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Abstract

Estimates for the condition number of a matrix are useful in many areas of scientific
computing, including: recursive least squares computations, optimization, eigenanal-
ysis, and general nonlinear problems solved by linearization technigues where matrix
modification techniques are used. The purpose of this paper is to propose an adaptive
Lanczos estimator scheme, which we call ale, for tracking the condition number of the
modified matrix over time. Applications to recursive least squares (RLS) computations
using the covariance method with sliding data windows are considered. ale is fast for
relatively small n - parameter problems arising in RLS methods in control and signal
processing, and is adaptive over time, i.e., estimates at time ¢ are used to produce
estimates at time ¢ + 1. Comparisons are made with other adaptive and non-adaptive
condition estimators for recursive least squares problems. Numerical experiments are
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1 Introduction

Repeated estimates for the condition number of a matrix are useful assessing the accuracy
and stability of algorithms employed in many application areas of scientific computing,
including: optimization, least squares computations, eigenanalysis, and general nonlinear
problems solved by linearization techniques {3], [20], [21], [35]. Our purpose in this paper
is to propose an adaptive Lanczos estimator scheme, which we call ale, for tracking the
condition number of the modified matrix over time. The key computations involve the
adaptive estimation of extreme singular values and vectors for a triangular factor L. We
develop adaptive Lanczos schemes for estimating extreme singular values and vectors of L
for each recursive modification. Approximations to the secular equations for the modified
matrix are used to obtain good starting vectors for the Lanczos schemes. Applications to
recursive least squares (RLS) computations using the covariance method with sliding data
windows in control and signal processing are considered. The computations are adaptive
over time in the sense that estimates at time t are used to obtain estimates at time £ + 1.
An alternative adaptive condition estimation scheme, called ace and based on opti-
mization principles, has been suggested by Pierce and Plemmons [31], and applied to
computations in adaptive control and signal processing in [32],[33]. A non-adaptive in-
cremental condition estimation scheme, called ice, has been suggested by Bischof [5], and
applied to computations in signal processing in [6] in a different context. It might be help
- ful to clarify the use of the words incremental” versus ‘adaptive” dncremental” ice obtains
condition estimates of a triangular factor that grows, whereas ‘adaptive”ale and ace main-
tain condition estimates when information is added/extracted from an already existing
factorization. Comparisons of ale with ace and ice on recursive least squares applications
are included in this paper. We begin by reviewing least squares computations.

1.1 Least Squares

The linear least squares problem can be posed as follows: Given a real m x n matrix X
with full column rank n and a real m-vector s, find the n-vector w that solves

min [|s — Xw|2, (1)
where ||. ||z denotes the usual Euclidean norm. The solution to (1) is given by
w = (XTX) 1 Xx7s. (2)

If R denotes the upper triangular Cholesky factor of the cross product matrix XTX, i.e.,
RTR = XTX, then w can be obtained by solving the triangular systems RTv = X7s,
followed by Rw = v, where v is an intermediate vector. However, in many applications
where accuracy and stability are important [20], R is computed directly from X by a
sequence of orthogonal transformations; that is

QX=['§]_, Q7@ =1 (3)
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Then setting

Qa = [ (1 , C an n-vector, (4)

w is computed by solving the upper triangular system Rw = c. In addition, the matrix
P= (XTX)‘1 (5)

is called the covariance matrix for (1). It measures the expected errors in the least squares
vector w. Its inverse
P = XTX, (6)

often called the normal equations matrix [20], is known as the information matrix for (1)
in the signal processing literature [1], [4], [21]. It measures the information content in the
experiment leading to (1).

1.2 Recursive Least Squares

In recursive least squares (RLS) it is required to recalculate w when observations (i.e.,
equations) are successively added to, or deleted from, the problem (1). For example, in
many applications information arrives continuously and must be incorporated into the
solution w. This is called updating. It is sometimes important to delete old observations

"~ and have their effect excised from w. This is called downdating and is associated with a
sliding data window. Alternatively, an exponential forgetting factor A, with 0 < A < 1 (see,
e.g., [21]), may be incorporated into the updating computations to exponentially decay the
effect of the old data over time. The use of A is associated with an exponentially-weighted
data window [3], [21]. In this paper we will consider the standard updating and downdating
methods, which can be associated with applications to sliding window methods in RLS.
For details on implementations of these sliding window methods see [2], [4], [7], [8],[12],
or [33].

There are two main approaches to solving recursive least squares problems; the in-
formation matrix method based upon modifying P~! = XTX and the covariance matrix
method based upon modifying P [1], [4], [21]. Instead of modifying P~! or P directly, it
is generally preferable for stability and cost reasons to modify their Cholesky factors [4].
We will concentrate on the covariance matrix method in this paper. Applications of ale to
tracking the conditioning of P~'= XTX in the information matrix method are similar.

RLS computations arising in adaptive control and signal processing can be described
as follows. We assume that the arriving data is prewindowed (e.g., [1], [3]) so that the
discrete time index begins at 1. For k > 1, we let z(k) denote the arriving column data
vector of dimension n at time k. At time m > n, the data matrix X defined in (1) is
denoted by X(m). Consequently, the covariance matrix P defined in (5) can be written as

m -1

P = P(m) = (X(m)TX(m))"" = [z 2(k)e(k)T

k=1

(7)
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To initialize the RLS process, P, or P-1, is often set to a scalar multiple of the identity
matrix 81.

From (7) it follows that if the data vectors z(k) do not go to zero, then the eigenvalues
of the covariance matrix P decrease monotonically. A common procedure, e.g., [1], [3],
[21], is to monitor the smallest singular value, Ay, (P(M)), and reset P(m + 1) to §I when
Amin(P(m)) falls below some tolerance factor. This process is called covariance resetting,
or reinitialization (e.g., [35] p. 62). Alternatively, a time window can be introduced to
downweight the influence of past observation or errors, and accordingly, prevent a possible
rapid decrease in Apin( P(M)).

There are two types of time windows: sliding windows and exponentially-weighted win-
dows, the latter of which is a special case of our work and thus will not be discussed further.
When a sliding window approach is used, then a fixed window length I > n is chosen. For
each time m in the recursive process, the problem is updated by adding the (m + 1)*
observation and the effect of the old (m —1+ 1)* observation is completely removed by
downdating (e.g., [2]). This sliding window approach approximately doubles the compu-
tational complexity of the basic updating process with exponentially-weighted windows,
but is well-known to possess favorable convergence or signal tracking characteristics [3],
[4], [12].

RLS algorithms based upon modifying the Cholesky factor L= R~T of P = (XTX)!
are reviewed in Section 2. Adaptive Lanczos based condition estimation schemes for trian-

~ gular factor updating and downdating are developed in Section 3. Reports on numerical
tests with some ill-conditioned data and some actual signal processing data in RLS com-
putations, along with some final comments, are given in Section 4.

2 RLS Sliding Window Computations

We now consider the sliding window recursive least squares (RLS) computations and pro-
ceed to simplify the notation. Updating computations are considered first.

At time m + 1, we set y = z(m + 1). Now, consider the least squares problem (1) and,
without loss of generality, assume that the additional data vector y and scalar ¢ for the
equation

yTwu nwi+. .. Y, RO

are appended to X and s forming

= X - s
(3] 2]
One now seeks to solve the modified problem
min ||5 - X||, (9)

for the updated least squares estimate vector w. This process is then repeated at each
recursive time step.



The process of modifying least squares computations by updating the covariance matrix
P has been used in control and signal processing for some time in the context of linear
sequential filtering [1], [4], [21], [29]. One begins with estimates for P = R~'!R~T (where
R is the Cholesky factor of XTX) and w, and updates R~! to R~! and w to & at each
recursive time step. Recently Pan and Plemmons [30] have described a parallel scheme for
these computations. _

Observe first that with X given in (8), P-lis given by

13‘1=5(TX=XTX+ny=P"l+ny.

Consequently, by the Sherman-Morrison formula (see, e.g., [20]),

1

P=P-1py

PyyTP. (10)
The updated w is given by
ﬁ:(fo)-lk'T[:]=ﬁfT[;]. (11)

By substituting (8) and (10) into (11) and using the representation (2) for w, there results
the following basic formula for the update:

@ = w + Py(e — yTw). (12)

The vector B
k = Py (13)

is often called the Kalman gain vector (see, e.g., [1], [4], [21]). It weights the predicted
residual o — yTw. Updating schemes based upon applying (10) and (12) directly are called
Conventional RLS Algorithms [1], [3], [4], [21]. Such approaches can lead to numerical
difficulties, e.g., loss of symmetry and/or loss of positive definiteness in P. Better numerical
results can be expected when the Cholesky factor L = R~T of P = (X7 X)™, rather than
P itself, is updated [4], and we adopt that premise in this paper.

Computational schemes for updating the Cholesky factor R typically employ the ap-
plication of orthogonal plane rotations Q; to zero the update vector y7. In particular,
orthogonal plane rotations Q; n41, rotating the i** row into the (n + 1)* row, are formed

for the reduction -
R R
Qnn+1 - Qa1 [ yr] = [ 0 },

so that the updated matrix Ris upper triangular.

Covariance matrix downdating is considered next. Many of the downdating concepts
are similar to those for covariance matrix updating, and will only be summarized for the
sake of brevity. We assume that, for stability purposes, the updating step is performed
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before downdating (see, €.g., [30]). Thus before a downdating step we assume that X has
been modified to X and the observation vector s to 8, by updating the Cholesky factor
L=R'of P=(XTX)'to L and the least squares estimate w to . For simplicity of
notation, we replace [X, s, L, w] with the updated [f, 3L, ﬁ] in some of our discussion
of downdating to follow.

The downdating computation in RLS with sliding data windows can be described in
the following way. Here the purpose is to remove the effect of an observation on the current
least squares vector w; that is, to remove a row z% from the observation matrix X and a
scalar g from the observation vector s, corresponding to the observation

sz=zlw1+. C e ZpWp R

Assume that z7 is the first row of X, so that X and s are related to the downdated X and

3 by .
x=[2] =" (14)
=% 3=|7|

In this case the modified covariance matrix satisfies
P1=XTX = XTX +yy? —2zT =P +yy’ — 227,

- where y is the update vector and z the downdate vector. If R is the updated Cholesky
factor of X7 X, it follows that the modified Cholesky factor R satisfies RTR = RTR — z27.
Assuming that X retains full column rank, the covariance downdating problem is now to
use the updated inverse Cholesky factor L = R-! of the updated P = (XTX)~! to compute
the downdated inverse factor L and the downdated least squares vector @. But now the
orthogonal rotation schemes do not apply directly, due to the negative sign of zz¥. A com-
putationally efficient scheme based upon the use of hyperbolic transformations H; rather
than orthogonal trigonometric plane rotations @; can used to compute the downdated
factor. For brevity, we refer the reader to the second edition of [20], Section 12.6.4, for a
detailed discussion of the use hyperbolic transformations H; for downdating. We comment
that, for stability reasons, these transformations should be implemented as described by
Golub [16] (see also [2]).

The following RLS sliding window scheme for modifying the covariance matrix P by
updating R~T to R-T followed by downdating to R-T and for computing the corresponding
modified least squares estimate vector @ was given in [30] (see also Morf and Kailath [29]).
Here we write P = LTL , where L= R-T,

Algorithm 1 (RLS by the Sliding Window Covariance Method) . Given the cur-
rent n-dimensional least squares estimate vector w, the current lower triangular factor
L = R T of P = (XTX)™!, the observation [yT, g, being added, and the the observation

[zT,n being removed, the algorithm computes the modified factor L=RTof Pand the
modified least squares estimate vector .



1. Form the matriz vector product a = Ly.

. Choose orthogonal plane rotations G;n41, rotating the ith component into the (n+1)*
component, to form

Gn,n+1 °c ’Gl,n+l [ —la ] = [ g ] N 6 = V 1 + aTa, (15)

by reducing -a to 0 from the top down, and form

L L
Gnpnt1- G4t [ oT ] = [ T ] ’ (16)

u

preserving the lower triangular form of L in L.
. Compute

W=W-— %—u(a —yTw). a7

. Replace [L, w] < [E, tﬁ].

5. Form the matriz vector product b = Lz.

. Choose hyperbolic rotations H; ,41, rotating the it* component into the (n+ 1)* com-

ponent, to form
b 0] Ty
Hn,n+1 te Hl,n+1 [ 1 ] = [ ~ sy Y= 1- bTb, (18)

by reducing b to 0 from the top down, and form

[ L] L
H,.,n+1 o 'Hl,n+l [ oT - = [ oT ] ’ (19)
preserving the lower triangular form of L in L.
. Compute
1
V=w-— ;v(n —2Tw). (20)

. Replace [L, w] < [E, @|, input the new observation [yT, a] to be added, let [zT,n]
denote the old observatton to be removed and return to Step 1.

Some comments about the algorithm are in order. First, the rotation parameters in

(15) and (18) are computed successively using the components of the vectors aand b. It
follows from [30], that u in the update step and v in the downdate step are scaled forms
of the Kalman gain vectors associated with updating and downdating. The algorithm
requires up to 5n% + O(n) multiplications per time step. The 5n2 term comes entirely from
updating and downdating L. No triangular solves are involved.

7



Our purpose now is to develop an adaptive scheme for monitoring the spectral condition
number of L, and accordingly the covariance matrix P, after each recursive time step. An
adaptive Lanczos based condition estimation scheme, which we call ale, for monitoring
condition numbers of the covariance matrices over time by tracking the extreme singular
values and singular vectors of the Cholesky factors is described in the next section.

3 ALE: Adaptive Lanczos Estimator

Our purpose is to describe schemes for adaptively monitoring the extreme singular values
in RLS updating methods associated with updating and downdating.

The Lanczos method [19], [25] can be used to reduce a nonsymmetric matrix A to a
bidiagonal matrix, that is, if A € R™*", the Lanczos method computes orthogonal matrices
U and V, such that )

UTAV =B (21)

where B is a lower bidiagonal matrix. It follows that A and B have the same singular
values.

It is well known that the information about the extreme singular values trends to
emerge long before the bidiagonalization process is complete [18]. In our application, we
are only interested in estimating the extreme singular values. We will employ this fast
convergence characteristic of the Lanczos method for only a few iterations to approximate
the extreme singular values, hence the condition number.

Our purpose is to monitor the spectral condition number of Cholesky factor during low
rank modifications; in particular, after rank-one updating and downdating. We then apply
the Lanczos method to an n x n lower triangular Cholesky matrix L in Algorithm 1 for k
iterations, computing orthonormal vectors »; and v;, such that

U(k)TLV (k) = B(K) (22)
where V(K) = [uy, ug, . . ., ug), V(K) = [Vi, vq,. . ., v],and B(k) is a k x k lower bidiagonal
matrix with the following form

o
By = | ™ (23)
Br-1 o

The maximal singular value of L is approximated by the maximal singular value of B(k),
that is, Omaez(L) X Omez(B(k)), c.f., [19]. The minimal singular value of L can be ap-
proximated in a similar way. The following algorithm describes the scheme for estimating

Omaz(L),



Algorithm 2 (Lanczos Method) . Given a lower triangular matrix L € R™*", and an
arbitrary vector uq, |Jui||z = 1, the algorithm computes orthonormal vectors v; and u; and
the entries of the bidiagonal matrix B(k), such that omaz(L) X Omaez(B(k)).

1. Input [L,u,].
2. Compute a; = ||LTuy|l5, and set vy = 2LTuy
3. Forj=1,2,..., (k-1)

(2) Compute B; = || Lv; — aju;ll2, and set w4y = 5-(Lv; — eju;),

(b) Compute aj41 = I w41 = Bjvjllz, and set Vi1 = ﬁ(LT"Hl — Bv;),
end for
4. Construct lower bidiagonal matrix B(k), and compute o.,..(B(k)).

Note that the Lanczos method is applied for k steps ( k — 1 iterations in the for loop ),
and this k may be much smaller than the problem size n. For example, in our numerical
experiments, we let k = 2, and the algorithm generates a 2 x 2 lower bidiagonal matrix
whose maximal singular value can be computed directly by a quadratic formula. If k > 2,

one can use Newton method to compute the maximal singular value in a recursive way.
For approximating the minimal singular value of L, since o,i,( L) = a_,ml(_L-'fi’ one can

apply the previous algorithm to L~ instead of L. Of course, L™} is not computed. In the
algorithm, a triangular solution is performed, instead of a matrix-vector multiplication.

In the RLS problem, a rank-one modification to the inverse Cholesky factor, L = R~7,
where R is the Cholesky factor of XTX, is performed: namely,

ITL=L7L + preT, (24)
where p=1 or -1. Suppose LT L in (24) has the eigenvalue-eigenvector decomposition
LTL = QAQT,
where QTQ = 1 and A = diag();). Then
ITL = QA+ pz2")QT
with z = QTr. Therefore
o*(L) = MITL). = MA + pzzT) (25)

Golub [17] has shown that if ); are distinct and gFr 0 for all ¢, then the eigenvalues of
LTL can be computed by solving the secular equation

s =143 0 (26)

=1
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where q; is the eigenvector of LTL corresponding to the eigenvalue A;. It is also known
(see [9],[10]) that the eigenvectors of LT L can be calculated by the formula

QA= X\ I)1Qr
(A = XI)71QTr||;

4= (27)

if A; £ X

Based on these observations, suppose that at time ¢, we have the estimates A;, g1, An,
gn, and we want to estimate A;, § G, X, and §, for time t + 1 by using these information
and the updating vector r. In order to amplify in the direction of ¢; and g,, assume that

r=&aq1 + €ndn- (28)
Multiplying both sides by ¢f and g7, one has

& = QITr’ €n = 1137‘-

The secular equation is approximated by

w(A)-1+p[ q€_, & (29)

A=A A=A

Solving this quadratic equation 15(,\) = 0, we obtain the estimates :\1, and ),. Then the
corresponding singular vectors ¢ and §, can be approximated by using formula (27). The
vectors ¢ and §, will be used as the initial vectors in the Lanczos algorithm. In this way,
the Lanczos method becomes adaptive. The discussion is summarized in the following
algorithm.

Algorithm 3 (Estimating Initial Vectors to make the Lanczos Algorithm Adaptive)

1. Input [M1, ¢1, An, @n, 7]-
2. Compute & = gfr, &, =gIr.
3. Compute

A = % [Al + A+ o6+ E2) + /(M = Ma)2 + (8 + €2)2 + 2p( M1 ~ X )(& — €2) ] ,

o= 5 [N+ da o€+ €)= 0 =+ (& + €+ 2000 — M8 - ED)|.
4. Compute

_ 51 {n )
=N (/\1—:\qu+ ,\n_xlqn )

~ 61 €n )
Qn—')'n(/\l_,\ 91+/\ _/\

where v; and 4, are chosen, so that ||Gi||z = 1, and ||Ga||2 = 1.
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5. Output [, Ga) for the initial vectors in the Lanczos Algorithm.

Another approach to making the Lanczos scheme adaptive is to use the last u-vector at
current time step as the initial u-vector for the next time step. In numerical experiments
we have observed that this scheme often yields good accuracy. Another advantage of this
approach is that the computational complexity is reduced by §n2 multiplications. For
suppose we perform k iterations in the Lanczos algorithm, save vector u; produced by the
algorithm, and set i, = u; for the next time step. At time ¢ + 1, we perform orthogonal or
hyperbolic transformations on the vector LTux. Note that this matrix-vector multiplication
has been performed at time ¢ in the Lanczos algorithm. Letting T denote the product of
orthogonal or hyperbolic rotations, we have

LT LT LT . IT]. LTq
J Eoy R 3P AT R R A

Hence one can obtain the vector L7, after the modification process, and set @; = || LT |,
without performing the matrix-vector multiplication.

Actually one can combine Algorithm 3 with this approach, so that the adaptive Lanczos
estimate algorithm can be described as follows:

- Algorithm 4 (Adaptive Lanczos Algorithm) Given a lower triangular matrix L €
R™"_ the algorithm computes orthonormal vectors v; and u; and the entries of the bidi-

agonal matrix B(k), such that Omez(L) X Omaz(B(k))

1. Input [L,u,] or [L,uy, LTu,].

2. Compute oy = || LTuy]|2, and set v; = allLTul.

3. Forj=1,2,..., (k-1)
(a) Compute B; = ||Lv; — aju;l|z, and set ujpq = ﬂlj(Lv,- — oju;),
(b) Compute ajiq = ||LTujy1 — Bjvjll2, and set vj41 = ;—J.{:(LTUJ'H - Bivj),
end for

4. Construct bidiagonal matrix B(k), and compute est(0maz(L)) = Omaz(B(k)).

5. Apply Algorithm 3, to obtain a better estimation for mazimal singular vector for nezt
time step, or save LTu; from the last iteration in the for loop.

6. Output [est(Omaz(L)), ur], or [€8t(Omaz(L)), ug, LTuz).

The computational complexity of this adaptive Lanczos algorithm is still (k—1)n?+0(n)
multiplications.

Algorithm 4 must be applied at each update and each downdate in order to track the
conditioning of the covariance matrix P, but for simplicity we only reprort estimates after
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each sliding window time step, i.e,, after each downdate. Similar modifications can be
made for estimating omin(L). 0 nce we obtain the estimates for o,az(L), and omin(L),
then the spectral condition number of the covariance matrix P is approximated by

K(P) [%] k

As a side benefit, the recursive estimates of Apin(P) and A,q.(P) also provide approx-
imate bounds for the power spectral density of the least squares process in the context of
adaptive filtering, as described by Haykin [21], pp. 62-66. The corresponding singular vec-
tors also provide useful information in the context of Pisarenko harmonic decomposition,
e.g., [23].

4 Comparisons and Numerical Experiments

In this section we report on some selected experiments designed to compare the perfor-
mance of the adaptive condition estimation scheme, ale, associated with Algorithm 4 with
two alternative methods, one due to Pierce and Plemmons [31] and called ace and the other
due to Bischof [5] and called ice. The scheme ace is adaptive and ace requires up to 38n
multiplication per update/downdate sliding window time step, while ice is non-adaptive
~and requires up to 6n% + O(n) multications - the same as our adaptive Lanczos estimator
ale using the secular equation approximations to obtain starting vectors. If the alternative
approach of using the last u-vector at current time step as the initial u-vector for the next
time step is employed, then the complexity of ale is reduced to 4n? + O(n) multiplications.
It follows that ace is cheaper than this version of ale only when n > 7.
Some data provided in by A. Bjorck, some randomly generated data, and some actual
data from signal processing adaptive filtering are considered in our tests and comparisons.
The datasets used the tests are described as follows:

o Random data from A. Bjérck [8]. This dataset consists of m = 50 observations
of n =5 components each, randomly generated with a uniform distribution in (0,1).
An outlier equal to 10* is added to position (18, 3). A sliding window length of 8 is
used.

« Hilbert matrix data from A. Bjérck [8]. Again m = 50 observations of n=5
components each are generated. This time the fist 25 observations consist of the
first 5 columns of the Hilbert matrix of dimension 25, and the same rows in reversed
order as the last 25 observations. A random perturbation, uniformly distributed in
(0, 1079), is added to the 10 middle rows to prevent the sliding window submatrices,
which have window length 8, from becoming singular.

« Random ill-conditioned data from Pierce and Plemmons [32]. Here m = 100
observations of n = 10 components each is generated with a random distribution in
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(=50, 50). Ill-conditioning is forced by multiplying one component of each observa-
tion by 103 to force near column dependency for the sliding window submatrices.
The window length is set at 20.

« Signal processing data from the NC State University Center for Commu-
nications and Signal Processing. This signal processing data is generated from
a well-conditioned second-order autoregressive process. A total of m = 200 obser-
vations of n = 5 components each are considered. A sliding window length of 20 is
used.

We report only on the performances of ale (in comparison to the alternatives ace and
ice), in recursively estimating the condition number of the covariance matrix P for each
update/downdate step. Our purpose in these tests is to exhibit the reliability and the
accuracy of ale for recursive least squares computations. All experiments were performed
using the Pro-Matlab system [27]. The results of these experiments are given in Figures
I-4. In the graphs, the solid lines represent ale, the dashed lines represent ace, and the
dotted lines represent :ice. As can be seen from the figures, ale compares very favorably
with ace and ice in terms of accurately tracking the condition number, K,(P), of the
covariance matrix over time.

Acknowledgement The authors wish to thank A. Bjorck in the Mathematics Depart-
ment at Linkoping University, Sweden, for providing test data. We also wish to thank
Avinash Ghimikar and Tulay Adali in the N.C. State University Electrical and Computer
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