Mp/2

33

Law ence Berkeley Laboratory LBL~18023 (1984)

/12/ Y. SAAD
Practical use of polynomial preconditioning for the conjugate gradient nethod

Research report Yal e university/DCS/RR-282 (1984)

/13/ 3. VAN ROSENDALE

Minimizing inner product dat a dependancies i n conjugate gradient iteration

ICASE Rasa Langley Research Center 3. 72178 (1983)

34

