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ABSTRACT

We give a brief description of a non-symmetric Lanczos algorithm that
does not require strict bi-orthogonality among the generated vectors. We show
how the vectors generated are algebraically related to “Controllable Space” and
“Observable Space” for a related linear dynamical system. The algorithm
described is particularly appropriate for large sparse systems.

- 1. Intr~uction

The Lanczos Algorithm was originally proposed by Lanczos [15] as a method for the com-
putation of eigenvalues of symmetric and nonsymmetric matrices. The idea was to reduce a
general matrix to tridiagonal form, from which the eigenvalues could be easily determined, For
symmetric matrices, the Lanczos Algorithm has been studied extensively [5] [17]. In that case,
the convergence of the algorithm, when used to compute eigenvalues, has been extensively
analyzed in [ 141 [ 161 [20] [21] [22, p27OffJ.  This algorithm is particularly suited for large sparse
matrix problems. A block Lanczos analog has been studied and analyzed by Underwood (cf.
Golub and Underwood [lo], Cullum and Willoughby [S] and Parlett [17]). However, until
recently, the nonsymmetric Lanczos Algorithm has received much less attention. Some recent
computational exprience with this algorithm can be found in [4]. Besides some numerical stabil-
ity problems, the method suffered from the possibility of an incurable breakdown from which
the only way to “recover” was to restart the whole process from the beginning with different
starting vectors [22, p388ffJ.  More recently, several modifications allowing the Lanczos process
- -.
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to continue after such breakdowns have been proposed by Parlett et al [19] and by Gutknecht
[ll]. The close connection between the modified Non-symmetric Lanczos Algorithm and
orthogonal polynomials with respect to indefinite inner products is discussed by Golub and
Gutknecht [8] and Boley et. al. [2]. Recently, Parlett [ 181 noticed the close relation between the
Lanczos Algorithm and the controllability- observability structure of dynamical systems. In this
paper, we show how the Lanczos Algorithm can be used to construct all of the subspaces associ-
ated with the Controllability/Observability Decomposition of a dynamical system. For example,
we show that the coefficients generated in the course of the Lanczos process form the system
matrix for the minimal realization of the dynamical system.

The Lanczos Algorithm [15] is an example of a method that generates bases for Krylov
subspaces starting with a given vector. In a previous paper [3], we have examined how another
closely related method, the Arnoldi Algorithm, may be used to compute the controllable space
for a linear time-invariant dynamical system. The Amoldi Algorithm can be thought of as a
“one-sided” method, which generates one sequence of vectors that span the controllable space.
In this paper, we extend this idea to the use of a two-sided method, the non-symmetric Lanczos
Algorithm’ which generates two sequences of vectors spanning the left and right Krylov spaces
corresponding to the controllable and the observable spaces. We will demonstrate how the vec-
tors are generated in such a way that we obtain bases not only for the left and right Krylov
spaces, but also for the intersections of these spaces and the complementary spaces.

This paper is organized as follows. In Section 2, we give an general algorithmic descrip-
tion of the non-symmetric Lanczos Algorithm, including the modifications we have introduced
to continue after a breakdown. Next we describe the connection between the items computed by
the Lanczos algorithm and the controllability-observability properties for a linear dynamical sys-
tem, showing that the minimal realization is computed directly by the Lanczos algorithm. We
finish with some computational details, an illustrative numerical example, and some conclu-
sions.

2. Description of the Lanczos Process

We give a brief description of the non-symmetric Lanczos process we have implemented.
For clarity, we describe the algorithms at a level of detail appropriate for a MATLAB environ-
ment, omitting the specific methods used for the basic linear algebra computations.

We use the following notation, to keep the description concise. Vectors are represented by
lower case bold letters (b), matrices by upper case italic (B), and linear spaces by upper face
bold (B); all other typefaces are scalars or indices. The notation COLSP[v~vl, l l l ] denotes the

column space generated by the columns vo,vl, l l l . If vi =AVi,1  for all i, SO that vi =A’v~, the
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sequence of vectors v&VI, l l l is called a KryZov sequence, and the space COLSp[vo,vl,  l l l ] is

called the right Krylov space K generated by the vector vc We let Ki denote the truncated space

generated by the fmt i + 1 vectors: Ki E [bo,Ab, . . . , Aibo]. Likewise, we let L denote the Iefr

Ktylov space ~~p[cQpT~,  l  l  a], and  Li the  t runca ted  space  genera ted  by

Li I ☯c & ~c , l l l (AT)‘ae

Given an nxn real matrix A and two real, non-null, n-vectors bo, Q, the algorithm gen-

elW% tW0 sequences of vectors B=[bebl,-]=[Bo,...,Bk] and

c=[c(),c~,*~*]~[c(J  ,..., CA] grouped into clusters Bl E mj, 1 + 1, . . . , bj,] and

C~i[Cj,-l+~,..“Cjl]‘f~Z=l~,~*g ,k. At the start, the clusters are all empty, and as each of

the new vectors bi, Ci is generated, they are placed-either at the end of the latest cluster or in a

new empty cluster, according to the following prescription.

At the i-th stage, the algorithm generates vectors bi, Ci as follows. Suppose at this stage we

have k-l pairs of complete clusters Bo, . . . , Bkml, Co, . . . , Q-r, and a last pair of incomplete

clusters Bk, CA (which may be empty), such that

Dl= CTBl is nonsingular for I = 0, . . . , k-l,

Dk = ClBk is singular or empty, (1)
C~B,=Oforallr#s.

Then the next vector bi is obtained by forming A bi,1, and adding multiples of all previous vec-

tors bo, . . . , bi-1 to enforce the bi-orthogonality condition

[C0, l l l Y Ck-l]‘bi = [Q l l l 9 Cjk-JTbi = 0. (2)

Similarly, Ci is obtained by forming ATCi-l and then adding multiples of all the previous vectors

co, . . . , Ci,1 to enforce condition

(3)

Then the new vectors bi, Ci are appended to the (initially empty) clusters Bk, Ck. The question is

whether the cluster pair Bk, CA is complete in the sense that all subsequent vectors are to be

placed in subsequent cluster, or if the cluster pair Bk, Ck is incomplete in the sense that at least

one subsequent pair of vectors will be appended to this cluster pair. If Dk P CzBk is nonsingu-

lar, then Bb, Ck are said to be complete in the above sense, and the vectors bi+l, Ci+l will be



placed in the next cluster pair BA+l,  CA+I. If D, is singular, then the cluster pair B,, CA is kept

“open” to accept at least the next pair of vectors bi+r , Ci+l. In the algorithm description (Figure

l), the index k denotes the index of the last cluster pair accepting new vectors; as each cluster is
completed, the index k is incremented.

For example, when we start’ we have all clusters empty, and we fti the initially empty first
clusters B. and Co with bo, Q, respectively. If CzBo = $bo # 0, then the clusters Bo, Co are
complete, each consisting of a single vector. The next vectors bt, cl will go into the next cluster

pair B,, Cr, respectively. However, if qbo = 0, we append b,, cl to clusters B, Cp

The algorithm continues to generate vectors until both conditions Ki = K and Li = L occur,

in contrast to the usual criterion of stopping when at least one of the conditions occur. We sum-
mark the process in Figure 1.

Non-Symmetric Lanczos Algorithm.
Input: nxn matrix A and two n-vectors bo, Q.
1. (* initialization *)

Set all clusters B,, Cl (for all I) to “empty”.
Set first clusters B. := [bo], co := [co] (for all I) to “empty”.
If$bo=Othensetk  := 0, else set k := 1; (* cluster index *)
setiz=o;(*vectorindex*)

2. Whilebi#Oorc~+Odob@
(’ main loop  $1
2.1 (* apply matrix operator to expand Krylov sequence *)

Set4 FAbi and 9 FATCi.
2.2. (* if incomplete cluster nonempty, orthogonalize within the cluster *)

If cluster pair Bk, Ck nonempty  then
fmd coefficient ve~tars hi, & so that

z := 8 - Bkhi is orthogonal to Bk and
J := f - CA& is orthogonal to Ck.

2.3. (* biagonalize  against previous clusters *)
Find coefficient VeCtolS h’i, g’i such that

b- -r+l FZ-[Bo,..., Bk,l]h’i  is WhOgOIld  to [Co,  s . - ) CA--11 and
Ci+l F y - [CO, s m m p  Ck -l]g�i  is opthogonal  to  ☯BOB  s l l 9 B k-l].

2.4. (* append latest vectors to latest cluster. *)
SaBk t= [B~h+ll
Set C& * IC&‘Ci+ll

2.5. (* if latest cluster complete, mark it so *)
If CzBk  is non-singular, then

Setk:=k+l.
2.6. Seti z=i+ 1.
End While Loop.

Figure 1. Modified Non-symmetric Lanczos Algorithm.
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The 2 vector sequences that result: bo,bl, l l l and co,cl, l l l generate the right and left

truncated Krylov spaces, respectively:

coLsflbO, . . . , bi] = Ki, for all i , (4)

COLsP[c@ . . ..CJ=LifOra.lli. (5)

The vectors satisfy the bi-orthogonality conditions

☯COY l
..,Cj]T~j+l,***]=Oand[bo,...,bj]TICj+~,***]=O (61

for any j for which it is possible, i.e. for any j for which

de&,..., CjlT[bo, . . . , bj] # 0 or equivalently deti?Kj # 0. (7)

Let us denote the indices j for which (7) holds by jl, I = O,l, l l l k-l, and set j-t s -1.

Then the generated clusters will be delimited by the indices jl: Bl= bj,el + 1, . . . , bi,] and

C~EICj,l+lt***sCj-1. In terms of these clusters, (6) can be written more simply as a

bi-orthogonality condition between clusters:

C~B,=OforallI,m ,m+l. (8)

It also follows from (7) that

Dl z CrBl is non-singular for 2 = 0, . . . , k-l.

In the classical description of the Algorithm [ 15][22, p388ffl, (7) usually holds for every j,
so that the bi-orthogonality conditions (6) reduce to the simple set of conditions C;'bj = 0, for all

i,j, i z j. In this case, the clusters are just single vectors, and the algorithm described reduces to
the non-symmetric Lanczos algorithm as described in, far example, [22, p388ffJ.

We note that there are several choices for the stopping condition in step 2. In the past,
when this algorithm was used for the eigenproblem, the process was continued until b, = 0 for

some r, or c, = 0 for some s, which ever occurred first. But in our situation it is useful to con-

tinue until both conditions occur, in which case we may have a sequence of zero vectors:
()=b r =b r +l=  l  - .  =b , 0~ ()=c ,=c ,+~= 0..= c,, if I >m or km, respectively. We let

p E max{r,sJ be the index of the last vector generated.

The resulting vectors generated from this algorithm will satisfy certain important properties
that we mention. Let B=[Bo ,..., BJ=[bc, . . . . bP] and C=[C@ . . . . CA]=[co, . . . . cP] be

the matrices of all the vectors generated, where p = jk is the index of the last vector generated.
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The vector bi+l in step 2.3 of the algorithm is a linear combination of Abi and previous vectors

b,, r I; i. Thus the matrix B of generated vectors satisfies

AB =BH, (10)

where H is a unit upper Hessenberg matrix consisting of all the coefficients hi, h’i. Likewise,

the matrix C satisfies

ATC = CG, (11)

where G is a unit upper Hessenberg matrix, consisting of all the coefficients gi, g’i. That is, the

i-th columns of H and G arc, respectively:

hi’

hi
H.i = 1 andG.i=

O_

ii;

gi

1
0. .

where each “1” entry above occupies the i + 1-th position, lying on the sub-diagonal of H and G,
- respectively, for i = O,l, . . . ,p. The bi-orthogonal@ conditions (6) (7) become

CTB = D , a block diagonal matrix with diagonal blocks Dk = CTB,. (12)

Since CTAZ3 = CTBH =DH, and BTATC = BTCG = DTG, we have the relation GTDT= DH.
Since a block diagonal matrix times a upper Hessenberg matrix is block upper Hessenberg, it
follows that G and H are block tridiagonal, with the partitioning defined by the cluster dimen-
sions. This implies that in computing the coefficients hi, gi or h’i, g’i at each stage, only the last

two pairs of clusters BkB1,  Ck+ and Bk, CA, must be used, at least in exact arithmetic. We will

discuss below the effect of using approximate floating point arithmetic.

3. Controllability and Observability

We discuss an application of this modified Lanczos process arising from the context of
Dynamical Systems Theory. The concepts of controllability and observability are fundamental
concepts in Systems Theory, extensively analyzed in standard textbooks (see e.g. [6] [12]). For
our purposes, it suffices to state purely algebraic definitions for the relevant spaces: the controll-
able space (more correctly called the reachable space) and the unobservable space.

Consider the SISO (Single Input Single Output) dynamical system
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i=Ax+b#;y=c;x. (13)

Here x is an n-vector function of time t, u, y are scalar functions of t, A is an nxn constant
matrix, and bO, ~0 are constant n-vectors. From classical systems theory [6], it is well known

that the controllable space SC can be defined algebraically as the Krylov space K, and the snob-

sent&e space % is the orthogonal complement to the Krylov space L. It is known that, alge-

braically at least, the observable space S, is some space that is complementary to S,, but is not

uniquely defined [6]. In fact, we have the following proposition from [l], [6]:

Proposition 1. A complete Controllability-Observability (Kalman-Gilbert) decomposition [13]
[7] is obtained for the system (13) if one has the 4 sets of columns Tc5, T,,, T=, Tti, such that

[Tcz ,TcO] forms a basis for the controllable space SC, [Tcz ,TJ forms a basis for the unobserv-

able space S,, Tcz forms a basis for S, 3 S,&, and T = [TzO,Ts,T,,,T,,]  is a square non-

singular matrix. Applying the transformation T to the system (13) yields the ControUabiZity  -
Observability Canonical Form (COCF):

&5+&p  ;y =& (14)

where the new coefficients will have the following special structure:

&+AT=

II

ill 0 0 0 1 ‘0
0

ho
,&,=TT~=

.bo..

I .

h o

0

b

0.

Note that the eigenvalues of A are the same as A, so that to compute the eigenvalues of A,
one need only compute the eigenvalues of &, i = 1, . . . ,4. The eigenvalues of each block &

may be computed independently of any other block Note also that the ordering of the blocks of
T in Proposition 2 is not the standard one, but with this ordering, it will be seen that the three
blocks Tcz, T,,, TsO are obtained directly from the generated Lanczos vectors. The fourth block

TE can be obtained by finding a basis for the space of vectors in S5 orthogonal to S,,, both of

which are produced by our implementation of the Lanczos algorithm.

Assume we apply the modified Lanczos algorithm, starting with matrix A and starting vec-
tors b, ~0, and generating vectors b, . . . , bp, Q, . . . , cP, grouped into clusters Bo, . . . , Bk,

c o , l . . , CA, where the last, incomplete, pair of clusters Bk, Ck may or may not be empty. ‘Ihen
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all the vectors bo, . . . , bp will span S,. We examine how the individual B clusters form bases

for relevant parts of S,.

Let Bl he any cluster (possibly incomplete) generated from the Lanczos process, and let

bi = bj,Dl + 1 denote the first vector within that cluster. We consider two choices: either bi lies

within SC5 or it does not. This is equivalent to asking whether bi is orthogonal to L or not.

Consider the case bi lies within S5. Since S, is an invariant subspace of the matrix A, we
have that A’bi will lie within Sz for any r 2 0. This means that every subsequent vector bi+r

will he orthogonal to L, without any need to enforce this condition in step 2.3 (hi-
orthogonalization) of the Lanczos Algorithm. Thus the entire cluster Bl started by bi will lie in

S,, and in particular C,Te, = 0. Hence this cluster must he the last cluster Bk and must remain

incomplete. That is, 2 = k and jkml is the largest value of j for which (7) holds. Thus Bk must lie

within S+ and we will show below that no other b vector in any previous cluster can lie within

S, That is, BA will be exactly Tc5 of Proposition 2. By analogy, we also have that Cr is not in

S, and is orthogonal to K = S,, and so will he exactly TzO.

Now consider the case bi is not in S,, i.e. not orthogonal to L = span [cg, . . . , cP]. Since

bi is the first vector in the cluster Bl, we have the two relations regarding all the previous vectors

and

☯c gl l . . , ci-l]Tbop . . . , bi,I] = [CO, . . . , Cl-l]T[l?o, . . . , l&J is nonsingular. (17)

Since bi is not orthogonal to L, we CJUI find the fiit index r such that ((AT)‘co>Tbi  f 0. By (M),

r 2 i. This implies that the matrix

[(AT)‘%, . . l p (AT)‘QIT[bip  l l . , A”‘bi] (18)

is nonzero on its anti-diagonal and zero above its anti-diagonal, and hence is nonsingular. (We
remark that the anti-diagonal is the diagonal running from the lower left to the upper right of the
matrix, and the property of being all zero above the anti-diagonal is called lower anti-
trianguZar.)  This in turn implies that the matrix LrT& is non-singular, which means that the

Lanczos process will continue at least through the r-th vector. The vectors bi, . . . , b, and

C-I, . . . , ct will form complete clusters Bl, Cl, respectively, with Q= CITBl nonsingular. In fact,



.

-9-

Dl will have the same lower anti-triangular structure as (18). Note that no vector in Bl is orthog-

onal to L; that is, no vector in any complete cluster Bl, I = 0, . . . , k-l lies in S,,.

Thus, if S, is empty, all the clusters will be complete, but if the space S, is not empty,

there must be a final incomplete cluster BA whose columns span this space. By carrying out

similar reasoning for the C clusters, we find that the final incomplete cluster Ck (if any) spans

the space of all vectors in L that are orthogonal to K. Thus CA corresponds to the space S,.

We summarize the results of the above discussion in the following proposition:

Proposition 2. Assume the Non-symmetric Lanczos Algorithm is applied to the SISO system
(13), starting with the system matrix A and vectors be Q, and the result consists of k-l com-

plete clusters Bo, . . . , Bk+ CO, . . . , Ck+ and a Gnal (possibly empty) incomplete cluster Bk,
and CA (with any zero vectors deleted), satisfying (1). Then the individual blocks of the matrix

T in Proposition 2 yielding the COCF will be defined as follows: Tcz = Bk will be a basis for the

sp= s,, T,, = PO, . . . ,&-11, TEo = ck9 and TE will be a basis for the space orthogonal to

K&9 --r&&l* n

Hence, defining T as in Proposition 2, we can express the various parts of the COCF (15) in
terms of the vectors and coefficients generated by the Non-symmetric Lanczos Algorithm (10)
(11) (12). From (10) we have A fT,,,TJ = [T,,,TJ*H,  which yields the following structure for

H:

and HikBl  represents the top left Jiwlxjkml  part Of H, COrMlXmiing  to [Bo,  . . . , B,,,].

Again referring to (15), Proposition 2 yields the following form:

bo = q = LO, . . .,0]T,and640=0. (20)

we have as well that es = $ck and & = &Bo, . . . , BkB1] = [t&-)0&,  . . . , dQ,O,  . . . , 01,

where  &o& , . . . , &jdl is the first row of the matrix block Do = CzB@ Since the blocks Dl m

lOW=  ~ti-tId@ll~,  d& = &l= ’ ’ ’ = dOjo _ 1 = 0, SO that
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1

The most important part of the dynamical system (13) is the “controllable-observable” part
(A33),  which yields the minimal realization [6] [ 121:

.
T-23 = Hjkal%3  + elu ; Y = dlj,ejlx3. (22)

All the coefficients in the minimal realization (22) can be expressed directly in terms of the coef-
ficients generated by the Lanczos Algorithm. Note that (22) is essentially equivalent to the
expression for the minimal realization given by Theorem 7.1 in [ 181. In that Theorem 7.1, the
system matrix for the minimal realization is expressed as HjkDl = Elf,  where

i2 = [Co, l l l , C& llT☯& ),  l l l ,B,-ll is the upper left jk-rXjA-l part of D, and

f=[Co,. . .g &lTA PO, . . . , Bk-J. However, by saving the coefficients H, we also obtain

expressions for the complete COCF, as indicated by Proposition 2 above.

4. Computational Details

In order to obtain a numerically stable algorithm, it is necessary to examine the effect of
- using finite-precision floating point arithmetic. We outline the principal points in the algorithm

where variations should be made to accommodate the use of floating point arithmetic.

In spite of the fact that b&orthogonal@ conditions (6) (7) hold exactly, computational
experience shows that in the approximate floating point arithmetic encountered on digital com-
puters, it is necessary to re-bi-orthogonalize the b, c vectors as they are generated against all pre-
vious clusters in order to maintain the bi-orthogonality conditions numerically. Otherwise,
numerical cancellation may result in the vectors losing
independence.

not only orthogonality, but also linear

In step 2.5, we must determine if a cluster is complete by computing the rank of
Dk = C,TB,.  The vectors bi+l, Ci+l have not been scaled in any way to be close to unit norm in

step 2.3, so it is possible that the norms of these vectors will vary widely, thus making the rank
determination difficult. To substantially reduce this dif’culty, it is useful to rescale the vectors
as they are formed by slightly modifying step 2.3 as in Figure 2. Then the coefficient matrices
H, G will still be upper Hessenberg and block tridiagonal as before, but the subdiagonal ele-
ments will no longer be all 1 ‘s, but rather the pi’s and yi’s, respectively. With this modification,

the rank determination can be made in a very robust way by using the singular value decomposi-
tion [9, pp 71,427ffJ.
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We remark that if CTbi # 0 for every i, so that every cluster consists of exactly one vector,

then the matrices CTAB , H, G, will all be tridiagonal. If we rescale the vectors so that CTbi = 1,

then D will be the Identity matrix, and CTAB = H = G will be the tridiagonal matrix usually
computed by the classical Lanczos algorithm.

In step 2.2, the vecf~r hi is obtained by finding the orthogonal projection of Abi onto the

the span of the vectors currently in Bk, and thus the vector z is the orthogonal projection onto the

orthogonal complement of this space. This is a form of a standard linear least squares problem
discussed in [9, ~2171,  and for which standard methods exist in LINPACK. Similar comments
can be said for the computation of gi and y.

In step 2.3, we must compute the oblique projection of the vector z, to satisfy the
bi-orthogonality condition (2). That is, the vector h’i must satisfy the equation

Hence h’i is

h’i =

Likewise, g’i is

g’i = [[Bo, . . . J,,lTICo, . . . , &]I -‘[Bo, - . . , B,l]Ty.

Note that the coefficient matrix [[Bo, . . . , Bk-,  ]‘[CO, . . . , CkN1 J] appears in the formulas for
both h’i and g’i, and is block diagonal, so that the coefficients for each cluster cm be computed

independently of one another, in parallel.

We note that the above formulas for the h’i, g’i are as numerically appealing as those for

the orthogonal projections in step’ 2.2, but -since these are oblique projections, we are not
guaranteed that this matrix is well-conditioned.

2.3. (* biuthogowlize  against previous clusters *)
Find coefficient VCCtMs h’i, g’i ad SC&IX  pi, yi Such that

Bib+1 Z=Z-[B(+. - ,Bk-l]h’i iS orthogonal to [Cop  . . . , CL-~],
*(iCi+l * y - [Co,  l l l s Ck-&‘i  iS dog&  t0 [&s l . . tBklJ*
(bi+l)I  = IlCi+lII  = 1.

Figure 2. Modified Step 2.3 with vectors re-scaled.
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5. Illustrative Example

We illustrate the algorithm with a small numerical example for which all four blocks
Th,TE,Tco,Tcz are nonempty. We start with the system (13) where

F
1.507 0.880 -1.760 -0.476 -0.335 -4.521 -0.870
1.324 1.435 2.321 -2.483 -2.352 2.294 0.037

A = -1.818 0.938 0.803 -0.518 -0.266 , bo= -0.818 , Q= 4.359 .
0.211 -1.444 0.151 -0.280 1.539 0.695 0.758

-0.130 0.947 0.710 -0.462 -0.465 0.380 -2.582

Note that $b = 0, so that it is immediately seen that the first clusters Bo, Co will have at least 2

vectors at the conclusion of the Lanczos process. After the Lanczos algorithm is applied, we
obtain the right vectors B, coefficients H and left vectors C, with the zero vectors deleted and
with the clusters marked:

-4.521 -0.411

- -
0 2.315 I-2.OOQ

-0.870 -0.918
0.037 -0.022

1 0.019
I-o.292

, c = 4.359 0.056 1 a.230 .
0.758 -0.166

-2.582
i 0.341

0.355 1 0.864

We have two cluster pairs Bo, Bz and Co, Cz, where Bz, Cz consist of the single last vector of B,

C, respectively. Note D, = CTB, = 0, so Bz, C2 are incomplete, and jkVl = 2. We form the

matrix that yields the Kalman Canonical Decomposition:

0.019 0.252 -0.411
-0.292 1 0.6661 i-4.521 2.2941 -0.498 I-0.195 0.6531

T = [TEo,Ts,Tco,T6] = -0.230 I 0.383 I-O.818 0.693 I-O.228
. 0.341 l-O.362 1 0.695 -0.291

0.864 1 0.464 1 0.380
1 0.688

0.140 I-O.107.

When we apply T to (13) we obtain the Canonical Form (15):



A =T-~AT=

-13-

1.ooo10I 0 0
I- - I
l I

- -
-4.000~2.000~ 0 0

l- - I - -
I I-0.278 1 0 14.333 0.171

1.080 1 0 1 12.961 2.333
I I- -  - -l I

0.500 1 1.000 I 0 2.315

0 -

0

0
0

-2.OOq

, l;o=T1bo=

‘0
-
0
-

1
0
-

3

and

+@= 10 10,2.777 10 .1
Note how H appears in the lower right part of A.

From the above canonical form, we find that the minimal realization for this system is

x= F:;;; ;:;;;]x+ [;]u; y = [0,2.7771x.

6. Conclusions

We have briefly described a modified two-sided non-symmetric Lanczos process that does
not suffer from an incurable breakdown, and showed how the vectors generated from this pro-
cess yield bases for controllable-observable, controllable-unobservable and uncontrollable-
observable spaces for a linear time-invariant dynamical system (13). The coeffkients generated
by the Lanczos Algorithm yield directly the minimal realization for such a dynamical system.
The efficiency of this method for large scale problems remains to be investigated, but based on
the experience with the eigenvalue problem, we believe that these ideas form a basis for further
development in this subject. .
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