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A Survey of Matrix Inverse Eigenvalue Problems

Daniel Boley  and Gene H. Golub

0. Introduction.
In this paper, we present a survey of some recent results regarding direct methods for solv-

ing certain symmetric inverse eigenvalue problems. Inverse eigenvalue problems have been of
interest in many application areas, including particle physics and geology, as well as numerical
integration methods based on Gaussian quadrature rules [14]. Examples of applications can be
found in [ll], [12], [13], [24], [29]. For example, in [ll] the problem is to compute the values of
the masses, lengths, and spring constants for a mass-spring system, given only certain spectral
data. This leads directly to a problem addressed in this paper of generating a pentadiagonal
matrix from spectral data.

Much of the motivation for the problems discussed in this paper came about from an
interest in the inverse Sturm-Liouville problem. Frequently, the, matrix approximation to the
Sturm-Liouville operator is tridiagonal matrix. There are many similarities between the matrix
problems and the continuous problems, but numerical evidence demonstrates that the solution to
the matrix problem is not a good approximation to the continuous one (cf [23]).

Much of the basic theory of existence and uniqueness of the solutions for Jacobi matrices
was developed in [21] and [20]. These papers also present reconstruction algorithms based on the
characteristic polynomials of the matrices and/or moments of functions of these polynomials.
The paper [20]  also has several illustrative physical examples.

The problems we discuss in this paper are those of generating a symmetric matrix, either
Jacobi, banded, or some variation thereof, given only some information on the eigenvalues of the
matrix itself and some of its principal submatrices. Thus, the matrix problems considered here
are of a highly structured form, and as a consequence we are able to construct algorithms to solve
these problems in a finite number of steps. General matrix inverse eigenvalue problems have
recently been considered in [lo], and the algorithms for such problems are of an iterative nature.
In this paper, we attempt to bring together several recent methods developed to solve these struc-
tured inverse eigenvalue problems, which have been proposed with the specific aim of being*
numerically stable and reasonably efficient.

All the methods we will discuss consist of two major parts: In the first part, we start with
the given initial eigenvalue data and then compute a certain set of intermediate data consisting of
a vector or several vectors. In the second part, an algorithm which has been classically used for
reducing a general matrix to a structured form is used here to generate the desired structured
matrix. In this paper we emphasize the modularity of the methods in that there is a choice of
several different methods to carry out each part.

We begin with several mathematical results which are the foundation of all the methods
presented in the paper. We then present methods to solve several inverse eigenvalue problems of
various sorts, starting with Jacobi matrices and leading to banded matrices, periodic matrices and
other special problems. Note that all the matrices mentioned in this paper are symmetric, with
the exception of the transformation matrices which are generally orthogonal. The numerical sta-
bility of the methods is assured because we depend exclusively on orthogonal transformations for
the generation of the matrix solutions, with the exception of the Lanczos-based schemes whose
stability is enhanced under re-orthogonalization (see e.g. [25]).  Numerical results are not
presented here, but can be found in, for example, [4], [l], [2], [7].
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1. Preliminary Theory
In order to present the methods of this paper in a concise way, it is useful to give some prel-

iminary results which play a fundamental role throughout the rest of the paper. These results
consist of some preliminary constructions which appear as intermediate steps in the course of the
various algorithms discussed.

1.1. Bordered Diagonal Matrices -.
The first problem we discuss is the construction of a certain matrix having some given

eigenvalue properties. Specifically, given the set of eigenvalues {xi }i’ and the set of distinct
eigenvalues {pi } i’ -’ which satisfy an interlacing property

Xj 2 /li 2 X;+1, i = 1, . . . , n-l, 0.1)
we wish to construct a bordered diagonal matrix A of the form

a 11 hT

A 1 1= 6 A4 0.2)

where A has eigenvalues {Xi  }i*  and M=diag&,  . . . , c(,,-i), and 6=(  6,) . . . , 6,~)~ is an
(n -l)-vector.  It is easily shown that

a 11 = trace(A ) - trace(M) = &i - ‘s:lri . (1.3)
1 1

By expanding the determinant, the characteristic polynomial of A may be written as

det(XI-A ) = (X-0 11) *G (X-/A j ) - ‘s 6k2( E (A-/.4j ))a
j -1 k-l j -1

jfk

Setting X=pl,  . . . , pn-i and solving the (n -1) equations for the &* yields

0.4)

thus completely deflning A . The non-negativity condition in (1.4) is guaranteed by the interlac-
ing property (1.1).

Once A (1.2) has been computed, it is easy to show the existence of a tridiagonal matrix J
~ which also satisfles the eigenvalue conditions,  namely that J have eigenvalues {Ai }: and the

(n -1) X (n -1)  lower principal submatrix J have eigenvalues {pi }:-‘.  We denote the elements of
J&5

J =

a1
bl

bl
a2 *

0

0

an -1

b n-1

(l-5)

Conceptually, the easiest way to generate such a J (though not necessarily the best way from a
computational standpoint) is to first construct the matrix A above (1.2),  and then to use House-
holder transformations (cf [28]  [IS]) to reduce it to tridiagonal form in the manner of TREDB [S].
The similarity transformations applied in this way have the form

- l-l -



Preliminary Theory

1 OT1 10 xj ’

where 0 denotes a zero vector, and hence the transformations preserve the eigenvalues of both the
whole matrix and the first lower principal submatrix. Though this method does produce the
desired tridiagonal matrix J, it does not take advantage of any special structure present in the
matrix A . In Section 2, we will discuss efficient computational schemes for generating the matrix
J . The resulting J will be related to A by . .

[; ‘;] A  [; ; ] =  [b::;T ‘;‘I = J . (1.6)

From (1.6),  it is evident that the matrix & is the ,matrix of eigenvectors of 7, and that the first
row xlT of & satisfles

6 = b 1x1;  and l/611  = b 1. (1.7)
That is, 6 is the (scaled) first row of the matrix of eigenvectors of 1. We summarize this in
Proposition 1. (a) If we have two sets of eigenvalues { & }: and {pi } i”-l satisfying (1 .l) with
the J.Q ‘s simple, then there exists a bordered diagonal matrix A whose eigenvalues are {xi }F and
whose first lower principal submatrix M has the form M =diag(p,,  . . . , p,,-J.  One such bor-
dered diagonal A is given by (1.2),  whose elements are deflned by (1.3) (1.4).
(b) Under the same conditions, there exists a tridiagonal matrix J
and whose first lowerprincipal  submatrix 7 has eigenvalues {J.Q }p-l

whose eigenvalues are {Xj  }p

(c) Given a tridiagonal matrix J having eigenvalues Xi and whose first lower principal submatrix
J h_as distinct eigenvalues pi , a scalar multiple of the first row xlT of the matrix of eigenvectors
of J satisfles the formula (1.4).
Proof: Parts (a) and (b) follow from the previous discussion. Part (c) follows by reversing the
construction: starting with J , deflning A by (1.6) and then noticing that the entries of the result-
ing A must satisfy (1.3) and (1.4). fl

Part (c) of this proposition says that we can compute the first row of the matrix of eigenvec-
tars  of 7 from the eigenvalue data, without knowing 7 at all! To do this, we compute 6 by (1.4)
and then scale it to have norm 1.

1.2. Leading Entries of the Eigenvectors
In Proposition 1, we gave a formula for the leading entries of the eigenvectors for the

(n -1) X (n -1) submatrix of a tridiagonal matrix. In this section, we derive a similar formula for
the leading entries of the eigenvectors for the main n X n matrix using the same initial data. In

* this case, however, the formulas does not require that the matrix be tridiagonal. Specifically,  we
show how to compute the first row (q 11 0 - - q In ) of the matrix & of eigenvectors of an arbitrary
symmetric matrix A , given only eigenvalue data. We assume there exists a symmetric matrix A
which is unknown, but
trix  A has eigenvalues

which has eigenvalues xi and whose (n
Pi * In addition, we must assume that

-l)X(n  -1.) lower principal subma-
t h e  {Ai  }1 and IiJ i Y-’ satisfy the

interlacing property (1.1) and that each set is distinct. In this case, however, we will see that the
formulas will not require that the matrix be tridiagonal. With these conditions we construct the
first row (qll - + - q in ) of Q by considering the stationary values of

x’ A x
subject to xT x=l;xT c=O (1.8)

where c is some vector with cT c=l.  In [15] it was shown that if the stationary values of (1.8)
are prescribed to be the pi ‘s, then the entries of the vector d=Q T c satisfy

d,.2 = jr1 . (l-9)
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If we use c=e,-(l,O,  . . . , O)T then the stationary values of (1.8) are precisely the eigenvalues of
A , and the vector d is the first column of Q T . So we have the formula for the first row of Q :

We can summarize these results in
Proposition 2. (a) If  we are given the distinct eigenvalues (xi }: and the first  row
(Qll * - s q In ) of the matrix Q of eigenvectors of an arbitrary real symmetric matrix A , parti-
tioned as

a11 Vl
T

A = [ 1Vl A

where A is n X n and A is (n -1) X (n -l), then the eigenvalues {pi }:-’ of A are uniquely deter-
mined by the given eigenvalue/eigenvector  information, by formula (1.10). The pi ‘s are also
independent of the choice of signs for the q li. Furthermore, if A is also tridiagonal, then A is
entirely uniquely determined up to signs of the off-diagonal elements, again independent of the
choice of signs of the -! li .
(b) Conversely, if we are given any symmetric matrix A whose eigenvalues are {Xi  }: and whose
first lower principal submatrix has eigenvalues {pi }p-l, where the eigenvalues are distinct and
satisfy (l.l),  then the drst row (q 11 * * l q In ) of the matrix Q of eigenvectors of that given matrix
A is given by formula (1.10).
Proof: We rewrite (1.10) as

where Pn -lBnj -1, . . . , n -l(Pj -A) is a polynomial in x of degree n -1. We have n values of the
polynomial p, -1 at n different values of X, so the polynomial p,, -I, and hence its roots pi , are
uniquely determined. The choice of signs of the q li is irrelevant since the qli appear only in
squared form. The uniqueness of A if A is tridiagonal follows easily from Theorem 4.1 of
Chapter 7 of [28]. Again the signs of q Ii are irrelevant since we can change the sign of any indi-
vidual eigenvector of A arbitrarily.

Part (b) follows from the derivation of (1.10) above. a

1.3. Relation to Polynomials
We can show a close relationship between the two formulas (1.4) and (1.9). Consider the

Jacobi matrix J (1.5),  and its lower principal submatrices 7 (n -1)  X (n -I), and 7 (n -2) X (n -2).
Deflne the characteristic polynomials

Pn fx) = det( J-XI),
Pn-lfx)  = det( T-AI  ),
Pn -dx) = det( J-Xl  ).

The zeros of the pk , k =n ,n -1,n -2, are {Xi }:, {pi }:-‘,  and {Vi }:-“,  respectively. We may
expand the determinant in the definition of p, to obtain the relation

Pn CA) = ta lmx)Pn  -ICAl - b l”Pn -dx). (1.11)

We use this formula to show the close relation between (1.9) and (1.4). Written using the charac-
teristic polynomials, the formula (1.9) can be written as

- l-3 -
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[dj 12 = - ;,-‘;;j ;
n i

(1.12)

We can use the same formula to express the (n -l)-vector a for the matrix 7 in terms of the pj
and Vi. If we write the result in terms of polynomials we get

~412 _ _ P-2(&)
P ‘n-lb  j )

In the same way, we may write the formula (1.4) for the (n -l)-vector 6 as

p,l2 _ Pn (h )
P ‘n-lb  j 1

(1.13)

(1.14)

Note that the formulas (1.12) and (1.13) hold even if J is not tridiagonal, but that (1.14) holds
only for tridiagonal J . The denominators in (1.13) and (1.14) are the same, and the numerators
are related by (1.11):

P*(c(j)= -b ppn-&j),  j = 1, . . . , n -1, (1.15)

since P,,-~(P~  )=O. If J is tridiagonal, then the choice of signs in the square root in formulas
(1.13),  (1.14) is arbitrary; c&nging signs is equivalent to changing the sign on the entire
corresponding eigenvector of 7. So in this case, we can arbitrarily choose all the signs to be non-
negative. So we obtain the equivalence in the tridiagonal case:

--. 6 - fb l;r. (1.16)

Since (1.14) was derived strictly in terms of determinants, this gives an independent derivation of
the formula (1.13) strictly in terms of determinants. Since lb1 Lb 1 from (1.7),  this implies that
I I;il I=l. Furthermore, any (n -1)  X (n -1)  matrix A having eigenvalues pj and whose first lower
principal submatrix A has eigenvalues Uj must be related to any other matrix satisfying the same
conditions by similarity transformations of the form

1 OT1 10 xi ((n -l)X(n  -1)).

Applying such transformations leaves unchanged the first components of the eigenvectors OfA, so
that the first row of the matrix of eigenvectors is the same (up to signs) for all such matrices.
This shows in an independent way that the formula (1.13) holds for all symmetric matrices, not
just tridiagonal ones. Conversely, this yields an independent derivation of (1.4) based on the use
of problem (1.8) to derive (1.9).

By carrying out a similar development using an (n +l) X( n +l) tridiagonal matrix, one can
s obtain a similar derivation for the vector d (1.9). Finally, we note that the polynomials we have

deflned are part of a sequence of orthogonal polynomials. We review a few of the close relation-
ships between the polynomials, the eigenvectors of the Jacobi matrix J , and Gaussian Quadrature
from [7]  [14].  It is well known that if the polynomials p ,,(z  ),p 1(z  ), * * . are mutually orthogonal
with respect to the inner product

Jn Pi (5 )Pj  tz 1~ (2 )dz 9 (1.17)

where w (z ) is a positive weight function over the interval n, then one can determine weights
wi >O such that the Gauss Quadrature Formula

is exact if f is any polynomial of degree up to 2n -1, where the {Xi  }: are the roots of p, . We
assume that the weights are scaled so that

j” w(z)dz  =  &j =  1.
i=l

- l-4 -
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In this case, the { Wi }: are known [l4]  to be the squares of the first components of the normalized
eigenvectors of J, that is (in the notation of (1.10))

If in (1.18) we let j(s )=z k, k -0,  . . . , n -1, we obtain the first n moments

mk s Jn Zk w(Z)dZ  = &wiXik.. . i-1

(1.19)

(1.20)

All these relationships are fully explored and derived in [14] and [7].

1.4. Lancaos  Algorithms
A fundamental procedure that will be needed is the Lanczos Algorithm, used to actually

generate the desires matrices. In this paper, we use two flavors of the Lanczos Algorithm, the
ordinary scalar version and the “block” version. The Lanczos Algorithm has been used more
often to reduce symmetric matrices to tridiagonal form in order to solve for their eigenvalues. In
this paper, we use a variation of it to solve the inverse eigenvalue problem.

The “scalar” Lanczos Algorithm is a process that reduces any symmetric matrix to tridiago-
nal form, starting with the given matrix and a certain starting vector of unit length. It has been
discussed extensively elsewhere (cf [16] and references therein), and we present here a summary
of the process.
Algorithm 1. - Lamcms  Algorithm. Given a symmetric matrix A and x,, with xITxI=l,  com-
pute a Jacobi matrix J (1.5) and an orthogonal matrix X=[xl * * . x, ] such that A =XJXT .

1. begin
2. set a 1 := xlTA x1
3. fori =f,...,n-ado

begin
4. if i -1 then I, := A x,-x,u l

else si Z- A xi -xi ai -xi-i  biml
5. compute Xi+l,  bi so that x,-+,b,- =s,- , ~,-?,.Ix,-+~=l
6. S& ai+ := XiT+IA  xi +I

end
end

This algorithm is based on the idea of alternately using the formulas

J = xTAx (1.21)

and XJ = AX

to step by step ill1 in all of J and X (see e.g. [4])  starting with A and the first column xi of X.
This way to reduce a matrix to tridiagonal form is an alternative to the use of Householder
Transformations, but in many situations, numerical stability is enhanced by re-orthogonalizing
the vector si computed at each pass through step 4 against all the previously computed x vectors
(see e.g. [IS]).

If at any stage the vector li is zero, then it must be replaced by an arbitrary unit vector
orthogonal to all the previous x vectors, and the corresponding bi in step 5 must be set to zero.
If the eigenvalues {Xi  }i” are all distinct, and the initial vector xi is not orthogonal to any eigen-
vector of A , then this situation cannot occur, and the Jacobi matrix J that results from the algo-
rithm will be unique up to the signs of the off-diagonal elements [25].

The Lanczos Algorithm, as stated, takes 0 (n ) floating point operations for each pass
through the loop (steps 4, 5). So the total work is 0 (n 2). However, the cost of the re-
o r thogona l iza t ion  s tep  i s  abou t  0  (ni )  in  each  pass  th rough  s t ep  4 ,  so  tha t  wi th  re-
orthogonalization the overall cost is about 0 (n “).
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The Block Lanczos Algorithm is an extension of the scalar Lanczos Algorithm which gen-
erates banded matrices. Specifically, the Block Lanczos Algorithm starts with an n Xn sym-
metric matrix A and p orthonormal starting vectors x,, . . . , xP , where n =ps for some integer
s . The Algorithm then generates a block tridiagonal matrix J with p Xp blocks, as well as com-
puting a complete set of n orthogonal vectors & sX* as in the scalar Lanczos Algorithm (Algo-
rithm 1.). We write the matrix of generated orthogonal columns as

X = [Xl, . . . , X1 ], where Xl = [xi, . . . , xP 1,

and the generated n Xn matrix J as

(1.22)

J =

Hl B,T
B, Ha .

. . . 0
. . . .

0 . . .

. Hr - 1 4%

B HIr - 1 J

(1.23)

The matrices Hi are symmetric, and the Bi are upper triangular, so that the entire matrix J has
2p +l bands. We say that J has haf~bandwidth  p , meaning that J has p bands below the main
diagonal, so that p =$ for a tridiagonal matrix.

As in Algorithm 1, this method consists of alternately using the formulas

XTAX = J  andm = X J

to compute the individual blocks of J and X one at a time. The specific algorithm is as follows:

Algorithm 4. - Block Lancsos  Algorithm. Given a symmetric A and the vectors Xl n Xp ,
with X,%,=1,  compute an n X n block tridiagonal matrix J (1.23) and an orthogonal matrix
X=[X,  - ’ * X, ] (1.22) such that A =X&CT.  Each block Hi and B,- is p X p . The Hi will be
symmetric, and the Bi will be upper triangular.
1. begin
2. set H 1:= x$4x,
3. for i = 1, . . . , s-1 do

begin
4. if i =-I then

. a set 2, := fl,-X,H,
el8e

set Zi Z= Mi -XI:  Hi -Xi -1 BiTI
5. compute X;++l, B,- such that

Xi+lBi  = Zi
x;:‘,lX +1 = Ip xp
Bi is p x p upper triangular

6. set Hi+1 := x;:$q +1
end

end.
Step 5 can be carried out by using either a modified Gram-Schmidt procedure, or using an QR-
decomposition algorithm ([lS], [22] routine SQRDC). In case the matrix zj is rank deficient, one
must choose the columns of Xi+l so that XiTIXi+l=Ip  xp still holds and SO that Xi +1 is still
orthogonal to all previous columns Xl, . . . , Xi, absorbing the rank-deficiency into Bi . Beyond
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this requirement, one can choose the columns of Xi arbitrarily.
We note that this algorithm reduces almost exactly to Algorithm 1 in the case that p =l.
In the context of the methods in this paper, the Lanczos algorithms are used in a somewhat

unusual way. In all cases, we wish to generate matrices J with certain prescribed eigenvalues
{xi ):. Hence, the “starting matrix” A that we typically use in this situation is one guaranteed
to have the given eigenvalues xi , namely A = diag(X,,  . . . , A, ). In this special case, the matrix
X generated by the Lanczos process is exactly thetranspose of the matrix of eigenvectors of the
generated matrix J, and the p starting vectors xlT, . . . , xpT are exactly the first p rows of this
eigenvector matrix. In this context, the scalar Lanczos Algorithm becomes a method that gen-
erates a tridiagonal matrix, given its eigenvalues and the first row of its eigenvector matrix, and
the Block Lanczos Algorithm becomes a method that generates a banded matrix with half-
bandwidth p , given its eigenvalues and the first p rows of its eigenvector matrix.

- 1-7 -



2. Jacobi Matrices.
In this section we introduce the basic techniques used throughout this paper by discussing

methods for the classical problem of reconstructing a Jacobi matrix (1.5):

a1 61

61 a2 ’

J =
0

0 . .

an -1

6n -1
given its-eigenvalues {Xi  }F and the eigenvalues {pi }:-I of the (n -1) X(n -1) lower principal sub-
matrix J of J. In the following, we will refer to this reconstruction problem as Problem J.
These methods have varying requirements on the Xi, pi, but in general we will assume they
interlace as in (1.1). In some cases, we will need to assume that every eigenvalue be simple,
whereas in others we will also need a strict interlacing property, in which the inequalities in (1.1)
are strict.

2.1. Method 1 - Lancsow
This method is based on [7] [2]. The goal is to construct the flrst row of the eigenvector

matrix & of J from the given eigenvector data, and then use the Lanczos algorithm, suitably
modified, to construct J.

From part (b) of Proposition 2, we know that the first row (q 11 * . * q Ir ) of Q is deter-
mined by the given eigenvalue data and can be computed by formula (1.10). It remains to show
how this information can be used to generate J.

To generate the tridiagonal matrix J, we next apply the Lanczos Algorithm (Algorithm l),
suitably modifled. To see how this is done, recall that the Lanczos Algorithm computes a tridiag-
onal matrix J orthogonally similar to the original starting matrix (A ). The matrix A and the
first column of the transformation X relating J and A (1.21) forms the required input data for
the algorithm. For the current problem, we set the starting matrix to be
A =A=diag(  X1, . . . , X, ), and the starting vector to be the vector x,=-d deflned by (1.9). It
then follows from (1.21)  that the generated matrix J will have eigehvalues X,, . . . ,-A, and
eigenvectors XT . Hence by part (a) of Proposition 2, the matrix J must solve Problem J.

When the starting matrix in the Lanczos Algorithm is diagonal, the matrix-vector products
takes only 0 (n ) time, instead of 0 (n ‘) time in the general case. Hence the Lanczos Algorithm
takes 0 (n ) floating point operations for each pass through the loop (steps 4, 5). So the total
work is  0 (n’). However, as noted above, to maintain numerical stability, one must re-
orthogonalize the ei produced in step 4, increasing the overall cost to about 0 (n “).

12.2. Method 2 - Orthogonal Reduction.
This method is based on ideas of [l] and of [30]. The idea is to first construct a bordered

diagonal matrix A aug with the same information that was needed for Method 1: i.e. the eigen-
values Ai and the flrst row d’- of the matrix of eigenvectors. Then we reduce this matrix to tri-
diagonal form using orthogonal (Householder) transformations that do not affect this eigen-
strut ture.

In this method, we form the following augmented (n +l) X( n +l) bordered diagonal matrixa00 d
A aug = [ 1dT A ’ (2.1)

w h e r e  a , ,  i s  a  d u m m y  e n t r y , d i s  the  n  -vec tor  of  weights  def ined  by  (1.9), and
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Jacobi Matrices

A=diag(&,  . . . , X, ). The idea of this method is to use a reduction scheme that reduces A aug to
tridiagonal form by computing a series of Householder transformations of the form

Lo X1’
where X=[x,  . . * x,] is an orthogonal matrix, and 0 represents the zero vector. This method is
the same as that used to reduce the n X n bordered diagonal matrix (1.2) to tridiagonal form,
mentioned in the discussion leading up to Proposition 1. The resulting tridiagonal form will be
related to A aug by

(2.2)

where Q is an orthogonal matrix. It is clear from (2.2) that Q is exactly the matrix of eigenvec-
tors of the resulting J. If we denote the first row of Q by xlT, it is also clear from (2.2) that

d- QT6,,e, = 6~~. (2.3)

Since Iblil=l, this formula, with (1.9) (l.lO),  deflnes the value bo= fl. Hence by Proposition 2,
the generated matrix J must solve Problem J.

The reduction algorithm used here based on Householder transformations is essentially the
same as that described in detail in ([28], pp.334ff). It also appears in [8] under the name TRED2,
where it is used during the solution of the ordinary symmetric eigenvalue problem to carry out
the initial reduction to tridiagonal form. This method takes about 0 (n 3, operations (see e.g.

We conclude this section by noting that during this reduction by orthogonal transforma-
tions, we have preserved two sets of eigenvalues: those of A ws, transformed to J,,, and those of
A, transformed to J. We have started with exactly the same information as for Method 1 (based
on the Lanczos Algorithm) and computed the same intermediate vector of data d.

2.3. Method 3 - Fast Orthogonal Reduction.
The bordered diagonal matrix is a matrix of a very special form, and it is not surprising to

discover that one can reduce such a matrix to tridiagonal form using a scheme that is faster than
the method based on Householder transformations described above. In this section, we present
such a method which takes only 0 (n ‘) operations. This method, noticed by Gragg [17], is based
on a reduction scheme of Rutishauser [26].  This method is applied on the same matrix (2.1) as
the previous method based on Householder transformations and consists of applying a certain
sequence of orthogonal plane rotations in a very particular order.

a To explain the process, we need to describe a basic step which is used as the basis for the
complete reduction. The basic step consists of reducing the half-bandwidth by 1 band of a k X k
matrix of the form

H =
61 a2 b2431T d2

0 6 2e1 T 0

I

(2.4)

d, d2 OT dtc
L

where T is a (possibly empty) (k -3) X(k -3) tridiagonal matrix, and e, is the k-3-vector
[l,O,  . . . , o]T. Note the matrix H is tridiagonal, except that the last row and column have a
special form. We deflne the orthogonal plane rotation R between rows 2 and k :

R =

1 0 OT 0
0 c OT 8
0 0 IO
0-sOT c

- 2-2 -
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where c ,s are chosen to annihilate the d 1 in position k ,l of H in (2.4), i.e. choose

U- Jb: + d,2
C = 6 Ju
s = d ,/a.

If we apply R (2.5) as a similarity transformation to (2.4) we obtain a matrix

i?=-HRT  =

al -.u OT 0

u ix2 b2elT ii2

0 Jae1 T a3el
0 i12 if3elT Tfk

where the entries have the values:

(2.6)

3, =
6~a2+26,d,d2+d~dk

aa ’

32
M2

=-
u ’

614da = d,+-&j (drk-a2)9

-- a3=
6:d,%6,d,d,+d,2d2

2 ’
u has the value deflned above, and the entries a 1, T are unchanged. In this fashion, we have
reduced the half-bandwidth by 1 in a constant number of operations independent of k .

In order to further reduce the bandwidth, we re-partition R to obtain the form

(2.7)

where H is a (k -1) X(k -1) matrix of the same form as H of (2.4):

a At this point, fi is tridiagonal except for the last row and column, which have the same structure
as H in (2.4). Since fl comes from just a re-partitioning (2.7) of i?, we can write the correspon-
dence between the labels for the individual elements in R and the labels for the same elements in
H:

7il = 22,
E2 = a 3 (part of the unchanged T matrix),
6
cl =

3 21
-2 = 6 3 (part of the unchanged T matrix),
d-1 = 22,
d-2 = d_s?

h-1 = dk t

T = the (k -4)  X(k  -4)  lower principal submatrix of T .
We can now “recursively” apply this same operation on the (k -1)  x(k  -1)  matrix H to obtain an
orthogonal plane rotation E which reduces the half-bandwidth of G by 1. That is, the k X k
plane rotation
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1 OT
P= * R[ 1

transforms the k X k matrix R to the following matrix of half-bandwidth 2:

where Ht2) again has the same structure as H in (2.4), and Rt2)  is a 2X2 matrix. After j steps of- . . .
this process, we will have a matrix Ht3 I which will have a j X j tridiagonal part in the upper left
corner and a (k-j)X(k-j)  part g($1  of the form (2.4) in the lower right corner.

After k -2 such steps, the part with the form (2.4) in the lower right corner (corresponding
to H in (2.7)) will be reduced to size 2X 2, and hence will be tridiagonal. In summary, our algo-
rithm is:
Algorithm 2. Given a k xk matrix H of the form (2.4),  orthogonally reduce it to tridiagonal
form  J(k):=S(k)HS(k)  T, where the orthogonal transformations are accumulated into Sck ).

1. begin
2. ifk=2thcnsetS(‘):=~kxk;sat  Jtk):=H;return.
3. compute plane-rotation R between planes 2 and k deflned by (2.5).
4. compute R deflned by (2.6).
5. Partition H as in (2.7), to obtain the (k -1)  X (k -1) lower right submatrix H.
6. Recursively appiy this algorithm to H. The result is a (A -1) X (k -1) tridiagonal matrix

J(‘-l),  and a (k -1) X (k -1) orthogonal matrix S(‘-l) consisting of the accumulated transfor-
mations, such that J(‘-l)  = St” ‘l)HS(k 4 T .

7. Accumulate the orthogonal transformations, i.e.

s e t  S(‘) := i stf-1J[ 1R.

8. Set Jfk) := s(WHs(W  T.
end.

We note that in step 8., we have the identity

. J(k) _ s(k)Hs(k)  T _ [; ;:l) ] R [; ,(::) T 1.

This transformation applied to fi has been constructed to have the property that it leaves
unchanged the flrst row and column of fi, so that we may form Jtk) by simply replacing the
block H in fi (2.7) with the (k -1) X (k -1) matrix J (k-1),  obtaining a tridiagonal matrix.
At each level of recursion in this algorithm, the cost is approximately 30 operations, so the total
cost is approximately 3ok  operations, ignoring lower order terms in k . Of course, in an actual
implementation, one might not use a recursive definition. The recursive definition  is used mainly
for clarity in that it eliminates the need to use many iteration indices in the description. One can
easily convert this recursive deilnition  to an iterative form (see e.g. [27]).

To see how to apply Algorithm 2 to the problem of reducing an m X m bordered diagonal
matrix A of the form (2.1) to tridiagonal form, notice that the upper 3X 3 principal submatrix of
A is already of the form (2.4),  with the third block column and row of (2.4) empty; i.e. the
columns and rows occupied by T are not present. Hence we may apply Algorithm 2 to that 3X 3
submatrix, obtaining the matrix A (‘I whose upper 3 X3 principal submatrix is tridiagonal. At this
stage, the upper 4 X4 principal submatrix of A (l) has the form (2.4),  where T is just a scalar, so
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we may apply Algorithm 2 to that 4X 4 submatrix, obtaining A (2). We continue in this manner
until we reach the bottom row of A after m -2 steps. We summarize the method in
Algorithm 3 - Rutishauser.  Given an m X m bordered diagonal matrix Aco)=A  of the form
(2.1),  reduce it to tridiagonal form J by similarity transformations based on orthogonal plane
rotations.

begin
1.

2.

3.

Let
For

4.

5.

6. Set

-.
S := an m X m identity matrix. (S is used to accumulate the transformations).
i=3,..., m do begin
Apply Algorithm 2 to upper i X i principal submatrix 2 of A (i-8)1  zbtaining  an
orthogonal transformation SC’ ) and an i X i tridiagonal matrix Jci l--S (’ )AS  (’ IT
Accumulate the orthogonal transformations in S , i.e.

(where 8 represents the zero matrix).
Form the next iterate Ati-‘)  by:

A (i-2)  :=
--

where v is some (m -i )-vector to be further discussed below, and D is an
(m -i ) X (m -i ) diagonal matrix.
end

J := A (“‘-2).
(This matrix A (m -2) is tridiagonal, and the orthogonal transformations have been accumu-
lated into S , so that J-SAS T .)
end.

In step 5 at the 4-th iteration, we have formed A li4), whose upper d X i principal submatrix Jfi)
is tridiagonal. We also note that all the rotations computed in step 3. in the call to Algorithm 2
involve orthogonal rotations which rotate among the planes 2, . . . , i ; they specifically do not
involve plane 1. Hence the transformation Sti), as well as the accumulated transformation S ,
have the form 1 OT[ 10 x ’ (2.8)

where X is an orthogonal matrix. A consequence of this is that the vector v and diagonal matrix
D in, step 5 actually consist of the initial values already in those positions in A (‘I. We can show
inductively that those positions are unchanged by the computation in step 5. We write

Then the formula in step 5 yields

A (i-2)  =
s(i)xs(i)  T s(ilelvT

ve,TS(i) T
1D ’

Since Sti) has the form (2.8), the 2,l  block of A (i-2)  satisfles S(‘)e,vT
block is simply veIT.

=elvT . Similarly the l,2
So we may conclude that the only block affected by step 5 is the 1,l block,

and furthermore the contents J(‘) of that block was already computed in step 3. Hence step 5 is
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essentially free.
The cost of each pass through steps 3-5 of Algorithm 3 is entirely in step 3, that is approxi-

mately 3Oi  , so the total cost for i -3, . . . , m is approximately 15m2,  ignoring lower order
terms. We note Anally that the 1,l element of the matrix A (‘1 (that is a, in (2.1)) is untouched
and ignored by the entire computation.

2.4. Method 4 - Alternative Data. -.
In this section we describe an alternate way to set up the problem of reconstructing a Jacobi

matrix, starting with the same initial data as in Section 2.1, but computing a different vector of
intermediate data. This method is from [l] and also follows from a suggestion of [30].  This
method does not require that the eigenvalues Xi *pi be mutually distinct. The property (1.1) is
suffkient as long as the pi ‘s are simple. The idea is to first to construct an n X n bordered diag-
onal matrix A with the desired eigenvalues ;Xi and /Ai and then to reduce this matrix to tridiago-
nal form using orthogonal transformations that do not affect this eigenvalue structure.

Specifically,  this method consists of first computing the bordered diagonal matrix A deflned
by (1.2),  where the elements of A are deflned by (1.3) (1.4). From A we generate the tridiagonal
matrix J that solves Problem J. To generate J, one may apply either Method 2 or 3 to A
instead of A sug. We see now that one can also compute J with this same alternative intermedi-
ate data by a scheme based on Method 1. By Proposition 1, we have the flrst row of the eigen-
vectors of the submatrix 7, namely 6/l bll, where 6 is deflned by (1.4). So we may generate 7 by
using the Lanczos Algorithm, starting with the matrix A4 (1.2) and the vector 6/(  1611.  The
remaining entries a ,,b 1 in J can then be computed from (1.3) and (1.7).

2.6. Modularity.
The methods we have described are modular to a certain extent. Each method consists of

two parts: in the flrst part we compute a certain vector of data, and in the second we apply some
matrix reduction algorithm to generate the tridiagonal matrix J. For each part, we have men-
tioned several choices of algorithms, and to a certain extent one is free to combine any choice for
the first part with any choice for the second part. For the flrst part, we have mentioned two
choices: either one can compute an n vector of weights di , i -1, . . . , n (1.9) which deflnes a
bordered diagonal matrix (2.1),  or one can compute the n -1 vector d (1.4) deflning a bordered
diagonal matrix A (1.2).

For the second part, we have described three possible algorithms based on, respectively, the
Lanczos Algorithm, Householder transformations, and Rutishauser’s fast reduction scheme. The
Lanczos Algorithm takes 0 (n 2, operations, 0 (n ‘) if we carry out re-orthogonalization, which is
useful for numerical stability. The algorithm based on Householder transformations takes 0 (n “)

. operations, and the fast reduction algorithm (Rutishauser) takes 0 (n 2, operations. Both of the
latter two algorithms consist of applying a series of orthogonal similarity transformations to the
matrix, so there is no problem with numerical stability.

In the rest of this paper, we will describe some generalizations and variations of the basic
problem discussed in this section. It will be seen that the Lanczos Algorithm and the Householder
reduction scheme can easily be applied to banded and periodic problems.
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3. Banded Matrices.
In this section we extend the methods for Jacobi matrices to the problem of reconstructing

band matrices. Before deflning the problem, we must first deflne some notation. In this section
we let J denote a symmetric n X n banded matrix with 2p  +1 bands, p below the diagonal. We
call such a matrix a “p -banded matrix”, and say it has “half-bandwidth p -. Let Jtk)  denote the
lower (n -k )X (n -k ) principal submatrix of J, so that J (O)=  J, and J(l) corresponds to 7 of Sec-
tions 1 and 2. Assume the following identities:

J@) = [z(:; ;:::)-], k=o,  . . . , p-1, tw

and

.

Qtk) Z- J(k)Q(k)  = A@),k -0, .  .  .  ,  p  , (3.2)
where A(’ l=diag( AJk ), . . . , x,(k_L )
,$“)=[ql(“)  . . .

i s  the  d iagona l  mat r ix  of  e igenva lues o f  Jtk),  a n d
q,fi]  is the orthogonal matrix of eigenvectors of Jfk). We denote the (i , j )-th

element of & (’ 1 by qij” ).

The problem is then as follows
Problem B: Given the p +1 sets of eigenvalues {Xik)},  k -0, . . . , p , satisfying the interlacing
pmerfy

A)‘) > Xj[k+1)  > A,$!,  j = I, . . . , n -k -1, k = O, . . . , p -1;
-- (3.3)

construct a J with half-bandwidth p such that each submatrix J(‘) has eigenvalues {A!” I}, for
k=o,...,p.

To compute such a J , we use Proposition 1. For each submatrix J(‘), we can deflne a bor-
dered diagonal matrix A (’ ) corresponding to (1.2):

A(‘)=  I”$;;;  z:r)],  (n-k)X(n-k),  k -0,. . . , p-1, (3-4)

where A (k) has eigenvalues {A,(“)}.  The value f&+1 is determined, as in (1.3), by a trace argu-
ment:

ak+l  = ‘ckh,k  1 _ ’ E’A,P  +I),

j -1 j - l
(3.5)

and hence the first k diagonal entries of A are unique. Using the same development used for
(1.4) based on the characteristic polynomial of A (kl, we can determine the vectors htk 1,
k=o,...,p -1, by the formula

(&(k)]2 = - ~ y=yt
j--j- (x/k +lLj,j(k +l))

20. (3.6)

j =1
i#i

We Anally note that, as in equation (1.6),  A tk) is related to Jtk ) by

(3.7)

for k -0, . . . , p -1. We may conclude from this that
Q(k+l) rb(k)  _ t;(k) k -0, , - * * , p-l.

In this case, the vector b(” ) .
(3.8)

1s no longer a multiple of the unit vector e,, as it was in the tridiago-
nal case. Hence it is no longer true that the vector 6(k)
@+I)  T of e*

is the same as the first row of the matrix
igenvectors  of Jck +l).
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We may also use the second part of Proposition 2 to arrive at a formula for the first row
dtk ) of the matrix of eigenvectors Q (’ ), k -0, . . . , p -I:

n-k-1
n (Xi’” +Qjk ‘)

[dj’k)]2  = [q$)]2  = i==‘,
l--J(&.wqk))  *

j==l
ifi

(3.9)

The intermediate data consisting of the matrices (3.2) and vectors (3.9) form the input data
to the algorithms that actually generate solutions to Problem B. The rest of this section is
devoted to alternative algorithms to generate the solutions.

3.1. Block Lancsos.
We have now deflned enough quantities to be able to describe the first method we can use

to generate the banded matrix J, This method is based on the use of the Block Lanczos Hugo-
rithm (Algorithm 4). To carry out this method, we need to compute the first p rows of the eigen-
vector matrix Q (‘1.

Foreachk=O,...,p -1, we develop a formula for the flrst p -k rows of Q (k) in terms of
the first rows dtk)  T which we already know. That is, we compute the flrst few components of
each eigenvector qik) in terms of its flrst component djtk )=q /f).

Partition the eigenvector q)‘) as

q/k) =
djtk)[ 1yf"' ’ (3.10)

where yjk) is an n -k -l-vector. From the identity J(k)qj’)=X,(k)ql(k),  we use (3.1) to extract all
but the first row of (3.10) to get:

b(k)dj(k)  + J(k+l)Y1(k)  = XI(hyjk).

Multiply by Q (k +l) T to obtain
dj(k)Q(k+l)  TbO) + AO+‘Q(“+‘)  Tyjk) = hjWQ(k+1)  Ty (k).3

Using (3.8) and solving for y,‘” ), we get

yp = _dj(k)Q(k+‘)(h(k+‘)-X~k)l)-‘fj(k).

Written in in terms of the individual elements, the above is

.
(i-1)~st  entry of yJk) 3 qifk) = -djtk)

n - k - l  qi’tj-“&fk)
C ,;;,, x (k) ,
lalh -3

(3.11)

(3.12)

where i=2,.  . . , n-k, j=l,. . . , n-k, k=p+,p-3,.  . . , 0. Recall from (3.9) that when i
takes on its first value 2, the values q /rk +l)sdl  (k +‘I are known. When k =p -2, the right hand
side of (3.12) is completely known for i
when k

-2, so we can obtain the Ant 2 rows of Qtpm2).  Then
=p -3, we ‘know the right hand side for i =2,3, so we can obtain the first 3 rows of

Qtp4). We continue in this way until k -0, at which point we will have the first p rows of Q(O).
Once we have the flrst p rows of Q(O), we can now carry out the Block Lanczos Algorithm.

Let XiT=[qi  ‘p’ , . . . , qi?‘]  denote the i-th row of Q
matrix Q T S-X.  Let Xl=[xl  * * *

(OkQ , so Xj is the j-th column of the the

X, so that XrXl=Ip  Xp.
xp ] be an n Xp matrix consisting of the flrst p columns of

The Block Lanczos Algorithm is then carried out with starting matrix
A and p starting vectors X1=[xl,  . . . , xp 1.

The result will be the n X n orthogonal matrix X=[X,, , . . , Xb ] and the p -banded
matrix J of the form (1.23),  where n =pe . Because the first p rows of the eigenvector matrix of
J have been determined from the eigenvalue requirements, in a manner analogous to the Jacobi
case, it is a simple matter to show that the banded J produced by algorithm 4 will indeed solve
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Problem B.
Note that, we must require that p divide n , and also that the interlacing among the eigen-

values be strict, i.e. that the inequalities in (3.3) be strict.
To summarize: the complete algorithm is as follows:

Algorithm 6. To solve Problem B:
1. Compute 6(O),  . . . , 6(P-21  by taking the square root of (3.6).

2. Compute d(O),  . . . , d(p-‘) by taking the square root of (3.9).
3. for k -p-2,. . . ,odo

forj  =l,...,n-k  do
fori =s,...,p-k  do

compute i-1-st entry of yf’) = qifk) by (3.12).
4. Define the starting vectors:

Xl := d(O), and
xi := [qi ‘p’ , . . . , qif’], for i = 2, 0 * . 1 p *

5. Apply Algorithm 4 (Block Lanczos) to generate the matrix J, starting with matrix A and
the vectors X1+x1,  . . . , xp 1.
Different choices of signs for the square roots in steps 1 and 2 yield different, and possibly

non-equivalent, solutions. We can obtain in this fashion a large but flnite set of possible solutions
to Problem B. In c&e of rank-degeneracy during the Block Lanczos process, one may obtain a
continuum of solutions. An example is the following 4 X 4 matrix with p -2 [18]  [19] :

r
a1 A 0 0

Pl a2 -SW cm7

J(r) = () -sin7 l-sin27 cos27  ’
0 cos7 cos27  l+sin27

for which, assuming &#O,  the eigenvalues of J, J (I), J(‘) are all constants independent of 7.
We note in passing that if p =l, the problem reduces to the tridiagonal case discussed in

Section 2. In this case, steps 1, 3, 4 of Algorithm 5 become empty: only steps 2 and 5 remain to
do. The result is the same method as Method 1 (Lanczos) for Problem J described in Section 2.

3.2. Orthogonal Reduction.
We now turn to an alternate method for generating a band matrix solving Problem B. This

. method, based on the use of Householder transformations, was originally proposed for this prob-
lem by [l]. This method does not require that the interlacing among the eigenvalues be strict
(3.3),  nor does it require that p divide n exactly. On the other hand it is more involved and
somewhat more expensive in that it requires the solution of several eigenvalue problems.

This method begins by forming the bordered diagonal matrices A (k) (3.4). We let Pck )
denote the orthogonal matrix of eigenvectors of A (k),  and Q (‘I denote the matrix of eigenvectors
of the submatrix J(’ 1, k -0, . . . , p . By Proposition 2, Ptkl  and Q (k ) have the same first row,
up to signs. We defer for the moment the discussion on how to compute the Pck ).

The intermediate goal of this method is to construct a sequence of n X n matrices
H(O),H(‘),  . . . , H(P’%zH,  culminating in a matrix H which has the eigenstructure demanded by
Problem B with respect to H and its first p principal submatrices, but is not banded. Then this
matrix H is reduced to banded form by orthogonal similarity transformations in such a way as
not to destroy the eigenstructure desired. In this paper we will only indicate the major steps.
The interested reader is referred to the paper of [l].

We begin the sequence of matrices by setting H(O)  := A (*I deflned by (3.4). We form H(l)
by
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H(l) = [; ;;)I H(O)  [; ;;T 1.

The matrix H(l) will have the form

H(l)= [; $11] = [*z2 ;)] (3.13)

where X denotes a sub-block of the matrix that we do not specify explicitly. We then form Hf2)
by

Ht2) = [t2 ;21]H(1) i’y2 Pi ‘f ] = [ *12 ;21],

where 8 is a matrix of zeroes. After p -1 steps we will have the matrix

(3.14)

H H(P-1)  _
x p-1xp-1

s
8 A:-‘)] = b f;:) ] (3.15)

where HP is pXp. We examine the submatrices of the sequence H(O), H(l), . . . , HCP’l)--H,
corresponding to the submatrices J(O),  . . . , Jo) of J . We see that at each stage, the transforma-
tion was constructed just so the first k +l of those submatrices of Htk)  respectively have eigen-
values {x,(‘l},  i==O,  . . . , A . Hence, at the end, H sH(~‘~) satisfies the eigenvalue requirements
demanded by Problem B, with respect to H itself and its first p principal submatrices.

--
From (3.15), it is clear that H is not banded, rather it is “block” bordered diagonal. To

reduce H to a p -banded matrix (i.e. half-bandwidth p ) by orthogonal similarity transformations,
we may apply a series of plane rotations in planes p +l, . . . , n or Householder transformations
in a manner very similar to the reduction algorithm TRED2 [8].  The transformations applied in
this way will have the form I 8PXP[ 18 Ui n  X n , (3.16)

where Ui is either an orthogonal plane rotation or Householder transformation. It can be verified
that such transformations will indeed not affect the eigenvalue structure demanded by Problem B.

Finally, we give the process by which we compute the matrices p(‘1,  consisting of the eigen-
vectors of A(‘). The simplest conceptually is to use a standard symmetric eigenvalue/vector
solver on the {A (‘1);  for example one might use the EISPACK [8]  routines TREDS  followed by
TQLB. The TREDZ  part is 0 (n ‘), and the TQL2 part is 0 (n ‘). Since A (‘) is a bordered diago-
nal matrix of the form (1.2),  we can reduce the cost of this step to 0 (n 2, by replacing the

a TRED2 part with Algorithm 3 (Rutishauser).
In summary, the method is then as follows:

Algorithm 8. Solve Problem B.
1. for i = O, . . . , p -I do
2; Compute A (’ ) by (3.4) (3.5) (3.6).
3. Compufe  P (k ), eigenvectors of A (’ ) using Algorithm 3 (Rutishauser) and TQL2 [8].
4. Compute the sequence Htk), k = O,...,p  -1, ending with H E H(P-l).
5. Apply sequence of plane rotations or Householder similarity transformations of the form

(3.16) to reduce H to a banded matrix J of half-bandwidth p , without destroying the
eigenvalues structure carefully assembled in H .

Though steps l-4 are relatively fast, it is not ob.vious  to the authors how to reduce step 5 from
0 (n “) to 0 (n 2).  This will be reserved for future work.
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In this section, we apply Proposition 1 to the problem of reconstructing a periodic Jacobi

matrix given certain eigenvalue data. We follow our usual notation: let J be a Jacobi matrix, 7
be its lower (n -1) X( n -1) principal submatrix. We would like to solve the following problem:
Problem P. Compute a periodic Jacobi matrix

a1 bl

b, a2 . -
bn

. . . 0
Jper = . . . . (4.1)0 . . .. Q-1 n - 1b

4, b n-1 %I I

We call Jpir the matrix (4.1) with b, replaced with (-b, ). To start with, we are given the eigen-
value data: {Xi } l” eigenvalues of Jpsr, and {pi }1”-1 eigenvalues of 1. In addition, we are given
one of two sets of data: either the set {xi}:  eigenvalues of Jpcr , or the single product
+b, . . . b,. In the latter case, the number of items of input data (2n ) is identical to the
number of elements to compute (2n ).

4.1. Preliiinary Gonstruction.
In all the methods we propose, we start as before by computing the bordered diagonal

matrix A of the form (1.2)

(4.2)

where & is the orthogonal matrix of eigenvectors of 7 (1.6), and the a 11 and 6 are deflned by
(1.3) and (1.4) in terms of the eigenvalues {Xi }:, and {pi }:-‘.  Specifically,

a11 = trace(A ) - trace(M) = $Xi - ‘epi , (4.3)
1 1

and

fi(Pi-xj)

&.a = - ;‘,’ 2 0 .

.
n (Pi 9 j 1
j =I
ifi

From the {xi}:, we also compute the bordered diagonal matrix A- corresponding to (4.2)

(4.4)

where & is the same as in (4.2), and the a 1;
in place of the {Xi  }ln.

and 6- are defined as in (4.3) (4.4) using the (x;},”

We now show how to compute A - using p instead of the {Xi}:.  We can expand deter-
minants to obtain the formulas:

det(XI-J,,,)  s fi (X-X, ) = p, (X)-bn2pn-2(X)-Z~
j ==l

det(XI-J,,  ) = fi (X-X;) = p, (A)-bn2pn,(X)+2/3,
j = 1
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N

where p, (X) and pnm2(X)  are the characteristic polynomials of J and J as deflned in Section 1.3,rY
except that J is the (n -2) X(n -2) principal submatrix consisting of rows and columns
2,..., n -1 of J . Subtracting gives

det(XI-Jp&  ) = det(XI - Jper  )+4/3
Using this expression, we can rewrite the formula for the vector 6-:

Tj[(pi-Aj)+4@
(si-)2 = - i-,'-l 20 (4.6)

n(Pi-Ilj)
j  - 1
ifi

The use of (4.3) (4.4) (4.6) requires only that the interlacing property (1.1) hold and that the
(Pi IIn-1 be simple.

We can write the subblocks of (4.2) (4.5) corresponding to LT as

[bl,O, - - - p O,bn]Q  = GT

[b l,o, . . . , o,-b,]g  = 6- T
Subtracting and transposing yield

(4.7)

--_ qT [0, . . . , o,2b,,lT = 2b, qTen-,  = (h-6-)
This simplifies to

zb, xnBl  = h-6- (4.8)

where xlT, . . . , xnr+ are the n -1 rows of the matrix &. If instead we add the two equations
(4.7), we get

2b lx1 = 6+6- (4.9)
The last two equations determine b 1 and b, (up to sign) from the fact that 1 I xl I I = 1 I x, -1 11 =I.

4.2. Generation of Periodic Matrix.
At this point, we have enough information to actually generate the periodic Jacobi matrix

we are seeking to compute. The most straightforward algorithm is a simple variation to the
scheme proposed in Section 2.4. This scheme was originally adapted from [9].

Algorithm 7. Given the two sets {Xi  }F and {pi }F-’ satisfying (1.1) (with the pi simple), and
a the number p, construct a periodic Jacobi matrix Jpsr (4.1) solving Problem P.

1. Compute 6 and 6- from (4.4) (4.6).
2. Compute the flrst row x1 of the matrix & of eigenvectors of 7 using (4.9). Also obtain

value for b 1.
3.

4.

5.

Starting wifh the vector xl and the set {/Ai }p-l, Apply Atgorithm  1 (Lanczos) to generate
the matrix J . Or we may use the alternate scheme mentioned below.
Compute a 1 from (4.3).
Compute b, from (4.8), or else from the relation

bn := P

bl * * * bn-1

In step 3, we may instead form the n X n bordered diagonal matrix

a11 Xl
Tr 1x1 ii4 ’
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where M=diag(p,,  . . . , C(n-1)  and a l1 is a dummy value. In a manner analogous to the methods-
for Problem J, we may replace the Lanczos Algorithm in step 3 and instead generate 7 by apply-
ing Householder transformations or Algorithm 3 (Rutishauser) to this bordered diagonal matrix.

4.3. Alternate Method.
We mention briefly an alternate method, usable if the order n of the matrix is even. This

method is derived from the fact that by a suitable permutation, a periodic Jacobi matrix may be
permuted into a pentadiagonal band matrix (i.e. &i/f-bandwidth  p =2).  Specifically, if we permute
both the rows and columns by the permutation

0, * - * 9 n) -* (1,3,  . . . , n -1,n ,n -2, . . . , 4,2),

the periodic matrix Jpar is permuted into a pentadiagonal matrix we will call Jpents.  Let Q per  and
Q penta  be the orthogonal eigenvector matrices of Jper and J,,,,, respectively. From the construc-
tion of Jpenta, it follows that the matrix Q pents can be obtained by simply applying the above per-
mutation to the row of Q per. In applying this permutation to J , the (n -1) X (n -1) submatrix 7
is mapped onto itself.

.

In order to generate the matrix J,,,,, according to the methods of Section 3, we need the
first 2 rows of Q phnlar which are the same as the first and last rows of Q To clarify the con-
nection with Section 3, we note that the matrix J,,,,, corresponds to J (‘ch the notation of the
Section 3, the eigenvector matrix Q pants, corresponds to Q('), and the two sets of eigenvalues
{Xi 11” ad {Pi  }I”-’ correspond to the two sets {&@l}:  {x/‘)}:-‘,  respectively. Formula (4.9)
gives the first row ol Q (l),  hence we may use (3.12) to give to first two rows of Q penla-  Q (‘I,
which are the same as the flrst and last rows of Q par.

We can now apply Algorithm 4 (block Lanczos) to generate Jpenllr.  However, it is easier to
re-arrange the algorithm to generate Jpcr and Q per directly. For the remainder of this section, we
denote the rows of Q per  by xlT,  . . . , x,,~. From the above discussion, we know the two vectors x1
and x, .

. Algorithm 10. - Periodic Lanctos  Algorithm. Given A=diag(  Xl, . . . , X, ) and the two
orthonormal xl, x,, compute a periodic Jacobi matrix Jpar (4.1) and an orthogonal matrix
X=[xl  * - * x, ] such that A=XJXT  .

1. begin
2. b, := b, := x~~A.x~
3. a, := x,Thx,
4. for i = 1, . . . , n -I do

begin
5.. ai := XiTAXi
6. 4 Z= Axi -xi ai -xi -1 bi -1
7. Compute xi+l, bi SO that Xi+lbi  =Bi,  XiT+lXi+l=l

end
end

IIf the given data for Problem P is such that a solution Jper exists, the solution is unique up to
choice of signs for the vectors d(O)  and 6(l).  respectively the first rows of Q per  and &. Hence
Algorithm 10 will yield a matrix solving Problem P. The Appendix of [3]  shows in detail that this
algorithm does indeed construct the desired matrix.
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6. Miscellaneous Problems.

tain
In this section, we briefly mention how the methods of this paper can be used

miscellaneous inverse problems. We discuss two problems which were studied in
Problem R (Rank one update). Given two strictly increasing sequences {Xi  }: and {A:}:, with
Xi <At for all i , compute an n X n Jacobi matrix J with eigenvalues {Xi  }:, such that if the l-l
element of J , a 1 is replaced with a l’ , the resulting matrix J’ will have eigenvalues {A,‘}:.

to solve cer-
(71:

Problem S (perSymmetric  problem). Given a strictly increasing sequence {Xi  }:, construct a
persymmetric Jacobi matrix J having eigenvalues {Xi  }:.

A matrix is persymmetric if it is symmetric around its anti-diagonal, i.e.

Uij = an-l-i,n +1-j *

A persymmetric Jacobi matrix satisfies

Qi = afi+l-i  9 bi = bn -i s

We also study the following problem:
Problem_ DD (Double Dimension). Given an n X n Jacobi matrix J,, and a set of distinct  eigen-
v$.ies  {Xi  } la”, construct a 2n X2n Jacobi matrix J2,, whose eigenvalues are the given values
Gi >:*I and whose leading n X n principal submatrix is exactly Jn .
Solution to Problem R.

We deflne the polynomials as in Section 1.3: let p, (A) and p,,,(h) be the characteristic poly-
nomials of J and f, respectively. We also let p,‘(X) be the characteristic polynomial of J*. We
can expand the determinant of J to obtain the relation (1.11):

Pa (A)  = (a ~-h)Pt~-l@) - b FPn+(X)* (5.1)
Analogously, we obtain a similar formula for J’:

Subtracting yields

Pn*tx)  = ta 1’ -X)Pn -l(X)  - b FPn-2tX). (5.2)

Pn (X)-p+‘(X)  = (a l-a 1* )pn-l(X) = [trace(  J )-trace(  J’) 1 pnml(X),

which we can write directly in terms of the eigenvalues:

Pn (x)ePs*(x)  = Pn -ltx) 5 (A j -xf>* (5.3)
j =l

The polynomials p, and p,’are known from the given data, and the polynomial p,-, can be com-a
puted  from (5.3), so we may use formula (1.12)  to obtain the first row d of the matrix of eigenvec-
tors of J. With this information, we may apply any of Algorithm 1 (Lanczos), TREDP,  or Algo-
rithm 3 (Rutishauser) to generate the matrix J. The quantity a l* may be computed from

*
a1 -a1 = trace( J*)-trace(  J),

thus deflning J’.
Solution to Problem S.

It has been shown ([7],  Lemma 2) that

Pn-l(Xj  )Fn-l(Xj  ) = [b 1 . * * b, -II2 s q, j =I, . . . , n , (5.4)

where 7 is a constant, and p,-, and Fnwl are, the characteristic polynomials of the lower and
upper, respectively, (n -1) X( n -1) principal submatrices of J , i.e. the submatrices obtained by
deleting the first row and column or the last row and column, respectively. For persymmetric J,
Pn -l=Pn -19 so we have

Pn-lCx  j 1 = f7, j =l, . . . , 71. (5.5)

- 5-1-

--
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We use these equali ties to compute the vector d in (1.12). The denominator of (1 .12) is deter-
mined by the given data {Xi  }: and can also be written as in (1.9). We pick the signs of 7 to
make (1.12) positive for each j . In using (1.12), we do not need to know the polynomial p, -l; all
we need are the specific values (5.5) at the given points Xi, j -1, . . . , n . In fact, we do not
need to know 7 itself; we can use (1.12) to compute the values dj2 up to a scalar multiple and
then scale the vector d to have norm 1: d p + - - - +d,,2= 1. As in the solution for Problem R, we
now have sufficient information to apply any of the algorithms of Section 2 to generate J. If
such a solution exists, we are guaranteed by the uniqueness result (Proposition 2(a)) that the
matrices generated using this intermediate data will indeed solve Problem S.
Solution to Problem DD.

We derive the solution in terms of the relationship to Gaussian Quadrature discussed in Sec-
tion 1.3. In fact, this problem corresponds exactly to the problem of computing the Gauss Qua-
drature Formula of order 2n (exact for polynomials of degree up to 4n -l), given the Formula of
order n (exact for polynomials of degree up to 2n -1). Since both formulas are exact for polyno-
mials of degree up to n , the flrst n moments (1.20) from either formula must agree:

(5.6)

-
where w, 9 A‘ are the weights and nodes for the formula of order n , respectively, and ii7i  , Xi are
the same for the formula of order 2 n . Here, the Xi are the given values, and the A, , w, can be
computed easily from the given Jn , where the w, are obtained from the eigenvectors of Jn by
(1.19). It remains to-solve for the @. If the Ci are positive, then by (1.19) they give the leading
components of the eigenvectors of J,, . One can then apply any of the methods discussed in Sec-
tion 2 to flnally generate the Jacobi matrix J,, . Hence we have solved Problem DD if we can
find a positive solution Zi, i -1, . . . , 2n , to the system of equations (5.6).

The system of equations (5.6) is linear in the Ei, but is very ill-conditioned. Therefore,
instead of solving it by a standard linear system solver, we follow the suggestions of [6] based on
the use of Lagrange Interpolation. It is well known (see e.g. [5]) that if one interpolates a function
f(s)atthem  nodesz,,...,z, using the Lagrange Interpolating Polynomials, one obtains the
formula

ntzjBx 1

ft2) =i$l~~,-z
i
)f(zi).

i#i
(5.7)

where equality is exact if f is a polynomial of degree at most m . To solve (5.6), we set m s2n ,
St the knots to be ZisXi,  i=l,. . . , 2n , and set the function to be f (z )-CC  k . In this case

. (5.7) becomes

i#i

Setting z =A, , s -1, . . . , n , the eigenvalues of Jn , we obtain the formula

where

i#i
From (5.8) we form the weighted sum of the xl to obtain the formula

(5.8)

(5.9)



kfiscellaneoua  Problems

From this formula, it is easy to see that the solution to the system of equations (5.6) is given by

(5.10)

where the 8g are defined by (5.9). Thus, if the Z,-.  are positive, they define  the first components
of the eigenvectors of J2,, :

We then have sufficient information to apply any of the algorithms of Section 2 to obtain Jzn :
Algorithm 1 (Lanczos), TRED2, or Algorithm 3 (Rutishauser). Note, we have not given condi-
tions under which a solution exists, but our procedure will yield positive values for the weights Ei
if and only if a solution exists.

- 5-3 -
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