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Abstract

We perform an analytic and empirical study of line iterative methods for solving the
discrete convection-diffusion equation. The methodology consists of performing one step
of the cyclic reduction method, followed by iteration on the resulting reduced system using
line orderings of the reduced grid. Two classes of iterative methods are considered: block
stationary methods, such as the block Gauss-Seidel and SOR methods, and preconditioned
generalized minimum residual methods with incomplete LU preconditioners. New analysis
extends convergence bounds for constant coefficient problems to problems with separa-
ble variable coefficients. In addition, analytic results show that iterative methods based
on incomplete LU preconditioners have faster convergence rates than block Jacobi relax-
ation methods. Numerical experiments examine additional properties of the two classes
of methods, including the effects of direction of flow, discretization, and grid ordering on
performance.
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1. Introduction.

Consider the convection-diffusion equation

(l.lu) -[(Pz)E + (!Py)u]  + rut + SUy = f on fj

(l.lb) cm + pu, = g on dS2,

where Q is a smooth domain in R* and p > 0, Q > 0 on 52. Discretization of (1.1) produces
a linear system of equations

(12). Au = f,
where u and f are now vectors in a finite dimensional space, and A is a nonsymmetric
matrix when r and s are nonzero. We are concerned with discretizations (principally,
finite difference methods) for which each equation in (1.2) is centered at some mesh point
(xi,yj), and the associated unknown uij depends only on its neighbors in the horizontal
and vertical directions. That is, the equation centered at (xi, yj) has the form

(13). UijUij = f ij - bijui,j-l  - Cijui-l,j  - dijui+l,j  - eijui,j+l.

In this case, we say that (1.2) has a compututionu2  molecule of the form

Cij

eij

I
Qij - d..

�1  l

When the system (1.2) has this property, the mesh points {(xi,yj)} and unknoi~ns
{uij} can be ordered with a red-black ordering so that every equation centered at a “red”
point depends only on “black” unknowns, and every equation centered at a “black” point
depends only on “red” unknowns. An example of a red-black ordering of a 6 x 5 grid is
shown in Fig. 1.1. If uij is a black unknown, then by adding appropriate linear combina-
tions of the equations for ui*l,j and ui,jfr to the equation for uij, we can eliminate the
dependence of uij on its red neighbors. When this is done for every black equation, the
result is a smaller linear system

.

(14).
where u(*) is the set of unknowns associated with black mesh points.’

1 In matrix notation, the rowa and columns of A can be ordered so that (1.2) has the form

where D and F are nonsingular diagonal matricm. Matrices of this type are said to possess J%vqwrQ A (261,
or to be two-cgclic [23]. Decoupling of the red points a(‘) is equivalent to producing the system (1.4), where
~(*)=f’-ED’lc  and g(b)=f(b)-ED’lf(r).
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@l xl6 82 x17 83 xl8

Fig. 1.1: A 6 xs grid and a red-black ordering. Grid indices are shown on the left, and vector indices for a
red-black ordering are shown on the right. Red points are denoted by “@” and black points by “x.”

In [7], [8], we analyzed the convergence behavior of block iterative methods for solving
the reduced system (1.4) derived from discretizations of (1.1). We considered block Jacobi,
Gauss-Seidel and successive over-relaxation (SOR) methods [23] ,[26],  where the blockings
(of the rows and columns of A@)) are derived from certain line ordetings  of the underlying
reduced (black) grid. In particular, the unknown grid values u@) can be grouped together
either by individual lines of the grid, producing a class of one-line orderings, or by pairs of
lines, producing two-line orderings (see 52). These orderings produce matrices with block
Property A, so that the classical analysis of Gauss-Seidel and SOR methods [23],[26]  can
be used. The results of (71, [8] apply to problems with the constant coefficients p(x, y) =
45 Y > = 1, r(x, Y) = 6 4&Y) = 7. They show that convergence is often very fast; in

-particular, for non-self-adjoint problems (Q or r nonzero), convergence is typically faster
than for self-adjoint problems. They also show that convergence rates for solving the
reduced system are often faster than for solving the full system (1.2) by analogous line
methods. These observations are in agreement with asymptotic results in [18] and the
algebraic analysis of [ll]. Related results for point iterative methods are given in [16].

In this paper, we extend the analysis of [7], [8] to separable problems, and we also’use
it to derive bounds on convergence behavior for stationary methods based on incomplete
factorizations (151. In addition, in a series of numerical experiments, we examine the effect
of physically significant properties of the problem (1.1) on the performance of iterative
methods applied to (1.4). Here, we consider both block relaxation methods and the pre-
conditioned generalized minimum residual method (GMRES) [2l], with preconditioning
by incomplete factorizations [15]. We focus on the following issues:

1. For constant coeficient  problems, the effect of the signs and magnitudes of r and s
in (1.1). These quantities determine the direction and rate of flow associated with
the convection in the model. The analysis of [7], [8) is sensitive to magnitudes
but not to signs.

2. The effect of variable coefficients r and s. We consider problems both with and
without turning points.

3. The effects of the choice of discretization on performance; we consider centered
and upwind finite difference discretizations.

4. The first three issues do not address the issue of accuracy of the discrete solu-
tion. We also examine the effect of methods designed to improve accuracy in
the presence of boundary layers, in particular, local mesh refinement and defect
correction methods [10],[13].
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An outline of the paper is as follows. In 52, we describe the reduced matrix Atb),
and we present the ordering strategies and iterative methods used to solve (1.4), including
some block red-black strategies of use for vector and parallel computations. In 53, we
extend the analysis of [7), (81 to separable problems and incomplete factorizations.  In
54, we describe the results of numerical experiments with constant coefficient problems.
For several ordering strategies, we examine how performances of block stationary methods
and preconditioned GMRES are affected by direction and rate of flow, choice of difference
scheme, and use of local mesh refinement to resolve boundary layers. In $5, we compare
experimental results with analytic bounds on convergence, for separable problems. In
56, we consider performance for some problems with nonseparable variable coefficients,
i.e. where the flow varies in both direction and magnitude in 0. Here we consider both
centered and upwind finite differences, as well as a difference scheme used to implement
defect correction methods. Finally, in $7 we make some concluding remarks.

2. The Reduced System and Line Iterative Methods.

Consider the two equations from (1.2) centered at the (xi,yj) (as in (1.3)) and
(xi, yj-1) mesh points:

aijuij + bijui,j-1 + CijUi-l,j  + dijui+l,j  + eijui,j+l  = f ij 7
ai,j-lui,j-l  + bi,j,lui,j-2  + Ci,j-lUi-l,j-1  + di,j-lUi+l,j-1  + ei,j-luii = fhj-10

Solving the second equation for ui,j- 1 and then substituting into the first equation gives
the new equation

aij -
bijei,j-1

Qi,j-1 1 Uij + Cijui-1,j + dijUi+l,j  + eij”i,j+l

bijbi,j-1
Ui,j-2 -

bijci,j-1

ai, j - l ai, j - l
Ui-l,j-1  -

bijdi,j-1
Ui+l,j-1  = fi j  -

bijfi,j-1 .
G,j-1 ai,j-1

Unknowns ui-r,j, ui+l,j and ui,j+r are eliminated in a similar manner, using this equation
and the ones centered at the othe? neighbors of (xi,yj). Thus, for all black mesh points
not next to the boundary bQ, the computational molecule for the reduced matrix Atb) has
the form shown in Fig. 2.1. The value “s” in the center is

bijei,j-1
Oij - - -

cijdi-1 j9 dijci+l,j eijbi,j+l
9

ai, j-1 Qi-i,j ai+l,j Qi, j+l

and the right hand side is perturbed by an average of neighboring values,

,!t) = f. * - bijfi,j-l _ Gjfi-1,j dijfi+l,j
*I

_ eij fi, j+l
*3

.
Q&j-l ai-r,j ai+l,j Qi, j+i

We will be concerned with finite difference discretizations of (1.1). On a uniform grid
with mesh size h, let standard second order differences [9] be used for the second derivative
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bij bi,j-l
ai,j-1

Fig. 2.1. The computational molecule for the reduced system.

terms. If centered differences are used for the first derivative terms, then after scaling by
h2, the values in the computational molecule are given by

a;j = P(Xi+1/2rYj)+P(Zi--1/2,Yj)+Q(Xi'Yj+ll2)+Q(xi,Yj--1/2),

b.0 =11 -(q(xi,yj-l/2) + s(xi,yj)h/2), 4j = -(P(zi+ll2cYj)  -r(~iv~j)h/2)'

Cij = -(P(Xi--112  9 Yj) + (Xi9  Yjlh12)7 eij = -(Q(Xi9Yj+1/2)  -S(zi~Yj~h/2~*

If upwind differencing is used for the fist derivatives, then (for the case f(xi, yj) > 0,
s(xi,yj) > 0), the values are

aij = P(Xi+lll,Yj)  + p(Xi-l/l,Yj) + Q(xi,Yj+l12)  + dxi~Yj-l/l)

+r(Xi,Yj)h  +S(Xi,Yj)h,
b-a ='J -(q(Xi,Yj-~12)+s(Xi,Yj)h), dij = -P@i+ll29Yj)9
Cij = -@(Xi-l/2;  Yj) + r(G9 Yjlh)r t?ij = -Q(Si, Yj+l/2)*

If instead, s(xi’yj) < 0, then bij = -q(zi’yj-l/2)’ eij = -(q(xi’yj+l/2) - s(z~’ yj)h)’ and
S(xi,yj)h is replaced by -s(xi,yj)h in the expression for aij. The case r(xi,yj) < 0 is
handled in an analogous manner.

The line ordering strategies for the reduced grid are outlined as follows, see [7], [8] for
further details. In the natural one-line ordering, points of the reduced grid are grouped
together by diagonal lines, e.g. oriented in the NW-SE direction. The left side of Fig. 2.2
shows an example for a 6 x 5 grid. Here, the E’th line consists of all points with grid indices
(i, j) such that i+ j = 2k+l. (Compare with the left side of Fig. 1.1) Thus, in Fig. 2.2, the
first line consists of the points {1,2}, the second line consists of the points {3,4,5,6},  etc.
In the natural two-line ordering, points are grouped together by pairs of either horizontal
or vertical lines. The right side of Fig. 2.2 shows an example of a horizontal grouping



for a 6 x 5 grid. The points in the k’th group are those with grid indices (i, j) such that
k - 1 < j/2 5 k. If the number of lines is odd, the last group consists of a single line, as in
the group (13,14,15}. For both these strategies, A(“) is a block tridiagonal matrix; let D
denote its block diagonal. For the one-line ordering, each block of D is a tridiagonal matrix,
and for the two-line ordering, each block of D is a pentadiagonal matrix (except possibly
the last block, which may be tridiagonal). It is also useful (e.g. for parallel computations,
see [8]) to define Zinc  red-black  variants of these orderings, in which alternating lines (or
line-pairs) are assigned opposite colors. For example, for the one-line version, let the sets
{ 1,2}, { 7,8j 9,10,11} and { 15) be denoted as “red” lines, and the others as “black” lines.
Then every equation centered at a point in a red line depends only on that red line and
the neighboring black lines; an analogous statement holds for equations centered on black
lines. For the red-black one-line ordering, all red lines are ordered first, followed by all
black lines. The red-black two-line ordering is defined in similar fashion.

. x11 l ⌧1 4  l ⌧1 5
.

⌧1 3 l x14 l X15

X6 l x10  l x13 l x7 l ⌧g l x11 l

.
⌧5 l ⌧g l x12 .

X8 l ⌧1 0 l x12

x2 l ⌧4  l x8 ’ Xl l ⌧3 l ⌧g �

.
Xl l x3 ’ x7 . x2 l x4 l ⌧(-j

A

Fig. 2.2: Natural onoline (left) and twc+line (right) orderings of the reduced 6 xs grid.

For any of these line orderings, let

(2 1). At6)  = D - C = (D - L) - U,

where D is the block diagonal part of A@) and L and U are the lower and upper trian-
gular parts, respectively, of the block off-diagonal part of A@). We consider several block
stationary methods based on the splittings (2.1). The block Jacobi iteration is given by

0) .u&+1 = D-‘&f) + D-‘g(b),

and the block SOR iteration is

(2 2). w
uk+1 = (D - wL)-‘[(l - w)D + wU]uf)  + w(D - wL)“g?

The block Gauss-Seidel iteration corresponds to the case w = 1 in (2.2). In all cases, A@)
has block Property A, so that [26)

(2 3). p((D-L)-'U)= (p(D-'C)]2,

where p(X) denotes the spectral radius of a matrix X.
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In addition, we consider the use of the IC(0) incomplete factorization [15] applied to
Atb) for each of the orderings. This factorization is defined as

(2 4). M = (Ij - i)b-l(B - 0)’

where fi is a diagonal matrix; i and 0 are strictly lower triangular and upper triangular,
respectively; the nonzero  structure of B - 2 - 6 is the same as that of A(“); and the entries
of 1M are the same as the corresponding entries of Atb) wherever the latter are nonzero.
We will examine the use of this factorization as a preconditioner for GMRES.

3. Analysis of separable problems and the IC(0) factorization.

If 0 is a rectangular domain and the coefficients of (l.la) satisfy

P = P(4’ !? = q(Y)’ r T f(3)’ s = S(Y)’

then the differential operator of (1.1) is separable [24]. In this case, the discrete coefficients
of (1.3) satisfy

(3 1)

O;j = (zi
(=) + .Ir)

.

b . . -‘J - bj, cij = ci, dij = di, e;j = ej.

Our convergence analysis is based on symmetrizing the reduced matrix Atb) by a
diagonal similarity transformation. The following result gives circumstances under which
Atb) can be symmetrized when it comes from a separable operator. In the analysis, matrix
entries are referenced using indices from the underlying reduced grid. That is, every
nonzero  entry of the row of A(*) associated with the (i, j) grid point is referenced using
subscripts i and j. For example, the entry corresponding to the point southwest of the
center of the computational molecule (see Fig. 2.1) is denoted by

-bjci
(
L+L ,
ai,j-1 ai-1,j >

where the numerator is expressed using the notation of (3.1).
THEOREM 1. If the operator of (1.1) is Jeparable  and cidi-1 and bjej-1 have the same

sign for all i and j, then the reduced matrix A(*) can be symmetrized with a real diagonal
similarity transformation.

Proof, We seek a diagonal matrix Q such that Q-‘A(‘kJ is symmetric. Let A@) be
ordered by the natural one-line ordering, so that its rows and columns are grouped into I
blocks corresponding to 1 individual lines. Let Q be ordered the same way.

First consider the block diagonal D, which is a tridiagonal matrix. Any two successive
rows of a block of D, corresponding to the (i, j) and (i - 1, j + 1) mesh points, contain the
2 x 2 sub-block * -ciej (* + '-)

;
ai,j+l

-bj+ldi-1 (+ + 6) >
7

, t
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where “*” denotes a diagonal entry. If qij is known, then qi-l,j+r must be chosen SO that

q,?l,j+lbj+ldi-1 L + L>
1 1

Qij = QiilCiej - + -
ai-l,j Qi,j+l ai-1,j ai, j+l >

Qi-l,j+l*

Thus, within the blocks of Q, successive entries must satisfy

(3 2). Qi-l,j+l
= ( bj+$;-l>  112qije

For symmetrizing D, the first entry of each block of Q may be arbitrary.
To symmetrize the off-diagonal blocks of Atb),  we require

(3 3). Q,'A(,b), &k--l = (Q;!lAf!l,k~k)T,* -
where k is a block (or line) index, 2 5 k 5 1. There are three cases, corresponding to
2 5 k < l/2 + 1, k = l/2 + 1 (1 even) and l/2 + 2 < k. In the case 2 5 k 5 I, a careful
specification of the entries of Q and Atb)  shows that (3.3) is equivalent to the following
three scalar relations:

(3 4).

(3 5).

(3 6).

Qjj = ( d~~~~~2)  ‘12qi-2,j7

Qi-2,j+2 = ( bj+i,"::2)  '12qi-2,j.

These relations specify three successive entries of Qk in terms of a single entry of Q&-r
(where k = (i + j - 1)/2). Since the first entry of Qk is arbitrary, (3.4) can be used
to define it. However, once this entry is defined,  all subsequent entries are determined
by (3.2). Thus, it is necessary to show that (3.4) - (3.6) are consistent with (3.2). But
application of (3.2) and (3.4) in either order results in (3.5)’ showing that both (3.4) and
(3.5) are consistent with (3.2). Similarly, (3.6) follows directly from (3.2) and (3.5).

The arguments for the cases k = l/2 + 1 (1 even) and l/2 + 2 < k are essentially the
same and we omit the details. A sufEcient condition to guarantee that all the required
square roots are well-defined is that cidi-1  and bjej-1 have the same sign for all i and j.

Finally, note that this analysis is not restricted to the natural one-line ordering: If
A@) is symmetrically permuted into some other order,#ving the permuted matrix A(‘),
then for an analogous permutation of Q to Q, &‘Z(‘)Q is also symmetric. Cl
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ai,j+l

ci-lcidi-2dia~
ai-l,j

-a /rlR, .bjej-,
” -.-.-L’

I
-JCi+ldibjej-l(+  + &),

dbj-Ibjej-2cj-1
ai,j-1

Fig. 3.1. The computational molecule for the symmetrized reduced system in the separable case.

REMARK 1. For the centered difference discretization, necessary and sufficient condi-
tions to ensure that all cidi-1  and bjej-1  have the same sign are that either
(3.7)

. r

[ (I

dti)h

I I

r(zi-l)h
maxi max 'a' 'Ppo111

< 1 ad maxj[~~(lv*19 I*$&$$] < 1;

or

mini min[ (I r(zi)h II r(zi-l)h
2po Ppo I>1 > 1 md tini [-in(l,$+$ I.-l)] > 1.

In contrast, the full system (1.2) can be symmetrized by a diagonal similarity transforma-
tion if and only if the conditions (3.7) hold. For upwind differences, it is always the case
that cidi-1  > 0 and bjej-1 > 0 for all i, j.

Let Acb) = Q-‘Atb)Q denote the symmetrized reduced matrix, when it exists, for any
of the strategies under consideration. Fig. 3.1 shows the resulting computational molecule.
Let

denote the block Jacobi splitting, where b = Q-‘DQ, C = Q-‘CQ. Note that k’& =
Q-‘DO’CQ, so that the eigenvaks of D-W are the same as those of fi-lc, and in
particular they are real. Let L, = (D - wL)-‘[(l - w)D + WV] denote the block SOR
iteration matrix. The following result is then a straightforward application of the analysis
of the block SOR method [26].

COROLLARY 1. If A@)
cidi-1 and bjej-1

k the nduced  mat& derived born  a separable  operator, and
have the same sign for all i and j, then p(D”C) = p(B-‘C).  If

p(D-‘C) < 1, then p(L,a) = w* - 1, where w* = 2/(1+ 41 + [p(D-‘C)]*) minimizes
PW*

REMARK 2. It may be possible to establish the requirements of Corollary 1 a priori.
Sufficient conditions to guarantee that p(D”C) < 1 are that the original matrix A be
a diagonally dominant M-matrix, which is always the case for upwind differences, and
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is also true for centered differences for small enough h.* Moreover, even if Corollary I
cannot be invoked from an a priori examination of matrix entries, it may still be useful
as a guideline for practical computation. For example, for constant coefficient problems,
empirical evidence and Fourier analysis suggest that p(D” C) < 1 in cases where cidi,1
and bjej-1 axe both negative but A is not a diagonally dominant M-matrix. A good value
for the SOR parameter could be computed from a dynamic estimation of p(D-‘C), e.g.
using the methods of [12], 59. In addition, note that it is not necessary to compute Q or
&b) in order to apply this result, see [7].

COROLLARY 2. Let Atb) come born  a separable operator dixretized  on a uniform
square grid of mesh width h, and a&me  that

(3 8).

for all i, j. If A(*) = D - C id a one-line JacobI  splitting and

(3 9). d=) + &) 3 fi( A+ a,
then

-(3.10) fw+ fij*
p(D-‘c)s (&I +&))*  -q\/iF+,,q*  +4fi(1  -cos?rh)’

If Atb) = D - C ia a two-line Jacobi splitting and

(3.11) (a(=) + aq* 2 2( JI + &)* + 2[,

then
(3.12)

2 7 cos 2nh + 4,/&os  rh
dD-“) s (a(~) + o(y))* - 2(fi+ ,pj)* - 2e + 4fi(1-  cosnh) + 4((1- cm* nh)

+ o(h*).

Proof. Using Corollary 1, we have (for any ordering)

Consider the one-line orderings. By (3.8), all
below by -2fi/(&)

nonzero  off-diagonal entries of B are bounded
+ a(l)),  and all diagonal entries of D are bounded below by

* A nonsingdar matrix X is in M-matrix if Xii SO for i#j and X"lO.

9



Thus, fi 1 5, where each block of 5 is a constant coefficient tridiagonal matrix

The size of this block depends on the line from which it is derived. Assumption (3.9) implies
that each block (3.13) and, therefore, each corresponding block of fi, is an irreducibly
diagonally dominant M-matrix. Hence, the Perro%-Frobenius theory implies p(d-‘) 5
p@-‘). Similarly, by (3.8), 0 5 6 5 8, where C is a matrix with the same nonzero
structure as that of C in which all occurences of cidi-1, bjej-1,  and aij are replaced by t,
7, and & + a(g), respectively. Consequently, p(c) s p(e), and we have

(3.14) P(~-‘>P(Q  5 PP’ >P@>,
where. the right side of the inequality contains constan-t  coefficient matrices. The bound
(3.10) is determined from the maximum eigenvalue of D-’ and use of Gerschgorin’s theo-
rem for E (See [7], Theorem 4.)

Fzr the two-line ordering, the blocks of D and fi are pentadiagonal matrices, and
B 2 D where each block of D is a constant coefficient pentadiagonal matrix,

which is assumed in (3.11) to be diagonally dominant. In addition, exactly as above,
0 5 @ 5 e where 2; has the same nonzero structure as 6. The bound (3.12) then follows
from Theorem 5 of [8]. 0
We will examine the use of this result in 95.

REMARK 3. In the interest of brevity, we have limited our attention to the natural
and red-black variants of the one-line orderings. Other variants, called “torus” one&line
orderings, collect some individual lines together into sets of equal sizes; this is useful for
parallel computations. (See [8],[14].) All of the analysis of this section also applies to the
torus orderings.

We now turn our attention to incomplete (IC) factorizations.  Let B be an M-matrix
of order N, and let N C {(i, j)ll 5 i, j 5 N} be an index set containing all diagonal
indices (i, i). It is shown in [15] that there is a unique IC factorization LU such that L
is unit lower triangular, U is upper triangular, Zij = 0 and uij = 0 for (i, j) 4 n/, and
[LU - B]ij = 0 for (i, j) f Jv. The IC(0) factorization of (2.4) is a particular example. The
following result of Beauwens ([2], Theorem 4.4) can be used to compare the IC(0) splitting
to the block Jacobi splitting.

THEOREM 2. Let B be tz norkngulur  M-m&k,  und let

(3.15) B=Ml-Rl=M2-Rz,

where Ml = L& und M2 = L& are incomplete fuctorizatioru of B such that the set
of matriz indices for which L1 + Ul ti permitted to be nonzero ia contained in the set of
indices for which L2 + U2 k permitted to be nonzero. Then

(3.16) p(M;‘&)  L P(M,‘RI)*

10



The analysis in [2] actually applies to a more general class of factorizations than the
standard IC factorization. Theorem 2 can be proved using the result of Woinicki [25], that
if (3.15) represents two regular splittings of a matrix B for which B-’ 2 0, then

(3.17) M;l 2 M,’

implies the conclusion (3.16). It is straightforward to establish (3.17) for IC factorizations.
COROLLARY 3. Suppose  Acb)

under consideration. Let A@)
ia an M-matriz,  ordered wing any of the orderings

= M - R where M ia the IC(0) factorization of A(‘), and
let A@) = D - C denote the block JQCO t splitting. Then p(M-‘R)  5 p(D-‘C).b’

Proof. The index set of nonzeros of the block diagonal D is a proper subset of the
nonzeio index set for the IC(0) factorization. The result then follows from Theorem 2,
where (the factorization of) D is viewed as an incomplete factorization of A@). Cl

Thus, we expect convergence of a stationary method based on the IC(0) splitting to
be at least as fast as that for the block Jacobi method, for any ordering. (The work per
step for the Jacobi method will be smaller, though.) In particular, as observed in [7],
[8], convergence should be faster for mildly nonsymmetric problems than for symmetric
ones. Combining the IC(0) factorization with an acceleration scheme such as GMRES (i.e.
using M as a preconditioner) should further improve convergence. Numerical experiments

- with the IC(0) preconditioner that support this statement are presented in the following
sections.

4. Experimental Results: Constant Coefficient Problems.

In this section, we examine the numerical performance of the block Gauss-Seidel and
SOR stationary methods, and GMRES(5) with the IC(0) preconditioner , for solving the
constant coefficient model problem

(4 1). -Au+au,+r~~=O

on Q = (0,l) x (0,l). Dirichlet boundary conditions on do are determined from the exact
solution

(4 2).

on 32. The vector (u, r) represents a velocity field with the signs of u or r determining the
direction of flow. We consider eight types of velocity fields, corresponding to eight flow
directions in the (z, y)-plane:

East (E): u > 0, r = 0, Northeast (NE): 0 = r > 0,
Wat (W): 0 < 0,7= = 0, Southeast (SE): d = 0-7 > 0,
North (N): 0 = 0, r > 0, Northwest (NW): Q = 0-7 < 0,.
South (S): 0 = 0, r < 0, Southwest (SW): u = r < 0.
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(For0=Oorr=
the solution (4.2)

0, (4.2) is defined using the limit, i.e. lima-o w =
h

x.) In addition,
as a boundary layer at any outflow boundary, i.e. near x = 1 for

positive u and x = 0 for negative 0, and similarly for y and r. Plots of the solution for
four such (0,~) combinations, corresponding to flows in the east, north, northeast and
southeast directions, are shown in Fig. 4.1. Our concern is to determine the effects of
direction and magnitude of flow, ordering of unknowns, discretization scheme, and use of
local mesh refinement, on the performance of reduced system iterative methods.

Northeast

North

/ >x Southeast

Fig. 4.1: Plots of the constant coefficient solution for four different directions of flow.

Details of the numerical experiments are as follows. The experiments were performed
on a VAX-8600 in double precision Fortran. Reported iteration counts are averages over
three initial guesses consisting of vectors of random numbers in [-l,l]. The stopping
criterion for all methods was ]]rJs/]]~]]s 5 10% A maximum of 150 iterations was
permitted; an asterisk “s” in any table entry below indicates that for at least one initial
guess, the stopping criterion was not met after 150 steps. (We remark that when the block
stationary methods failed to meet the stopping criterion, they never ustagnated,” i.e. they
appeared to be converging.) For red-black SOR, the first iteration was performed with w =
1, as in [22]. Preconditioned GMRES was performed with right-oriented preconditioning,
i.e. GMRES was applied to the preconditioned problem A(b)M-lii(b)  = g(*), where 1M is
the preconditioning matrix and utb) = M-W’). The construction of the reduced matrices
and the experiments with GMRES were performed with PCGPAK [19].
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mrx E N S NE SE NW
I4 14 a>o,t=o a<O,r=O uro,r>o u=O,r<O a=r>O a=--r>O a=--r<o ,s)“,, Avg.

10 124 148 124 149 63 101 101 117 116
50 17 35 17 35 5 19 19 35 23

Gauss- 100 7 26 7 26 8 14 14 40 18
Seidel 200 12 31 12 31 32 28 28 71 31

500 53 75 53 75 124 123 122 150* 97*
1000 150* 150+ 150* 150* 150* 150* 150* 150* 150*

10 34 47 34 47 22 33 33 44 37
50 13 30 13 30 4 17 17 32 19

SOR 100 5 15 15 33 17
200 11 24 23 36 23
500 27 37 37 42 36

’ 1000 54 61 60 65 60
10 15 16 14 15- 11 16 17 14 15
50 12 12 8 8 4 16 16 5 10

GMRES 100 11 11 6 6 5 15 14 6 9
I IC 200 10 10 4 4 7 14 13 7 9

500 10 10 4 4 11 17 17 12 11
1000 9 9 4 4 18 22 21 20 13

Table 4.1: Average iteration counts for the natural one-line ordering, for eight flow directions.

max E W N S NE SE NW
l@l, ItI u>O,t=O u<O,t=O u=O,r>O u=O,t<O l?=r>o a=--t>O ax--r<O ,::o Avg.

10 132 144 133 144 82 103 103 108 119
50 23 24 23 24 19 18 18 21 23

Gauss- 100 13 14 13 14 22 11 11 26 15
Seidel 200 20 21 20 21 49 27 27 57 30

500 63 69 63 69 140* 128 128 150* 102*
1000 150* 150* 150* 150* 150+ 150* 150* 150* 150*

10 33 34 33 34 27 29 30 28 31
50 23 24 23 24 19 18 18 21 21

SOR 100 18 14 14 19 16
200 21 23 22 22 22
500 31 35 34 33 33
1000 57 58 57 57 57

10 24 28 25 30 27 29 27 32 28
50 29 35 26 35 37 22 20 51 32

3MRES 100 28 33 27 35 38 16 16 53 31
I IC 200 28 34 28 34 37 14 14 53 30

500 31 34 31 33 35 27 26 49 33
1000 39 42 39 43 46 52 52 53 46

Table 4.2: Average iteration counts for the red-black one-line ordering, for eight flow directions.
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N
u=O.r>O

S E S W
u=t<O

Gauss
Seidel

E W
u>O,r=O u<O,r=O

101 109
22 23
13 13
9 9
6 6
5 5

30 31

S NE
u=O,r<O u=r>o

115 50
25 7
23 6
31 13
64 47

150* 143

NW
a=--r<O

72
8
7
14
53
148*

mrx
149 ITI a=-r>O

10 92 84 87
50 9 22 23
100 8 21 21
200 15 28 28
500 52 63 64
1000 150* 150* 150*

10 22 33 25 37 26 38
50 19 20 6 20 6 21 8 22
100 9 25 11 25
200 16 29 17 29
500 31 41 31 41

’ 1000 56 64 56 65
10 17 16 17 1 7 12 19 18 18
50 12 13 12 13 5 27 25 5
100 10

I
10 10 11 5 30 30 5

200 8 8 8 9 10 33 30 10
500 7 7 8 8 22 43 41 22
1000 6 6 8 8 45 49 49 48

Table 4.3: Average iteration counts for the natural two-line ordering, for eight flow directions.

3MRES
/ IC

Avg.

89
18
14
19
44

117*
30
15
17
23
36
60
17
10
14
14
20
28

SOR

Gauss-
Seidel

SOR

mrx E W N S NE SE NW SW
14, ITI u>O,r=O u<O,r=O u=O,r>O u=O,r<O u=r>O a=-r>O a=-r<O u=r<O

10 100 110 100 109 60 78 78 82
50 19 20 17 18 14 15 15 16
100 10 11 15 16 13 14 13 14
200 8 8 22 24 20 21 21 21
500 6 6 56 58 54 56 59 57
1000 5 5 150* 150+ 146 150* 150* 149.

10 24 26 24 25 28 29 29 29
50 15 16 13 14 13 14 14 15
100 17 17 17 17
200 21 23 22 23
500 34 35 35 35
1000 58 58 58 58

10 20 21 20 23 16 23 23 25
50 12 13 25 31 15 23 24 25
100 8 9 26 30 16 22 24 25
200 6 7 26 30 17 23 23 28
500 8 9 34 29 24 30 28 31
1000 7 8 40 43 36 42 41 45

Table 4.4: Average iteration counts for the red-black two-line ordering, for eight flow directions.

3MRES
I IC

Avg.

90
17
13
18
44

113*
26
14
17
22
35
58
21
21
20
20
24
33
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The orientation of line orderings was as in $2. That is, for the one-line orderings,
lines were oriented in the NW-SE direction, and the natural ordering arranged the lines
starting from the SW corner; and for the two-line orderings, line pairs were grouped by
horizontal lines and the natural listing is from bottom (south) to top (north). Note that
the lines associated with ordering strategies have a relationship with the direction of flow
(see also [4]). For example, for the natural one-line ordering, when the flow direction is NE,
the lines are perpendicular to the direction of flow, and the Gauss-Seidel and SOR sweeps
follow the flow. When the flow direction is SW, the lines are perpendicular to flow, but
the sweeps are in the opposite direction of the flow. On the other hand, the sweeps for the
red-black orderings do not have a clear relationship to the direction of flow (although the
line orientations still do). The IC(0) preconditioning entails lower and upper triangular
solves, so that, for the natural line orderings, the preconditioning operation can be thought
of as a pair of bidirectional sweeps.

Tables 4.1 - 4.4 contain results for centered difference discretizations on a uniform
mesh of width h = l/32. For this class of problems, the analysis of 53 is applicable when
Ioh/ and lrh/21 are both less than one, i.e. when 0 or r are 10 or 50 in the problems
considered. In these cases, Corollary 1 is used to choose the SOR parameter w, where
p(D”C) is approximated using the bounds (3.10) and (3.12); here

(4 3). p = ,(4 = (J) = ,(1) = 2
i ‘i 9 ( = 1 - @h/2)*, I) = 1 - (rh/2)*.

-For the one-line orderings, when both Iah/ and lrh/21 are greater than one, the Fourier
analysis of [7] can be used to estimate p(D” C), from which good values of w are also
obtained. (i.e. using the formula for w* in Corollary 1). These values were also used for
the two-line orderings when Iah/ > 1 and lrh/21 > 1, although there is no theoretical
justification for this. We did not examine SOR when one of lab/21,  lrh/21 is greater t,han
one and the other is less than one. Table 4.5 shows the choices of w used for Tables 4.1
- 4.4. Note that the analysis of 53 and [7],[8], does not distinguish between natural and
red-black orderings, or between problems where the magnitudes of cr (or 7) are the same
but the signs differ.

m8x
I49 Id

10
50
100
200
500
1000

One-line Orderings I Tweline Orderings
E/W/N/S 1 NE/SE/NW/SW 1 E/W 1 N/S 1 NE/SE/NW/SW

1.63
1.07

I 1.52
1.02
1.05
1.27
1.60
1.77

~ 1.44
1.01

II 1.05
1.27
1.60
1.77

Table 4.5: Values of SOR parameters used for Table 4.1- 4.4.

We make the following observations on the data of Tables 4.1 - 4.4:
1. For the stationary methods (Gauss-Seidel and SOR), performance depends on the

relationship between flow direction and sweep direction, but the effects vary depending on
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the magnitudes of the velocity vectors. For example, for the natural one-line orderings,
when the convection terms are small or moderate in size, the best performance of the
Gauss-Seidel and SOR methods occurs when the sweeps follow the flow (i.e. when the flow
direction is NE). When the convection terms dominate, the stationary methods perform
better when the flow direction forms a nonzero acute angle with the sweep direction (flow
is N or E), than when the sweeps follow the flow. For the natural two-line ordering,
performance for moderate sized convection terms is best when the flow direction forms an
acute angle with the sweep direction (i.e. when flow is N, NE or NW); for convection-
dominated systems, performance is best when the sweep is perpendicular to the flow. It
is always the case that sweeping in the opposite direction of the flow is a bad choice.

2. Performance of stationary methods for the red-black orderings is much less sensitive
to flow directions. In particular, the average iteration counts (over the eight flow directions)
are essentially the same for the natural and red-black orderings. This is significant on
parallel architectures, where the red-black orderings can be implemented more efficiently
[8]. The minimum iteration counts are typically lower for the natural orderings than for
the red-black orderings.

3. Somewhat different conclusions apply for GMRES/IC. There is no clear correlation
between direction of flow and performance, except that for convection dominated problems,
performance for both natural orderings degrades when the directions of flow are not parallel
to one of the grid coordinates. We have no simple explanation for this. The average

-iteration counts for GMRES/IC are typically higher for the red-black orderings than for
the natural orderings. Similar results have been obtained for symmetric problems, with
point red-black and natural orderings, e.g. in [l].

4. One step of the block SOR method is approximately as expensive as one matrix
vector-product and one scalar-vector product [8]. Thus, its cost per step is approximately
1ONb multiply-adds, where Nb is the order of Atb). One step of GMRES(5) with IC(0) pre-
conditioning entails a preconditioning solve, a matrix-vector product, and approximately
8Nb vector operations [21], for a total cost of 26Nb multiply-adds. That is, one GMRES/IC
step is about 2.5 times as expensive as one SOR step. Consequently, the performances
of the stationary methods and GMRES/IC are comparable for problems with small and
moderate-sized convection terms (where for problems with small convection terms, it is
necessary to use a good SOR parameter to achieve good performance). GMRES/IC  is
somewhat more effective for convection-dominated systems, especially when there is no
simple way of choosing a relaxation parameter. GMRES(5) requires 7Nt, storage locations
[21], plus approximately 9Nb for the factors of 1M. SOR requires essentially one vector of
storage for the solution iterates {ur’}, plus storage for the factors of the block diagonal
D. If no pivoting is required, these factors could overwrite the analogous locations of Atb).

Table 4.6 shows the performance of the block Gauss-Seidel method for solving the
same set of problems using the upwind difference scheme for the first derivative terms.
The main difference from the results for centered differences is that performance improves
as 0 or r increases. This is because A(*I (as well aa A) becomes more diagonally dominant
in these cases. In addition, for the natural one-line ordering, performance is consistently
best when the flow is in the same direction as the sweep (NE), and good performance is
achieved when the sweep and flow directions make an acute angle. Similar observations
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IJrbl
E W N S NE SE NW SW

u>O,r=O u<O,rrO u=O,r>O u=O,r<O u=r>O a=-r>O a=-r<O u=r<O *W'

10 134 150* 135 150* 77 116 116 133 126*
50 30 48 30 48 16 34 34 49 36

Natural 100 16 33 16 33 9 24 24 40 24
One-line 200 9 26 9 26 5 19 19 35 19

500 5 22 5 22 3 17 17 33 15
1000 4 20 4 20 2 16 16 32 14

10. 143 150* 144 150* 93 118 118 124 130*
50 37 39 37 39 31 33 33 36 36

Red-black 100 23 24 23 24 23 23 23 26 24
One-line 200 16 17 16 17 20 18 18 21 18

500 13 13 13 13 17 15 15 19 15
* 1000 11 12 11 12 16 14 14 18 14

10 104 113 105 129- 54 95 84 99 98
50 27 28 24 41 17 34 20 35 28

Natural 100 16 17 13 29 11 27 13 27 19
TwcAine 200 11 11 8 23 7 23 9 23 14

500 7 7 5 20 5 20 6 21 11
1000 5 6 3 19 4 19 5 20 10

10 103 113 113 124 . 65 90 90 94 99
50 24 26 32 34 24 27 27 28 28

Red-black 100 14 15 21 22 18 20 13 20 18
Two-line 200 9 10 5 16 14 6 6 16 10

500 6 6 12 13 12 13 13 14 11
1000 5 5 11 12 11 12 12 13 10

Table 4.6: Average iteration counts for the block Gaus&eidel method, upwind differences,

apply for the natural two-line ordering, except that sweeping in the direction of flow (N)
is not best when the convection terms are small. As above, the red-black orderings tend
to be less sensitive than the natural orderings to flow directions.

The results above do not address the issue of accuracy of the discrete solution. If
Iah/ or lrh/21 is greater than one and boundary layers are present in the continuous
solution, then the discrete solution tends to be inaccurate near the boundary layers, and it
is oscillatory when centered differences are used [20]. If the boundary layer can be located,
then one possible remedy is to use local mesh refinement. For the solution (4.2), for nonzero
0 or 7, there are boundary layers of width 0(1/b) (or 0(1/r)) near the outflow boundary.
We consider one local refinement strategy, which we describe in terms of the “horizontal”
parameters 2: and u. In the interval of width 2/J0 containing the boundary layer (at either
2 = 0 or 3 = l), we use a mesh of size i such that ]&2] = .75; away from that interval,
w e u s e h = 1/32.3  It was shown in [6] that this strategy does a good job of resolving the

3 Grid points are distributed from left to right within each of these subintervals, so that the rightmost
mesh width of either interval may differ from h and A.
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boundary layer with the addition of a relatively small number of additional mesh points.
For example, in the present set of experiments, when 0 = 100 there are 25 coarse grid
points and 14 fine grid points in the horizontal direction; when cr = 1000, there are 29
coarse and 43 fine grid points. (The unrefined  mesh contains 31 points in each direction.)
Table 4.7 shows the performance of the Gauss-Seidel and GMRES/IC methods for four
problems where mesh refinement is used, for the natural one-line ordering. Comparison
with Table 4.1 shows that the behavior of the two iterative methods is essentially the
same as that for uniform meshes. Similar conclusions apply for the three other ordering
strategies. Thus, we conclude that the behavior on uniform meshes is indicative of behavior
where mesh refinement is used to resolve boundary layers. (Experiments with the Gauss-
Seidel method for max(lgl,  1~1) = 1000 were not performed because of storage constraints
in our implementation.)

Gauss
Seidel

GMRES
-j IC

max
I49 Id

100
200
500
1000
100 12 12 6
200 10 1 0 4
500 10 10 4
1000 9 9 4

E
u>O,r=O

7
12
46
134

W N
u<O,r=O u=O,r>O

31 7
37 12
73 46

150* 132

s
u=O.r<O F-u=r>O

8
~ 32
1 2 4

Table 4.7: Average iteration counts for the natural one-line ordering, centered differences and local mesh
refinement.

6
8
12
18

SE NW
u=-r>O a=-r<O ,s)",o Avg.

17 17 47 21
28 28 80 33
111 109 150* 91*

5. Experimental Results: Separable Variable Coefficient Problems.

In this section, we examine the use of Corollary 2 to derive bounds on p(D-‘C) when
A(*) comes from a separable operator. We consider three model problems taken from [3].
Other experiments with these problems are described in [7].

PROBLEM 5.1: -Au + $(l + x*)u, + TU# = 0 on 52 = (0,l) x (0,l)
u - o on H2.

Discretization by centered differences gives, after scaling by h*,

(5 1).
J=) = &I = J$ = ,(d = 2i 9
Cj+1dj = (I+ &I + x;+l))(l  - +(l + xi)) 5 1 - +(+)’ + oh* = (,
bj+lej =l-(+)*=q.
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Centered Differences Upwind Differences
One-line Two-line One-line Two-line

u = r Computed Bound Computed Bound Computed Bound Computed Bound

20 .741 .809 .674 .731 .817 1.298 .772 1.379
40 .323 .385 .236 .275 ,611 1.182 .544 1.212
60 .047 .062 .015 .018 .455 .961 .386 .985

Table 5.1: Comparison of computed spectral radii and bounds for the block Gauss-Seidel iteration matrices,
for Problem 5.1 with h=1/32.

For u 1 0 and r 10, upwind discretization gives

uj = 2 + $(l + x3) 1 2 + 9 = &I,

a,- = 2 + Th = &‘I, -

ci+ldi = 1+ $(l + z;+~) 5 1 + ah = 6,

bj+l ej =l+Th=q.

Table 5.1 compares the bounds for p(&) = p(D--IC)*  obtained from Corollary 2 with the
corresponding computed values of p(Lr), for h = l/32. For this problem, as well as the
others considered below, we examine several choices of u and T where for the largest such
choice, max,, lr(xi)h/21  and maxpi Is(yj)h/21  are both close to one.

PROBLEM  5.2: -AU + UX*U~  = 0 on Sz = (0,l) x (0,l)
u = o on &I.

Centered difference discretization gives

p = &I = (I) = &) = 2i =i I

bj+lej =l=q.

Upwind difference discretization gives

4i=2+uzfh>2+uh3=a”‘,

aj =2=*(‘),

ci+ldi  = l+uz;+,h~l+uh=&

bj+l ej =1=‘7.

Table 5.2 compares bounds for p(&) with corresponding computed values for Problem 5.2.
An entry u-n means that the analysis is not applicable because (3.11) is not satisfied.

PROBLEM  5.3: -Au + ~(1 - 2x)14,  + ~(1 - 2y)u, = 0 on fI = (0,l) x (0,l)
u = o on asZ.
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Centered Differences Upwind Differences
Onoline TwcAine One-line Twwline

cr Computed Bound Computed Bound Computed Bound Computed Bound

20 .963 1.014 .951 .987 .964 3.077 .951 6.630
40 .953 1.033 .939 1.011 .955 10.37 .939 -
60 .945 1.051 .928 1.035 .947 56.22 .928 -

Table 5.2: Comparison of computed spectral radii and bounds for the block Gauss-Seidel iteration matrices,
for Problem 5.2 with h=1/32.

Centered difference discretization gives

a(t)
i = ,w = a;r) = &I) = 2,

ci+ldi  = (1 + +(l - 2Xi+r))(l - +(l - 2Xi))

= 1.2h(+) - (?$)*(l  - 2Xi)(l-  2Xi+l)
5 1 - ah* + ($*(2h” - h’) = t,

bJ+lej = (l+ G/(1 -2yi+l))(l- +(l-2Yj))

5 1 - rh* + (+‘)*(2h’ - h4) = 7,

For cr 2 0 and r 2 0, upwind discretization gives

Qi = 2 + 011 - 2xilh  2 2 = a(=),

aj = 2 + ~11-  2yjlh  2 2 = a(‘),

ci+ldi = 1 + 011 - 2xi+llh 5 1 + ah = t,
bJ+lej = 1 + r(l- 2yj+llh 5 1 + Th = q.

Table 5.3 compares bounds and computed values of p(Lr) for Problem 5.3; the entry “Y
indicates that either (3.9) or (3.11) is not satisfied.

Centered Differences I Upwind Differences
Ono-line Two-line One-line TwcAine

U= T Computed Bound Computed Bound Computed Bound Computed Bound

20 .854 .921 .813 ,869 .871 3.611 .833 6.986
40 .733 .852 .669 ,785 .780 - .723 -
60 .629 .788 .553 .710 .703 - .634 -

Table 5.3: Comparison of computed spectral radii and bounds for the block Gauss-Seidel iteration matrices,
for Problem 5.3 with h=1/32.

To understand these results, it is useful to recall the constant coefficient problem (4.1).
For that problem, the parameters associated with centered differences are given by (4.3).
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As shown in [7], [8], if both oh/2 < 1 and rh/2 < 1, then the bounds from Corollary 2
essentially have the form 1 - O(a*h*) - O(r*h*). In particular, if either ah/2 or rh/2
are near 1, then t or 7 are close to 0, and the bounds from Corollary 2 are very small.
For Problem 5.1, r(x) (the coefficient of ZL=)  is bounded below away from 0, so that for
large U, the contribution hr(xi)/2 cannot be small for any xi. Consequently, the bounding
value 6 is qualitatively like its constant coefficient counterpart (compare (5.1) and (4.3)).
Moreover, &), &

(4
and 7 have the same values as in the constant coefficient case. (This

is true for cr and CY(~) with all three problems considered here.) Thus, the bounds from
Corollary 2 behave like their constant coefficient analogues. For Problem 5.2, the upper
bound c corresponds to a value for si(= h) for which the differential operator is locally
nearly self-adjoint; the resulting bounds typically do not even guarantee convergence, and
they are larger than what would be obtained in the self-adjoint case. For Problem 5.3,
c 1 - O(uh*) and 7
1 -=0(&h*)  - O(rh*);

= 1 - O(uh*), which lead to asymptotic bounds of the form
these are larger than those occurring for Problem 5.1 but smaller

than for Problem 5.2. Note that for all three problems, the bounding values are qualitively
similar to the behavior of tr.

The parameters for upwind differences applied to the constant coefficient problem are

a!”I = a(=) = 2 + uh, (VIaj = Q(#) = 2 + rh, t = 1 + uh, 7 = 1 + 7h.

-Although c and r) do not approach zero, the bounds on p(D” C) from Corollary 2 are
less than one, and they decrease with increasing u or r (see (‘71, (81). However, the extra
inequalities required to define a! (4 and & decrease the size of the denominators in (3.10)
and (3.12) and limit the usefulness of the corollary. For Problem 5.1, ah is replaced by ah/2
in a(=), and the bounds on p(D”C) are less than one only when ah is large. The bounds
for Problems 5.2 and 5.3, where they are defined, do not provide any useful information.

6. Experimental Results: Nonseparable Variable Coefficient Problems.

We now examine the performance of the iterative methods for solving some nonsep-
arable problems. Our goals are to examine the effectiveness of the block Gauss-Seidel
and SOR methods, and IC-preconditioned -GMRES, for solving such problems; and to
determine whether the analytic results of [7] [8] and 33 are of use in predicting behavior.

We consider two model equations that differ only in their boundary conditions. Both
equations model a circular flow of a fluid around a point. The velocity vectors have turning
points in the vertical component,
definition.

PROBLEM 6.1: -eAu + 2y(l
u = o
u = 100
u = o
%a -- 0
u = o

and their magnitudes vary throughout the domain of

- a?)u, - 241 - y2)u, = 0 on 52 = (-1,l) x (0,l)
onO5y51,x=-1,
on 0 5 y 5 1,x = 1,
on-lss<O,y=O,
onO~x51,y=O,
on -15 x 5 1, y = 1.
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Fig. 6.1: Boundary conditiona and solution for Problem 6.1.

This problem is taken from [17]. It models the flow of a cold fluid with a hot w81i at
the right boundary. The solution contains a boundary layer at x = 1. Fig. 6.1 shows the
boundary conditions and streamhnes,  and the general shape of the solution, for e = 1/1OO.4

PROBLEM 6.2: -CAU + 2y(l- x*)u=  - 2x(1 - y*)u, = 0 on Q = (-1,l)  x ((Al)
u = o onO~y<l,x=fl,
u = 1 + tanh(10(1+ 2x)) on -15 3 < 0, y = 0,
Un = o on 0 5 3 s 1, y = 0,
u = o on -15 x 2 1, y = 1.

This problem is taken from [13]. The differential operator is the same as that of Problem
6.1. The solution contains a boundary layer near the point x = 0, y = 0. Fig. 6.2 shows
the boundary conditions and a representative solution.

As above, we consider centered differences and upwind differences to discretize these
problems. We discretize the outflow boundary condition at y = 0 by first order upwind

4 The discrete solutions depicted in Figs. 6.1 and 6.2 were computed using centered differences with 31
interior grid points in each direction; the figures include the exact solution values at t=fl and ~‘1, but not
at y=O.
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0
-1 0 1

wl+tanh(lO(l+2x)) U*'O

Fig. 6.2: Boundary conditions and solution for Problem 6.2.

differences,
0 = U*(Xi,O) = Up(Xi,YCl) ks U(Xi,  yl) - U(Xi9 Yo>

h 9

i.e. U(Xi,O) = u(ti,yr). For the centered difference scheme, we consider both a square
31 x 31 mesh, and a uniform mesh of width h = l/32. The first choice produces matrices
with the same algebraic structure as those considered in $54 - 5, but the horizontal mesh
width is twice that of the vertical width; the-second choice leads to lines of different length
in the grid. We also consider a strategy for improving the accuracy of the solution, based
on defect correction methods. For all experiments, the initial guesses and stopping criteria
are as in 94.

Tables 6.1 and 6.2 show average iteration counts for solving the reduced system derived
when centered differences are applied on a square 31 x 31 grid. Here, the grid sizes for
the full system are uniform in each of the x and y coordinates, with h, = l/16 and
hY = l/32. As in the constant coefficient case (§4), block relaxation is most effective for
intermediate values of t-l, where it is competitive with GMRES/IC.  The latter method
is more effective when to1 is either small or large. The performance of the stationary
methods is fairly insensitive to the choice of ordering. This is consistent with the fact that,
because of variable directions of flow, there is no clear correspondence between lines and
flow direction. On the other hand, as in 34, the performance of GMRES/IC is typically
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I Ordering 10 50 100 200 500 1000
Natural One-line 122 22 27 57 150 (4) 150 (1)

Gauss Red-black One-line 119 26 29 63 150 (4) 150 (1)
Seidel Natural Two-line 114 24 26 54 150 (4) 150 (1)

Red-black Two-line 111 25 26 54 150 (4) 150 (1)

Natural One-line 10 7 7 8 15 33
GMRES Red-black Onoline 27 27 34 37 46 74

/ IC Natural Two-line 14 10 10 10 19 87
Red-black Twwline 24 21 26 26 42 71

Table 6.1: Average iteration counts for Problem 6.1 on a 31 x 31 grid (h,= l/16, h,= l/32), with centered
differences. Numbers in parentheses are approximate number of digits of accuracy when methods did not
meet the stopping criterion.

Ordering lo I 50 1 100 200 1 500 1000

Natural Onoline 146 33 23
Red-black Onoline 150 (> 5) 36 30
Natural Tweline 143 33 26
Red-black Tweline 145 33 27

49 150 (5)
64 150 (5)
50 148 (5)
55 150 (5)

150 (4)
150 (4)
150 (4)
150 (4)

Natural One-line 13 8 8 9 13 25
Red-black Onoline 34 33 34 40 48 60
Natural Tweline 18 11 10 11 17 65
Red-black Two-line 33 23 24 29 37 56

Gauss-
Seidel

GMRES
I IC

Table 6.2: Average iteration counts for Problem 6.2 on a 31 x 31 grid (Ir,= l/16, h,= l/32), with centered
differences. Numbers in parentheses are approximate number of digits of accuracy when methods did not
meet the stopping criterion.

better with the natural orderings than with the red-black orderings. We also remark that
in a few experiments with Orthomin [5], we found Orthomin(5) to be somewhat less robust
than GMRES(5).

Table 6.3 shows iteration counts for solving the reduced system derived from an un-
derlying uniform mesh of width h = l/32, for block Gauss-Seidel and GMR,ES/IC,  with
the two natural line orderings. The lines are oriented as in Fig. 2.2. These results are sim-
ilar to those of Tables 6.1 and 6.2, except that GMR.ES/IC has trouble with one problem
class (c = l/1000 with the natural one-line ordering). In this case (for both orderings),
the iteration “stagnates,” in the sense that the residual norm /1g(*)  - A(*)ui’)l~2  remains
constant over many iterations.s In contrast, whenever the block relaxation methods fail
to meet the stopping criterion, they appear to be converging.

5 Stagnation of this type also occurs for GMRES(lO) and GMRES(15).
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l/e
Method 10 50 100 200 500 1000

G.S. Natural One-line 150 (5) 28 22 35 122 150 (3)
Problem G.S. Natural Tweline 129 27 22 34 101 150 (3)

6.1 GMRES/IC  Natural One-line 17 11 10 10 16 150 (3)
GMRES/IC  Natural Tweline 20 14 12 12 17 64

G.S. Natural One-line 150 (5) 49 24 35 122 150 (4)
Problem G.S. Natural Tweline 150 (5) 39 23 32 82 150 (5)

6.2 GMRES/IC  Natural One-line 22 16 11 10 16 150 (3)
GMRES/IC  Natural Two-line 28 22 15 12 17 26

Table 6.3: Average iteration counts for the natural onoline and twcAine orderings, on a uniform grid with
mesh size h= l/32, with centered differences. Numbers in parentheses are approximate number of digits of
accuracy when methods did not meet the stopping criterion.

Gause
Seidel

GMRES
I IC

/ Ordering 1 10 1 50 I 100 r 200 1 500 [ 1000~

Natural One-line 142 31 24 21 18 17
~ Red-black One-line 139 37 29 26 24 23

Natural Two-line 132 32 25 23 20 19
Red-black Two-line 131 35 27 22 20 19

Natural One-line 10 8 8 7 7 6
Red-black Onoline 29 25 28 32 36 37
Natural Tweline 15 10 10 9 8 7
Red-black Two-line 28 20 20 21 26 25

Table 6.4: Average iteration counb for Problem 6.1 on a 31 x 31 grid (h,= l/16, h,= l/32), with upwind
differences.

Table 6.4 shows average iteration counts for solving the reduced system derived when
upwind differences are applied to Problem 6.1. Results for upwinding and Problem 6.2
were similar. Note that the mesh points used for discretization depend on the direction of
flow (see 92), and the reduced matrices At61 are always diagonally dominant. The results
of Table 6.4 (for the stationary methods) are consistent with those for constant coefficient
problems.

A methodology for improving accuracy that does not require a priori knowledge about
the solution is the class of defect correction methods. A description of this approach
can be found in [lo], which contains several other references. For the operator L,u E
-eAu + ruz + suv, let A,,j, denote the matrix associated with the (second order) centered
difference discretization on a uniform mesh of width h. For 2 > c, let &,h denote the
analogous matrix derived from L+ In its simplest form, the defect correction iteration
consists of the following steps, where f is the discrete right hand side.
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Solve A,-,hthm) = f.
For m = 0, 1, . . . , Do

,trn) = f - &u(m)
Solve Ai ,dtrn) = rtrn)
uh+l) i uh) + d(m)

End
The idea is to compensate for instabilities associated with high order operators using Iower
order operators. For the choice 2 = e + ch where c > 0 is a fixed constant, Ag,h is a first
order discretization. At every step of the iteration, &,h is used only to calculate the
residual, and a linear system with coefficient matrix &,h must be solved. Thus, the cost
of this method is highly dependent on the cost of solving the linear system.

Any c > 0 prevents the convection terms from dominating the discrete problem, for
arbitrarily small c. For c 2 max{ ]r(s, y)]/2, ]s(s, y)]/2}, Ai,h and the resulting reduced
matrix’ A(*)Z,h are diagonally dominant M-matrices. For Problems 6.1 and 6.2, this gives

= 1. However, Hemker [13] has observed that(using  a variant of the algorithm above)
better accuracy is obtained with smaller c. Following [13], we use c = l/2. The differential
operator Lg for Problems 6.1 and 6.2 is then equivalent to

-Au + 31(1--t2)
r+h/2 uz

We refer to the discretization of this operator by centered difference as the “defect cor-
rection discretization.” Table 6.5 shows the performance of the various iterative methods
for solving the resulting reduced linear systems. (See [13] for a discussion of the overall
iteration.) These results are qualitatively similar to performance for upwind differences.

l/t

Method 10 50 100 200 500 1000

G.S. Natural One-line 150 (4) 42 32 28 26 25
Problem G.S. Natural Tweline 150 (5) 38 30 27 25 25

6.1 GMRES/IC Natural One-line 17 12 12 11 11 11
GMRES/IC  Natural Two-line 21 16 14 14 13 13

G.S. Natural One-line . 150 (3) 85 62 50 43 41
Problem G.S. Natural Tweline 150 (4) 67 50 41 35 33

6.2 GMRES/IC Natural One-line 23 21 18 16 13 13
GMRES/IC Natural Two-line 23 26 24 22 20 20

Table 6.5: Average iteration counts to solve the linear systems arising from the defect correction method, for
the natural one-line and twc+line  orderings on a uniform grid with mesh size h= l/32. Numbers in parentheses
are approximate number of digits of accuracy when methods did not meet the stopping criterion.

Finally, in contrast to the separable case, the spectra of the block Jacobi matrices
arising fkom nonseparable operators are typically not real even when to1 is small. Con-
sequently, Corollary 1 does not apply. For example, Fig. 6.3 shows the eigenvalue dis-
tributions in the complex plane of the block Jacobi matrices associated with the defect
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-0.2 L .I 1 , I
-1 -0.5 0 0.5 1

Fig. 6.3: Eigenvaluw of the line Jacobi matriceu for the reduced system, with WI/IO,  h=1/33, defect
correctibn  discretization.

correction discretizations for the problems used to produce Table 6.5, for e = l/10. (The
matrices are the same for Problems 6.1 and 6.2.) For these problems, the real parts of all
the eigenvalues are less then one in absolute value, so that Young’s analysis for complex
eigenvalues could be used to choose a relaxation parameter to guarantee convergence ([26],
56.4). In such cases, an ellipse containing the spectrum could be found using the methods
of [4. An alternative adaptive strategy is based on the fact that when co1 is small, the

-coefficient matrices are in some sense close to being symmetric. Thus, one could estimate
p(B) and choose w* as in Corollary 1. Fig. 6.4 graphs average iteration counts required for
convergence of line SOR, as a function of the SOR parameter w, for Problem 6.2 with the
defect correction discretization and h = l/32. The computation with w* is identified with
an asterisk. These results suggest that this heuristic strategy gives a reasonable choice of
w when e-l is small.

0
1 1.1 12 13 1.4 13 1.6 1.7 1.8

Fig. 6.4: Average line SOR iteration counts, for Problem 6.2 with WI/IO,  k--1/32, defect correction
discretization.
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7. Concluding Remarks.

In this paper, we have continued the study of line iterative methods for solving reduced
systems begun in [7],[8]. We have extended the analysis in two ways. First, for matrices
that arise from variable coefficient separable differential operators, we derived conditions
under which the reduced matrices can be symmetrized via diagonal similarity transforma-
tions; previous results applied only to constant coefficient problems. Symmetrization is the
key to the analysis of convergence behavior for the constant coefficient case. In the present
analysis, it determines conditions under which the classical analysis of SOR applies, from
which the optimal SOR parameter can be expressed as a simple function of the maximum
eigenvalue of the line Jacobi iteration matrix, and it leads to some analytic bounds on
performance for separable problems. In addition, we used regular splitting results to show
that the analysis of line Jacobi splittings can be extended to splittings based on incomplete
LU factorizations,  for various line orderings of the reduced grid. The results help explain
the good performance of IC preconditioners applied to the nonsymmetric matrix problems
arising from the convection-diffusion equation.

We have also performed an extensive set of numerical experiments that examine the
effects of direction of flow, discretization and grid ordering on performance of the line
iterative methods. For constant coefficient problems, the results reveal correlations between
relaxation sweep direction and direction of flow that are not displayed by any analytic
results. They also show that for block relaxation methods, red-black orderings are less
sensitive to flow directions than natural orderings, whereas for IC-preconditioned GMRES,

-convergence is faster for natural orderings than for red-black orderings. In addition, both
block relaxation and IC preconditioned GMRES are effective for many problems where the
analysis does not apply. In general, IC preconditioned GMRES is more robust than block
relaxation. Finally, experimental results for problems with variable coefficients or locally
refined grids are largely consistent with analysis and experiments for constant coefficients
and uniform grids.
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