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Abstract

The restricted singular valwe dccomporition (RSVD) is the factoriza-
tion of a given matrix, relative to two other given matrices. It can be
interpreted as the ordinary singular value decomposition with different
inner products in row and column spaces. Its properties and struc-
ture are investigated in detail as well as its connection to generalized
eigenvdue problems, canonical correlation analysis and other general-
izationz of the singular value decomposition.

Applications that are discussed include the analysis of the extended
shorted operator, unitarily invariant norm minimization with rank con-
straints, rank minimization in matrix balls, the analysis and solution
of linear matrix equations, rank minimization of a partitioned matrix
and the connection with generalized Schur complements, constrained
linear and total linear least squares problems, with mixed exact and
noisy data, including a generalized Gauss-Markov estimation scheme.
Two constructive proofs of the RSVD in terms of other generalizations
of the ordinary singular value decomposition are provided as well.
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1 Introduction

The ordinary singular value decomposition (OSVD) has a long history with
contributions of Sylvester (1889), Autonne (1902) 1], Eckart and Young
(1936) [94nd many others. It has become an important tool in the anal-
ysis and numerical solution of numerous problems arising in such diverse
applications as psychometrics, statistics, signal processing, system theory,
etc. ... Not only does it allow for an elegant problem formulation, but at
the same time it provides geometrical and algebraic insight together with
an immediate numerically robust implementation [12].

Recently, several generalizations to the OSVD have been proposed and
their properties analysed. The best known one is the generalized SVD as
introduced by Paige and Saunders in 1981 [20], which we propose to rename
as the Quotient SVD (QSVD) [7]. Another example is the Product SVD
(PSVD) as proposed by Fernando and Hammarling in [11] and further anal-
ysed in [8]. The third one is the Restricted SVD (RSVD), introduced in
its explicit form by Zha in [28] and further developed and discussed in this
paper.

A common feature of these generalizations-is that they are related to the .
OSVD on the one hand and to certain generalized eigenvalue problems
on the other hand. Many of their properties and structures can be estab-
lished by exploiting these connections. However, in all cases, the explicit
generalized SVD formulation possesses a richer structure than is revealed
in the corresponding generalized eigenvalue problem. We conjecture that
numerical algorithms that obtain the decomposition in a direct way, with-
out conversion to the generalized eigenvalue problem, will be better behaved
numerically. The main reason is that the generalized SVDs are related to
their corresponding generalized eigenvalue problem or OSVD via Gramian-
type or normal equations like squaring operations as for instance in AA*,
the explicit formation of which results in a well known non-trivial loss of
accuracy.

In this paper, we propose and analyse a new generalization of the sin-
gular value decomposition: the Restricted Singular Value Decomposition
(RSVD), which applies for a given triplet of (possibly complex) matri-
ces A, B,C of compatible dimensions (Theorem 4). In essence, the RSVD
provides a factorization of the matrix A, relative to the matrices B and C.
It could be considered as the OSVD of the matrix A, but with different
(possibly nonnegative definite) inner products applied in its column and in



it8 row space.

It will be shown that the RSVD not only allow8 for an elegant treatment of
algebraic and geometric problem8 in a wide variety of applications, but that
it8 structure provide8 a powerful tool in simplifying proofs and derivation8
that are algebraically rather complicated.

This paper is organised as follows:

¢ In section 2, the main structure of the decomposition of a triplet of
matrices is analysed in term8 of the rank8 of the concatenation of cer-
tain matrices. The factorization is related to s generalized eigenvalue
problem (section 2.2.1) and a variational characterization is provided
in section 2.2.2. A generalized dyadic decomposition is explored in
section 2.2.3 together with a geometrical interpretation.
It is shown how the RSVD contain8 other generalization8 of the
OSVD, such as the PSVD and the QSVD (see below) a8 special
case8 in section 2.2.4. In section 2.2.5, it is demonstrated how a spe-
cial case leads to canonical correlation analysis. In section 2.2.6, we
investigate the relation of the RSVD with some expressions that in-
volve pseudo-inverses.

o In section 3, several application8 are discussed:

- Rank minimization and the eztended shorted operator are the subject
of section 3.1, as well as unitarily tnvariant norm minimization
with rank constraints and the relation with matriz balls. We al80
investigate a certain linear matrix equation.

- The rank reduction of a partitioned matriz when only one of it8
block8 can be modified, is explored in section 3.2 together with
total least squares with mized exact and noisy data and linear
congtraints. While the role of the Schur complement and it8 close
connection to least squares estimation is well understood, it will
be shown in this section, that there exists a similar relation be-
tween constrained total linear least squares solutions and a gen-
eralized Schur compkment.

- Generalized Gauss-Markov mode&, possibly with constraints, are
discussed in section 3.3 and it is shown how the RSVD simplifies



the solution of linear least squares problem8 with constraints.

« In section 4, the main conclusions are presented together with some
perspectives.

Notations, Conventions, Abbreviations

Throughout the paper, matrices are denoted by capitals, vector8 by lower
case letter8 other than i, j, k,1, m, n, p, g, 7, which are nonnegative integers.
Scalars (complex) are denoted by Greek letters.

A (mxn), B(mxp), C(gxmn)are given complex matrices. Their rank
will be denoted by r4, s, r.. D is @ p X g matrix. M is the matrix with

. .+_ [ A B
A, B, C, D*as it8 blocks: M = (C’ D*
the following ranks:

R a4 B
Tac =rank | o Tabe = rank { ~ o

Tap = rank( A B)

) . We shall also frequently use

The matrix A% is the unique Moore-Penrose pseudo-inverse of the matrix A,
At is the transpose of a (possibly complex) matrix A and 4 is the complex
conjugate of A. A* denotes the complex conjugate transpose of a (complex)
matrix: A* = Z°. The matrix A~* represent8 the inverse of A*. I is the
k x k identity matrix. The subscript is omitted when the dimensions are
clear from the context. e; (m x 1) and f; (n x 1) are identity vectors: all
component8 are 0 except the i-th one, which is 1. The matrices U, (M X m),
Va (n x n), Vs (p X p), Uc (g X g) are unitary:

v,Ur = 1. = U, VoVi=IL, =V,
Wy =L =WV UUr =1I,=UU,

The matrices P (m x m), Q (n x n) are square non-singular. The non-
zero elements of the matrices S,, Sy and S, which appear in the theorems,
are denoted by a;, B; and ;. The vector a; denote8 the i-th column of
the matrix A.- The range (columnspace) of the matrix A is denoted by
R(A)R(A) = {yly = Az}. The row space of A is denoted by R(A*). The
null space of the matrix A is represented a8 N(A)N(A) = {z|Az =0). N
denote8 the intersection of two vectorspaces.

We shall frequently use the following well known:
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Lemma 1

dim(R(A) (R(B))
dim(R(A*)[R(C*))

Ta T Th—Tap

Tat Tc— Tac

||4]| is any unitarily invariant matrix norm while ||A||r is the FTobenius
norm: ||4J|% = trace(AA*). The norm of the vector a is denoted by ||al|2
where ||a||3 = a*a. Moreover, we will adopt the following convention for
block matrices: Any (possibly rectangular) block of zeros is denoted by 0,
the precise dimensions being obvious from the block dimensions. The sym-
bol I represents a matrix block corresponding to the square identity matrix
of appropriate dimensions. Whenever a dimension indicated by an integer in
a block matrix is zero, the corresponding block row or block column should
be omitted and all expressions and equations in which a block matrix of
that block row or block column appears, can be disregarded. An equivalent
formulation would be that we allow 0 x n or n x 0 (n # 0) blocks to ap-
pear in matrices. This allows an elegant treatment of several cases at once.

Before starting the main subject of this paper, the exploration of the prop-
erties of the RSVD, let us first recall for completeness the theorems for the
OSVD and its generalizations, namely the PSVD and the QSVD.1

Theorem 1

The Ordinary Singular Value Decomposition: The Autonne-Eckart-
Young theorem

Every m x n matriz A can be factorized as follows:

A =U,S,.V,;

Rerantly, we. have proposed a standardized nomenclature and format for the singular
value decomposition and its generalizations [7]. We propose to refer to the generalized
SVD of Paige and Saunders [20] as the quotient SVD (QSVD) because the Product SVD
(PSVD) and the Restricted SVD (RSVD) can also be considered as generalizations”
of the Ordinary SVD (OSVD). This set of names has the additional advantage of being
svieen. and mnemonic: O-P-Q-R-SVD !




where U, and V, are unitary matrices and S, is a real m x n diagonal matriz
with r4 = rank(A) positive diagonal entries:

Ta N — 74

_Ta D, 0
S""m—r,,(o 0 )

where D, = diag(o;), 0; > 0,i=1,.. ., r,.

The columns of U, are the left singular vectors while the columns of V, are
the right singular vectors. The diagonal elements of S, are the so-called
singular values and by convention they are ordered in non-increasing or-
der. A proof of the OSVD and numerous properties can be found in e.g.
[12]. Applications include rank reduction with unitarily invariant norms,
linear and total linear least squares, computation of canonical correlations,
pseudo-inverses and canonical forms of matrices [24].

The product singular value & composition (PSVD) was introduced by Fer-
nando and Hammarling [11]in 1987.

Theorem 2
The Product Singular Value Decomposition
FEvery pair of matrices A, m X n and B, m x p can be factorized as:

A
B

P SV
PSVy

where V,, V, are unitary and P is square nonsingular. S, and S have the
following structure:

1 Ta—T1 N—T,g

! D, 0 0
S = Ta—T 0 I 0
i 0 0 0
m—ra—rp+r1 \ 0 0 0
rn =" p-—Tp
™ Db 0 0
Sy = Ta—T1 0 0 0
T™n—1 0 I 0
m—-ra—rp+r1 \ O 0 0



where Dq = Dy are square diagonal matrices with positive diagonal elements
and ry = rank(A*B).

A constructive proof based on the OSVDs of A and B, can be found in [8],
where also all possible sources of non-uniqueness are explored.

The name PSVD originates in the fact that the OSVD of A*B is a direct
consequence of the PSVD of the pair A, B. The matrix D2 = D contains
the nonzero singular values of A*B. The column vectors of P are the eigen-
vectors of the eigenvalue problem (BB*AA*)P = PA. The column vectors of
Va are the eigenvectors of the eigenvalueproblem (A*BB*A)V, = V,A while
those of V3 are eigenvectors of (B*AA*B)V, = V3A. The precise connection
between V,, V, and P is analysed in [8]. The pairs of diagonal elements of
S, and S, are called the product singular value pasirs while their products
are called the product stngular values. Hence, there are zero and nonzero
product singular values. By convention, the diagonal elements of S, and S,
are ordered-such that the product singular values are non-increasing.
Applications include the orthogonal Procrustes problem, balancing of state
space models and computing the Kalman decomposition (see [8] for refer-
ences.)

The quotient singular value decomposition was introduced by Van Loan in
[27](’ the BSVD ) in 1976 although the idea had been around for a number
of years, albeit implicitly (disguised as a generalized eigenvalue problem).
Paige and Saunders extended Van Loan idea in order to handle all possible
cases [20] (they called it the generalized SVD).

Theorem 3
The Quotient Singular Value Decomposition
Every pair of matrices A, m xn and B, m x p can be factorized as:

A = PT'S, V]
B = PT*Sy\Vy

where V; and V; are unitary and P is square nonsingular. The matrices S,
and Sy have the following structure:

Tab=Th Tq+ Th—Tagp N —T4

" Pab =T | 0 0
Seg= Ta +Tb—Tab 0 Da 0
Tab — Ta 0 0 0

m — rap 0 0 0



P—=7y Ta+ Th—Tgb Tab—Ta

Tab — Th 0o . 0 0
_Ta+Tp—Tg 0 D, 0

Sb - rab - ra 0 0 I
m— T 0 0 0

where D, and D, are square diagonal matrices with positive diagonal ele-
ments, satisfying:
D3+ D} = I yyry—ry

The quotient singular values are defined as the ratios of the diagonal elements
of §4 and Ss. Hence, there are zero, non-zero, infinite and arbitrary (or
undefined) quotient singular values. By convention, the non-trivial quotient
singular value pairs are ordered such that the quotient singular values are
non-increasing.

The name QSVD originates in the fact that under certain conditions, the
QSVD provides the OSVD of 4+ B, which could be considered as a matrix
quotient. Moreover, in most application8 the quotient singular values are
relevant (not the diagonal elements of §4 and. S, as such).

The column vectors of P axe the eigenvectors of the generalized eigenvalue
problem AA*P = BB*PA.

Applications include rank reductions of the form A + BD with minimization
of any unitarily invariant norm of D, least squares (with constraints) [21]
and total least squares (With exact columns), signal processing and system
identification, etc . . .[24][12].

2  The Restricted Singular Value Decomposition
(RSVD)

The idea of a generalization of the OSVD for three matrices is implicit
in the S, T-singular value decomposition of Van Loan [27] via its relation
to a generalized eigenvalue problem. An explicit formulation and deriva-
tion of the restricted singular value decomposition was introduced by Zha in
1988 [28] who derived a constructive proof via a sequence of OSVDs and
QSVDs, which can be found in appendix A. Another proof via a sequence
of OSVDs and PSVDs, which is more elegant though, was derived by the
authors and can be found also in appendix A.



In this section, we first state the main theorem (section 2.1), which de-
scribes the structure of the RSVD, followed by a discussion of the main
properties, including the connection to generalized eigenvalue problems, a
generalized dyadic decomposition, geometrical insights and the demonstra-
tion that the RSVD contains the OSVD, the PSVD and the QSVD as
special cases.

2.1 The RSVD theorem
With the notations and conventions of section 1, we have the following:

Theorem 4

The Restricted Singular Value Decomposition

Every triplet of matrices A (mx n), B (mx p) and C (g x n) can be factorized
as:

A = P*S5,Q7!
B = P“S,,V,,"
c = US.Q7!

where P (m x m) and @ (» x n) are square nonsingular, V3 (p x p) and
Ue: (g X g) are unitary. S (M X n), Sp (M x p) and S. (q X n) are real
pseudo-diagonal matrices with nonnegative elements and the following block

structure:

3 5 6

cocoocooon
OO OO N
OO0 ok a0
OO WMOoO A
OO0 OO
OO0 OO

N N -
cooNOON
cooocoo W
ochroocooco »



5 6
0 0
0 0
Se = 0 0
0

w W

C OO N -
CO~NO N
(= = = I = oV}
(== I <= T — R -~ I

S3
The block dimensions of the matrices S,, Sp, S, are:

Block columns of §4 and S,:

1. Tape+ Ta — Tac — Tab
2, Tap + Te = Tabe

3. Téc + Tb — Tabe

4. Tabe — Tb = Tc

5. Tac — Ta

6. B — Tac

Block columns of Sp:

1. Tape + Ta — Tac — Tad
2. Tac + T — Tabe

S p=mry

4. Tab—Ta

Block rows of S, and Sp:

1. Tape + Ta — Tab — Tac
2.Tap + Tc — Tabe

8. Tac + Th — Tabe

4 Tabc —To— Tc

5. Taqp — Ta

6. m—Ta

Block rows of S¢:

10



1. Tgpe + Tg = Tab — Tac
2.7Tab + Tc = Tabe
3.9-r

4. Tac — Ta

The matrices §;, S;, S3 are square nonsingular diagonal with positive diag-
onal elements.

For two constructive proofs, which are straightforward, the reader is referred
to appendix A. The first one is based on the properties of the OSVD and
the PSVD. The second one is borrowed from [28] and exploits the proper-
ties of the OSVD and the QSVD.

We propose-to call restricted singular ualuetriplets, (a;, pi, ¥), the following
triplets of numbers:

o Tabe + Ta — Tap — Tac triplets of the form (e, 1,1) with a; > 0. By
convention, they will be ordered as:

ay 2 az 2 . —>- ar.u-{-r.-r,b—r“ > 0

o 1ap + 1o — rape triplets of the form (1,0, 1).

o Tac+ T - Tape triplets of the form (1, 1,0).

o Tabe — T - T¢ triplets of the form (1,0,0).

o Tqp — T4 triplets of the form (0, 8;, 0), B; > 0 (elements of S3).
e Tac — T4 triplets of the form (0, O, y), v > 0 (elements of S3).
¢ min(m — rap, N - 1) trivial triplets (0, 0,0).

Formally, the restricted singular values are the numbers:

Hence, there are zero, infinite, nonzero and undefined (arbitrary, trivial) re-
stricted singular values. However, obviously the triplets themselves contain
much more structural information than the ratios, as will also be evidenced
by the geometrical interpretation. Nevertheless, there are:

11



o Tab = Tac — Tabe INfiNite restricted singular values.
e Ta + Tabec — Tab — Tac fiNite nonzero restricted singular values.

o min(rqp — Ta, Tac — Ta) Z€I0 restricted singular values (the reason for
considering them to be 0 is explained in section 3.1.4).

e min(m —rq, N — 1,) undefined (trivial) restricted singular values.

It will be shown in section 3.1., how unitarily invariant norms in restricted
problems can be expressed as a function of the restricted singular values,
just as unitarily invariant norms in the unrestricted case are a function of
the ordinary singular values as was shown by Mirsky in [17].

Some algorithmic issues are discussed in [10][29][26] [25], though a full
portable and documented algorithm for the RSVD is still to be developed.

The reasons for chosing the name of the factorization of a matrix triplet
as described in Theorem 4, to be the restricted singular value decomposi-
tion, are the following:

o It will be shown in section 3 how the RSVD allows us to analyse
matrix problems that can be stated in terms of:

A B
A+ BDC M-(C D")

where typically, one is interested in the ranks of these matrices as the
matrix D is modified. In both cases, the matrices B and C represent
certain restrictions as to the nature of the allowed modifications. The
rank of the matrix A + BDC can only be reduced by modifications
that belong to the column space of B and the row space of C. It
will be shown how the rank of M can be analysed via a generalized
Schur complement, which is of the form D* — CA-B, where again, C
and B represent certain restrictions and A’ is an inner inverse of A
(definition 1 in section 2.2.7).

o The RSVD allows to obtain the restriction of the linear operator A
to the column space of B and the row space of C.

12



¢ Finally, the RSVD can be interpreted as an OSVD but with certain
restrictions on the inner products. to be used in the column and row
space of the matrix A (see section 2.2.1).

2.2 Properties

The OSVD as well as the PSVD and the QSVD, can all be related to a
certain (generalized) eigenvalue problem [7]. It comes as no surprise that
this is also the case for the RSVD. First, the generalized eigenvalue problem
that applies for the RSVD will be analysed (section 2.2.1), followed by a
variational characterization in section 2.2.2. A generalized dyadic decompo-
sition and some geometrical properties are investigated in section 2.2.3. In
section 2.2.4, it is shown how the OSVD, PSVD and QSVD are special
cases of the RSVD while the connection between the RSVD and canoni-
cal correlation analysis is explored in section 2.2.5. Finally, some interesting
results connecting the RSVD to pseudo-inverses are derived in section 2.2.6.

2.2.1 Relation to a generalized eigenvalueproblem

From Theorem 4, it follows that:

P*(BB*)P
Q‘(C‘C)Q
Hence, the column vectors of P are orthogonal with respect to the inner
product provided by the nonnegative definite matrix BB*. A similar remark

holds for the column vectors of the matrix Q. Consider the generalized
eigenvalue problem:

(+0)(3)-( ) (3 o

Observe that, whenever BB*=1,,, and C*C = |,,, the eigenvalues A are
given by % the singular values of the matrix A.

Assume that the vectors p and g form a solution to the generalized eigenvalue
problem (1), then from the RSVD it follows that:

5.(@7'q) = (SeSENP'p)A
SYPIp) = (SiS)(Q'g)A

SpSE
StS.

13



Call o’ = P-1p and ¢’ = Q~1¢. Using a obvious partitioning of p’ and ¢’
(according to the block diagonal structure of Sg, Ss, Sc as in Theorem 4),
one finds that:

S1q} " Stp qg
9 0 1?;'5 '}
q'3 = ps A d 3 = 0 A
A 0o a A 0
0 (S25%)p% 0 (55S53)qs
0 0 0 0

The generalized eigenvalue problem (1) can have 4 types of eigenvalues:

o 1. Ais a diagonal element of Sy
It is easy to verify that the vectors p’ and ¢’ have the form:

7 q
0 0
| 0 1 0
P=19 =1 o
0 1 o
) g5

with S1¢} = pj) and Sip = ¢f A. p, and ¢, have only one nonzero
element, which is 1, if all diagonal elements of $; are distinct.
Observe that the vectors pg and g§ are completely arbitrary. They
correspond to the trivial restricted singular triplets.

2. A=0
From (1) it follows immediately that:

(& 8)(3)=>

However, not every pair of vectors p, g satisfying this relation, satisfies
the BB*and C*C orthogonality conditions.
The corresponding vectors p’ and ¢’ axe of the form:

0 0
0 0
0

- ,—-
7= g =1 0
% gs
o5 6

14



3. A=
From (1) it follows that:

(7 &) ()

and the corresponding vectors p’ and ¢’ are of the form:

0 0

2 0

= 0 | 6
=lu| 77| 4
0 0

6P %

e 4. A= arbitrary (not one of the preceeding)
Only the components corresponding to p; and gg are nonzero and
arbitrary.

This characterization of the RSVD as a generalized eigenvalue problem
may be important in statistical applications, where typically the matrices
BB* and C*C are noise covariance matrices. Especially when these co-
variance matrices are (almost) singular, the RSVD might provide a robust
computational implementation.

2.2.2 A variational characterization

The variational characterization of the vectors p; and g; is the following:

Let
¢(z,y) = Z'Ay
be a bilinear from of 2 vectors z and y. We wish to maximize ¢(z, y) over
all vectors =z, y subject to
z*BB*z = 1 ,
y°’cC*Cy = 1
It follows directly from the RSVD that a solution exists only if one of the
following situations occurs:

15



o Tabe+HTa—Tab—Tac # < In this case, the maximum is equal to the largest
diagonal element of §; and the optimizing vectors are z=p1,y =@
so that ¢(p1,q1) = al.

e Tabc + Ta — Tab — Tac = 1< The norm constraints on z and y can only
be satisfied if:

Tact+Th—=Tabce >0 OT Tagp—7a>0
and
Tab—=Tc=Tabe >0 O Tge=Ta>0

In either case, the maximum is O.

¢ If none of these conditions is satisfied, there is no solution.

Assume that the maximum is achieved for the vectors z; = py and y; = ¢
Then, the other extrema of the objective function ¢(z,y) = z* Ay with
the BB*— and C*C-orthogonality conditions, can be found in an obvious
recursive manner. The extremal solutions z and y are simply the appropriate
columns of the matrices P and Q.

2.2.3 A generalized dyadic decomposition and geometrical prop-
erties.

Denote P’ = P~* and @1 = Q’*. Then, with an obvious partitioning of the
matrices P’, Q', U, and V4, corresponding to the diagonal structure of the
matrices Sa, Sp, S¢ Of Theorem 4, it is straigtforward to obtain the following:

A = P{5$1Q"1+PjQ3+ P3Q"3+ PQ";
B = PV + PV + PsViy
C = UaQ1+UaQ;+UQs .

Hence,
R(P}) + R(P}) = R(A)() R(B)
R@Q7) + R(@Q%) = R(AMR(C™) .

One could consider the decomposition of A as a decomposition relative to
R(B) and R(C*):

16



in R(B) | not in R(B)
in R(C") [P5:QT| PQ;

notin R(C*) [ P{Q5 | PR
Obviously, the term P{S,Q"] represents the restriction of the linear operator
represented by the matrix A to the column space of the matrix B and the
row space of the matrix C, while the term P}Q/" is the restriction of A to
the orthogonal complements of R(B) and R(C*).
Also, one finds that:

R(B*) = R(Va) + R(Vi3) + R(Via)
R(C) = R(Ucl) + R(ch) + R(Uc4)

and:
BVys 0 = N(B)= R(Vs)
UsC 0 = N(C*) = R(Ug) .

Finally, some of the block dimensions in the RSVD of the matrix triplet
(A, B,C) can be related to some geometricalinterpretations as the following:

dim[R( g)nR( g)] = Tac+ Th— Tabe »
dim[ R(A B)* (] R(C 0)* ] Tab + Tc — Tabe ,
dim[ R(A)(\R(B)] = ra+th—Ta,
dim[ R(A*) (YR(C*)] = rq+rc—Tac.

Also, it is easy to show that:

R(Qs)
R(Pg)

N(4)(N(C)
N(4*)[() N(B*) .

Hence Qg provides a basis for the common null space of A and C, which is
of dimension n — r4¢, While Pg provides a basis for the common null space

of A* and B*, which is of dimension m —r4.

2.2.4 Relation to (generalized) SVDs

The RSVD reduces to the OSVD, the PSVD or the QSVD for special
choices of the matrices A, B and/or C.

17



Theorem S
Special cases of the RSVD

1. RSVD of (A, I, I,,) gives the OSVD of A

2. RSVD of (l,, B,C) gives the PSVD of (B*,C)
3. RSVD of (A, B, I,) gives the QSVD of (A, B)
4. RSVD of (A, I, C) gives the QSVD of (A,C)

Proof!
Case 1: B = I,,C = |,,: Consider the RSVD of (A I,,,|,,). Obviously
I, = P*'SV
I, = UcSt':Q.-1
and this implies
P=* = WSt
Q' = s;tur .

Hence,
A = Vi(5;18.5; 1)U
which is an OSVD of A.
Case 2: A=1,,;: Consider the RSVD of (l,, B, C) then obviously
In=P*5Q™!
whichimplies
Q*l=slp.
hence,

B* = VSipP!
C = Uf S.S{H)P*

which is nothing else than a PSVD of (B*,C).

18



Case 3: C = I,: Consider the RSVD of (A, B, I,,). Then

In = UcScQ.-1
which implies
Q7" = s7UL .
Then,
A = P7*(S.5;1)U;
B = PSSV

which is (up to a diagonal scaling of the diagonal matrices) aQSVD
of the matrix pair (A, B).

Case 4: B = Iyt The proof is similar to case 3.

2.2.s Relation with canonical correlation analysis.

In the case that the matrices BB* and C*C are nonsingular, it can be shown
that the generalized eigenvalue problem (1) is equivalent to singular value
decomposition. In {10}, an algorithmic derivation along these lines is given.

Let p; and ¢; be the i-th column of P, resp. @, then it follows from (1)
that

Agi = BBp
A'pi = C*'Cqi\

If BB* and C*C are both nonsingular, then there exist nonsingular matrices
W, and W, (for example the Cholesky decomposition) such that

BB* = W;W, ,
c'C = WW,.
Then,

(W AW ) (Wegi) (Wapi) A
(W AW Y(Wap) = (Wegi)hi .
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Then, the BB* orthogonality of the vectors p; and the C*C-orthogonality
of the vectors ¢;, implies that the vectors Wyp; and Weg; are (multiples of)
the left and right singular vectors of the matrix Wy * AW;!.

It can be shown (see e.g. [2]) that the principal angles 8 and the prin-
cipal vectors ug, v between the column spaces of a matrix A and B are
given by:

cos(0) = o
U = Ap
vy = Bgq k=1,2,...

where oy are the eigenvalues and pg, gx properly normalized eigenvectors to
the generalized eigenvalue problem

(e 47)(2)- (%" 5 (3)-.

The o are also the canonical correlations.- Comparing this to the gener-
alized eigenvalue problem (1) that corresponds to the RSVD, one can see
immediately that the canonical correlation eigenvalue problem is a special
case of the RSVD eigenvalue problem (1). The canonical correlations are
the restricted singular values of the matrix triplet (A*B,A*, B) and the
principal vectors follow from the column vectors of the unitary matrices in
the RSVD.

There exist however applications where the matrices BB* and C*C are (al-
most) singular (see e.g. [10][15] [25] [26] and the references therein). It is in
these situations that the RSVD may provide essential insight into the ge-
ometry of the singularities and at the same time yield a numerically robust
and elegant implementation of the solution.

2.2.8 The RSVD and expressions with pseudo-inverses.

The RSVD can also be used to obtain the OSVD, PSVD and QSVD of
certain matrix expressions containing pseudo-inverses. Hereto we need the
following definitions and lemmas, which will be used also in section 3 (see
[19] for references):

Definition 1
A(i,], . . .)-inverse of a matrix
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A matriz X is called an A(4, j, . . .)-inverse of the matriz A if it satisfies
equation 4, j, . .. of the following:

1. AXA=A
2. XAX=X
3. (AX)* = AX
4. (XA = XA

An A(1) inverse is also called an inner inverse and denoted by A’. The
A( 1,2,3,4) inverseis the Moore- Penrose pseudo-inverse At and it is unique.

We shall also need the following lemmas:

Lemma 2
Inner inverse of a factored matrix
Every innerinverse A- of the matriz A, which ¢s factored as follows:

—(Da 0) .
A=P (o o)q1

where D, is square r, X r, nonsingular, can be written as
. D1 yAY
A" = a P 2
9 ( Zn Zn @
where 213, Z31, Z22 are arbitrary matrices. Conversely, every matriz A- of
this form is an inner inverse of A.

Proof: The proof follows immediately from definition 1. a

Lemma 3

Moore-Penrose pseudo-inverse of a factored matrix.
Let P and Q be partitioned as follows:

P=-(PP) (Q Q2

where Py and Q1 have r, columns. Then the Moore-Penrose pseudo-inverse
of A is given by:

o1 *(I - *p \—1p=
At = ((I-Q1(Q3Q2)7'Q3)Q1 Q,) ( D('; g ) ( Pr(I Pz(;;z P)"lP}) )
(3)
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Proof: Obviously, the Moore-Penrose pseudo-inverse is a ungiue element of
the set of inner inverses described in Lemma 2. The expression for At fol-
lows from substituting the expression for A= of Lemma 2 in the equations
defining the A(1,2,3,4) inverse and calculating the matrices Z12, Z21, Z22
that satisfy these 4 conditions. c

Hence, the Moore-Penrose pseudo-inverse A* is a uniquely determined ele-
ment among all the inner inverses of the matrix A, obtained from orthogo-
nalization of P, and @, with respect to P and Q.

An immediate consequence is the following:

Corollary 1 Let A be a rank r, matriz that is factorized as:
D, 0
- — -1 — a -1

where D, 18 r4 X 74 nonsingular diagonal and P and @, which are square
nonsingular, are partitioned a8 follows:

P=(PP) Q=(¢1 Q)
where Py and @, have r, columns. Then,
-1
A*:QS}’P":Q(D(‘)‘ g)P‘

if and only if:
P;Pz = 0 and QIQ; .

Returning now to the RSVD, assume that, whenever we need the pseudo-
inverse of a matrix, it follows that:

At = Qstp (4)
Bt = WStp (8)
ct = Qstur . (6)

For instance, each of these is true when the matrices are square and nonsin-
gular. The expression for B* is true if B is of MI row rank while that for
C* holds for C being of full column rank.

Then, we have
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Theorem 6

On the RSVD and pseudo-inverse+

Assume that conditions (4-6) hold true as needed. Then,
1. CA*B = U,(S.5}Sy)Vy is an OSVD of CA*B.
2. B+AC+ = V(5 S,53)Uz is an OSVD of BtACH.
3.

(A*B)" = Vi( SFSp)'Q*
C = USQ™!
is @ PSVD of the matriz pair ((A*B)*,C).
4. Similarly,
CA+ = U(S.S}H)Pp*
B* = Vvsip!

is a PSVD of (CA+, B*).

5.
B+A = Vi( S Sa)Q7!
C = chcq-l
is 2 QSVD of the matriz pair (B*A,C).
6. Similarly
(ACH+) = U S,8FH)tp?
B = Wwsip!

is 2 QSVD of the matriz pair ((AC+)*, B).

Proof: The proof is merely an exercise in substitution and invoking the
conditions (46). o

o In case that A is square and nonsingular, the singular values of CA~1B
axe the reciprocals of the restricted singular values. These are the sin-
gular values of B~*AC-1if both B and C are square and nonsingular.
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¢ The conditions (46) are sufficient for the Theorem to hold, but may be
relaxed. Indeed, take, for instance, the expression B*A=Vy(Sf S2)Q 1.
The necessary conditions for this to be true are less restrictive than
expressed in (4-6). This can be investigated using the formula (2) for
the inner inverse. However, we shall not pursue this any further here.

3 Applications

The RSVD typically provides a lot of insight in applications where its struc-
ture can be exploited in order to convert the problem to a simpler one (in
terms of the diagonal matrices S,, Ss, S¢) such that the solution of the sim-
pler problem is straightforward. The general solution can then be found via
backsubstitution. In another type of applications, it is the unitarity of the
matrices U, and V4 that is essential.

In this section, we shall first explore the use of the RSVD in the analy-
sis of problems related to expressions of the form A + BDC (section 3.1).
The connection with Mitra® concept of the extended shorted operator [18]
and with matrix balls will be discussed as well as the solution of the matrix
equation B DC = A, which led Penrose to rediscover the pseudo-inverse of
a matrix [22][23]. In section 3.2, it is shown how the RSVD can be used
to solve constrained total linear least squares problems with exact rows and
columns and the close connection to the generalized Schur complement [3] is
emphazised. In section 3.3, we discuss the application of the RSVD in the
analysis and solution of generalized Gauss-Markov models, with and with-
out constraints.

Throughout this section, we shall use a matrix E, defined as
E=V;DU, )

with a block partitioning derived from the block structure of S, and S, as
follows:

Tabe + Ta —=Tab=Tac Tab+Tc—Tabe 94— Tc Tac—Ta

Tabe + Ta = Tab — Tac En Ey Ey3 Ey
Tac + b = Tabe Eyn E;; Ej3 Ey
p—1p Ey Ej; E3; E34
Tab — Ta Ea Eqa Eu Ey

(8)
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3.1 On the structure of A + BDC

The RSVD provides geometrical insight into the structure of a matrix A
relative to the column space of a matrix B and the row space of a matrix
C. As will now be shown, it is an appropriate tool to analyse expressions of
the form:

A+ BDC

where D is an arbitrary pxq matrix.

In this section, it will be shown that the RSVD allows us to analyse and
solve the following questions:

1. What is the range of ranks of A + B DC over all possible pxqgmatrices
D (section 3.1)?

2. When is the matrix D that minimizes the rank of A + BDC, unique
(section 3.2)?

3. When is the term BDC that minimizesrank(A4 + BDC), unique? It
will be shown how this corresponds to Mitray extension of the shorted
operator [18]in section 3.3.

4. In case of non-uniqueness, what is the minimum norm solution (for
unitarily invariant norms) D that minimizes rank(A + BDC) (section
3.4)?

5. The reverse question is the following: Assume that || D|| < § where § is
a given positive real scalar. What is the minimum rank of A + BDC?
This can be linked to rank minimization problems in so called matrix
balls (section 3.5).

6. An extreme case occurs if one looks for the (minimum norm) solution
D to the linear matrix equation BDC = A. The RSVD provides
the necessary and sufficient conditions for consistency and allows us
to parametrize all solutions (section 3.6).

3.1.1 The range of ranks of A + BDC

The range of ranks of A + BDC for all possible matrices D is described in
the following theorem:
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Theorem 7
On the rank of A+ BDC

Tab + Tac — Tabe < rank(A + BDC) € min(rab, Tac)
For every number r in between these bounds, there exists a matriz D such
that rank(A + BDC) = r.

Proof: The proof is straightforward using the RSVD structure of Theorem
4.

A+BDC = P*S,Q°'+ P™*SVyDU.S.Q !
= P~*(Ss + S4ES.)Q™!

where E = V;"DU.. Because of the nonsingularity of P, Q,U,, V3, wehave

that:
rank(A + BDC) = rank(S, + SyES.)

and the analysis is simplified because of the diagonal structure of Sg, Sp, Se.
Using elementary row and column operations and the block partitioning of
E as in (8), it is easy to show that:

Si +E11 0 0 0 [E1453 0\
0 I 00 0 0
0
rank(A + BDC) = rank g 0S¢y 8 0 (9)

| S2&a 0 0 0 S;HS3 0|

the block dimensions of which are the same as these of §4 in Theorem
4. Obviously, a lower bound is achieved for Eyy = —S1, E14=0, Eg4 =
0, E4 = 0. The upper bound is generically achieved for any arbitrary
(tandom?) choice of Ey1, Eq14, Eq1, Eg4. o

Observe that, if rq =g + Tac = Tabe, then there is no Sy block in §; and
the minimal rank of A + BDC will be r,. Also observe that the minimal
achievable rank, T4p + Tac = Tabe, IS precisely the number of infinite restricted
singular values. This is no coincidence as will be clarified in section 3.1.4.

3.1.2 The unique rank minimking matrix D

When is the matrix D that minimizes the rank of A + BDC, unique? The
answer is given in the following theorem:
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Theorem 8
Let D be such that rank(A + BDC) = r4p + Tac — Tahe and assume that
Ta > Tap+Tac—Tabe. 1hEN the matriz D that minimizes the rank of A+ BDC
8 unique iff:

1l re=g

2r,=p

S Tabe=Tab+ Tc=Tac+ ™
In the case where these conditions are satisfied, the matriz D is given as

_ -5 0 .

D= Vb( 0 o ) u: .

Proof: It can be verified from the matrix in (9) that the rank of A + BDC
is independent of the block matrices Eiz, Er3, Ea1, E22, Ea3, Ea4, Ex, E3,
E33, E34, E43, E43. Hence, the rank minimizing matrix D will not be unique,

whenever one of the corresponding block dimensions is not zero, in which
case it is parametrized by the blocks E;; in:

[ =S1 Ei2 Ej5 0
_ En Eyp Ei3 Eyn .
D=% Es1 Es Esz Esy Ve (10)
| 0 Eg Eg 0
Setting the expressions for these block dimensions equal to zero, results in

the necessary conditions. The unique optimal matrix D is then given by
D =WEU? where

g+Ta—Tac Tac—Ta

E=PtTa—Tab Ey Eyy )=( -5 0)

Tab - Ta Eqy Eq

o Observe that the expression for the matrix D in Theorem 8 is nothing
else than an OSVD!

o In case one of the conditions of Theorem 8 is not satisfied, the matrix
D that minimizes the rank of A + BDCis not unique. It can be
parametrized by the blocks Ejjas in (10). It will be shown in section
3.1.4 how to select the minimum norm matrix D.
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3.1.3 On the uniqueness of BDC: The extended shorted operator

A related question concerns the unigqueness of the product term BDC that
minimizes the rank of A + BDC. As a matter of fact, this problem has
received a lot of attention in the literature where the term BDC is called
the extended shorted operator and was introduced in [18]. It is an extension
to rectangular matrices, of the shorting of an operator considered by Krein,
Anderson and Trapp only for positive operators (see [18] for references).

It will now be shown how the RSVD provides an utmost elegant analysis
tool for analysing questions related to shorted operators.

Definition 2

The extended shorted operator 2

Let A(mxn), B (mx p)and C (g x n) be given matrices. A shorted matriz
S(A|B, C) is any m x n matriz that satisfies the following conditions:

1.

R(S(A|B,C)) C R(B)
R(S(A|B, C)") C R(C")
2. If F 48 an m x n matriz satisfying R(F) C R(B) and R(F*) C R(C*),
then,
rank(A — F) > rank(A - S(A|B,C)) .

Hence, the shorted operator is a matrix for which the column space belongs
to the column space of B, the row space belongs to the row space of C and it
minimizes the rank of A-F over all matrices F, satisfying these conditions.
From this, it follows that the shorted operator can be written as:

S(A|B,C) = BDC

for a certain p x g matrix D. This establishes the direct connection of the
concept of extended shorted operator with the RSVD.

The shorted operator is not always unique as can be seen from the following

example. Let
100 10
A=]l111]|,B=]01 and C=((1)28)
010 00

*We have slightly changed the notation that is used in [18].
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Then, all matrices of the form

100
S=|la g o0
0 0O
minimize the rank of A= S, which equals 2, for arbitrary a and g.

Necessary conditions for uniqueness of the shorted operator can be found in
astraightforward way from the RSVD.

Theorem 9
On the uniqueness of the extended shorted operator
Let the RSVD of the matriz triplet (A, B, C) be given as in Theorem 1.
Then,
S(A|B,C) = P-+S(S& S.)Q7! .

The eztended shorted operator S(A| B, C) is unique iff

1. Tabe = 1c + rob
2. Tabe =Tp + Tac

and is given by
-5 000 0
0 0000
sS(A|B,c)=P™] 0o 0000 |Q"
0 0000
0 0000

Proof: It follows from Theorem 7 that the minimal rank of A + BDC is
rob + Tac — Tape aNd that in this case

Eyy=-S1 E14 = 0Ey4q =0 Eyg =0 .
A short computation shows

) 1 En 00 0 (0]
0 0 00 0 0
En Ex 0 0 EpSs 0 Q!
0 0 00 0 0
0 S2E4 0 0 0 0
0 0 00 0 0

BDC = P~
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Hence, the matrix BDC is unique iff the blocks Eq3, E22, E42, E91, E92 and

E,4do not appear in this decomposition. Setting the corresponding block
dimensions equal to zero, proves the theorem. a

o Observe that the conditions for uniqueness of the extended shorted
operator BDC are less restrictive than the uniqueness conditions for
the matrix D (Theorem 8).

o As s consequence of Theorem 9, we also obtain ¢ parametrization of all
shorted operators in the case where the unigueness conditions are not
satisfied. All possible shorted operators are then parametrized by the
matrices Ey3, E21, E22, Ea24, E43. Observe that the shorted operator
is independent of the matrices Eys, Eq3, E31, E33, E34, Ey3.

o The result of Theorem 9, derived via the RSVD, corresponds to Theo-
rem 4.1 and Lemma 5.1 in [18]. Some connections with the generalized
Schur complement and statistical appllcatlons of the shorted operator
can also be found in[18].

3.1.4 The minimum norm solutions D that minimize rank(A4 +
BDC)

In Theorem 7, we have described the set of matrices D that minimize the
rank of A+ BDC. In this section, we investigate how to select the minimum
norm matrix D that achieves this task.

Before examining matrices D that minimize the rank of A + BDC, note
that, whenever min(rqp, rac) — rq > 0, there exist many matrices that will
increase the rank of A + BDC. In this case:

inf ¢ { e =||D| |rank(A + BDC) > r,} =0 (11)

which implies that there exist arbitrarily Small”matrices D that will in-
crease the rank.

Consider the problem of finding the matrix D of minimal (unitarily invari-
ant) norm ||DJ| such that:

rank(4 + BDC) =r <r,4
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where ris a prescribed nonnegative integer.

0 bserve that:
o It follows from Theorem 7 that necessarily
T 2 Tab + Tac = Tabe
for a solution to exist.

o Observe that if r4 = rqp + Tac ~ Tabes N0 SOlUtion exists. In this case,
there is no diagonal matrix Sy in S, of Theorem 4. Hence, it will be
assumed that

Ta > Tab + Tac — Tabe

e Assume that the required rank r equals the minimal achievable: r =
Tab + Tac — Tabe- 10eN, if the conditions of Theorem 8 are satisfied,
the optimal D is unique and follows directly from the RSVD. The
interesting case occurs whenever the rank minimizing D is not unique.

The general solution is straightforward from the RSVD. In addition to the
nonsingularity of U, V3, P, Q, we will also exploit the unitarity of U, and V4.

Theorem 10
Assume that

Tab+ Tac — Tabe < T = rank(A + BDC) < rq

where r is a given integer and ||.|| ¢ any unitarily invariant norm. A matriz
D of minimal norm ||D|| is given by:

10y
D=-V{ g o )¥

where Sy s a singular diagonal matriz

r+rak—rac_rab ra—r

r_.r+rabc-rab"rac 0 0
l_ra—‘l‘ 0 Sq

S4 contains the r, — r smallest diagonal elements of $j.
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Proof: From the RSVD of the matrix triplet A, B, C it follows that
A+BDC

P~*(S, + Sy(VyDU.)S:)Q}
= P_-(Sa + SbESc)Q_1

with ||E|| = ||Vy'DU|| = ||D}]. The result follows immediately from the
partitioning of E as in (8) and from equation (9) cl

Obviously, the minimum norm follows immediately from the restricted sin-
gular values, because every unitarily invariant norm of D can be expressed
in terms of the restricted singular values.

As a matter of fact, one could use this property to define the restricted
singular values o.

~ ok = inf{ € = ||D||s | rank(4 + BDC) =k -1}
where||. ||, denotes the maximal ordinary singular value.

o Because the rank of A+BDC can not be reduced below Tap+Tac—Tabes
there will be rap + rac — rabe infinite restricted singular values.

o Obviously, there arers + rape — rab — rac finite restricted singular values,
corresponding to the diagonal elements of $3.

¢ It can easily be seen from (9) that the diagonal elements of S2 and
S3 can be used to increase the rank of A + BDC to min(rab, Tac)
(Theorem 7). However, from (11) it is obvious that min(rgc—7a;,Tab =
rq) restricted singular values will be zero.

o It follows from Theorem 7 that min(m—ras, n—rac) restricted singular
values are undetermined.

e Theorem 10is a central result in the analysis and solution of the
Restricted Total Least Squares problem, which is studied in [26] where
also an algorithm is presented.

3.1.8 The reverse problem: Given ||D||, what is the minimal rank
of A + BDC?

The results of section 3.1.3 and 3.1.4. allow us to obtain in a simple fashion,
the answer to the reverse question:
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Assume that we are given a positive real number § such that ||D|| < 6.
What 48 the minimum rank rp,i, of A + BDC?

The answer is an immediate consequence of Theorem 10. Note that the
optimal matrix D is given as the product of three matrices, which form its
OSVD! Hence,

DI = liszll

and the integer rmin can be determined immediately from:
Tmin = Ta — (Maz ; {size(S;) such that ||S;|] £ 6)) . (12)

where S; is an i x4 diagonal matrix containing the ¢ smallest elements of
S1.

Itis interesting to note that expressions of the form A + BDC with restric-
tions on the norm of D can be related to the notion of matriz balls, which
show up in the analysis of so-called completion problems [5].

Definition 3

Matrix ball

For given matrices A (m x n), B (m x p) and C (g x n), the closed matriz
ball R(A|B,C) with center A, left semi-radius B and right semi-radius C is
defined by:

R(A|B,C) = { X | X = A+ BDC where ||D|j2 < 1}

Using Theorem 10 and (12), we can find all matrices of least rank within a
certain given matrix ball by simply requiring that:

amas(«D) <1

and observing that o,..(D) is a unitarily invariant norm. The solution
is obtained from the appropriate truncation of S in Theorem 10. The
conclusion is that the RSVD allows to detect the matrices of minimal rank
within a given matrix ball. Since the solution of the completion problems
investigated in [5] are described in terms of matrix balls, it follows that we
can find the minimal rank solution in the matrix ball of all solutions, using
the RSVD.
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3.1.86  The matrix equation BDC = A

Consider the problem of investigating the consistency, and, if consistent,
finding a ( minimum norm) solution to the linear equation in the unknown
matrix D:

BDC=A.

This equation has an historical significance because it led Penrose to re-
discover what is now called the Moore-Penrose pseudo-inverse [19][22]. Of
course, this problem can be viewed as an extreme case of Theorem 8 and
10, with the prescribed integer r = 0.

Theorem 11
The matriz equation BDC = A in the unknown matriz D is consistent iff

Tab = T
Tac = T¢
Tabe = Tp+7re .
AU solutions are then given by
. $1 Ei3 0O
D=V,| Ean Eszs E3 |U;
0 E4g O

and the minimum nerm solution corresponds t0 Ey3 =0, E3; = 0, E33 = 0,
E34 = 0, E43 =0.

Proof: Let E = VDU, and partition E asin (8). The consistency of
BDC = A depends on whether the following is satisfied with equality

En Eia 00 EuS; 0 S 00 00O
0 0 00 0 0 0 Il O0O0O
Ey Eja 0 0 ESs O 2.2 0 0TI 000
0 0 00 0 0o 0 o0oIroo
52Eq S3Eq 0 0 S32E4S3 0 0 000O0O
.0 0 00 0 0 0 00O0O0O

Comparing the diagonal blocks, the conditions for consistency follow imme-
diately a8
Tabe = Tab+ Tc
Tac + T
= np+re,
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which implies

Tab = Tb

Tac — Tc.

These conditions express the fact that the column space of A should be
contained in the column space of B and that the row space of A should be
contained in the row space of C.

If these conditions are satisfied, the matrix equation BDC = A is consistent
and the matrix E =V, DU, is given by

Ta q—TcTc—Ta
Ta En Es Er4
E= p-—ro| Em Ess E34
- rn—Ta \Ea Ea Eq4

The equation BDC = A is equivalent to

En E14S3 0
SEq S2E4S3 0 | =
0 0 0

ool
coco
coco

This is solved as
Ejnz=51 E=0Eq =0 Eu=0.

Observe that the solution is independent of the blocks Ey3, E31, E33, E34,
E43. Hence, all solutions can be parametrized as:

[ $1 @3 0 el
D=(Vaa Via Viu) En Ezs Esz Us
0 Eg O Ul
Obviously, the minimum norm solution is given by:
S 0 00
_ 0 000 |,.
D=Vl ¢ 000 |%
0 000
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o Observe that the result of Theorem 11 could also be obtained directly
from Theorem 10 with r =«

« Penrose originally proved [19][22], that it is a necessary and sufficient
condition for BDC = A to have a solution, that

BB-AC-C = A (13)

where B~ and C~ are inner-inverses of Band C (see definition 1). All
solutions D can then be written as:

D = B-AC- + Z - BB-ZC-C (14)

where Z is an arbitrary pxqmatrix. It requires a tedious though
straightforward calculation to verify that our solution of Theorem 11
coincides with (14). In order to verify this, consider the RSVD of
A, B,T and use Lemma 2 to obtain an expression for the inner-inverses
of B and C, which will contain arbitrary matrices. Using the block
dimensions of Sg, S, Sc as in Theorem 4, it can be shown that the
consistency conditions of Theorem 11, coincide with the consistency
condition (13). '

Before concluding this section, it is worth mentioning that all results of
this section can be specialized for the case where either B or C equals the
identity matrix. In this case, the RSVD specializes to the QSVD (Theorem
3 and 5) and mutatis mutandis, the same type of questions, now related to 2
matrices, can be formulated and solved using the QS VD such as shorted op-
erators, minimum norm rank minimization, solution of the matrix equation
DC=A etc...

3.2 On the rank reduction of a partitioned matrix.

In this section, the RSVD will be used to analyse and solve problems that
can be stated in terms of the matrix 3

M ( ¢ j)’. (19)

*In order to keep the motation consistent with that of section 3.1, we use the matrix
. which is the complex conjugate transpose of .in section 3.1, as the lower right block
of M. This allows us for instance to use the same matrix E as defined in (7) and (8.

36



where A, B, C, D are given matrices.
The main results include:

1. The analysis of the (generalized) Schur complement [3] in terms of the
RSVD (section 3.2.1).

2. The range of ranks of the matrix M as D is modified and the analysis
of the (non)-unique matrix D that minimizes the rank of M (section
3.2.2.).

3. The solution of constrained total least squares problem with exact
and noisy data by imposing additional norm constraints on D (section
3.2.3)

3.2.1 (Generalized) Schur complements and the RSVD

The notion of a Schur complement S of the matrix A in M (which is S =
D* - CA~1B when A is square nonsingular), can be generalized to the case
where the matrix A is rectangular and/or rank deficient [3]:

Deflnition 4
(Generalized) Schur complement
A Schur complement of A in

(2 2)

S=D*-CA-B (16)
where A’ is an inner inverse of A.

i3 any matriz

In general there are many of these Schur complements, because from lemma
2, we know that there are many inner inverses. However, the RSVD allows
us to investigate the dependency of S on the choice of the inner inverse.

Theorem 12
The Schur complement S = D* — CA~ B is independent of A- iff
Ta = Tap = Tgc -
In this case, S is given by
Eh - ST EBj Ej
Ey;  Ej En
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Proof: Consider the factorization of A as in the RSVD. From Lemma 2,
every inner inverse of A can be written. as:

Sl.l 0 0 0 Xis Xis
Q r o I o 0 X5 Xae \\
A-= 0 0 I 0 Xz Xz |
0 0 0 I X4 Xs
k Xs1 Xs2 Xsz Xsa Xss Xse )
Xe1 Xea Xez Xes Xeos Xes

for certain block matrices X;;, where the block dimensions of the middle
factor correspond to the block dimensions of the matrix §3 of Theorem 4.
It is straightforward to show that:

st 0 0 X595

caB=U| 9 9 XS |y

S3Xs1 S3Xs3 0 S3Xss5;

Hence, this product is dependent on the blocks Xis, Xas, Xs1, X353, Xss.
The corresponding block dimensions are zego if and only if r4 = rap = Tgc.
a

P‘

Observe that the theorem is equivalent with the statement, that the (gen-
eralized) Schur complement S = D* - CA~ Bis independent of the precise
choice of A- if and only if

R(B) C R(A) R(C*) c R(A") .
This corresponds to Carlson¥ statement of the result (Proposition 1 in [3]).

In case these conditions are not satisfied, all possible generalized Schur com-
plements are parametrized by the blocks Xs1, Xs3, X15, Xas and Xss as

E} - S71 E3 551 f}h - ;f(lsgz
_ Ef, E3 22 Eia — X255; .
5=l m, B, B, By |7

E}, - S3Xs1 Ej, — S3Xs3 E}, Ei, — S3Xs553 J

3.2.2 How does the rank of M change with changing D?
Define the matrix M(8) as:

M(ﬁ)=(2 D#fbt)
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We shall also use 12 =D - D. What is the precise relation between the
rank of M(D) and D? Before answering this question, we need to state the
following (well known) lemma.

Lemma 4
Rank of a partitioned matrix and the Schur complement
If A 18 square and nonsingular,

rank ( g g, ) = rank(A) + rank(D* - CA™1 B)

Proof: Observe that:

A B\ _ I o A 0 I A'B
C D* ) \CA1 I 0 D*-CA™'B 0 I

a

Thus we have,
Theorem 13
A B By - ST By Ej
rank Cc D* =Tab + Tac — Ta + rank E12 E22 E32
E7; E3; E3

Proof: From the RSVD, it follows immediately that the required rank is
equal to the rank of the matrix

(S 00 00O I 0 0 0 )

O 100 0O O 0 0 0 0

O 0Iooo 0 I 0 0

O 0010 O 0 0 0 0

S, Sy O 000 0O O 0 0 0 S
(s: E‘)= O 000 O O 0 0 0 0
I 0000 O E}, E} E% E3}

oI 00O0TO E}, &y E3, Ej

O 000 O O E};, E}; Ej El
\ 0 0 0 0 s3 0 Ei, E}, E3 E} )

From the nonsingularity of § and S3, it follows that the rank is independent
of Eq1,E42, E43,E14, E24,Ea4,E4.The result then follows immediately from
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Lemma 4, taking into account the block dimensions of the matrices. 0

A consequence of Lemma 3 is the following result:

Corollary 2 The mnge of ran&sr of M attainable by an appropriate choice
of D in
A B
M= (c D* - D* )

Tab + Tac = Ta ST <min(p + Tac, ¢ + Tab) .
The minimum ss attained for
E;, - S{' E3 E3 Ej
Cpouy| Ea  En B Ep
B Efs E3; Ej Els
14 24 E34 El

Ve (18)

where the matrices E14, E24, E;u, E4l, Eg, E-'43 and E44 are arbitmry

matrices.

Compare the expression of D of Corollary 2 with the expression for the
generalized Schur complement of A in M as given by (17). Obviously, the
set of matrices D contains all generalized Schur complements; it are those
matrices D for which:

Eyy=Ey Eu=Eg.

If these blocks are not present in E, there are no other matrices than gen-
eralized Schur complements, that minimize the rank of M.
Hence, we have proved the following

Theorem 14 .
The rank of M(d) és minimized for D equal to each generalized Schur
complement of A in M. The rank of M(d) is minimized only for D =
D* - CA-B iff:
Tah = Tq OF Tc = ¢
and
rac=rc0rrb=p.

If 4= Tap = Tac, then the minimizing D is unique.
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Proof: The fact that each generalized Schur complement minimizes the
rank of M(d) follows directly from the-comparison of D in Corollary 2 with
the expression for the generalized Schur complement in (17). The rank con-
ditions follow simply from setting the block dimensions of Ez4 and E43 in
(8) equal to 0. The condition for uniqueness of D follows from Theorem 12.
m]

This theorem can also be found as theorem 3 in [3], where it is proved via a
different approach.

3.2.83 Total Linear Least Squares with exact rows and columns

The nomenclature total linear least squares was introduced in [13] as an ex-
tension of least squares fitting in the case where there are errors in both
the observation vector b and the data matrix A for overdetermined equa-
tions As = b. The analysis and solution is given completely in terms of the
OSVD of the concatenated matrix (A b). In the case where some of the
columns of A are noisefree while the othess contain errors, a mixed least
squares - total least squares strategy was developed in [14]. The problem
where also some rows are errorfree, was analysed via a Schur-complement
based approach in [6]. However, one of the key canonical decompositions
(Lemma 2 in [6]) and related results concerning rank minimization, were
described earlier in [3)].

We shall now show how the RSVD allows us to treat the general situa-
tion in an elegant way.

Again, let the data matrix be given as
A B
u-(5 5.)

whem A, B, C are free of error and only D is contaminated by noise. It is
assumed that the data matrix is of full row rank.

The constrained total linear least squares problem is equivalent to the fol-
lowing.
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Find the matriz D and the nonzero vector z such that

A B\
(c 1‘)')’"0 ’

and ||D — D||F is minimized.
A slightly more general problem is the following.

Find the matriz D such that ||D = D||F is minimal and

A B
rank(c b,)gr . (19)
The error matrix D = D will be denoted by D.
D=bD-D

Assume that a solution z is found. By partitioning z conformally to the
dimensions of A and B, one finds that the vector z satisfies:

Az 4Bz = O
Czy +D%z3 = 0 .

Hence, the total least squares problem can be interpreted as follows: The
rows of A and B correspond to linear constraints on the solution vector z.
The columns of the matrix C contain error-free (noiseless) data while those
of the matrix D are corrupted by noise. In order to find a solution, one has
to modify the matrix D with minimum effort, as measured by the Frobenius
norm of the ®rror matrix”D, into the matrix D.

Without the constraints, the problem reduces to a mixed linear - total linear
least squares problem as is analysed and solved in [14].

From the results in section 3.2.2., we already know that a necessary con-
dition for a solution to exist is r 2 r4p + rqc — 74 (Corollary 2). When

o The class of rank minimizing matrices D is described by Corollary 2.
Theorem 14 shows how the generalized Schur complements of A in M
form a subset of this Set.
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o From Corollary 2, it is straightforward to find the minimum norm
matrix D that reduces the rank of M(D)to r =74p + Tac — Ta. IT iS

given by:
Bh - STt B By 0
b = U, o B B 9 |w
0 0o 0 0

e The minimum norm generalized Schur complement that minimizes the
rank of M is given by

E},-S{' E}) E3 O

B, Ep Ep o |
Ej3 E}; Ej3 Ej | °
0 0 Ej, O

This corresponds to a choice of inner inverse in (17) given by

Xis - E,S;'
Xas - EpSy?
X = S3'Ef
Xss = S3;'Ej,
Xss = S;lE3.8!

We shall now investigate two solution strategies, both of which are based
on the RSVD. The first one is an immediate consequence of Theorem 10,
but, while elegant and extremely simple, might be considered as suffering
from some overkill” It is a direct application of the insights obtained in
analysing the sum A + BDC. The second one is less elegant but is more in
the line of results reported in [3] and [6]. It exploits the insights obtained
from analysing the partitioned matrix M = g 1_1);-

3.3.3.1. Constrained total linear least squares directly via the
RSVD

It is straightforward to show that the constrained total least squares prob-
lem can be recast as a minimum norm problem as discussed in Theorem 10.
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Consider the following problem:

Find the matriz D of minimum norm |‘|'1')|| such that

A B 0 N *
rank((c D‘)+( ?:G)D(op)(n Ip))ST

The solution follows as an immediate consequence of Theorem 10.

Corollary 8 The solution of the constrained total linear least squares prob-
km follows from the application of Theorem 10 to the matrix triplet A’, B’, C’
where
A B O
A'=,,_( C D* ) ) -B’= ( Iq xa ) and C'=(OPX" IP)
Hence, all what is needed is the RSVD of the matrix triplet (A’, B’,C")and

the truncation of the matrix S as described in Theorem 10. It is interesting
to apply also Theorem 7 to the matrix triplet (A’, B’,C’):

A B 0
Ta'y = rank( Cc D* Iq ) =Tab+¢
(A B
e = rank| C D* | =r,+p
(A B o
raeye = rank| C D* I, | =ra+p+g
\0 I, O

Hence, from Theorem 7, the minimum achievable rank is:

Ta' + Ta'd = Ta'bl = Tah + Pac — Ta

which corresponds precisely to the result from Corollary 2.

As a special&e, consider. the Golub-Hoffman-Stewart result [14] for the
total linear least squares solution of

(A B)z=~0
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where A is noise free and B is contaminated with errors. Instead of applying
the QR-SVD-Least Squares solution as.discussed in [14], one could as well
achieve the mixed linear / total linear least squares solution from:

Minimize || B|| such that
rank((A B) = B(Opxn Ip)) < 7

where ris a prespecified integer. This can be done directly via the QSVD
of the matrix pair ((A B) , (0pxn lp)) and it is not too difficult to provide
another proof of the Golub-Hoffman-Stewart result derived in [14], now in
terms of the properties of the QSVD.

As a matter of fact, the RSVD of the matrix triplet of Corollary 3, allows
us to provide a geometrical proof of constrained total linear least squares,
in the line of the Golub-Hoffman-Stewart result, taking into account the
structure of the matrices B’ and C? We shall however not consider this any
further in this paper.

3.2.3.2. Solution via RSVD - OSVD

While the solution to the constrained total least squares problem as pre-
sented in Corollary 3 is extremely simple, one might object it because of the
apparent odverkill”in computing the RSVD of the matrix triplet (A’,B’, C')
where B’ and C”have an extremely simple structure (zeros and the identity
matrix).

It will now be shown that the RSVD, combined with the OSVD may lead
to a computationally simpler solution, which more closely follows the lines
of the solution as presented in [6].

Using the RSVD, we find that:
A B\ _(P™* 0 Sa Sb Q' o
Cc D]~ 0 U, S. UrD*V, o v
Let E* =U?D*V,. Since U, and V; are unitary matrices, the problem can

be restated as follows: R
Find E such that |E — E||r is minimal and:

Sa S
rank( S: B ) <r
The constrained total least squares problem can now be solved as follows.
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Theorem Ib
RSVD-OSVD solution of constrained total least squares.

o Consider the OSVD:

Ey=-S{' Enp Ep re
Exn Ex Ep3 | = Z ufof(vi)*
Ej; E3; Ej3 i=1

where r, is the mnk of this matriz.

o The modification of minimal Frobenius norm follows immediately from
the OSVD of this matriz by truncating sts dyadic decomposition after
T —Tap— Tac + Ta terms. Let
. r=rap—rac+ra
E= Y ufof( )"
=1

Then the optimal D is given by
- E o),.
D—Vb(o 0)U°

Proof: From Theorem 13, it follows that the rank of ( é g, ) can be

reduced by reducing the rank of the matrix

Ey—-S! Ey Ey
Exn E;; Eg3
E3y Ey; Ej;

The matrix D is then obtained from (18) by setting the blocks Ex4, Ea4,
E3y, Eq, Eg, Eq, E43 t0 0 in order to minimize the Frobenius norm and
then truncating the OSVD of the matrix above. o

We conclude this section by pointing out that more results and also
algorithms to solve total least squares problems with and without constraints
and given covariance matrices, can be found in [6][25] [26].

46



3.3 Generalized Gauss-Markov models with constraints.

Consider the problem of finding x, y afid z while minimizing ||y||? + ||2||* =
y*y + Z*zin:

Az + By
z = CX

where A, B, C, b are given.

This formulation is a generalization of the conventional least squares problem
where B = I, and C = 0. The above formulation is more general because
it allows us for singular or ill-conditioned matrices B and C, corresponding
to singular or ill-conditioned covariance matrices in a statistical formula-
tion of this generalized Gauss-Markov model. The problem formulation as
presented here could be considered as a Square root”version of the problem:

Find x such that:

Ib — Azllw, and _|iz|lw.
are minimized, where ||uljw, = v*Wpu and W, and W, are nonnegative def-
inite symmetric matrices.

In case that BB* is nonsingular, one can put W = (B B*)~*and W, = C*C.
The solution can then be obtained asfollows:

Minimize ||y||? + ||=||> where:
v’y = (b-Az)*'Wy(b- Ax)
2*z = z°C*°Cz
Setting the derivative with respect to x equal to 0, results in
X = (A*Wpd + C*C) 1 A* Wb

In case that Wy =1,,,and C =0, this is easily seen to be the classical least
squares expression. However, for this more general case, one can see a con-
nection with so-called regularization problems. Consider the case C # 0 and
B = In. If the matrix A is ill-conditioned (because of so-called collinearities,
“which are (almost) linear dependencies among the columns of A), the addi-
tion of the term C*C may possibly make the sum better suited for numerical
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inversion than the original product A*A, hence stabilizing the solution x.

The matrix B acts as a Static *noise filter: Typically, it is assumed that
the vector y is normally distributed with the covariance matrix E(yy*) be-
ing a multiple of the identity. The error vector By for the first equation
can only be in a direction which is present in the column space of B. If the
observation vector b has some component in a certain direction not present
in the column space of B, this component should be considered as errorfree.
The matrix C represents a weighting on the components of x. It reflects
possible a priori information concerning the unknown components of x or
may reflect the fact that certain components of x (or linear combinations
thereof) are more flikely~or less costly than others. The fact that one tries
to minimize y* y + z*z reflects the intention that one tries to explain as much
as possible (i.e. min y*y) in terms of the data (columns of the matrix A),
taking into account a priori knowledge of the geometrical distribution of the
noise (the weighting W;). The matrix C reflects the cost per component,
expressing the preference (or prejudice?) of the modeller to use more of one
variable in explaining the phenomenon than of another.

In applications, however, typically, the matrix A contains much more rows
than columns, which corresponds to the fact that better results are to be
expected if there are more equations (measurements) than unknowns. How-
ever, the condition that BB* is nonsingular requires quite some a priori
knowledge concerning the statistics of the noise. Because typically this
knowledge is rather limited, B will have less columns than rows, imply-
ing that BB* is singular such that the explicit solution of (3.3) does not
hold.

In this case, the RSVD can be applied in order to convert the problem
to an easier one, while at the same time providing important geometrical
insight and results on the sensitivity. Using the RSVD, the problem can
be rewritten as:

(P"d)
(U2)

Sa(Q7'z) + Se(V'y)
Sc(Q-lz)

Define ¥ = P*b,z' = @'z, y’ =V;'y, 2/ = Uz then with obvious partition-
ings of ¥, 2/, y7 2’ it follows that:

by = Sizh+y,
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/ — ! '
bs = z's+y,
by = 2'y

/ — !

b's = Sy
1] —
¥e = 0
and
'
zy = 1z}
2y = 1z
z3 = 0
22 = Sa.’tg .

Observe that b'e = 0 is a consistency condition. It reflects the fact that b
is not allowed to have a component in a direction that is not present in the
column space of (A B). zj and z can be estimated without error while the
fact that b} = Say4 could be exploited to estimate the variance of the noise.

Most terms in the object function y*y + z*z can now be expressed with
the subvectors z’;, (i = 1... .,6),

y*y + 2%z = b1b) + 2’53z} — 2b1S1aq + B35 + 2’325 — 2b'32)
/504 + b5 S0 + a1z + 2’y + oY,
The minimum solution follows from differentation with respect to these vec-
tors and results in

2y = (I + 87 sty = (L+ SPTW A= (1 ST
z's = b vy, = 'y = b

'3 = V3 y'a =0 23 = 0

'y = b vy = S5;'Ws 7y = 0

3'5 =0

z’e = arbitrary

Statistical properties, such as (un)biasedness and consistency, can be anal-
ysed in the same spirit as in [21], where Paige has related the Gauss Markov
model without the x-equation, to the QSVD. Similarly, the RSVD also
allows us- to analyse the sensitivity of the solution. If for instance §, is ill-
conditioned, then the minimum of the object function will tend to be high,
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whenever b has strong components among the weak ”singular vectors of
2, because of the term b'3S;2b§.

A related problem is the following:
Minimize y*y in
b=Ax+By

subject to
CX=cC

This is a Gauss-Markov linear estimation problem as in [21], but with con-
straints. The solution is again straightforward from the RSVD. With
b = P*b, 2’ = Q7 1z,y = Vi'y, ¢ = UZc and an appropriate partition-
ing, one finds

71 =€ ¥ = b - Siq
p=c=b ¥2=0
zh = b v%=0

I — 3 ! — Qo—
zq = b va = S by
24 = 53¢,
zg = arbitrary

Observe that ¢j = bj represents a consistency condition.

4 Conclusions and perspectives.

In this paper, we have derived a generalization of the OSVD, the restricted
singular value decomposition (RSVD), which has the OSVD, PSVD and
QSVD as special cases. Besides a constructive proof, we have also analysed
in detail its structural and geometrical properties and its relations to gen-
eralized eigenvalue problems and canonical correlation analysis.

It was shown how it is a valuable tool in the analysis and solution of rank
minimization problems with restrictions. First, we have shown how to study
expressions of the form A + BDC and find matrices D of minimum norm
that minimize the rank. It was demonstrated how this problem is connected
to the concept of shorted operators and matrix balls. Second, we have anal-
ysed in detail the rank reduction of a partitioned matrix, when only one
of its blocks can be modified. The close relation with generalized Schur
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complements was discussed and it was shown how the RSVD allows us to
solve constrained total linear least squares problems with mixed exact and
noisy data. Third, it was demonstrated how the RSVD provides an elegant
solution to Gauss-Markov models with constraints and can be used to study
and compute canonical correlations.
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Appendix A: Two constructive proofs of the RSVD.

The analysis and the constructive proofs of the RSVD will be performed
using the (m+ g)x(n + p) matrix T:

T=(2§g) . (20)

With the notation of section 1, we have:
rank(T) = rape

Obviously, from the RSVD theorem, it follows that:

P* 0 A B Q 0\ (S, 5
Ao UZJ\C o 0 u/JT\s. o
Therefore, we shall derive expressions for P, @, U, and V; via a factorization

approach, in which the matrix T will be transformed into matrices T via
a recursive procedure of the form:

(P®y 0 w [ @¥) o
( o @®y )T o vw

A®  p(k)

c® 9
with T(® = T. In each step, the matrices P®, Q® are square non-singular
while U,g'),Vb"‘) are unitary. Hence the important observation that:

T(k+1)

Lemma §

Rank preservation

For all k:
o rank(T®) = rank(T) = rape
o rank(A(®)) = rank(A) = rq
o rank(B®) = rank(B) = r,
o rank(C®) = rank(C) = r,
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At each recursion, we get closer to the required canonical structure from
Theorem 4. The final matrices P,Q, U, V; are then simply obtained by
multiplication of the matrices P(),Q(),u(), v (),

We will now present 2 constructive approaches. The first one is based upon
the properties of OSVD and the PSVD and the second one is based upon
the properties of the OSVD and the QSVD.

Constructive proof 1. OSVD and PSVD
The construction proceeds in 4 steps:

1. First the data in the matrix T are compressed via three OSVDs.

2. Then the Schur complement Lemma 4 is invoked to eleminate some
matrices.

3. A PSVD is performed which delivers at once the structure as in The-
orem4.

4. The last step is a simple scaling and reordening.

Compared to the second constructive proof based on the QS VD, the proof
with the PSVD is algebraically more elegant.

Step 1: An orthogonal reduction

The first step consists of an orthogonal reduction, based upon three OSVDs.
The idea can be found in [6] though a similar reduction can also be found
in [3].

Lemma 6
There ezist unitary matrices PM, v, Q) v(1) gych that:

(70 W) (22) (%
A\ 0 @wwy»)\Cco o A )
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o A o oo p®  p®
Tab = Ta 0 0 0 Bzi) 0
=m-rTg 0 0 0 0 0
Tac —Ta Cﬁ) Cg) 0 0 0
g+ Ta —Tac C'g) ] 0 0 0

where each of,; Aﬂ};(,‘) fi is either square and non-singular or null. (If
oneis null, delete the corresponding rows and columns.)

Proof: The proof consists of a straightforward sequence of 3 OSVDs. From
the OSVD of A it follows that there exists unitary matrices U, and Vo

such that
. AR o
UnpAVq = o o

whereAgll) is square nonsingular diagonal containing the non-zero singular
values of A. With r( A{}) = r4, one finds that

* A(l) 0 B(l)
(200 )-(5 4%
0 I C 0 o I, | 2
q P C{’) C;l) 0
From the OSVDs of B§1) and c;‘), obtain Usi, Vi, Ua, Va1 Such that

B o c o
Ul';lB;l)Vbl=( o 0) LCPVe :( > o

where Bﬂ) and CS) are square nonsingular containing the non-zero singular
values of Bgl) and Cgl). Then

L, o o \[A® o B/, o o)
o Uy o o o BY 0 Va 0
0o 0 u3)\cw o 0 0 Vi)

An 0 o BY B0 )

o o o0 BY o
=l o o o0 0 o

ch c oo o

c» o o o o J
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with obvious definitions for B{), BY, c® ¢ |t is straightforward to
show using Lemma 1, that -

rank(Bg)) = Tab — Ta (21)

rank(Cg)) = Tae = Ta . (22)
Also it follows that

rank(B3)) = ra + ™ — ta (23)

rank(Cg)) =Ta + Pe—Tap (24)

because obviously

_rank(B) = rm = rank(Bg))+rank(Bg))
rank(C) = r. = rank(CY) + rank(&)) .

Then letting

0 Uy

(Q“))=V..1(I(; o ) , VO =vy

"cl

proves the Lemma. 0

The matrix T() takes the form

T =
Ta Tac—Ta N—Tac Tab—Ta P—Tab t Ta
ra 1 0
Pab— Ta 0 0 B{Y 0
m—"rap . 0 0

0 0
Tac — Ta C(:) c
g—Tac+7Ta ggg 0

O OO O o

0 0
Bf) Bf)
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Step 2: Elimation of C(l) and B(l)

1
Recall that the matrices B{p) and Cf3 are squar? nonsingular diagonal.
Because of the nonsingularity of Cl(z , the matrix C can be eliminated by
a non-singular transformation using Lemma 3, as foIIows

(cﬁi c‘”)( e 0 )_ 0o ci
CZl 0 (012 )-lc( ) I"ae""a Cz(:) 0

Similarly for the matrix B{}) from the nonsingularity of BY

(Ir.. —Bﬁ’(Béi’)“) BY B \_( o BY
0 Lrpra BY o BY o

Define P(?) as
e -BRBT o
(P(2)):- = ( 0 ) - 0
0 0 : I Mm=rap
and Q@ as

0 0
(Q(2)) = ( (C(l)) lc(l) I'u_ra 0
0 0 In—ruc

At the same time we will permute the block rows and columns with

(U(z))'. = ( 0 Iq-r6¢+r¢ )

fac—Ta

and
V(z) = ( 0 I"ab— fa
( ) IP"’ub""o 0

The resulting matrix T is then given by

T = (25)
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Ta Tac—Ta N-Tac P —Tab+Ta Tab - Ta

Tab—Ta 0 0 0 0 BY
m = T 0 0 0 0 0 -
g-rac+ra| C o 0 0 0
ree=ta  \AD R e B 0

Let? now first determine the rank of the matrix T(2.

rank(T@) = rape

= rank(T)
AD o o BY o
o o o o BY

=t 0 0 0 0 0
c) o o 0o o
o c o o o

) g1

1 1 .
= r(AD)+r(—cPAD)1BY) +1(CR) +r(BY)
= Tqtf (rOb - ra) t (Tac - rd)+r(_cg)(‘4§ll))-133)) '

The second step follows from the non-singularity of Cg) and Bﬁ) while step
3 follows from the Schur complement argument (see Lemma 4 in section

3.2.2) and the nonsingularity of A{Y.
Hence:

rabe = 1aNK(T) = rank(T®) = rop+rac—ra+rank(C (A7) BLY) (26)

Step 3: The PSVD step

Let3 first concentrate on the submatrix

1 1
Ay B ) ,
c o
Recall that A, is square nonsingular diagonal, containing the nonzero sin-
gular values of A. Consider the PSVD of the matrix pair
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(Cax)(41)) %, (BD) (AR)/2):
Co(Ap) ™/
(B) (A1)

Define rq4 as

U:sSeaX3
ViaSea X5 .

raa=rank(C{) ()1 BY) .

Then, from (26) we find immediately that

Ta4 = Tabc . Ta — Tab — Tac -

(27)

and from the PSVD (Theorem 2 in section 1), it follows that the matrices

Ses and Sy3 have the following structure:
503 =
Tabe + Ta — Tab — Tac

sy
0
0

Tabe + Ta = Tab — Tac
Tabt Tc—Tabe

q—"Tc
Sps =
Tabe + Ta — Tab - Tac
1/2
Tabc + Ta — Tab — Tac Seﬁ
Tact Tb—Tabe 0
p—Tp 0

Now, use the PSVD to define:

(PO

and

Q¥) =
0
and
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Tabt Te—Tabe Tacl Tob— Tabc Tabe — Th— Te

0 0 0
I 0 0
0 0 0

Tab +Tc =rabe 14t To—Tabc Tabe — Tb — T¢

0 0 0
0 I 0
0 0 0

X342 o o
= 0 I Tad—Ta 0
0

0 Im- Tabd

0
(AD)2XGS Nraemr O )

0 Iﬂ—'“

(3)ye Us O
(U ) ( 0 I"oe—"a)

|



Vi
3 = b3
v =

It is straightforward to show that

I, O
0 O
7@ =] 0 o
Sa O
o ¢t

o ©o0o o o

0
0 . I"ab"n

Inserting the structure of Sz and Sca results in the following structure for

the matrix T(3

'
/

S 000 B WN

o

T3 =

OO0 OO0 OO OO o &

OO0OO0OO0OO0OO0ORFr@O0OO0o M
Q
b
~—

OO0 OO0 MOO W
oo

OO0O~NMNOOOOOFrODN

6 7 8 8 10
0o 5;* 00 0
0 0 00 0
0 0 I O 0
0 0 00 0
o 0o o o BY
0 0 00 0
0 0 00 0
0 0 00 0
0 0 00 0
0 0 00 0/

The block dimensions of T® are the following

block rows

block columns

P O ®-JD MDD WN

Tabc + Ta = Tab = Tac
Tab + Tc — Tabe

Tac + Tb — Tabe
Tabe = Th — Tc
Tab — Ta

me-—"a
rabc+ra_rab-rac
Tab+ Tc — Tabe
g-Tc

Tac — Ta
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Tabe t Ta — Tab — Tac
rob t T¢ — Tabe

Tac T Tb - Tabe

Tabe = Th — Tc

Tac = Ta

n - rac

Tabe + Ta = Tab = Tac
Tac+ Tb = Tabe
P—Th

Tab = Ta



Step 4: Scaling and Permutation

The final scaling step in order to find the canonical structure of Theorem 4,
is easily derived from the following observation

Sl oN( I S\ o\_(sd I
o I)\s¥ o 0o I I 0

Moreover, we shall do a permutation of block rows 3 and 4 and block columns
3and 4. Hence the matrices P4 and Q4 are determined by:

(s 000000

0 100000

0O 00IO0O0TO

(PWYy = 0 010000
0 000100

0 000010

. 0 00O00O0O I
"S7M% 0 0 0 00 o)

0 I 00000

0 00IO0O0O

(W) = 0O 010000
0 000100

0 0000O0T10

v« 0 00000 I/

where the block dimensions of the identity matrices are obvious from the
block dimensions in T®. It is now easily found that:

Sa S
T(4)=(S¢ ob)

which proves the Theorem. s ]

Constructive proof 2: the OSVD and the QSVD

Instead of using the structure and properties of the PSVD, it is feasible to
derive a constructive proof of the RSVD using the structure and properties
of the QSVD. The idea is borrowed from [28]. The resulting proof is a little
less elegant than the one via the PSVD and consists of 7 steps:
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1. First, an orthogonal reduction based upon 30SVDs is performed.
2. A Schur complement elimination is the second step.

3. Then aQSVD is required of a certain matrix pair . . .

4, ... followed by a second QSVD.

5. Some blocks can again be eliminated by a Schur complement factor-
ization.

6. An additional OSVD is required.

7. Finally, there is a diagonal scaling.

Step 1: Orthogonal reduction

The first step is nothing else than the orthogonal reduction described in
Lemma 7.

Step 2: Elimination of C;; and By

The second step corresponds to step 2 described in the first constructive
proof, resulting in the matrix T(3).

Step 3: QSVD of the pair (Cg), Aﬁ’)
Consider the matrix T and let the QSVD of the matrix pair (C{, Al"))

be given as
Ca O -
Cgi) = UC? ( 0‘:2 0 ) X2 !
1 S, 0 -
Asl) = U02 ( oaz Irac—re ) X2 1 .

Matrices Sg2 and Cgg are (rq + re — rac) X (74 + Fc = T4¢) SqUare nonsingular
diagonal matrices with positive diagonal elements, satisfying

532 + CZQ = I"¢+'c“"¢e .
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Observe that there are no zero elements in the diagonal matrix of the de-
composition for Aﬁ) because Aﬁ) is square nonsingular. Now, define

- Ugg 0 0
(PO =] 0 ILy-r O ;
0 0 Im-rob
cx! o 0 0
_{ X2 0 0 0 lrge—re O 0
(0(3)) 0 | fac—Ta 0 0 ¢6 ¢ [ 0 !
Tac—Ta
0 0 lnre 0 0 0 lnere,

- __ ‘2 0 . =
U; = ( 0¢= Lo, ) ;i w3 =1, .

This results in a matrix T as:

1 2 3 4 B 6
1 (Sag(ccg)-l 0 0, 0 311(3) 0 \
2 0 lre=ra O 0 Bu® 0
3 0 0 o o o BY
TGO = 4 0 0 0 0 0 0
5 lres 0 0 0 0 0
6 0 0 0 0 0 0
7h 0 o c® o o o0 )

Here we have that )
B .
( B;:(s) ) = Uang) -

The block dimensions of T®) are

block rows block columns

1| ra+rc—Tac | Ta + Tc = Tac
2| Pac—=Te Tac — Tec

3| Tab—Ta Tac — Ta

4 | m=rg N - Fae
Blra+Tc=Tac|DP+Ta—Tab
e q-—=Te Tab — Ta
T|rac—"ra
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Step 4: QSVD of (B, S,C3t
Let the QSVD of the matrix pair (B11'¥, $,2C3') be given as

— C 0 *
311(3) = X3 ((;’3 0)Ub3 ’

- a 0 -
Sa2cfv¢;1 = X3- (S 3 ) Ua3

0 I"a+"c—"¢e-'bl

where S,3 and Cy3 are rp3 xrp3 diagonal matrices with positive diagonal
elements, satisfying ,
s, .ch=1I,

and
res = rank(Bpu®) .

An expression for ry3 in terms of £4, 78, ey Tabs Tacy Tabe Will NOW be deter-
mined. Choose:

X3 o 0 0

Wy | 0 Troemre O 0 :

(F) 0o 0 I, O ’
\ 0 0 0 Im_rab

@9 \wd Trrerle nla)

U3 0 0
(U(4))t _( 0 I, 0, ; Ve = ( Uss 0 )
0 0 ) (S
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Then we have that

1 2 3-- 4 5 6 T 8
1 [ Sa3 0 0 0 0 GCw 0 0 )
21 0 Inpgrecrec—res O 0 0 0 0 0
3l 0 0 lremre 0 0 Bn™® Bxp® o
41 0 0 0 0 0 0 0o BY
TW =5 0 0 0 0 0 0 0 0
6| Iny 0 0 0 0 0 0 0
7 0 I"a+"¢'"oc'"b‘ 0 0 0 0 0 0
8| 0 0 0 0 0 0 0 0
9\ 0 0 0o c® o0 o0 0 0 )

ihere 9 g (3
~ (Bsy' B3yg)=By'Uss -

The rank of 79 can now be determined as follows:

rank(T(‘)) =rank(T)
= rabc
= Tac+ Tab— Ta+ Tb3 .

The third line follows from the Schur complement rank property (Lemma 4
in section 3.2.2.). Hence

T3 = Tabc + Ta — Tab — Tac . (28)

The block dimensions of the matrix T(¥ are the following

block rows block columns
1 | Tabe+Ta—Tab—Tac | Tabc + Ta = Tab — Tac
2 | Tab+ Tc — Tabe Tab + Tc — Tabe
3 | Tac —Te Tac — Te
4 | Pap—Ta Tac — Ta
58| m-rg n-ra
68 | Tabe + Ta — Tab — Tac | Tabe + Ta — Tab — Tac
7 Tab+ Tc — Tabe D + Tac — Tabe
8 lg-re Tab— Ta
ad | Tac — Ta
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Step 8: Elimination of B3

It is easy to verify that B3 can bé eliminated by choosing (we have
omitted the subscripts of the identity matrices):

I 000 O
0 I 0 0O
(POY =] -BuWCr 0 T 0 0 | ;
0 0 0 IoO
0 000 I
and
| 0000
0 1 00O
Q@M=]| Bx® 0 1 0 0 ;
~ 0 0 0 | 0}
0o 0 0 0 |
with
Us=1I, ; Vz=1I,
The result is:
[ Se3 0O 0 0 0 Cg 0 0
0 I0 0 0 O 0 0
0 0TI 0 0O O Bxp® o0
oo0o0o0woO0O0O 0 BY
™™= 0 0 0 0 0 O 0 0
| 0 0 0 0 O 0 0
0 I0 0 0 O 0 0
0 00 0 0O 0 0
L\ 000 c® oo 0 0 )

having the same block dimensions as the matrix T(4).

Step 8: Elimination of C.3 and B39
Consider the OSVD of B339 as:

Sy O
@ = ba Vid*
Ba; Ug( 0 0 ) (W)
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where Spq IS rp4 xTpq diagonal with positive diagonal elements and
The = rank(B:(,;) ) .

We shall now derive an expression for rpe. Hereto choose (the block dimen-
sions follow from those of T(4))

cz' 0 0 00
0 I 0 00
(POY=| 0o o Uy 00] ;
0 0 0 IO
0 0 0 o0
I 0 0 00
@_| 0T 0o oo |
@ =160 vno0o0]
00 0 01
I 0 0
Uy =1, ; vO=|0 Vv 0
0 o0 I
The result is the matrix T(®):
1 234 8 6 7T 8 9 10
1 [S43Cs™ 000 0 0TI 0 0 0 )\
2 0 100 0 00 0 0 0
3 0 0 T 0 0 00 S 0 0
4 0 001 0 00 0 0 O
@ _ 5 0 000 0 0 oo 0 BY
6 0 000 O 0 0 0 0
7 ! 000 O 0 0 0 O0
8 0 100 0 0 0 0 0
8 0 000 Q 0 0 0 0
10\ o oo0oo0cd ooo0o 0o o)}

Observe that from the block dimensions of 74 it follows that
Ts = Tabc — Tac - Tha .

Hence,
Tha = Tac + Tb = Tabe
Hence, the block dimensions of T(®) axe

68



block rows

block columns

Step 7: Diagonal Scaling

1

2 Tab+ Tc — Tabe
S | Tact+ Tb — Tabe
4 Tabe — T — Tc
5 Tab — Ta

] m—Tap

7

8 | Tap+ Te— Tabe
9 qg—Te

10 | rqc — Ta

Tabe + Ta — Tab — Tac™

Tabc + Ta — Tab — Tac

Tabe + Ta — Tab — Tac
Tab+ Tc — Tabe

Tac+ Tb — Tabe

Tabe — T — Tc

Tac — Ta

n — Tac

Tabc + Ta = Tab — Tac
Tac + Tb — Tabe
P—Tp

Tab — Ta

Pre- and pestmultiplication of T® with (P()* and (Q(7) results in the

desired diagonal forms where

(P

QM

\
(

\

(
0

I

0
0
0
0
I
0
0
0
0
0

OCOO0OONMNO OO0 MNO

W
[~
“'

co~mO OO
o~mNOoOoOCO
_o OO OO0

oo ~NO O
oONMNOOOOo
NOoOOOOO

The block dimensions of the identity matrices are obvious from the block
dimensions of T(®) and it is straightforward to verify that

T = (

which proves the Theorem.

Sa
Se
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