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Abrtract -
The restricted singular value dccomporition (RSVD) is the factoriza-
tion of a given matrix, relative to two other given matrices. It can be
interpreted as the ordinarjr singular ualuc decomporition  with different
inner products in row and column spaces. Its properties and struc-
ture are investigated in detail as well as its connection to generalized
eigenvdue problems, canonicd correlation andysiz and other generd-
izationz of the singular value decompozition.
Applications that are discussed include the analysis of the extended
shorted operator, unitarily invariant norm minimization with rank con-
straints, rank minimization in matrix ballz, the analysis and solution
of linear matrix equations, rank minimization of a partitioned matrix
and the connection with generalized Schur complements, constrained
linear and total linear least squares problems, with mixed exact and
noisy data, including a generalized Gauss-Markov estimation scheme.
Two constructive proofs of the RSVD in terms of other generalizations
of the ordinary singular value decomposition are provided as well.
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Advanced Research Fellowrhip in-science  and Technology of the NATO Science Fellowehips
Programme and by a grant from IBM. Part of this work was #upported by the US-Army
under contract DAAL03-87-K-0095

1



1 Introduction
The ordinary singular value decomposition (OSVD) has a long history with
contributions of Sylvester (1889), Autonne (1902) [l], Eckart and Young
(1936) [9] dan many others. It has become an important tool in the anal-
ysis and numerical solution of numerous problems arising in such diverse
applications as psychometrics, statistics, signal processing, system theory,
etc. . . . Not only does it allow for an elegant problem formulation, but at
the same time it provides geometrical and algebraic insight together with
an immediate numerically robust implementation [X2].
Recently, several generalizations to the OSVD have been proposed and
their properties analysed. The best known one is the general&d SVD as
introduced by Paige and Saunders in 1981[20], which we propose to rename
as the Quotient SVD (QSVD) [7]. Another example is the Product  SVD
(PSVD) as proposed by Fernando and Hammarling in [ll] and further anal-
ysed in [8]. The third one is the Re&-icted  SVD (RSVD), introduced in
its explicit form by Zha in [28] and further developed and discussed in this
paper.
A common feature of these generalizations*is that they are related to the .
OSVD on the one hand and to certain generalized eigenvalue problems
on the other hand. Many of their properties and structures can be estab-
lished by exploiting these connections. However, in all cases, the explicit
generalized SVD formulation possesses a richer structure than is revealed
in the corresponding generalized eigenvalue problem. We conjecture that
numerical algorithms that obtain the decomposition in a direct way, with-
out conversion to the generalized eigenvalue problem, will be better behaved
numerically. The main reason is that the generalized SvDs are related to
their corresponding generalized eigenvalue problem or OSVD via Gramian-
type or normal equations like squaring operations as for instance in AA*,
the explicit formation of which results in a well known non-trivial loss of
accuracy.

In this paper, we propose and analyse a new generalization of the sin-
gular value decomposition: the Restricted Singular Value Decomposition
(mm), which applies for a given triplet of (possibly complex) matri-
ces A, B,C of compatible dimensions (Theorem 4). In essence, the RSVD
provides a factorization of the matrix A, relative to the matrices B and C.
It could be considered as the OSVD of the matrix A, but with different
(possibly nonnegative definite) inner products applied in its column and in
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it8 row space.

It will be shown that the RSVD not only allow8 for an elegant treatment of
algebraic and geometric problem8 in a wide variety of applications, but that
it8 structure provide8 a powerful tool in simplifying proofs and derivation8
that are algebraically rather complicated.

This paper is organi8ed as follows:

l In section 2, the main structure of the decomposition of a triplet of
matrices is analysed in term8 of the rank8 of the concatenation of cer-
tain matrices. The factorization is related to a  generalized eigenvalue
problem (section 22.1) and a variational characterization is provided
in section 2.2.2. A generalized dyadic decomposition is explored in
section 2.2.3 together with a geometrical interpretation.
It is shown how the RSVD contain8 other generalization8 of the
OSVD, such as the PSVD and the QSVD (see below) a8 special
case8 in section 2.2.4. In section 2.2.5, it is demonstrated how a spe-
cial case leads to canonical correlation analysis. In section 2.2.6, we
investigate the relation of the RSVD with 8ome expressions that in-
volve pseudo-inverses.

l In section 3, several application8 are discussed:

- Rank minimization and the ezknded shorted opemtor are the subject
of section 3.1, aa well a8 unitarily  inuariant rwnn minimization
un%h rank construinb and the relation with matrb  balls. We al80
investigate a certain linear matrix equation.

- The rank reduction of a partitioned mat& when only one of it8
block8 can be modified, is explored in section 3.2 together with
total kast  squares itn’th  mized  exact and noisy data and linear
constraints. While the role of the Schur complement and it8 close
COMeCtiOn  to least squares estimation i8 well understood, it will
be shown in this section, that there exists a similar relation be-
tween constrained total linear least squares solutions and a gen-
e~~lixed  Schur compkment.

- &ne~~&& Gauea-bfarkov  mode&, possibly with constraints, are
discussed in section 3.3 and it is shown how the RSVD simplifies
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the solution of linear least squares problem8 with constraints.

l In section 4, the main conclusions are presented together with some
perspectives.

Notations,  Conventions, Abbreviations

Throughout the paper, matrices are denoted by capitals, vector8 by lower
case letter8 other than i, j, k, I, m, n, p, Q, r, which are nonnegative integers.
Scalars (complex) are denoted by Greek letters.
A (m x n), B (m x p), C (Q x n) are given complex matrices. Their rank
will be denoted by ro, rb, r,. D is a p x q matrix. M is the matrix with

A, B, C, D* as it8 blocks: M =

the following ranks:
. We shall also frequently use

rat -- rank rak = rank

r,& = rank( A B ) .

The matrix A+ is the unique Moore-Penrose pseudo-inverse of the matrix A,
A* is the transpose of a (possibly complex) matrix A and A is the complex
conjugate of A. A* denotes the complex conjugate transpose of a (complex)
matrix: A* = 2. The matrix A-* represent8 the inverse of A*. I, is the
k x k identity matrix. The subscript is omitted when the dimensions are
clear from the context. ei (m x 1) and fi (n x 1) are identity vectors: all
component8 are 0 except the i-th one, which is 1. The matrices Ua (m x m),
Vo (n X n), vb (p X p), UC (q X q) at3 unitary:

Uav,’ = I. = U,+Ua
vbv; = Ip = vb+vb

VaVo+ = In = VzVa
&v,’ = I# = v,‘uc

The matrices  P (m x m), Q (n x n) are square non-singular. The non-
zero elements  of the matrices Sa, Sb and S,, which appear in the theorems,
are denoted by ai, pi and yi. The vector ai denote8 the i-th column of
the matrix Ac- The range (column8pace) of the matrix A is denoted by
R(A)R(A)  = {yly = AZ}. The row space of A is denoted by R(A*). The
null space of the matrix A is represented a8 N(A)N(A) = (zlAz = 0). n
denote8 the intersection of two vectorspaces.
We shall frequently use the following well known:

4



Lemma 1

dim( R( A) n R(B)) -’ = ra + rb - r&

dim( R( A*) n R(C*)) = ra + rc - ra,

IlAll  is any unitarily invariant matrix norm while IlAll~ is the F’robenius
norm: llAll$  = trace(AA*). The norm of the vector a is denoted by Ilull
where llal# = a*a. Moreover, we will adopt the following convention for
block matrices: Any (possibly rectangular) block of zeros is denoted by 0,
the precise dimensions being obvious from the block dimensions. The sym-
bol I represents a matrix block corresponding to the square identity matrix
of appropriate dimensions. Whenever a dimension indicated by an integer in
a block matrix is zero, the corresponding block row or block column should
be omitted and all expressions and equations in which a block matrix of
that block rc%v or block column appears, can be disregarded. An equivalent
formulation would be that we allow 0 x n or n x 0 (n # 0) blocks to ap-
pear in matrices. This allows an elegant treatment of several cases at once.

Before starting the main subject of this paper, the exploration of the prop-
erties of the RSVD, let us first recall for completeness the theorems for the
OSVD and its generalizations, namely the PSVD and the QSVD. 1

Theorem 1
The Ordinary Singular Value Decompodtion:  The AutonneEckart-
Young theorem
Every  m x n matrk  A can be factorized as fohws:

A = UaSaV,’

‘Recently we have proposed a etandardiaed  nomenclature and format for the singular
value decombosition  and its generalizations [7]. We propose to refer to the generalized
SVD of Paige and Saunders [20] as the quotient SVD (QSVD) because the Product SVD
(PSVD) and the Restricted  SVD (RSVD) can also be considered as ‘generalizations’
of the Ordinary SVD (OSVD). Thr‘I set of names has the additional advantage of being
a l p h a b e t i c  a n d  metimonk O-P-Q-R-SVD  !
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where Ua and Va are unitary matrices and Sa is a real m x n diagonal matrit
with ra = rank(A) positive diagonal entries:. .

Ta n - r,

where Da = diag(ai), 0; > 0, i = 1,. . . , ra.

The columns of Ua are the left singular vectors while the columns of Va are
the right singular vectors. The diagonal elements of Sa are the so-called
singular values and by convention they are ordered in non-increasing or-
der. A proof of the OSVD and numerous properties can be found in e.g.
[12]. Applications include rank reduction with unitarily invariant norms,
linear and total linear least squares, computation of canonical correlations,
pseudo-inve?ses  and canonical forms of matrices [24].

The product singular value &composition (PSVD) was introduced by Fer-
nando and Hammarling [ll] in 1987.

Theorem 2
The Product Singular Value Decomposition
Every  pair ojmutricea A, m x n and B, m x p can be factorized ax

A = P” SaVo+
B = P&v;

where Va, Vb am unitary and P ia SqUalV!?  non8ingular.  Sa and Sb have the
fObUiT&g  ShUCtUm:
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where Da = Db are square diagonal matrices with positive diagonal elements
and rl = rank(A’B). . .
A constructive proof based on the OSVDs of A and B, can be found in [8],
where also all possible sources of non-uniqueness are explored.
The name PSVD originates in the fact that the OSVD of A*B is a direct
consequence of the PSVD of the pair A, B. The matrix Dz = Di contains
the nonzero  singular values of A*B. The column vectors of P are the eigen-
vectors of the eigenvalue problem (BB*AA*)P = PA. The column vectors of
Va are the eigenvectors of the eigenvalueproblem  (A*BB’A)Va = VaA while
those of vb are eigenvectors of (B*AA*B)Vb  = &A. The precise connection
between Va, vb and P is analysed in [8]. The pairs of diagonal elements of
Sa and Sb are called the product singular  uak pzira while their products
are called the product singular  uaka. Hence, there are zero and nonzero
product singular values. By convention, the diagonal elements of Sa and sb
are ordered-such that the product singular values are non-increasing.
Applications include the orthogonal Procrustes problem, balancing of state
space models and computing the Kalman decomposition (see [8] for refer-
ences.)

The quotient singular t&e decompotition  was introduced by Van Loan in
[27] (’ the BSVD ‘) in 1976 although the idea had been around for a number
of years, albeit implicitly (disguised as a generalized eigenvalue problem).
Paige and Saunders extended Van Loan’s idea in order to handle all possible
case8 [20] (they called it the generalized SVD).
Theorem 3
The Quotient Singular Value Decomposition
Every  pair of matrices  A, m x n and B, m x p can be factorized 08:

A = P” SaVl
B = P-*&v;

where Va and Vb a* unitary  and P is SqUWt?  non~ingular.  The matrices Sa
and Sb have the jbllowing  structure:

hb - rb ra + rb - rob n - ra

--. Tab - rb I 0 0
Sa = ra + rb - rab 0 Da 0

rab - ra 0 0 0
m - rab ’ 0 0 0
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ha - rb

sb = ra + rb - Tab
Tab - Ta
m - rab

P - rb Ta + rb - Tab r,b - I’,

0 -. 0 0
0 Db 0
0 0 I
0 0 0

where Da and Db a= square diagonal matrices with positive diagonal ek-
ments, aati8Mng:

The quotient singular values are defined as the ratios of the diagonal elements
of Sa and Sb. Hence, there are zero, non-zero, infinite and arbitrary (or
undefined) quotient singular values. By convention, the non-trivial quotient
singular value pairs are ordered such that the quotient singular values are
non-increasing.
The name QSVD originates in the f&ct that under certain conditions, the
QSVD provides the OSVD of A+B, which could be considered as a matrix
quotient. Moreover, in mast application8 the quotient singulaz values are
relevant (not the diagonal elements of Sa and. Sb as such).
The column vectors of P axe the eigenvectois of the generalized eigenvalue
problem AA*P = BB*PA.
Applications include rank reductions of the form A + BD with minimization
of any unitarily  invariant norm of D, least squares (with constraints) [21]
and total lea& squa.res  (with exact columns), signal processing and system
identification, etc . . . [24] [12].

2 The Restricted Singular Value Decomposition
(RSVD)

The idea of a generalization of the OSVD for three matrices is implicit
in the S, T-singular value decomposition of Van Loan (271 via its relation
to a generalized  eigenvake  problem. An explicit formulation and deriva-
tion of the ~atricted  singular value decomposition was introduced by Zha in. 1988 [28] who derived a constructive proof via a sequence of OSVDs and
QSVDs, which can be found in appendix A. Another proof via a sequence
of OSVDe and’PSVDs, which is more elegant though, was derived by the
authors and can be found &o in appendix A.



In this section, we first state the main theorem (section 2.1), which de-
scribes the structure of the RSVD, followed by a discussion of the main
properties, including the connection to generalized eigenvalue problems, a
generalized dyadic decomposition, geometrical insights and the demonstra-
tion that the RSVD contains the OSVD, the PSVD and the QSVD as
special cases.

2.1 The RSVD theorem

With the notations and conventions of section 1, we have the following:

Theorem 4
The Recrtricted Singular Value Decompoclition
Every  trip&it  of matrices  A (mx n), B (mx p) and C (q x n) can be fizctorixed
U8: --.

A = p-*s&-l
B = P-*&v;
c = uJ,g-,1

where P (m X m) and 8 (n X n) are square nonhguh,  vb (p X p) and
UC (q x q) are unihbq& & (m x n), sb (m x p) and SC (q x n) are rd
pseudo-diagonal matrices  with nonnegative elements and the following block
&ucture:

5
6

1 2 3 4 5 6
‘Sl 0 0 0 0 0
0I0000
0 0 1 0 0 0
0 OOlOO
0 0 0 0 0 0
0 0 0 0 0 0 1

1 2 3  4
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1 2 3 4 5  6

The block dimensions of the matrices  Sa, Sb, SC are:

Block columns of Sa and S,:

10  T&i%-k-66

2. Tab + rc - rak

3. r-it + rb - %bc

4. T& - rb - rc

5. rm - ra
6. n-r=

Block columns of Sb:

1. ra~+ra-rcrc-r&

2. rat + rb - rh

3. p - rb

Block rows of Sa and Sb:

1. rak+ra- Qrrat

2. rab + rc - rak

3. r, + rb - %bc

4. r& - rb - rc

5. rd - ra
6. m-r&

Block rows of S,:
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1. r& + ra - Tab - rat
2. Tab + rc - rak

3. q - r,

40 %c - ra

. .

The matrices Sl, Sz, S3 are square nonsingular  diagonal with positive diag-
onal elements.

For two constructive proofs, which are straightforward, the reader is referred
to appendix A. The first one is based on the properties of the OSVD and
the PSVD. The second one is borrowed from [28] and exploits the proper-
ties of the OSVD and the QSVD.

We propose-to caU re&icted  &u&w  ualue tripkts,  (ai, pi, pi), the following
triplets of numbers:

l rabc + ra - f’ab - rcu: triplets of the form (oi, 1,l) with oi > 0. By
convention, they will be ordered as: .

ai 2 a2 2 . . . 2 ar,k+ro--r,b-roc  > 0

l rob + rc - rob triplets of the form (l,O, 1).

l r, + rb - Tab, triplets of the form (1, l,O).

l rabc - rb - rc triplets of the form (l,O,O).

I) rd - ra triplets of the form (O,Pj, 0), pi > 0 (elements of S2).

l rat - ra triplets of the form (0, 0, yk), rk > 0 (elements of s3).

0 min(m - rab, n - fat) trivial triplets (0, 0,O).

Formally, the restricted singular u&es are the numbers:

Hence, there are zero, infinite, nonzero  and undefined  (arbitrary, trivial) re-
stricted singular values. However, obviously the triplets themselves contain
much more structural information than the ratios, as will also be evidenced
by the geometrical interpretation. Nevertheless, there are:
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l Ta b  + r o t - rah infinite restricted singular Values.

l ra + rabc - Tab - rat finite nonzero  restricted singular values.

0 min(r,b - T,, Tat - t,) zero restricted singular values (the reason for
considering them to be 0 is explained in section 3.1.4).

l min(m - Tab,  n - r,) undefined (trivial) restricted singular values.

It will be shown in section 3.1., how unitarily invariant norms in restricted
problems can be expressed as a function of the restricted singular values,
just as unitarily invariant norms in the unrestricted case are a function of
the ordinary singular values as was shown by Mirsky in [l7].

Some algorithmic issues are discussed in [lo] [29] [26] [25], though a full
portable and documented algorithm for the RSVD is still to be developed.

The reasons for chasing the name of the factorization of a matrix triplet
as described in Theorem 4, to be the restricted singular ualue  decomposi-
tion,  are the following:

l It will be shown in section 3 how the RSVD allows us to analyse
matrix problems that can be stated in terms of:

A+ BDC

where typically, one is interested in the ranks of these matrices as the
matrix D is modified. In both cases, the matrices B and C represent
certain restrictions as to the nature of the allowed modifications. The
rank of the matrix A + BDC can only be reduced by modifications
that belong to the column space of B and the row space of C. It
will be shown how the rank of 1M can be analysed via a generalized
Schur complement, which is of the form D* - CA-B, where again, C
and B represent certain restrictions and A’ is an inner inverse of A
(definition 1 in section 2.2.7).

l The RSVD allows to obtain the restriction of the linear operator A
to the column space of B and the row space of C.
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l Finally, the RSVD can be interpreted as an OSVD but with certain
restrictions on the inner products. to be used in the column and row
space of the matrix A (see section 2.2.1).

2.2 Properties

The OSVD as well as the PSVD and the QSVD, can all be related to a
certain (generalized) eigenvalue problem [7]. It comes as no surprise that
this is also the case for the RSVD. First, the generalized eigenvalue problem
that applies for the RSVD will be analysed (section 2.2.1), followed by a
variational characterization in section 2.2.2. A generalized dyadic decompo-
sition and some geometrical properties are investigated in section 2.2.3. In
section 2.2.4, it is shown how the OSVD, PSVD and QSVD are special
cases of the RSVD while the connection between the RSVD and canoni-
cal correlation analysis is explored in section 2.2.5. Finally, some interesting
results connecting the RSVD to pseudo-inverses are derived in section 2.2.6.

2.2.1 Relation to a generalized eigenvalueproblem
.

From Theorem 4, it follows that:

P*(BB*)P  = &Sk
g*(c*c)g  = stsc

Hence, the column vectors of P are orthogonal with respect to the inner
product provided by the nonnegative definite matrix BB*. A similar remark
holds for the column vectors of the matrix Q. Consider the generalized
eigenvalue problem:

(i* t)(;)=(“:* &)(:)A
Observe that, whenever BB’ = I,,, and C’C = I,,, the eigenvalues X are
given by & the singular values of the matrix A.
Assume that the vectors p and q form a solution to the generalized eigenvalue
problem (l),.then from the RSVD it follows that:

Sa(Q-‘q) = (s&)(P-‘p)A

SW’P) = (S:s,)(Q-lq)X

13



-1

callp’= P-‘p and q’ = Q-‘q. Using a obvious partitioning of p’ and q’
(according to the block diagonal structure of Say Sb, SC as in Theorem 4),
one finds that:

The generalized eigenvalue problem (1) can have 4 types of eigenvalues:
l 1. A is a diagonal element of S1

It is easy to verify that the vectors p’ and q’ have the form:

with Slqi = &A and Si& = q: A. & and 4 have only one nonzero
element, which is 1, if all diagonal elements of Sr are distinct.
Observe that the vectors p’s and q& are completely arbitrary. They
correspond to the trivial restricted singular triplets.

0 2 .  A=0
From (1) it follows immediately that:

(L t)(:)=o*
However, not every pair of vectors p, q satisfying this relation, satisfies
the BB’ and C’C orthogonality conditions.
The corresponding vectors JP’ and q’ axe of the form:

0 0
0 0- If 0 0= il0 q’=

P’5
P’6 ilo .

4;
4
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e&X=00
From (1) it follows that: -.

and the corresponding vectors p’ and q’ are of the form:

p’=

’ 0
Pi
0

Pi
0

p’6 I qt =

l 4. A= arbitrary (not one of the preceeding)
Only the components corresponding to p’e and q& are nonzero  and
arbitrary.

This characterization of the RSVD as a ‘generalized eigenvalue problem
may be important in statistical applications, where typically the matrices
BB’ and C*C are noise covaxiance matrices. Especially when these co-
variance matrices are (almost) singular, the RSVD might provide a robust
computational implementation.

2.2.2 A variational characterization

The variational characterization of the vectors pi and qi is the following:

Let
ti%Y) = 2-y

be a bilinear from of 2 vectors z and y. We wish to maximize  +(z, y) over
all vectors 2, y subject to

z*BB*z  = 1 ,
. -- y*c*cy = 1 .

It follows directly from the RSVD that a solution exists only if one of the
following situations occurs:
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l r&+ra-rab-rac # 0. In this case, the maximum is equal to the largest
diagonal element of S1 and the optimizing vectors are z = pl, y = q1
so that +(pl,ql) = al.

l r,bc + ra - Tab  - Tat = 0. The norm constraints on z and y can only
be satisfied if:

rat + rb - r,& > 0 OT Tab - Ta > 0
and

Tab - rc - r,& > 0 or rat - Ta > 0

In either case, the maximum is 0.

l If none of these conditions is satisfied, there is tu) solution.

Assume that the maximum is achieved for the vectors 21 = p1 and yl = ql.
Then, the other extrema  of the objective function t&y) = z*Ay with
the BB*- and C*C-orthogonality  conditions, can be found in an obvious
recursive manner. The extremal  solutions z &nd y are simply the appropriate
columns of the matrices P and Q.

2.2.3 A generalized dyadic decomposition and geometrical prop-
ertie8.

Denote P’ = P” and Q-’= 8”. Then, with an obvious partitioning of the
matrices P’, Q’, UC and vb, corresponding to the diagonal structure of the
matrices So, Sb, SC of Theorem 4, it is straigtforward  to obtain the following:

Hence,

- R(P:) + R(P;J = R(4n R(B)

R(Q’;)  +  R(Q’;) =  R(A*)nR(C*) l

One could consider the decomposition of A as a decomposition relative to
R(B) and R(C*):

16



Obviously, the term P,ISrQT represents the restfiction of the linear operator
represented by the matrix A to the column space of the matrix B and the
row space of the matrix C, while the term I’$&* is the restriction of A to
the orthogonal complements of R(B) and R(C*).
Also, one finds that:

R(B*)  = wa + wa + WG)
R ( C )  = W&I) + R(h) + R&4)

and:
-e_

BVi =  0  ==+ N ( B ) =  R(Vm)
U&C = 0  =+ N ( C * )  =  R(U& .

Finally, some of the block dimensions in the RSVD of the matrix triplet
(A, B, C) can be related to some geometricaLinterpretations  as the following:

dim[R( $)nR( f)] = Tw+Tb--rdk  9

dim[  R(A B)’ n R(C 0)* ] = r,b + rc - r,k ,

dirn[ R(A)n  R(B) ] = ra + rb - r,6 ,

dim[  R( A*) n R(C*) ] = r, + tc - rot .

Also, it is easy to show that:

w?id = N(A) n N(C)
R(P;) = N(A*)n N(B*) .

Hence Qk providee  a basis for the common null space of A and C, which is
of dimension n - r,, while Pi provides a basis for the common null space
of A* and B*, which is of dimension m - r&

2.2.4 Relation to (generaked) SVDs;

The RSVD reduces to the OSVD, the PSVD or the QSVD for special
choices of the matrices A, B and/or C.



Theorem S
Special cases of the RSVD --

I. RSVD of (A, I,,&) glues  the OSVD of A
2. RSVD of (I,, B,C) gives the PSVD of (B*,C)
3. RSVD of (A, B, In) ghes the QSm of (A, B)

4. RSVD of (A, I,,,,C) glues  the QSvD of (A$)

Proof!

Case 1: B = I&C = I,,: Consider the RSVD of (A, I,,,, I,,). Obviously

In, = P-* sbv;
In = u&Q-’

and this implies

P -* -1= vbsb

Q
-1 = S”U’c c*

Hence,
A = V$S;%&‘)U,+

which is an OSVD of A.

Case 2: A = I,,,: Consider the RSVD of (I,, B, C) then obviously

LB = p-*&Q-’

which implies
Q -1 = S;‘P* .

hence,

.
B’ = V&P -1

C = Uc( S&‘)P*

which is nothing else than a PSVD of (B*,C).

18



Carre  3: C = In: Consider the RSVD of (A, B,I,,). Then

I,, = U&Q-’

which implies

Then,
Q-’ = S,-‘U; .

A = P-*(s&yu,+
B = P’+sgy

which is (up to a diagonal scaling of the diagonal matrices) a QSVD
of the matrix pair (A, B).

Case 4: B = I*: The proof is similar to ca8e 3.

2.2.s Relation with canonical correlation analysis.

In the case that the matrices BB” and C’C are nonsingular, it can be shown
that the generalized eigenvalue problem (1) is equivalent to singular value
decomposition. In [lo], an algorithmic derivation along these lines is given.

Let pi and Q; be the 6th column of P, resp. Q, then it follows from (1)
that

Aq; = B B8piXi

A’Pi = C’CqiAi  .

If BB* and C*C are both nonsingular,  then there exist nonsingular matrices
Wb and W$ (for example the Cholesky decomposition) such that

BB’. =  wb’wb  ,
C’C =  w,‘wc .

Then, . -.

(Wi*AWF')(W,qi)  = (wbpi)k

(WF*AWi’)(WaPi)  = (WC%)& l
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Then, the BB* orthogonality of the vectors pi and the C’C-orthogonality
of the vectors qi, implies that the vectors Wapi and Wcqi  are (multiples of)
the left and right singular vectors of the matrix Wi*AWFl.

It can be shown (see e.g. [2]) that the principal angles ok and the prin-
cipal vectors ?.&k, 2)k between the column spaces of a matrix A and B are
given by:

coS(ek) = bk
uk = APk
vk = Bqk k = 1,2,...

where 0) are the eigenvaluea  and pk, qk properly normalized eigenvectors  to
the generalized eigenvalue problem

(SA AY)(:)=(Ai? B’B)(;)O l

The bk are also the canonical correlations.- Comparing this to the gener-
alized eigenvalue problem (1) that corresponds to the RSVD, one can see
immediately that the canonical correlation eigenvalue problem is a special
case of the RSVD eigenvalue problem (1). The canonical correlations are
the restricted singular value of the matrix triplet (A*B,A*, B) and the
principal vectors follow from the column vectors of the unitary matrices in
the RSVD.
There exist however applications where the matrices BB’ and C’C are (al-
meet) singular (see e.g. [lo] [15] [25] [26] and the references therein). It is in
these situations that the RSVD may provide essential insight into the ge-
ometry of the singularities and at the same time yield a numerically robust
and elegant implementation of the solution.

2.2.8 The RSVD and expressions with pseudo-inverses.

The RSVD can also be used to obtain the OSVD, PSVD and QSVD of
certain matrix expressions containing pseudo-inverses. Hereto we need the
following definitions and lemmas, which will be used also in section 3 (see
[19] for references):

Definition 1
A(i, j, . . .)-inverse of a matrix
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A mat+  X is called an A(i, j, . . .)-inverse of the mat+ A if it satisfies
equation i, j, . . . of the following: . .

1 .  A X A = A
2 .  X A X = X
3. (AX)* = AX
4. (XA)’ = XA

An A(1) inverse is also caUed an inner inverse and denoted by A’. The
A( 1,2,3,4)  inverse is the Mm-Penrose  pseudo-inverse  A+ and it is unique.

We shall also need the following lemmas:
Lemma 2
Inner inverse of a factored matrix
Every inner&verse A- of the matriz A, which is factored w follows:

A=?* 2 8 Q-1
( >

where D, is aquas  r. X ta rwnsinguk~, caik be written as

(2)

where &,Z~1,&  are arbibry  matrices. Conversely,  every matriz A- of
this form is an inner inverse  of A.

Proof: The proof follows immediately from definition 1. 0

Lemma 3
Moore-Penrose pseudo-inverse of a fhctored matrix.
Let P and Q be part&oned  u follows:

P = (PI Pi) (QI 82)

where PI and Ql have  r. columns. Then the Mm-Penmse  pseudo-inverse
ofAbgiverib&:

A+ = ((I-Qz(Q;Qz)-‘Q;)Ql  82)
P,‘(I - P2(P;P*)-lP;)

)

(3)
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Proof: Obviously, the Moore-Penrose pseudo-inverse is a unqiue element of
the set of inner inverses described in Lemma 2. The expression for A+ fol-
lows from substituting the expression for A- of Lemma 2 in the equations
defining the A( 1,2,3,4) inverse and calculating the matrices 212,&l,&
that satisfy these 4 conditions. 0

Hence, the Moore-Penrose pseudo-inverse A+ is a uniquely determined ele-
ment among all the inner inverses of the matrix A, obtained from orthogo-
nalization of PI and Q1 with respect to P2 and 92.
An immediate consequence is the following:

Corollary 1 Let A &e a renk  r, mat& that is factorized OS:

A = p-*s,o-’ = p-*

-e_

where D, is r,, x r. &ngulb  diagonal and P and Q, which are square
noningular, am part&ned  a8 follow8:

p = ( Pl pa ) Q=(Ql  92)

where PI and Q1 have TV columns. Then,

if and only ifi
P:Pg = 0 and Q;QQ .

Returning now to the RSVD, assume that, whenever we need the pseudo-
inverse of a matrix, it follows that:

A+ = QS,+P* (4)
B+ = VbS,+P8 (5)
C+ = QS$U;  . (6)

For inatance,.each  of these is true when the matrices are square and nonsin-
gular. The expression for B+ is true if B is of Ml row rank while that for
C+ holds for C being of full column rank.

Then, we have
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Theorem 6
On the RSVD and pseudo-inverse+
Assume that conditions (4-6) hold true a8 needed. Then,

1. CA+B = U&S$S#b+  is an OSVD of CA+B.
2. B+AC+ = V@b+S&!)U~  is an OSVD of B+AC+.
3.

(A+B)* = Vb( SzSb)‘Q*
C = U&Q-’

is a PSVD of the mat& pair ((A+B)*,C).
4. Similarly,

CA+ = U&Sa+)P’
B’ = Vj$P -1

is a PSVD of (CA+, B’).
5.

B+A = vb( sa+sa)Q-’

C = u&Q-

ti a QSVD of the matriz pair (B+A,C).
6. Similarly

( A C + ) = Uc( S&)‘P-’
B = V*S,‘P-1

is a QSVD of the matriz pair  ((AC+)*, B).

Proofi The proof is merely an exercise in substitution and invoking the
conditions (46). 0.

l In case that A is square and nonsingular,  the singular values of CA” B
axe the reciprocals of the restricted singular values. These are the sin-
gular values of B’lAC”  if both B and C are square and nonsingular.
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l The conditions (46) are sufficient for the Theorem to hold, but may be
relaxed. Indeed, take, for instance,  the expression B+ A = Vb( St $,)Q-l.
The necessary conditions for this to be true are less restrictive than
expressed in (4-6). This can be investigated using the formula (2) for
the inner inverse. However, we shall not pursue this any further here.

3 Applications
The RSVD typically provides a lot of insight in applications where its struc-
ture can be exploited in order to convert the problem to a simpler one (in
terms of the diagonal matrices So, Sb, SC) such that the solution of the sim-
pler problem is straightforward. The general solution can then be found via
backsubstitution. In another t& of applications, it is the unitarity of the
matrices UC and vb that is essential.

In this section, we shall first explore the use of the RSVD in the analy-
sis of problems related to expressions of the form A + BDC (section 3.1).
The connection with Mitra’e concept of the extended shorted operator [18]
and with matrix balls will be discussed as &ll as the solution of the matrix
equation B DC = A, which led Penrose to rediscover the pseudcAnverse  of
a matrix [22] [23]. In section 3.2, it is shown how the RSVD can be used
to solve constrained total linear least squares problems with exact rows and
columns and the close connection to the generalized Schur complement [a] is
emphazised.  In section 3.3, we discuss the application of the RSVD in the
analysis and solution of generalized Gauss-Markov models, with and with-
out constraints.

Throughout this section, we shall use a matrix E, defined as

with a block partitioning derived from the block structure of sj, and SC as
follows:

“obc + ro - rob - Tot Gb+~c-robc  q-r, rot - To

r0b~ + pa - hb .- rot El1 El2 E13
roe + rb - c& &l E22 E23
P - rb E31 E32 E33
rob - To E41 E42 E43

(8)
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3.1 On the structure  of A + BDC
The RSVD provides geometrical insight into the structure of a matrix A
relative to the column space of a matrix B and the row space of a matrix
C. As will now be shown, it is an appropriate tool to analyse expressions of
the form:

A+BDC

where D is an arbitrary p x q matrix.

In this section, it will be shown that the RSVD dews us to analyse and
solve the following questions:

1. What is the range of ranks of A + B DC over all possible p x q matrices
D (section 3.1)?

2. When-k the matrix D that minimizee the rank of A + BDC, unique
(section 3.2)?

3. When is the term BDC that minimizes rank(A + BDC), unique? It
will be shown how this conesponds to Mitra’s extension of the shorted
operator [18] in section 3.3.

4. In case of non-uniqueness, what is the minimum norm solution (for
unitarily invariant norms) D that minimizes rank(A + BDC) (section
3.4)?

5. The reverse question is the following: Assume that lIDI 5 6 where 6 is
a given positive real scalar. What is the minimum rank of A + BDC?
This can be linked to rank minimization problems in so called matrix
balks (section 3.5).

6. An extreme case occurs if one looks for the (minimum norm) solution
D to the linear matrix equation BDC = A. The RSVD provides
the necessary and sufficient conditions for consistency and allows us
to parametrize all solutions (section 3.6).

3.1.1 The.range of ranks of A + BDC

The range of ranks of A + BDC for all possible matrices D is described in
the following theorem:
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Theorem 7
On the rank of A+ BDC . .

rob + rot - rok < rank(A + BDC) 5 min(f& rot)

For every number r in between these bounds, there exists a matrit  D such
that rank(A + BDC) = r.

Proof: The proof is straightforward using the RSVD structure of Theorem
4:

A + B D C  = P-*S,g-’ + P-*SbV;DU&Q -1

=  I’-*(So +  sbES,)Q-’

where E = VCDU,. Because of the nonsingularity of P,Q, &,I& we have
that: --.

rank(A + BDC) = rank(S,  + &ES=)

and the analysis is simplified because of the diagonal structure of So, Sb, SC.
Using elementary row and column operations and the block partitioning of
E aa in (8), it is easy to show that: .

f
Sl +&I 0 0 0 E14S3 0

0 IO0 0 0 \

rank(A + BDC) = rank

I

i
or0 0 0
001 0 0 (9)

s2E41 0 0 0 s&4& 00 0 0 0 0 0 I

the block dimensions of which are the same as these of So in Theorem
4. Obviously, a lower bound is achieved for El1 = -Sl, El4 = 0, E41  =
0, EM = 0. The upper bound is generically achieved for any arbitrary
(‘random’) choice of Eli, El4, E41, Eu. 0

Observe that, if r. = fob + roC - To&, then there is no Sr block in So and
the minimal rank of A + BDC will be ro. Also observe that the minimal
achievable rank, fob + rot - rok, is precisely the number of infinite restricted
singular valuee. This is no coincidence as will be clarified in section 3.1.4.

3.1.2 The unique rank minimking matrix D

When is the matrix D that minimizes the rank of A + BDC, unique? The
answer is given in the following theorem:
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I

Theorem 8
Let D be such that rank(A + BDC)..=  fob + rot - rob and assume that
r. > T,b+r,- r,k. Then the mat& D that minimizes the rank of A+ BDC
is unique iJ:

1. r,=q
2. fb = p
3. fok = rob + Tc = Tot + Tb

In the case whew these conditione  am satisfied, the matriz D is giuen 08

r>=vb
Proof: It can be verified from the matrix in (9) that the rank of A + BDC
is independent of the block matrices En&3, E21,&2, &s,E24, &1,E33,
Em, EM, Edg, E43. Hence, the rank minimizing matrix D will not be unique,
whenever one of the corresponding block dimensions is not zero, in which
case it is parametrized by the blocks Eij in:

/ -SI &2 Em 0 \

D = vb

I

E21 E22 &a3 E24
E31 &a &ii Er

J

u; .

0 E42 E43 0

(10)

Setting the expressions for .these  block dimensions equal to zero, results in
the necessary conditions. The unique optimal matrix D is then given by
D = VbEuz where

q + r. - rot rot - r.
E= P+rO-Tob El1

rob - To E41

0

l Observe that the expression for the matrix D in Theorem 8 is nothing
clue than an OSVD!

l In case one of the conditions of Theorem 8 is not satisfied, the matrix
D that minimizes the rank of A + BDC is not unique. It can be
parametrized by the blocks Eij as in (10). It will be shown in section
3.1.4 how to select the minimum norm matrix D.
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3.1.3 On the uniqueness of BDC: The extended shorted operator

A related question concerns the uniqueness of the product term BDC that
minimizes the rank of A + BDC. As a matter of fact, this problem has
received a lot of attention in the literature where the term BDC is called
the extended shorted operator  and was introduced in [18]. It is an extension
to rectangular matrices, of the shorting of an operator considered by Krein,
Anderson and Trapp only for positive operators (see [18] for references).
It will now be shown how the RSVD provides an utmost elegant analysis
tool for analysing questions related to shorted operators.
Definition 2
The extended shorted operator *
Let A (m x n), B (m x p) and C (q x n) be giuen matrices. A shorted matrit
S(AIB, C) is any m x n mat& that satisfies  the following conditionx

R(S(AIB,C))  G R(B)
R(S(AIB, C)‘) G R(C*)

2. If F &I an m x n matriz satisfing  R(F) E R(B) and R(F*) c R(C*),
fief%

rank(A - F) 2 rank(A - S(AIB,C)) .

Hence, the shorted operator is a matrix for which the column space belongs
to the column space of B, the row space belongs to the row space of C and it
minimizes the rank of A-F over all matrices F, satisfying these conditions.
From this, it follows that the shorted operator can be written as:

S(AIB,C)  = BDC

for a certain p x q matrix D. This establishes the direct connection of the
concept of extended shorted operator with the RSVD.

The shorted operator is not always unique as can be seen from the following
example. Let

‘We have dig htly changed the notation that is used in [18].
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Then, all matrices of the form

minimize the rank of A - S, which equals 2, for arbitrary a! and /3.

Necessary conditions for uniqueness of the shorted operator can be found in
a straightforward way from.the RSVD.

Theorem 9
On the uniqueness of the extended shorted operator
Let the RSVD of the mat& trip&t (A, B, C) be g&en  as in Theowm  1.
Th@J,

--. S(AI&C) =  P - •S ( S &  SJ8-l .
The eztended  shorted opemtor  S(AI B, C) is unique ifi

1. robe = rc + rob

2. rok = rb + rot

andtigiuenby

S(AIB,C)  = P-* -1
8 l

Proof: It follows from Theorem 7 that the minimal rank of A + BDC is
rob + rot - r,k and that in this case

&I = -Sl El4 = 0 E41  = 0 E44 = o .

A short computation shows

BDC = P-*

-S1 El2 00 o o
0 0 00 0 0

E21 432 0 0 E&3 0
0 0 00 0 0
0 S*E4*OO 0 0
0 0 00 0 0
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Hence, the matrix BDC is unique iff the blocks Els, E22, EQ, E21, E22 and
E24  do not appear in this decomposition. Setting the corresponding block
dimensions equal to zero, proves the theorem. Cl

l Observe that the conditions for uniqueness of the extended shorted
operator BDC are less restrictive than the uniqueness conditions for
the matrix D (Theorem 8).

l As a  consequence of Theorem 9, we also obtain a  parametrization of all
shorted operators in the case where the uniqueness conditions are not
satisfied. All possible shorted operators are then parametrized by the
matrices E12, &I, E22, I&, Ea. Observe that the shorted operator
is independent of the matrices Els, E23, E31, Es, Ea, E43.--.

l The result of Theorem 9, derived via the RSVD, corresponds to Theo-
rem 4.1 and Lemma 5.1 in 1181. Some connections with the generalized
Schur complement and statistical applications of the shorted operator
can also be found in [ 181. c

3.1.4 The minimum norm solutions D that minimize rank(A  +
BDC)

In Theorem 7, we have described the set of matrices D that minimize the
rank of A+ BDC. In this section, we investigate how to select the minimum
norm matrix D that achievee  this task.

Before exami& g matrices  D that minimize the rank of A + BDC, note
that, whenever min(r& rat) - r, > 0, there exist many matrices that will
increase  the rank of A + BQC.  In this case:

inf c { (F = lIDI  Irank(A  + BDC) > ro} = 0 (11)

which implies that there exist arbitrarily ‘small’ matrices D that will in-
crease the rank.

Consider the problem of finding the matrix D of minimal (unitarily invari-
ant) norm lIDI  such that:

rank(A  + BDC) = r < rcl
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where r is a prescribed nonnegative integer.

0 bserve that:

l It follows from Theorem 7 that necessarily

r 1 Tab + Tat  - rabc

for a solution to exist.

l Observe that if ra = rd + rQC - rob0 no solution exists. In this case,
there is no diagonal matrix Sr in Sa of Theorem 4. Hence, it will be
assumed that

fa > rab + rat - rabc l

l Assume that the required rank r equals the minimal achievable: r =
Tab  + r, - robe. Then, if the conditions of Theorem 8 are satisfied,
the optimal D is unique and follows directly from the RSVD. The
interesting case occurs whenever the rank minimizing D is not unique.

The general solution is straightforward from the RSVD. In addition to the
nonsingularity  of &, vb, P, 0, we will  &o exploit the unitarity of UC and vb.

Theorem 10
Assume that

rab+roc-rabcIr = rank(A + BDC) < rc

where r is CL given integer and II.11 is any unitarily  invariant norm. A mati
D of minimal norm lIDI  is given by:

. where S[ is a hgular  diagonal matriz

r + rak - rat - Tab Ta - r
.

s; =
r + rabc  - rab - rat 0
r, - r 0

s$ con&h8 the ra - r smallest  diagonal elements of Sp
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Proof: From the RSVD of the matrix triplet A, B, C it follows that

A + B D C = P-*(S; + S~(Va’DU&)Q-’
= P-*(S, + &ES,)Q-’

with lIEI = IlV~D&ll  = IlOll. The result follows immediately from the
partitioning of E as in (8) and from equation (9) cl

Obviously, the minimum norm follows immediately from the restricted sin-
gular values, because every unitarily invariant norm of D can be expressed
in terms of the restricted singular values.
As a matter of fact, one could use this property to define the restricted
hgdar value8  uk.

=’ ok = We{ c = IlDlltv  1 rank(A + BDC) = k - 1)

where I I. I Id denotes the maximal ordinary singular value.

l Because the rank of A+BDC can not be reduced below rab+rac-th,
there will be rd + rcu: - r h  infinite restricted singular values.

l Obviously, there are ra + rh - r,b - ret finite restricted singular values,
corresponding to the diagonal elements of Sr.

l It can easily be seen from (9) that the diagonal elements of S2 and
S3 can be used to increase the rank of A + BDC to min(r& r=)
(Theorem 7). However, from (11) it is obvious that min( rat  - to, r& -
rJ restricted singular values will be zero.

l It follows from Theorem 7 that min(m-rob,  n-r=) restricted singular
values are undetermined.

l Theorem 10 is a central result in the analysis and solution of the
Restricted Total Least Squares problem, which is studied in [26] where
also an algorithm is presented.

3.1.5 The reverse problem: Given IIDII,  what is the minimal rank
of A + BDC?

The results of section 3.1.3 and 3.1.4. allow us to obtain in a simple fashion,
the answer to the reverse question:
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Assume that we are given a positive fleal  number 6 such that [IDll  5 6.
What is the minimum rank r,,,i,, of A f BDC?

The answer is an immediate consequence of Theorem 10. Note that the
optimal matrix D is given as the product of three matrices, which form its
OSVD! Hence,

IIDII = IKII
and the integer rmin can be determined immediately from:

rmin  = r. - (maz i {&e(Si)  such that IlSill  5 6)) . (12)

where Si is an i x i diagonal matrix containing the i smallest elements of
Sl*
It is interesting to note that expressions of the form A + BDC with restric---.
tions on the norm of D can be related to the notion of mat& baUe, which
show up in the analysis of socalled completion problems [5].

Definition 3
Matrix ball

.

For given matrices  A (m x n), B (m x p) and C (q x n), the closed matriz
ball R(AIB,C)  with center A, kj2 semi-radius B and right semi-radius  C is
defined by:

R(AIB,C)  = { X I X = A+ BDC where lIDI 5 1)

Using Theorem 10 and (12), we can find all matrices of least rank within a
certain given matrix ball by simply requiring that:

and observing that u,,-(D) is a unitarily invariant norm. The solution
is obtained from the appropriate truncation of S[ in Theorem 10. The
conclusion is that the RSVD allows to detect the matrices of minimal rank
within a given matrix ball. Since the solution of the completion problems
investigated in [5] are described in terms of matrix balls, it follows that we
can find the minimal rank solution in the matrix ball of all solutions, using
the RSVD.
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3.1.6 The matrix equation BDC = A

Consider the problem of investigating the consistency, and, if consistent,
finding a ( minimum norm) solution to the linear equation in the unknown
matrix D:

_ B D C = A .

This equation has an historical significance because it led Penrose to re-
discover what is now called the Moore-Penrose pseudo-inverse [19] [22]. Of
course, this problem can be viewed as an extreme case of Theorem 8 and
10, with the prescribed integer r = 0.
Theorem 11
The mat& equation BDC = A in the unknown matriz D is consistent iff

--_
rab = rb
rat = rc
r& = rb+rc.

AU solutions are then given bg

and the minimum norm solution wnwpondu  to El3 = 0, E31 = 0, E33  = 0,
E3, = 0, Ed3  = 0.
Proof: Let E = V,+DV,  and partition E a8 in (8). The consistency of
BDC = A depends on whether the following is satisfied with equality

’ &I El2 0 0 Ells3 0 fS1 0 0 0 0 0
0 0 0 0 0 0 0 I O 0 0 0

E21 E22 0 0 E&3 0 0 OIOOO
0 0 0 0 0 0

? =?
0 OOIOO

S2E41 S2E42 0 0 sZE44s3 0 0 0 0 0 0 0
L 0 0 0 0 0 0 to 0 0 0 0 0

. Comparing the diagonal blocks, the conditions for consistency follow imme-
diately a8

= rat + rb
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which implies
. .

Tab = rb

rat = rc .
These conditions express the fact that the column space of A should be
contained in the column space of B and that the row space of A should be
contained in the row space of C.
If these conditions are satisfied, the matrix equation BDC = A is consistent
and the matrix E = V,loV, is given by

ra Q - rc rc - ra
ra

(

&I E13 E14
E =  p-rb E31 &a &4

--. rb - rt2 E41 E43 E4.r

The equation BDC = A is equivalent to

.

This is solved as

El1 = Sl El4 = 0 El1 = 0 El4 = 0 .

Observe that the solution is independent of the blocks E13, E31, Es, Ea,
E43. Hence, all solutions can be parametrized as:

(

Sl El3 0
D=(Val Vi Vi) E31 &3 &4

0 Ea 0

Obviously, the minimum norm solution is given by:

D = vb vc’
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l Observe that the result of Theorem 11 could also be obtained directly
from Theorem 10 with T = 0. -.

l Penrose originally proved [19] [22], that it is a necessary and sufficient
condition for BDC = A to have a solution, that

BB-AC-C = A (13)

where B- and C- are inner-inverses of B and C (see definition 1). All
solutions D can then be written as:

D = B-AC- + Z - BB-ZC-C (14)

where Z is an arbitrary p x q matrix. It requires a tedious though
straightforward calculation to verify that our solution of Theorem 11
coincides with (14). In order to verify this, consider the RSVD of
A, B,C and use Lemma 2 to obtain an expression for the inner-inverses
of B and C, which will contain arbitrary matrices. Using the block
dimensions of Sa,Sb, SC as in Theorem 4, it can be shown that the
consistency conditions of Theorem 11, coincide with the consistency
condition (13).

.

Before concluding this section, it is worth mentioning that all results of
this section can be specialized for the case where either B or C equals the
identity matrix. In this case, the RSVD specializes to the QSVD (Theorem
3 and 5) and mutatis  mutandia,  the same type of questions, now related to 2
matrices, can be formulated and solved using the QSVD such as shorted op-
erators, minimum norm rank minimization, solution of the matrix equation
DC = A etc...

3.2 On the rank reduction  of a partitioned matrix.

In this section, the RSVD will be used to analyse and solve problems that
can be stated in terms of the matrix 3

M =  ,“;*
( >

05)

‘In order to keep the notation condent  with that of section 3.1, we use the matrix
D’, which ia the complex coqjagate twpoee  of D in section 3.1, u the lower right block
of M. This allowe WI for instance to ube the aarne matrix E aa defined in (7) and (8.
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where A, B, C, D are given matrices.
The main results include: . .

1. The analysis of the (generalized) Schur complement [3] in terms of the
RSVD (section 3.2.1).

2. The range of ranks of the matrix M as D is modified and the analysis
of the (non)-unique matrix D that minimizes the rank of M (section
3.2.2.).

3. The solution of constrained total least squares problem with exact
and noisy data by imposing additional norm constraints on D (section
3.2.3.)

3.2.1 (Generalized) Schur complements and the RSVD

The notion of a Schur complement S of the matrix A in M (which is S =
D* - CA-lB  when A is square nonsingular), can be generalized to the case
where the matrix A is rectangular and/or rank deficient [3]:
Deflnition 4
(Generalized) Schur complement
A Schur complement of A in

is any matriz
S = D’- C A - B w

where A’ is an inner inverse of A.

In general there are many of these Schur complements, because from lemma
2, we know that there are many inner inverses. However, the RSVD allows
us to investigate the dependency of S on the choice of the inner inverse.
Theorem 12
The Schur complement  S = D* - CA-B is independent of A- i#

ra = Tab = Tat .

Inthisccrse,S-bgivenby

Eii - S,-’ E& E&
S = UC Efi E& Ej,

E*13 Eg3 Ej,
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Proof: Consider the factorization of A as in the RSVD. From Lemma 2,
every inner inverse of A can be written. as:

f
s,-’ 0 0 0 x15 &I
0 I 0 0 x25 X26

A - 0 0 I 0 x35 x36= Ql

0 0 0 I X45 X46
I p*

\
x51 x52 x53 x54 x55 X56
x61 x62 x63 x34 x35 &6

for certain block matrices Xij, where the block dimensions of the middle
factor correspond to the block dimensions of the matrix Sz of Theorem 4.
It is straightforward to show that:

0 &5s2
0 x25s20 0 0 vb' .

s3x51 s3x53 0 s3x55s2

Hence, this product is dependent on the blocks X15, X25, X51, X53, X55.
The corresponding block dimensions are zero if and ody if ra = Tab = rat.
cl

Observe that the theorem is equivalent with the statement, that the (gen-
eralized) Schur complement S = D’- CA-B is independent of the precise
choice of A- if and only if

R(B) c R(A) R(C’) c R(A*)  .

This corresponds to Carlson’s statement of the result (Proposition 1 in [3]).
In case these conditions are not satisfied, all possible generalized Schur com-
plements are parametrized by the blocks X51, X53, X15, X25 and X55 as

Gl Gl El - xlSs2 \

G2 Ej, E:2 - x25s2
E*

vb’ . (17)
23 G3 Ei3 I

\ E,'4 - s3x51 Ez4 - s3x53 E& EiA - s&ss2 J
3.2.2 How doea the rank of M change with changing D?

Define the matrix M(8) as:
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We shaJl also use fi = D - fi. What is the precise relation between the
rank of M(B) and D? Before answering this question, we need to state the
following (well known) lemma.

Lemma 4
Rank of a partitioned matrix and the Schur complement
If A is square and nonhzgular,

= rank(A) + rank(D’ - CA-l B)

Proof: Observe that:

(: ;*)=(Ci-1 ;)(:: D*-:A-lB)(i .,,)
--_

0

Thus we have,
Theorem 13

ET1 - SF’ Eil E&
=rqb+r=-ra+rank E*12

E*13

Proof= From the RSVD, it follows immediately that the required rank is
equal to the rank of the matrix

‘s* 0 0 0 0 0
0 100 0 0
0 010 0 0
0  0 0 1 0  0
0 000 0 0
0 000 0 0

IO00 0  0
0 loo 0 0
0 000 0 0

,o 0 0 0 s3 0

I 0 0 0
0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 s2
0 0 0 0

Eii % Gl Eii
Ei2 E* ES2 E*
E* E; EL E;13
Ei4 EZ4 EL Ei4

.

)
From the nonsingularity of S2 and S3, it follows that the rank is independent
of E41,  E42, E43, El4,&4, EM, EM. The result then follows immediately from
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Lemma 4, taking into account the block dimensions of the matrices. 0

A consequence of Lemma 3 is the following result:

Corollary 2 The mnge of ran&s r of M attainable by an appropriate choice
0fD in

M= ; D/B.
( >

is
Tab  + rat - r0 I r I min(p  + k, Q + Tab) .

The minimum is attained for

--, d’ = UC
I

’ E,‘, - S,’ $il \
-*E42-*E Kc

43“*E44

(18)

w h e r e  t h e  matrices  &4, k24,  &, B41,  E42,  & and  844 are arbitmry
m a t r i c e s . .

Compare the expression of b of Corollary 2 with the expression for the
generalized Schur complement of A in M a8 given by (17). Obviously, the
set of matrices b contains all generalized Schur complements; it are those
matrices fi for which:

& = Eti R43  = E43  .

If these blocks are not present in E, there are no other matrices than gen-
eralized Schur complements, that minimize the rank of M.
Hence, we have proved the following

Theorem 14
The mnk of M(d) is minimized for D equal to each genemlixed  Schur
complement of A in M. The rank of M(d) is minimixed  only for b =
D* - CA-B i#

Tab = ra or r, = Q
and

rat = rc or rb = p .

If ra = rab = rat, then the minimizing b is unique.
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Proofi The fact that each generalized Schur complement minimizes the
rank of M(d) fo11ows directly from the-comparison of b in Corollary 2 with
the expression for the generalized Schur complement in (17). The rank con-
ditions follow simply from setting the block dimensions of EM and Ed3 in
(8) equal to 0. The condition for uniqueness of b follows from Theorem 12.
0

This theorem can also be found as theorem 3 in [3], where it is proved via a
different approach.

3.2.5 Total Linear Least Squares with exact rows and columns

The nomenclature total kaeur Ze& squares was introduced in [13] as an ex-
tension of least squares fitting in the case where there are errors in both
the observation vector b and the data matrix A for overdetermined equa-
tions As NH b. The analysis and solution is given completely in terms of the
OSVD of the concatenated matrix (A b). In the case where some of the
columns of A axe  noisefree  while the others contain errors, a mixed least
squares - total least squaree  strategy was developed in [l4]. The problem
where also some rows are errorfree, was analysed via a Schur-complement
based approach in [6]. However, one of the key canonical decompositions
(Lemma 2 in [S]) and related results concerning rank minimization, were
described earlier in [3].

We shall now show how the RSVD allows us to treat the general situa-
tion in an elegant way.

Again, let the data matrix be given as

whem A, B, C are free of error and only D is contaminated by noise. It is
assumed that the data matrix is of full row rank.

The constnxined total linear least squares  problem  is equivalent to the fol-
lowing.
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Find the mat+  b and the ?wnxero  vector z such that

and IID - @p is minimized.

A slightly more general problem is the following.

Find the matrit  B such that IID - hll~ is minimal and

5r. (19)

The error matrix D - b will be denoted by fi.

Assume that a solution z is found. By partitioning z conformally to the
dimensions of A and B, one finds that the vector z satisfies:

Azl+Bz2 =  0
at1 +d’zg = 0 .

Hence, the total least squares problem can be interpreted as follows: The
rows of A and B correspond to linear constraints on the solution vector z.
The columns  of the matrix C contain error-free (noiseless) data while those
of the matrix D are corrupted by noise. In order to find a solution, one has
to modify the matrix D with minimum effort, as measured by the Frobenius
norm of the ‘error matrix’ B, into the matrix d.
Without the constraints, the problem reduces to a mixed linear - total linear
least squares problem as is analysed and solved in [14].

F’rom the results in section 3.2.2.,  we already know that a necessary con-
dition for a solution to exist is r 2 r& + rcrc - ra (Corollary 2). When
r = rd + rcrc--.ro,  then,

l The class of rank minimizing matrices b is described by Corollary 2.
Theorem 14 shows how the generalized Schur complements of A in M
form a subset of this Set.
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l From Corollary 2, it is straightforward to find the minimum norm
matrix b that reduces the rank of M(B) to r = Tab + rat - Tam  It is
given by:

Eil - Si’ E& E& 0
-*D = UC E*12 Ef2 E& 0

Ei3 G2 E& 0 va* .

0 0 0 0

l The minimum norm generalized Schur complement that minimizes the
rank of M is given by

/ E,‘,-S,-’ E& E& 0 \
S=U, Ei2 E,*, Eji O

Ei3 E2+3 E& Ei3
--. 0 0 Ej, 0

This corresponds to a choice of inner inverse in (17) given by
-1

&s = E&S2
Ll

X25 = E:2S2

x51 = S,-‘E*14
x53 = S,-‘E*24
X55 = S;‘E* S-’442 l

We shall now investigate two solution strategies, both of which are based
on the RSVD. The first one is an immediate consequence of Theorem 10,
but, while elegant and extremely simple, might be considered as suffering
from some ‘overkill’. It is a direct application of the insights obtained in
analysing  the sum A + BDC. The second one is less elegant but is more in
the line of results reported in [3] and [S]. It exploits the insights obtainedI \
from analysing the partitioned matrix M = .

3.3.3.1. Constrained total linear least squares directly via the
RSVD

It is straightforward to show that the constrained total least squares prob-
lem can be recast as a minimum norm problem as discussed in Theorem 10.
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Consider the following problem:

Find the mat+  b of minimum norm @II such that

The solution follows as an immediate consequence of Theorem 10.

Corollary 3 The solution of the constrained total linear ka,st  quays  prob-
km follow8  j5vrn the application of Them  10 to the matrix tripkt  A’, B’, C’
where

A’=--( i :. ) ,  B’= (  irxq)  a n d  C’=(OPxn  IP)

Hence, all what is needed is the RSVD of the matrix triplet (A’, B’, Cl) and
the truncation of the matrix Sl as described in Theorem 10. It is interesting
to apply also Theorem 7 to the matrix tripl.et (A’, B’, Cl):

Hence, fkom Theorem 7, the minimum achievable rank is:

ra’W + Wd - raWd = rab + rat - ra

which corresponds precisely to the result from Corollary 2.

As a special&e, consider. the Golub-Hoffman-Stewart result [14] for the
total linear least squares solution of

(A B)zmO
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where A is noise free and B is contaminated with errors. Instead of applying
the QR-SVD-Least Squares solution as..discussed  in [Ml, one could as well
achieve the mixed linear / total linear least squares solution from:

Minimize l@ll such that

rank((A B) - &Opxn &)) 5 r

where r is a prespecified integer. This can be done directly via the QSVD
of the matrix pair ((A B) , (Opxn Ip)) and it is not too difficult to provide
another proof of the Golub-Hoffman-Stewart result derived in [l4], now in
terms of the properties of the QSVD.
As a matter of fact, the RSVD of the matrix triplet of Corollary 3, allows
us to provide a geometrical proof of constrained total linear least squares,
in the line of the Golub-Hoffman-Stewart result, taking into account the
structure ofthe matrices B’ and C’. We shall however not consider this any
further in this paper.

3.2.3.2. Solution via RSVD - OSVD .
While the solution to the constrained total least squares problem as pre-
sented in Corollary 3 is extremely simple, one might object it because of the
apparent ‘overkill’ in computing the RSVD of the matrix triplet (A’, B’, C’)
where B’ and C’ have an extremely simple structure (zeros and the identity
matrix).
It will now be shown that the RSVD, combined with the OSVD may lead
to a computationally simpler solution, which more closely follows the lines
of the solution as presented in [6].

Using the RSVD, we find that:

=(pi* z)( 2 u:2*vJ(Q;1  ;)

Let E’ = v,*D*vb. Since & and vb are unitary matrices, the problem can
be restated  as follows:
Find & uuch@at llE - &F is minimal and:

The constrained total least squares problem can now be solved as follows.
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Theorem lb
RSVD-OSVD solution of constminecj  total kast  squares.

l Consider the OSVD:

-'&I - S, El2 E13
E21 E22 E23
E31 E32 &a

where re is the mnk of this  matriz.
l The mod$cation of minimal Ftlobenius  norm follows immediately from

the OSVD of this mat&  by truncating ite dyadic  decomposition after
r - Tab - Tat + Ta tt?TTM.  Let

--_ r--r&-roe+%
8= c ufaf( vi’)’ .

i=l

Thentheoptimalbbgivenby  c~

Proof: F’rom Theorem 13, it follows that the rank of

reduced by reducing the rank of the matrix

can be

-'E11- Sl
E21
E31

The matrix b is then obtained from (18) by setting the blocks &4, 224,
&, &I, &, fia, & to 0 in order to minimize the Frobenius norm and
then truncating the OSVD of the matrix above. Cl

We conclude this section by pointing out that more results and also
algorithms to solve total least squares problems with and without constraints
and given covariance matrices, can be found in [6] [25] [26].
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3.3 Generalized Gauss-Markov models with constraints.

Consider the problem of finding x, y aiid z while minimizing lly112  + ~~z~~2  =
y*y + d*z in:

b = Ax+By
I =  c x

where A, B, C, b are given.

This formulation is a generalization of the conventional least squares problem
where B = Im and C = 0. The above formulation is more general because
it allows us for singular or ill-conditioned matrices B and C, corresponding
to singular or ill-conditioned covariance matrices in a statistical formula-
tion of this generalized Gauss-Markov model. The problem formulation as
presented h&e could be considered as a ‘square root’ version of the problem:

Find x such that:
lib - 4lw* and . H*llwe

are minimized, where IIullw~ = u*Wbu  and Wb and WC are nonnegative def-
inite symmetric matrices.

In case that BB’ is nonsingular, one can put wi, = (B B*)-’ and WC = C*C.
The solution can then be obtained asfollows:

Minimize llyl12  + ~~z~~2  where:

Y*Y = (b - Az)*Wb(b  - Ax)
x*2  = Z*C’CX

Setting the derivative with respect to x equal to 0, results in

x = (A’WbA  + C*C)-‘A*W*b .

Ih case that wb = I,,, and C = 0, this is easily seen to be the classical least
sqtlaras expression.  However, for this more general case, one can see a con-
nection with so-called regularization problems. Consider the case C # 0 and
B = Im. If the matrix A is ill-conditioned (because of so-called collinearities,

- which are (almost) linear dependencies among the columns of A), the addi-
tion of the term C’C may possibly make the sum better suited for numerical
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inversion than the original product A’A, hence stabilizing the solution x.

The matrix B acts as a ‘static’ noise-filter:  Typically, it is assumed that
the vector y is normally distributed with the covariance matrix E(yy*) be-
ing a multiple of the identity. The error vector By for the first equation
can only be in a direction which is present in the column space of B. If the
observation vector b has some component in a certain direction not present
in the column space of B, this component should be considered as errorfree.
The matrix C represents a weighting on the components of x. It reflects
possible a priori information concerning the unknown components of x or
may reflect the fact that certain components of x (or linear combinations
thereof) are more ‘likely’ or less costly than others. The fact that one tries
to minimize y* y + z*z reflects the intention that one tries to explain as much
as possible (i.e. min y*y) in terms of the data (columns of the matrix A),
taking into account a priori knowledge of the geometrical distribution of the
noise (the weighting Wb). The matrix C reflects the cost per component,
expressing the preference (or prejudice?) of the mode&r to use more of one
variable in explaining the phenomenon than of another.
In applications, however, typically, the matrix A contains much more rows
than columns, which corresponds to the fact that better results are to be
expected if there are more equations (measurements) than unknowns. How-
ever, the condition that BB* is nonsingular requires quite some a priori
knowledge concerning the statistics of the noise. Because typically this
knowledge is rather limited, B will have less columns than rows, imply-
ing that BB* is singular such that the explicit solution of (3.3) does not
hold.

In this case, the RSVD can be applied in order to convert the problem
to an easier one, while at the same time providing important geometrical
insight and results on the sensitivity. Using the RSVD, the problem can
be rewritten as:

(P*b) = Sa(Q-‘2)  + sb(vdLY)
UC4 = S&y’x)

Define V = P*b;,‘Z’ = Q-lx, y’ = Vcy, x’ = Uzo then with obvious partition-
ings of b’, x’, y’, zz’ it follows that:
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bt2 = x’~

b$ = 5’3 -I- Y’2
b’r = 5’1
b’s = S2Y’4
b$ = 0

Observe that b’e = 0 is a coWy condition. It reflects the fact that b
is not allowed to have a component in a direction that is not present in the
column space of (A B). xi and xi can be estimated without error while the
fact that b& = S2yi could be exploited to estimate the variance of the noise.

Most terms in the object function y’y + Z*Z can now be expressed with
the subvectors x’i, (i = 1,. . . ,6),

y*y + z*z = b’;b; + x’;S;x; - 2bTSl< + b’;b; + x’;x& - 2b’jx;
+y’;y;  + b;*S;‘b; + 2’;~; + x’;S,lx; + b’;b;

The minimum solution follows from differentation  with respect to these vec-
tors and results in

2’1 = (I + Sf)-lS1b’l
2’2 = b:
xf3 = b’s
xtq = bi
X’B = 0
xc3 =  a r b i t r a r y

yfl =  ( I  +  S,2)-‘b$ ztl = ( I +  S,2)-1Slb;
9’2 = 0 zt2 = b;
y’3 = 0 2’3 = 0
y’, = Sz’lb$ %‘d = 0

Statist&al  prop.&@ such as (un)biasedness and consistency, can be anal-
ysed in the same spirit as in [21], where Paige has related the Gauss Markov
model without the x-equation, to the QSVD. Similarly, the RSVD also
allows us to analyse the sensitivity of the solution. If for instance S2 is ill-
conditioned, then the minimum of the object function will tend to be high,
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whenever 6: has strong components among the ‘weak’ singular vectors of
S2, because of the term b’;Sr2bi.

A related problem is the following:

Minimize y*y in

subject to

b = A x + B y
/

c x = c  .

This is a Gauss-Markov linear estimation problem as in [2l], but with con-
straints. The solution is again straightforward from the RSVD. With
b’ = P*b,  x’ = Q-lx, y’ = Vcy, c’ = U:c and an appropriate partition-
ing, one finds

x; = c;
2: = c; = b;
xi = b;
4 = bi
2; = s,-‘4
2; = arbitrary

Yi = b; - SIC:
Yi = o
y; = 0
y: = S;‘b;

Observe that ci = b: represents a con&ency  condition.

4 Conclusions and perspectives.
In this paper, we have derived a generalization of the OSVD, the restricted
singular value deoompo&on (RSVD), which has the OSVD, PSVD and
QSVD a8 special cases. Besides a constructive proof, we have also analysed
in detail its structural and geometrical properties and its relations to gen-
eralized eigenvalue problems and canonical correlation analysis.
It was shown how it is a valuable tool in the analysis and solution of rank

. minimization problems with restrictions. First, we have shown how to study
expressions of the form A + BDC and find matrices D of minimum norm
that minimize fhe rank. It was demonstrated how this problem is connected
to the concept of shorted operators and matrix balls. Second, we have anal-
ysed in detail the rank reduction of a partitioned matrix, when only one
of its blocks can be modified. The close relation with generalized Schur
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complements was discussed and it was shown how the RSVD allows us to
solve constrained total linear least squares problems with mixed exact and
noisy data. Third, it was demonstrated how the RSVD provides an elegant
solution to Gauss-Markov models with constraints and can be used to study
and compute canonical correlations.
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Appendix  A: Two constructive proofs of the RSVD.
The analysis and the constructive proofs of the RSVD will be performed
using the (m + q) x (n + p) matrix T:

With the notation of section 1, we have:

rank(T) = rok

Obviously, from the RSVD theorem, it follows that:

Therefore, we shall derive expressions for P, Q, U’ and Vb via a factorization
approach, in which the matrix T will be transformed into matrices T(‘) via
a recursive procedure of the form: .

fik+1) = (P(k))’ 0
0 ( ujkJ)*

with T(O) = T. In each step, the matrices P(,), g<),  are square non-singular
while Uj”), ekJ are unitary. Hence the important observation that:

Rank preservation
For all k:

l r~n&(T(~)) = rank(T) = rcrk

l rank(A(k)js,  = rank(A) = r.

l rank(Btk)) = rank(B) = m
l rank(dk))  = rank(C) = r,
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At each recursion, we get closer to the required canonical structure from
Theorem 4. The final matrices P,Q, UC, Vb are then simply obtained by
multiplication of the matrices Pti), Q(‘), U(‘), If(‘).

We will now present 2 constructive approaches. The first one is based upon
the properties of OSVD and the PSVD and the second one is based upon
the properties of the OSVD and the QSVD.

Constructive proof 1: OSVD and PSVD

The construction proceeds in 4 steps:

1. First the data in the matrix T are compressed via three OSVDs.

2. Then the Schur complement Lemma 4 is invoked to eleminate some
matrices.

3. A PSVD is performed which delivers at once the structure as in The-.
orem 4.

4. The last step is a simple scaling and reordening.

Compared to the second constructive proof based on the QSVD, the proof
with the PSVD is algebraically more elegant.

Step 1: An orthogonal reduction

The first step consists of an orthogonal reduction, based upon three OSVDs.
The idea can be found in [6] though a similar reduction can also be found
in [3].

Lemma 6
There e&t unitary  matrices P(l), U(l),  Q(l), V(l) such that:

( (P(l))’ 0
0_. . (U(l))’ )(t :)(‘Q? A )
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n - f’ac rob - To p + “a - Tab

To 0 -* B;;) B,(i)
Tab - pa 0 Bp 0

= m - Tab 0 0 0 .
Tat - ra 0 0 0
Q + ra - Tat 0 0 0

where each of A(l) (‘I @)11 , B,, , C,, is either square and nov+aingular  or null. (If
one is null, delete  the cowepmding rowa and columns.)

Proofi The proof consists of a straightforward sequence of 3 OSVDs. From
the OSVD of A it follows that there exists unitary matrices Ua1 and Val
such that

v,‘,AVa1 =--_

where Alf’ is square nonsingular diagonal containing the non-zero singular
V~U~S of A . With r( Ail,)) = ra, one finds that

From the OSVDs of BP) and Cp), obtain &I, vbl, &I, Vcl such that

u+,cpvcl =

where B$ and Cii) are square nonsingular containing the non-zero singular
values of BP) and Cp). Then

41 0 0 B$ B;:)
0 0 0 Bd:) 0
0 0 0 0 0

C,c:) cg 0 0 0
cg 0 0 0 0
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with obvious definitions for B$’ , B;:), C;;) , C$;) . It is straightforward to
show using Lemma 1, that . .

rank(B$))  = rob - r

rank(C$) = rat - r:
(21)

. (22)

Also it follows that

rank(B&  = ra + Tb - rob

rank(C~~))  = ra + rC - Tab

because obviously

--_ rank(B) = rb = rank( Bi:)) + rank( Bii))

r rank(C) = r, = rank(@)  + rank(&)) .

Then letting

(p(l))* = (I; ;l)u:l l , w29*=uc ;,
(8"') = Vol (2 ;l) ) v(2)=vbl

proves the Lemma.

The matrix Z’(l) takes the form

(23)
(24)

0

r0

rob-r0

m - r@.. _.

rOC-TO

Q - f-0, t To

.

$1) =

To rot - PO n - r0c %b - f0 p - hb t r0

’ A(‘)

11 0 0

Bit) Bg

0 0 0 Bi’,) 0
0 0 0 0 0

Cg) C$ 0 0 0
d’)21 0 0 0 0) I
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Step 2: Elimation of Cji) and B,(i)

Recall that the matrices I?!:) and C$ are square nonsingular diagonal.
Because of the nonsingularity of C$, the matrix Cl:’ can be eliminated by
a non-singular transformation using Lemma 3, as follows

Similarly for the matrix B$:) from the nonsingularity of B$

If-0 - Bi’,)( B$)-’
0 Ir,C-r,

Define P(l) --v

I
(Pf2))’ = ;

-BI:‘( Bi;))-’
1

rob-ro
0 0 .

and Q(2) as

(
I 0

(Q(2)) = -&+ 1
rat-ra

0 0

0
0

I“+-rab

At the same time we will permute the block rows and columns with

( 0 &r,e+r,
Iroe--+a 0

and

The resulting matrix Tt2)  is then given by

T(2) = (25)
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r0 r0c - ra n - rac P - Tab  t To Tab  - f’a

r0 Ai;) 0 0 B$)

hb - 70 0 0 0 0 Bg)
m - Tab 0 0 0 0

0 I

0..
Q- r0c + T0 c# 0 0 0 0
T0c - r0 0 Cg 0 0 0

Let’s now first determine the rank of the matrix Tf2).

rank(T(‘))  = rah
= rank(T)

0 0 0 0
--. = r 0 0 0 0 0

= r( AK))  + r( -#(A#)-‘Bi’,))  + r(C{:‘> + r( B!$)

= r0 t (rob - r,) t (rot - To) + r( -@( A!‘,))-‘Bi:)) .

The second step follows fkom the non-singularity of Cii’ and B$i)  while step
3 follows from the Schur complement argument (see Lemma 4 in section
3.2.2.) and the nonsingularity  of AK).
Hence:

r,h = rank(T) = rank(T(‘))  = ros+r,,-r,+rank(C~:)(A~))-‘B~~))  (26)

Step 3: The PSVD step

Let’s first concentrate on the submatrix

Recall that All is square nonsingular diagonal, containing the nonzero sin-
gular values of A. Consider the PSVD of the matrix pair
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(&4’9-l/2,  (&))*(A!;))-l/2):21 11

C;;)(4))-‘/a  “= &3&3x;
(Bi;))*(Ai’,‘)-‘1’ = VmSb3X;1 .

Define To4 as
rod = rank( C$( At))-’ B{i)) .

Then, from (26) we find immediately that

ra4 = r a k : t r 0 - Ta b  - r a t l
(27)

and from the PSVD (Theorem 2 in section l), it follows that the matrices
Sd and SB have the following structure:

--._ S& =

r0bc t To - Tab  - f0c

r& t To - f’ab - %C y/2
a4

%b t Tc - hk
q - rc

0 .
0

sm=

rabc t ro - rob - rat

rabctra-r~-Troc SW
04

rat t rb - robe 0
P- rb 0

%b t rc - Gbc

0
I
0

Tab + r, - rabc r0c t rb - %bc %k - rb - rc
0 0 0
0 I 0
0 0 0

Now, use the PSVD to define:

(p'3')* =
Xj(A$',))-'/2 0 0

0 Itab-% 0

and

and

(&+/2X-* 0 3

0
(($3)) = Iroe-ra 0

0 0 In-r,

(UN)* = 43 O
( 0 Ir,,-r, >

T0c t rb - Gbc r0k - rb - rc
0 0
0 0
0 0
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(V(3))  =
( ?..Iray-ra)  ’

It is straightforward to show that

Ira 0 ask 0
0 0 0 0 B’,)
0 0 0 0 0

S& 0 0 0 0
0 c$ 0 0 0

Inserting the structure of Sm and Sd results in the following structure for
the matrix Tf3)

--. 1
2
3
4

Tf3) = f

7
8
8
10

1 2 3 4 6 0 7 8 8 10
’ I 0 0 0 0 0 sir 0 0 0

0 1 0 0 0 0 0 0 0 0
0 010 0 0 0 I O 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 o 0 Bi’,)
0 0 0 0 0 0 0 0 0 0

sip 0 0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

b 0 0 0 0 cg) 0 0 0 0 0

The block dimensions of Tt3) axe the following

block rows block columns
rh t r0 - Gb - %c
rob t rc - rabc
r0c t rb - Tabc
rak - rb - rc

k - r0

n - rac
r,k t r0 - hb - Tat

roctrb-rok
p- “b

i-
2
3
4
s
8
7

4
9
10

rh t r0 - rob - rot

wJ-rc--rcrbc
Gd-rb-%bc
r& - rb - rc
c-d-r,
m - Tab
rh t r. - Tab  - %c

Cwt-rc-r0k
q- rc
rot - r.
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Step 4: Scaling and Permutation

The final scaling step in order to find the canonical structure of Theorem 4,
is easily derived from the following observation

Moreover, we shall do a permutation of block rows 3 and 4 and block columns
3 and 4. Hence the matrices P(*l and Qt41 are determined by:

(P”‘)’ =

(Q(4)) =

’ s,-,1/2 000000’
0 1 0 0 0 0 0
0 00I000
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0L 0 0 0 I,

’ s,-:” 0 0 0 0 00
0 10-o 0 0 0
0 00I000
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

4 0 .o 0 0 0 0 I

where the block dimensions of the identity matrices are obvious from the
block dimensions in Tt31. It is now easily found that:

which proves the Theorem.

To4 =

0

Constructive proof 2: the OSVD and the QSVD

Instead of usi& the structure and properties of the PSVD, it is feasible to
derive a constructive proof of the RSVD using the structure and properties
of the QSVD. The idea is borrowed from (281. The resulting proof is a little
less elegant than the one via the PSVD and consists of 7 steps:
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1. First, an orthogonal reduction based upon 3 OSVDs is performed.

2. A Schur complement elimination is the second step.

3. Then a QSVD is required of a certain matrix pair . . .

4. . . . followed by a second QSVD.

5. Some blocks can again be eliminated by a Schur complement factor-
ization.

6. An additional OSVD is required.

7. Finally, there is a diagonal scaling.

Step 1: Orthogonal reduction

The first step is nothing else than the orthogonal reduction described in
Lemma 7.

Step 2: Elimination of Cl1 and I311 -

The second step corresponds to step 2 described in the first constructive
proof, resulting in the matrix !I’t2).

Step 3: QSVD of the pair (Ci’,), Ai’,))

Consider the matrix Z’f2) and let the QSVD of the matrix pair (Ci:), AI’,))
be given as

. Matrices  So2 and Cd are (ra + rc - rot) x ( ra + rc - r,b) square nonsingular
diagonal matrices with positive diagonal elements, satisfying
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Observe that there are no zero elements in the diagonal matrix of the de-
composition for A?? because Ai',) is square nonsingular. Now, define

0
0 ;

0 o &h--r&,

(
x2(Q’3’) = 0
0

0
Ifoe-to

0

0

Ii

CE;'
0 0

I
0

n-b 0

0
Iroe-f-e

0
0

0
0

Irat - r'4
0

(
c2 0u3+= 0 1 >

; v3 = Iq .
k-0

--..
This results in a matrix Tf3) as:

1 2
1
2
3

$3) = 4
5
6
7

f sa2(G2)-1 0
0 Ir0 -r4
0 0
0 0

Irc2 0
0 0

i 0 0

3 4 s 6
0 0, Bll(3) 0
0' 0 lQ3) 0
0 0 0 I?$',)
0 0 0 0
0 0 0 0
0 0 0 0

cg 0 0 0

Here we have that
=  U:;B$ .

The block dimensions of Z’f3) are
block rows

1
2
3

- 4
s
6
7

ra + rc - rot

rat - rc

Tab  - rt~
m - rab
r. + 6 - rot
q - rc
rot - r.

0
0
0

I
;

In-b

block columns
ra + rc - rat
b-r,
rot - ra
n - r
p + r,“- rob
66 - fa
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Step 4: QSVD of (B11(3),Sa2CE;1)

Let the QSVD of the matrix pair (&j3), Sa2Ci1) be given as

&l(3) = x3-* y “0 UN* ;( )
sa2cc;1 = x3-* s;3 I( O > U03*

ro++e-+ac--rba

where Scr3 and CM are r& x rm diagonal matrices with positive diagonal
elements, satisfying

Si3 + C& = IrM

and
9-u =  rank(BJ3))  .

An expression for ru in terms of r,, rb, r,, r&, r,,c,  ra&  will now be deter-
mined. Choose:

;

(~(4)) = O kc-r, Oi u 0 0 03 0 0 0 Go.-ra 0 0
0

In-roe 0 0 i ;

(

U’ 0
(u(‘))*  = 0”” Iq-e i ) ; Vi= ( y I,,:-~~  )

0 0 bae-ra
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Then we have that

1
2
3
4

T(4) = s
6
7
8
9

where

1 2
I sa3 0
0 L+rc-roe-b8
0 0
0 0
0 0

Irb8 0
0 Iro+rc-roc-rm

0 0
L 0 0

3 --
0
0

Iroe - rc
0
0
0
0
0
0

4
0
0
0
0
0
0
0
0
Cg

s 6 7
0 63 0
0 0 0
0 B31t4) B3zt4)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

The rank of T(“) can now be determined as follows:

rank( Tf4)) = r a n k ( T )

= rabc

=  rac+rob-ra+n3  .

The third line follows from the Schur  complement rank property (Lemma 4
in section 3.2.2.). Hence

f-63 = To& + ra - rob - rat .

The block dimensions of the matrix Tt4) are the following

(28)

1
2
3
4
S
6

i
8
a

block rows
To&  + ra ‘- rab - fat

rob + rc - rak
rat - rc
Cd-r0
712 - rob
C& + ra - rob - rat
rob+rc-rabc
q - rc
b-r0

66

block columns
robe + ra - cd - rat
Tab  + rc - r0&
rat - rc
r0c - r0
n - rac
r,k + r0 - r0b - rat
p + rat - rak
Tab-r0



and

(Pf5))’ = [-B3+3 54 ;

I 0 0 0 0
0 I 0 0 0

(Qt5') = IB34') 0 I 0 0 ;

Step S: Elimination of B,(*)

It is easy to verify that B3&*) can b6 eliminated by choosing (we have
omitted the subscripts of the identity matrices):

-...

with

0 0 0 I 0
0 0 0 0 I I

u5 ZIP ; Vp,I& .

The result is:

T(s) =

’ So3 0 0 0 0 C& 0 0
0I0000 0 0
0 or 0 0 0 B32(*) 0
0 0 0 0 0 0 0 Bi',)
0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0
0I0000 0 0
0 0 0 0 0 0 0 0

, 0 0 0 cg 0 0 0 0

having the same block dimensions as the matrix T(*).

Step 6: Elimination of Cd and B32(*)

Consider the OSVD of B32(*)  ax

B32(*) = vb, sb4 O V#&*
( 10 0

67



where Su is TM x r& diagonal with positive diagonal elements and

rbq =  rank@#) .

We shall now derive an expression for q,,+ Hereto choose (the block dimen-
sions follow from those of T’*) )

(u@J)* = IQ ; v(s) =

The result is the matrix T(%

1
2
3
4

T(6) = ;

7
8
8
10

1 2 3 4 S 6 ‘7 8 9 10
‘S&C&-l 0 0 0 0 010 0 0

0 1 0 0 0 00 0 0 0
0 010 0 0 0 S& 0 0
0 0 0 1 0 00 0 0 0
0 0 0 0 0 0 0 0 0 Bj’1’
0 0 0 0 0 00 0 0 0
I 0 0 0 0 00 0 0 0
0 1 0 0 0 00 0 0 0
0 0 0 0 0 00 0 0 0
0 0 0 0 cg 0 0 0 0 0

. Observe that from the block dimensions of T(*) it follows that

-- rb = rabc - r 0c  + r b 4 l

Hence,
n4 = rat + rb - r0& .

Hence, the block dimensions of T@) axe
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