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Abstract

We consider the problem of generating the three-term recursion coeffi-
cients of orthogonal polynomials for a weight function v(t) = r(t)w(t),
obtained by modifying a given weight function w by a rational function
r. Algorithms for the construction of the orthogonal polynomials for the
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2 Bernd Fischer and Gene H. Golub

1. Introduction

Let w be a nonnegative weight function on [a, b], a < b. With w there is
associated a system of orthogonal polynomials {pi}, where pj has exact degree j
and

(11). J b

< Pj,Pi >w= pj(t)pi(t)w(t)dt  =
a

2 i ii i : i
.

They satisfy the three-term recurrence relation

(12). WAt) = (t - aj)Pj-l(t)  - ajpj-z(t), j = I, 2,. . .
P-l@) = 0, pa(t) s po,

where bj 7 cj > 0 for j 2 1 (bl is arbitrary).
Let ?rl and ii, be given real polynomials of degree I and m, respectively, having

no root in common. Assume furthermore that the resulting rational function

(13).

is nonnegative on 1 bla , l
Now consider the new weight function

x1 (9r(t) = -
%I@)

(14). v(t) = r(t)w(t).

Clearly, there exists a set of polynomials {$j} that are orthogonal with respect
t o  <  0,’ >V (cf. (1.1)). In this paper we investigate the problem of numerically
generating the recurrence coefficients oj and pj in the relation

(15)
Tj$j(t) = (2: - “j)$j-1  - pj$j-g, j = 132, l . l 7 ?2

.
&-1(t)  f 0, +0(t) = 40

under the assumption that the coefficients cj, aj, and bj for whatever value of j is
required, and the zero-order moment

J b

I/o(w) = w(t)dt
a

are given. Note that the Tj’s > 0 are free parameters.
In order to compute the desired quantities we “break up” the given problem

into small pieces. TO this end let ti, i = 1,2,. . . , and zj = zj zk iyj, j = 1,2,. . .
denote the real and complex poles of T, then

lb v(t)dt = [ f(t)w(t)dt
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where q is a real polynomial. Hence, our procedure consists of repeated applica-
tion of the following two elementary steps (I) and (II): compute the three-term
recurrence coefficients of the orthogonal polynomials relative to

(1)
(11) v(t) = t, or v(t) = w(t)

- (t - x)2 + y2

in terms of those for the old weight function w. Of course, one could further
break up the problem by writing q as a product of linear and quadratic factors
(which requires the knowledge of the zeros of q). This is not necessary for the
implementation of our algorithm which “directly” deals with v(t) = q(t)w(t).

The final step, namely the problem of computing orthogonal polynomials as-
sociated with

v(t) = c vi(t),
i

assuming we know the orthogonal polynomials relative to the given weight functions
v;, has been solved (even for the case, that the vi’s have different support) in a recent
paper by Fischer and Golub [5].

The problem (I) is solved by a classical formula due to Christoffel (cf. Szegii
[15, Thm. 2.5]), whereas an explicit solution of (II), for the most general case of
weight functions of the form (1.4), is due to Uvarov [17], [18]. However, in both
cases the resulting polynomials are expressed in determinantal form. Thus they are
hardly useful for computational purposes.

Based on a work of Galant [6] and by making use of the fact that here the
orthogonal polynomials are explicitly given in terms of the so-called “kernel poly-
nornials” (cf. Chihara [3, Ch I, 37]), Gautschi [9] came up with a scheme for (I) for
the special case of multiplying w by a linear factor or by a quadratic factor. In the
same paper he derived algorithms for (II) by “inverting” those obtained for (I).

Kautsky and Golub [l2] devised algorithms for (I) via a suitable modification
of the Jacobi matrix relative to w by either a Lanczos type method or one step of
an implicit QR method.

In this note we follow a different (classical) approach. All our algorithms are
based on the so-called modified moments

(16).
J

b

w = w(p1, v> =< p1,1 >v= pr(t)v(t)dt.
a

It is well-known (see e.g. Wheeler[lS]), that the quantities vl and the three term
recurrence coefficients of pl determine the desired orthogonal polynomials relative
to v. The underlying procedure is known as the modified Chebyshev algorithm.
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Hence, from this point of view, the solution of our problems basically comes down
to the evaluation of suitable modified moments.

The paper is organized as follows. In Section 2 we briefly describe a (basic)
modified Chebyshev algorithm. The solution of (I) is carried out in Section 3.
In Section 4 we discuss two different approaches for the solution of problem (II).
The fist one directly implements the computation of the corresponding modified
moments ~1, whereas the other is based on a suitable inversion of the process devel-
oped in 93. Finally, a number of examples illustrating the numerical performance
of the various methods are given in Section 5. The examples include an application
to Gaussian quadrature rules for integrals in which the integrand has singularities
close to the interval of integration, and the generation of orthogonal polynomials
for the (finite) Hermite weight eDt‘, supported on a finite interval [-b, b].

2. The modified Chebyshev algorithm

In this section we present a basic description of the modified Chebyshev algo-
rithm. The goal is to compute the three-term recurrence coefficients of a system of
orthogonal polynomials {Icli) (cf. (1.5))

(2 1)
Tj$j(t) = (X - Qj)+j-1  - pj$j-2, j = 1,2,. . . ,

.
$-l(t)  = 0, $0(f) = $0,

relative to a given inner product

J b

< f,g >v= f (t)Llwwt
a

associated with the nonnegative weight function v. The algorithm involves the
modified moments

(2 2 ).
b

w = w(pr, v) =< pz, 1 >v= J pr(t)v(t)dt, I = 0, 1, . . . ,
a

corresponding to v and a system of polynomials {pk}. Here we arrive at an effi-
cient algorithm, if we assume that this system also satisfies a three-term recurrence
relation (cf. (1.2))

(2 3).
cjPj(t) = (t - aj)pj-l(t)  - bjpj-2(t), j = I, 2,. . . ,

P-l(t)  = 0, PO(i) = PO-

We note that the case of ordinary moments, i.e., pk(t) = tk, was first treated
by Chebyshev [2].
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The desired coefficients can be conveniently computed in terms of the “mixed
moment” matrix R = [QJ] (see e.g. Wheeler [19]), where

( 4)3Y.

b

bk,l =< $‘k,pl >v= I &(t)p,(t)v(t)dt, k,l = o,l, . . . .
a

The key equations for the computation of the oj’s and pj’s are readily obtained
from the two recurrence relations (2.1) and (2.3), respectively,

.( 5)3I .

Pk+l = ck
ok,k

7
ok--l,k-1

*k,k+l ok-1 k
ak+l =  al;+1  +  ck+l- -Pk+l A

ak,k bk,k
ak,k+l

=  ak+l +  ck+l- -ck
ok-1 ,k

gk,k bk-l,k-1’

1
ok,1 =---

?‘I;
[  - Pkak-2,l  +  bl+lok-1,1-l+

(al+1 - ~k)~k--l,l  +  cl+l~k-l,l+l  .I

Thus, updating the element ak,l involves (in general) four other entries in R

( 6)7d.

0

ok-2,1
0 0 0

ok-1,1-l ok--l ,I ok-1 ,l+l
0

ok,1

In order to start the algorithm we have to compute the modified moments

(2 7). w
OO,l

b
E---Z

* I
pr(t)v(t)dt.

0 a

The next sections are devoted to the efficient computation of these quantities. Note
that equation (2.7) is the only occasion where the weight function v enters into the
picture. The rest of the scheme depends only on the polynomials (2.3) (compare
also Algorithm 1).

3. Solution of problem (I)

In this section we apply the modified Chebyshev algorithm to the construction
of the orthogonal polynomials {$j}~zo relative to

(3-l ) v(t) = %n(t)w(t),
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where 1~~ is a real polynomial (positive on [a, b]) of degree m and w a given non-
negative weight function. Again, let {pj} denote the orthogonal polynomial for w
(cf. (1.2) and (2.3)). As already pointed out in the previous Section we first have to
compute the modified moments ul(pl, v) (cf. (2.7)). To this end express the given
polynomial ;TT, in terms of the basis provided by the pj

rm(t) = eTjPj(t)-
j=O

Consequently, we obtain by (3.1), (2.7) and (1.1)

* (3 3.& >
I

b
Ul =

a
pl(t)rm(t)w(t)dt  = 2 Tj JI pr(t)pj(t)w(t)dt

j=O a

= q s,” pp(t)w(t)dt if 1 < m
0 if I > m.

It is well-known (see, e.g., Chihara  [3, p.221) that the normalization constant

llP~ll2u = Jab Pf(t)w(t)dt is easily computed from

(3 3).
I+1

llP1112w  = PE d4 l--J L
j=2 5-l ’

where

(3 4). I
b

vo(w) = w(t)dt
a

denotes the zero-order moment.
Note that the upper triangular matrix R (cf. (2.4)) has bandwidth m+l. This

can be exploited in the algorithm, e.g., for n = 4 and m = 2 it follows directly from
(2.6) that only
other indicated

the entries marked by a ‘*’ have to be computed
entries:

in terms of the

Finally, we
Algorithm 1.
polynomials p;,

arrive at:
Given a lveight function w on [a, b], the associated orthogonal

the zero-order moment and a real pal-ynomi’al  xm (positive
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in [a, bl), this algorithm  computes the orthogonal polynomials +k, k = 0, 1, . . . , n
relative to v(t) = 7rm(t)w(t).

Initialize.
Seto-l,l=O, l=l,2...,min{2n-2,m+l}anda~,,+~+~=O(ifm+k+j<
2n-k-l),k=1,2 ,..., n-l,j=l,2

l choose $0 > 0
l compute oo,l = tioul, I= O,l,. . . ,min{2n- l,m} b y (3.2), (3.3) and (3.4)
l compute cyi by (2.5)

00 1
a1 = a1 +clz

go,0

Iterate.
For k =IJ,...,n-I  do

l choose yk > 0
l compute ~k,l, Pk+l, and @k+l by (2.5)

for I= k, k + 1,. . . , min(2n - 1 - k, m + k} do

1
ok,1 =-

?‘k
[-Pkak_z,l+br+lok-l,,-l  +(al+l -ak)ok-l,Z+cl+l~k-l,Z+l]

end
pk+l  = ck

*k,k
7

ok-l,k-1

ak+l
bk,k+l

= ak+l + Ck+l- - ck
ok-1,k

ak,k ok-l,k-1

end
End.

Remarks. 1. The algorithm requires as input jmaz recursion coefficients aj, aj,
and cj, j = 1,2,. . . , j,,,;where

.
Jmaz = max

k=l,2,...,n-1
min(2n - 1 - k,m + k}

2. It is straightforward to generalize the scheme for polynomials rm with complex
coefficients.
3. Gautschi [9] devised an algorithm for the special case m = 1, i.e., v(t) =
(t - z)w(t). His approach is based on the observation that here the desired poly-
nomials, the so-called kernel polynomials, are explicitly given in terms of the “old”
polynomds pk

+‘dt) =  & [pk+l(t) - ‘$&k(t)] l
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And by a repeated application of the complex version of his procedure, first with
the linear factor t - z and second with t -Y:, he solved (in real arithmetic) the case
of quadratic factors (t - z)” + y2, where z = z+ iy.
4. Kautsky and Golub [12] obtained different algorithms by directly attacking the
Jacobi matrix associated with the pj’s.

4. Solution of problem (II)

In this chapter we present two algorithms for the computation of orthogonal
polynomials {$Jj}~=~ relative to weight functions v obtained by modifying w by a

linear divisor

(4 1).

or by a quadratic divisor

(4 2).

- w(t)v(t> = j-y-

where z = 2: + iy, y > 0.
The first procedure

to compute the modified

w(t>
v(t) = (t _ 42 + y2 =

w(t>
(t - .Z)(t - F)

1 w(t>= - I m  t ,
( >Y -

follows the lines of Section 3. That is, we are tempted
moments v~(pl, v) (cf. (2.2)) associated with the weights

(4.1) and (4.2), respectively. One approach for accomplishing these tasks similarly
is, in view of the last equation of (4.2), the evaluation of the complex integral

Il(%) = J b PlN-w(t)&, % E c \  [a,b], 2 =  O,l)...)
a i-%

which seems to be at first glance a quite tricky problem. However, quite an efficient
algorithm (cf. Gautschi [7]) * bis ased on the observation that 1&z) has a (convergent)
continued fraction expansion in terms of the three-term recurrence coefficients of
the orthogonal polynomial pi associated with w. By exploiting this property one
arrives at the following (backward recurrence) algorithm.

Algorithm 2. Given a weight function w on [a, b], the associated orthogonal
polynomials pi, the zero-order moment Q(W), a point z E C \ [a, b], and an error
tolerance iz. Then this algorithm computes the quantities I&z), 2 = O,l,. . . ,n,
within a relative error of e.
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Initialize.
set CO = 1, bl = VO(W), and I-&) = -1

l choose N > n

Iterate.
until convergence do

0

end
End.

for j = N, N - 1,. . . ,O do pi-1 = cjbj+l/(%  - aj+l
for j = O,l,. . . ,n do Ij(%) = Pj-lIj-l(z)

test convergence

if max
IIj(%) - ITzd(%)l

j=O,l,...,n I1j(z)l  < ’

increase N

9

-Pi)

stop.

Remarks. 1. The algorithm is known to converge (cf. Gautschi [7, Thm. 3.11).
2. For the scheme to be effective it is critical to have good estimates for the
“starting index” N. Such estimates are known for some common weight functions,
e.g., the Jacobi weights (cf. Gautschi [8, $51). It is worth noticing that, in general,
N decreases as z moves away from [a, b] (compare 55.2).

The second scheme implements a suitable “inversion” of Algorithm 1. A
similar technique was used by Gautschi [9]. 0 ur derivation, however, appears to us
more transparent than the one given in [9].

The trick is to assume that we already know the desired polynomials +k and
then proceed as for the solution of problem (I) by “artifically generating” the or-
thogonal polynomials pk associated with (compare (4.1) and (4.2))

w(t) = (t - x)v(t) or w(t) = ((t - x)2 + y2)v(t)

via the mixed moment matrix fi = [&I]

(4 4. I b

ek,l =< pk,$‘l hu= pk (t)!h (t)w(t)dt-
a

First we consider the case of a linear divisor, i.e., w(t) = (t - x)v(t). Here
fi (cf. (4.4)) is an upper triangular matrix which has zero entries apart from the
diagonal and super-diagonal. Therefore, we define for convenience

d, = &k,k a n d  & =  &k,k+i.
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Now the essential parts of Algorithm 1 (compare also (2.5)) read (after inter-
changing the roles of the “Greek and Latin coefficients”)

dk =  ’ [Pk+ld^k-I +  (ak+l - ak)Ek-I]
ck

Ek
1

= GPk+te,-1

&
bk+1 = yk-

h-1
A

gk--l
ak+l = ak+l + rk+l? - bk+l-•

dk dk

NOW let ,&+I and Crk+l become subject of these equations

d, = Lbk+l&ml
?‘k

Pk+l
zk-1

= ck-1,
ek-2

Jk Jk-1
Qk+l = ak + ck- -

ek-1
Pk+l-

Ek-1

21, = I [bk+l i++1 + (ak+l - ak+l)&] 9
?‘k+l

(1)

(3)

(4)

(2)

In order to start the algorithm we need to compute the quantities 20 and p2 or,
equivalently, cyi and ,&. It turns out to be advantagegous to first compute cyi “by
hand”. This can be done by observing that the Fourier expansion of tv,bn(t)  in terms
of +j compared with the identities (2.1) immediately yields explicit expressions for
the recursion coefficients

(4 5).
< Wj-l,tij-1  >v < *j-l,*j-1  >t~

Ctj =
< *j-l,*j-1 >v

and pj = Tj-1
< *j-27 * j - 2  >v ’

In particular we have (recall v(t) = w(t)/(t - x))

Likewise, we obtain for /& in view of (2.1)

(4 7).

< vh,*1 >u 1
J

b

P2 = 71
< +o,lclo >v = YlvO(v)  a

(t - cq)v(t)dt

1
= 71vO(v)  a/

b
[((t - 2) - 2K)w(t) + K2v(t)] = qal - Ql),

71
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where we have used that (cf. (4.5) for w instead of v)

(4 8 ). I
b

tw(t)dt = aluo(w)
a

holds.

Finally, we arrive at the following algorithm:
Algorithm 3. Given a weight function w on [a, b], the associated orthogonal
polynomials pi, j = O,l,. . . n, a number x 4 (a, b), and the zero order moments
IJO and uo(v), respectively, where v(t) = w(t)/(t  - x). Then this algorithm
computes the orthogonal polynomials $Jk, k = 0, 1, . . . ,n, relative to v.

’ Initialize.
l choose $0 > 0 and y1 > 0 -
l compute by (4.4), (4.6), and (4.7)

Jo = $%pout)(w), a1 =  x  +  $$ =x + K

e0
JO

= --(al  - al),
K

Yl
p2 = -(al - al)

71

Iterate.
For k =l,Z,...,n-1 do

l choose ‘yk > 0
0 compute

dk = Lbk+&
?‘k

;A-1i f  k  >. 1  /%+I = Ck-l-
gk-2

dk ak-1
ak+l = ak +ck- -

zk-1
Pk+l-

En-1

i f  k<n-1 i&= +b
YE+1

k+l:k-1 + (ak+l - ak+&k]

end
End.

Remarks. 1. The zero-order moment Q(V) can be computed by Algorithm 2
(with n = 0) for x 4 [a, b].
2. The algorithm generalizes in the obvious way to complex x.
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3. The algorithm becomes unstable as x moves away from the support [a, b] (com-
pare $5.2).

Now we at tack the problem
tive to www = (t - 42 + y2

One obvious strategy would be

VI Ct) = w(t)/(t - r) and vz(t)

of generating the orthogonal polynomi& $k rela-

ww= (t-Z)(t-H)’ %=x+iY,  Y>O-

the repeated application of Algorithm 3 onto
= w(t)/(t  - Z) , respectively. Gautschi [9, 55.21

designed an algorithm along this lines. We do not follow this idea. We proceed
analogously to the case of a linear divisor by “inverting” the Algorithm 1 with
respect to w(t) = [(t - x)~ + y”]v(t).

Here the corresponding x-nixed moment matrix fi (cf. (4.4)) has bandwidth
three and hence we define

al, = i+k,k, ck = ek,k+l, a n d  fk = *k,k+2*

This time the key equations of Algorithm 1 (compare also (2.5)) are

dk =  ‘(-bkfk-2 +  Pk+ld^k-1  +  (ak+l - akIck- +  ‘yk+lfk-1)
ck
1Sk = -

ck
(Pk+2i+k--l + (ak+2 - ak)jk-1)

A

f k = hk+S.fk--l
ck

dl;
bk+l = Yk-

h-1

ek ek-1
ak+l =  ak+l +  Yk+ly - bk+l-

dk dk

Again, we have to interchange the role of the Greek and Latin coefficients and to
compute some “starting values”. Here we need to know the quantities or, cy2, p2,.
and p3 beforehand. They can be computed by some (lengthy) routine computations
based on the explicit representations (4.5). We omit the details. Note, that in view
of (4.2) and (4.3), the zero-order moment

I b

uo(v) = v(t)dt =
a

iIrn( [ Edt) = iIm(&(r))

can, again, be evaluated by means of Algorithm 2 (with n = 0).

Algorithm 4. Given a weight function w on [a, b], the associated orthogonal
polynomials pi, j = O,l, . . . n, a complex number z = x + iy, y > 0, the zero-
order moment uo(w), and the integral I&). Then this algorithm computes the
orthogonal polynomials  ?+!& k = O,l,. . . ,n relative to v(t) = w(t)/@ - x)~ + y2).
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Initialize.
l choose& >Oandyl, 72 >0
0 compute

20 =

ctq =

P3=

JO 1
-b--1), P2=- y

udw)

71 y1 ImI&) - x -[ ( al)2 - 2y )I
a1 - Ql uo(w) Cl& - P220

Br2 1 ‘ImIo(z)  +2x  -a1’ ” = a2 - a l

b2c1 - (al  - a1)2 - I3271 uo(w) 1

P271r2
+ -

‘ImI0(%) 7 2 [
( x - al)2  - ( x  - a2)2

I

Iterate.
For k =l,Z,...,n-1  do

l if k > 2 choose rk > 0
0 compute

fk - 2i f  k>2 Pk+l=Ck&‘r
fk - 3

Ek-1i f  k>1 ak+l=ak-l+ck-lT-- ek-2

f
pk+lr

k - 2 fk - 2

if k > 2 jk-1
1

=  - [ckci, +  bkjk-2
Yk+l

- Pk+lak-1  + (ak - ak+l)&k-1]

Eli
1

=-
“yk+l

[bk+lEk-1  + (ak+l - ak+l)dk].

end
End.

Remarks. 1. The algorithm computes the three (non-zero) diagonals of fi colum-
nwise according to the following star (compare (2.6))

0

et-2,k
0 0 0

ck-1 ,k-1 &k--&k kk-l,k+l
0

2. The algorithm becomes unstable as z moves away from the support [a, b].
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5. Numerical Examples

In this Section we report on some experiments with the derived methods. All
computations were carried out in MATLAB (approx. 16 significant decimal places).

1. Jacobi weights.

The Jacobi weights

(5 1). &@)(t) = (1 - t)Q(l + t)B on [-1, 11, where QI, p > -1,

are perfectly suited for testing purposes in the present context. The recursion
coefficients of the associated Jacobi polynomials are explicitly known (see, e.g.,
Chihara [3, p.2201).

We checked the reliability of the algorithms by recovering the Jacobi polyno-
mials relative to w(~+~+Q via suitable modifications of w(~@)

,(a+W-1) = l - t ,(cu,P)*
1+t

More precisely, we first computed the orthogonal polynomial relative to v(t) = (l-
t)w(@) by Algorithm 1 and then used the obtained recursion coefficients for the
calculation of the orthogonal polynomials relative to v(t)/( 1 + t) via Algorithm 3.
We did these computations for orthogonal polynomials up to degree n = 100 and for
various values of cy and /3. The observed absolute errors of the computed three-term
recursion coefficients (compared with known coefficients of the Jacobi polynomials)
were always below 6 * 10-16, i.e., the algorithms appear (in this context) to be quite
numerically stable.

2. Integration in the presence of nearby singularities, a Schwarz-Christoffel prob-
lem.

In this Section we demonstrate how to numerically integrate a function which
has a singularity very close to the interval of integration. The idea is to absorb (at
least) part of the singularity into the weight function and then to apply a suitable
Gaussian quadrature rule.

Problems of this type typically arise in the context of Schwarz-Christoffel map-
pings, i.e., any conformal map of the unit disk or the upper half-plane onto any
simply-connected polygonal region can be represented as

f(z) = ~1 J’ fi(t - %j)“‘dt + CZ

j=l
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where the numbers aj E (-1, l] correspond to the angles at the vertices of the given
polygonal region and the zj’s are the “prevertices” on the unit circle or the real
axis (see, e.g., Trefethen [Is]).

Here, we consider the conformal map of the upper half plane onto a rectangle

f(z) = Cl 1’ J(1 _ t2;l _ k2t2) + “*
As a subproblem one has to evaluate

(5 2). I 1
K(k) =

dt
0 ,/(I - t2)(1 - k2t2)’

the complete elliptic integral of the first kind with modulus k E (0,l). This inte-
* gral can be readily evaluated (up to machine precision) by means of the so-called

arithmetic-geometric mean (AGM) method (cf. Abramowitz and Stegun [l, $17.61).
The values obtained by the AGM iteration will later on serve as reference values.

Now let us demonstrate how to use to advantage Gaussian quadrature for the
computation of the integral K(k). To this end we rewrite K(k) as

(5 3). K(k) = ; I1 [(l - t)(3 + t)(y - t)( y + t)] -“‘dt.
- 1

Note, that the singularity at t = (2 - k)/k, moves towards 1 as k tends to 1.
In order to take care of the singularity at the endpoint of the interval of inte-

gration (1 - t)-li2 we apply a Gaussian quadrature rule based on the orthogonal
polynomials relative to the Jacobi weight w(-~/~Y’),  i.e.,

(5 4). K(k) w ~"O(w)~7)[(3+Aj)(~
j=l

- Aj)( y + Xj)] -l/2.

The nodes Aj and weights rj can be efficiently and accurately computed by a method
due to Golub and Welsch [IO].

However, if the singularity t = (2 - k)/k is close to the endpoint 1 the GaufL
Jacobi rule (5.4) is very inaccurate (compare Table 5.1). In order to overcome this
difficulty we incorporated the troublesome singularity into the weight function, i.e.,
we computed the Gaussian quadrature relative to the weight function

(5 5).
&mo)

dt) = 2-km-
k t l

The Gaul3 rule now reads

(5 6). K(k) N
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We generated the orthogonal polynomials with respect to v both by Algorithm
3 and by Algorithm 2 ( in conjunction with the modified Chebyshev algorithm).
As long as the singularity t = (2 - k)/k is moderately close to 1 (roughly for
k > .7) both methods yield the saxne results. For small k Algorithm 3 becomes
unstable (in contrast to Algorithm 2). It is worth noticing that, however, the
Gaussian quadrature rule (based on Algorithm 3) still produces remarkable good
approximations to K(k), even in cases where some of the computed nodes were
located outside the interval of integration.

The starting index N for Algorithm 2 was estimated according to a formula
due Gautschi [8], that is, we take the smallest integer N satisfying

N =n+ 2log(r+@-=-i)’
r = (2 - k>/k,

where eps = 2.22.. . * lo-l6 is the machine precision (in MATLAB).
In the following table we present the absolute errors (compared with the results

of the AGM method) for the two rules (5.4) and (5.6) and various values of n and
12.

n=5 n=lO n=15
k (5 . 4 (5 s> (5 . 4) (5 . s> (5 . 4) (5 . 6)

0.70 -13.2 -16.5 -25.8 -29.4 -36.0 -34.9
0.75 -11.8 -14.8 -23.1 -26.6 -34.3 -34.7
0.80 -10.3 -13.2 -20.2 -23.8 -30.0 -34.7
0.85 -8.70 -11.5 -17.2 -20.7 -25.6 -29.4
0.90 -6.91 -9.65 -13.8 -17.2 -20.5 -24.3
0.95 -4.66 -7.24 -9.52 -12.8 -14.3 -17.9

I 0.99 I -1.69 I -3.77 1 -3.94 1 -6.67 1 -6.12 I -9.23 I

Table 5.1. loglo(errors)  in n-point Gaussian quadrature
applied to the elliptic integral K(k)

We observe that rule (5.6) outperforms rule (5.4) by (at least) 3 decimal places
of accuracy.

3. Generation of orthogonal polynomials for “complicated” weight functions

In this Section we show how to apply the derived methods for the computation
of the orthogonal polynomials for the (finite) Hermite weight

(5 7). w(t) = emtz, t E [-b, b], where b > 0.
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Integrals involving this weight

arise, for example, in quantum chemistry calculations (see, e.g., Chin [4] and refer-
ences therein).

The generation of the Gaussian quadrature rule for (5.8) was treated by sev-
eral authors, see, e.g., Piessens and Branders [14], King and Dubois [la], and Chin
[4]. Their algon‘thms directly deal with the weight function (5.7). Here we follow a
different approach. The idea is to approximate the given weight function (5.7) by
polynomials and/or rational functions and then to compute the orthogonal polyno-

I mials relative to the (much easier to handle) best approxiamtions. Of course, the
success of this approach partly depends on the ability to approximate (5.7) as close
as possible. In order to achieve this goal we subdivided the given interval

[-b, b] = [A, --al]  u [-b2,  -421  u [al, bl] u [a2, b21

into smaller intervals and then computed a compound Chebyshev approximation.
More precisely, for the case b = 1 we computed the best Chebyshev approximation
P,(Z

(5 9). max (emt2 - P2m(t)((9 = min
tE[ai,bi]

max ]eWt2 - 5 Tjtjl,
rj EJR,  tE[ai  ,bi]

i = 1,2,
j=O

where

[a1 7 b,] = 10, JZPI and [a~, b] = [A/~/Z, 11.

Note that J2/2 is the point of inflection of eWt2. Furthermore, observe that for the
symmetric weight function.w(t) = w( -t) on the symmetric region [-bi, -ai] U [a;, bi]
the best Chebyshev approximation simplifies to a polynomial in t2, i.e.,

(5.10) p,‘?(t) = Pi’(t2) = 2 Tji)L2j(t), i = 1,2,
j=O

where Lj is the jth Legendre polynomial on [-1, 11. The best approximations were
computed by using the Remez - algorithm (see, e.g., Golub and Smith [ll] for a
robust implementation) in terms of the basis provided by the Legendre polynomials
(cf. (5.10)). For m = 8 we obtained for the minimal deviation

max ]eatz - P,(Z(t)l < lo-l4 9 i = 1 2
tE[ai  ,bi] 9 -
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In the next step we computed the orthogonal polynomials relative to the “new”
weight functions wti)(t) = Emj=o r!i)Lzj(t)  on [-bi, -ai] U [ai, bi], i = 1,2, via
Algorithm 1. Note that the corresponding modified moments (cf. (3.2) and
(3.3)) are given by

u~‘)(Lj, ,(‘)) =

2#)/(2j + 1) for j = 212 and k < m-
3 O3 otherwise .

Finally we applied the methods developed in [5] for the computation of the
orthonormal polynomials tin relative to the weight function w(12) = u)(l) + wt2),
more precisely

“(12)(t) = w(‘)(t) for al 5 ItI 5 b1
wc2)(t) for a2 5 ItI  < b2.

In order to illustrate the effectiveness of the method, we computed the or-
thonormal polynomials up to degree n = 100. Some of the computed recurrence
coefficients are shown in Table 5.2. Notice, that the symmetry of the problem
implies

bj$j(t) = X$j-l(t) - pj-l*j-2(t),j  = l, 2Y * l l

We compared the computed coefficients with the one listed in Chin [4]. The coin-
ciding digits are printed in boldface.

I k 1 Pk

1 1  1 0 . 5 0 3 6 9 0 4 8  6 8 8 4 4 2 1

90 0.50000780271012
100 0.5000063131058 3

Table 5.2. Coefficient of the kth orthogonal polynomial
relative to w(12)

Table 5.2 clearly shows that the described algorithm is perfectly stable for the
case b = 1. As it is not surprising, the approximation of the weight function (5.7)
is more delicate for b > 1 than for b = 1. We will report on numerical experiments
for the case b > 1 elsewhere.
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