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Abstract. In recent years, there has been a true revival of the nonsymmetric Lanczos method. On
the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-
called look-ahead variants of the Lanczos process have been developed, which remedy this problem.
On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear
systems have been proposed. This paper gives a survey of some of these recent developments.

1 Introduction

Many numerical computations involve the solution of large nonsingular systems of linear equations

Ax = b. (1 1).

For example, such systems arise from finite difference or finite element approximations to partial
differential equations (PDEs), as intermediate steps in computing the solution of nonlinear prob-
lems, or as subproblems in large-scale linear and nonlinear programming. Typically, the coefficient
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matrix A of (1.1) is sparse and highly structured. A natural way to exploit the sparsity of A in the
solution process is to use iterative techniques, which involve A only in the form of matrix-vector
products. Most iterative schemes of this type fall into the category of Krylov subspace  methods:
they produce approximations x, to A-lb  of the form

x, E x0 + K,&,A), n = 1,2,.  . . . (12).

Here x0 is any initial guess for A-lb,  rO := b - Ax, is the corresponding residual vector, and

&h 4 := span{ru,  AT,,, . . . , A’+,} (1.3)
is the nth Krylov subspace  generated by r0 and A.

The most powerful iterative method of this type is the conjugate gradient algorithm (CG) due
to Hestenes and Stiefel [33], which is a scheme for linear systems (1.1) with Hermitian positive
definite ,A. Although CG was introduced as early as 1952, its true potential was not appreciated
until the 1970s. In 1971, Reid [45] revived interest in the method when he demonstrated its
usefulness for solving linear systems arising from self-adjoint elliptic PDEs. Moreover, it was realized
(see, e.g., [7]) that the performance of CG can be enhanced by combining it with preconditioning,
and efficient preconditioners, such as the incomplete Cholesky factorization [40],  were developed.

Thereafter, the success of CG triggered an extensive search for CG-type Krylov subspace  meth-
ods for non-Hermitian linear systems, and a number of such algorithms have been proposed; we
refer the reader to [l, 51, 48, 47, 171 and the references given there. Among the many properties
of CG, the following two are the most important ones: its nth iterate is defined by a minimization

-property over Kn(rO,  A), and the algorithm is based on three-term vector recurrences. Ideally, a
CG-like method for non-Hermitian matrices would have features similar to these two. It would
produce iterates x, in (1.2) that:

(i) are characterized by a minimization property over Kn(rO, A), such as the minimal residual
property

Ilb - &all = minzeo+Kn (+o ,A) lib - A49 x, E x0 t qro, A);

(ii) can be computed with little work per iteration and low overall storage requirements.

Unfortunately, it turns out that, for general non-Hermitian matrices, one cannot fulfill (i) and (ii)
simultaneously. This result is due to Faber and Manteuffel [lo, 111 who have shown that, except
for a few anomalies, CG-type algorithms with (i) and (ii) exist only for matrices of the special form

A  =  e”(T+aI),  w h e r e  T  =TH, 8 E R, u E C ,

(see also Voevodin [55] and Joubert and Young [35]). Note that the class (1.4) consists of just the
shifted and rotated Hermitian matrices. We remark that the important subclass of real nonsym-
metric matrices

A = I - S, where S = -ST is real, (1.5)

is contained in (1.4), with eie = i, 0 = -i, and T = is. Concus and Golub [6] and Widlund [56]
were the first to devise a CG-type algorithm for the family (1.5).

Most of the non-Hermitian Krylov subspace methods that have been proposed satisfy either
(i) or (ii). Until recently, the emphasis was on requirement (i), and numerous algorithms with
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iterates characterized by (i) or a similar condition have been developed, starting with Vinsome’s
Orthomin [54].  The most widely used method in this class is the generalized minimul residual
algorithm (GMRES) due to Saad and Schultz [49].  Of course, none of these methods fulfills (ii),
and indeed, for all these algorithms work per iteration and overall storage requirements grow linearly
with the iteration number n. Consequently, in practice one cannot afford to run the full version
of these algorithms, and it is necessary to use restarts. For difficult problems, this often results in
very slow convergence.

The second category of CG-like non-Hermitian Krylov subspace  methods consists of schemes
that satisfy (ii), but not (i). The archetype in this class is the classical biconjugate gradient algorithm
(BCG), which was proposed by Lanczos [38]  already in 1952 and later revived by Fletcher [12]  in
1976. Since no minimization condition of type (i) holds for BCG, the algorithm can exhibit-and
typically does-a rather irregular convergence behavior with wild oscillations in the residual norm.
Even worse, breakdowns in the form of division by 0 may be encountered during the iteration
process. In finite precision arithmetic, such exact breakdowns are very unlikely; however, near-
breakdowns may occur, leading to numerical instabilities in subsequent iterations.

The BCG method is intimately connected with the nonsymmetric Lanczos process [37] for
tridiagonalizing square matrices. In particular, the Lanczos algorithm in its original form is also
susceptible to breakdowns and potential numerical instabilities. In recent years, there has been
a true revival of the nonsymmetric Lanczos process. On the one hand, the possible breakdowns
in the classical algorithm are now better understood, and so-called look-ahead variants of the
Lanczos process have been developed, which remedy this problem. On the other hand, various new
Lanczos-based Krylov subspace  methods for solving general non-Hermitian linear systems have
been proposed. Here we review some of these recent developments.

The remainder of the paper is organized as follows. In Section 2, we focus on the nonsymmetric
Lanczos process; in particular, we sketch a look-ahead variant of the method and briefly discuss
related work. We then turn to Lanczos-based Krylov subspace  algorithms for non-Hermitian linear
systems. First, in Section 3, we consider the recently proposed quasi-minimul residual method
(QMR) an ou ‘ne wo implementations. In addition to matrix-vector products with the coefficientd th t
matrix A of (l.l), BCG and QMR also require multiplications with its transpose AT. This is a
disadvantage for certain applications where AT is not readily available. It is possible to devise
Lanczos-based methods that do not involve AT, and in Section 4, we survey some of these so-called
tmnspose-free schemes. In Section 5, we make some concluding remarks.

Throughout the paper, all vectors and matrices are allowed to have real or complex entries.
As usual, MT and MH denote the transpose and conjugate transpose of a matrix M, respectively.
The vector norm ]]z]] = &% is always the Euclidean norm. The notation

is used for the set of all complex polynomials of degree at most n. Finally, A is always assumed to
be a square matrix of order N.

2 The Nonsymmetric Lanczos Process

In this section, we consider the nonsymmetric Lanczos process. Here the matrix A is not required
to be nonsingular.
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2.1 A Look-Ahead Lanczos Algorithm

The Lanczos method in its original form as proposed by Lanczos [37]  can break down prematurely.
Taylor [ 521 and Parlett , Taylor, and Liu [44] - w i t h their look-ahead Lanczos algorithm-were the
first to devise a variant of the classical process that skips over possible breakdowns. We use the term
look-ahead Lanczos method in a broader sense to denote any extension of the standard algorithm
that circumvents breakdowns. In this section, we sketch an implementation of a look-ahead Lanczos
algorithm that was recently developed by Freund, Gutknecht, and Nachtigal [18].

Given two nonzero starting vectors ol E CN and ‘u)r E CN, the look-ahead Lanczos process
generates two sequences of vectors {uj},“=r and {wj}jn,r  such that, for n = 1,2,.  . . ,

SPan{q&,*-,vn) = Kn(v*,A),
span{w1,w2,. . .,w,} = K,(w,,AT).

(2.1)

Here, K,,(q)  A) and K,( wi, AT) denote the nth Krylov subspace of CN generated by vl and A,
and wl and AT, respectively (cf. (1.3)). Moreover, the Lanczos vectors are constructed so that the
block biorthogonality relation

D(k) if j = '3 j,k = 1 2
0 ifjfk, 9"'Y 7 (2 2).

holds. Here, the matrices V(“) and Wtk) contain the Lanczos vectors built during the kth look-ahead
step. More precisely,

-
v(“) =  bn,  %,+1 l  l  * vTak+~-l  19
w(“) =  bnc wnk+l * l  l  Wnk+l-l  I?

k = I,...,1 - 1,

and

where

If(�) = ☯v,, vnl+* * � l vn] ,

w(�) = ☯w,, wnl+* � - - w,] ,

1=nl<n2<“‘<nk<“‘<nlIn<nl+l.

The first vectors v,, and wnk in each block are called regular, and any remaining vectors are called
inner. Note that I = Z(n) denotes the index of the last constructed regular vector. Furthermore, in
(2.2), the blocks DC”) are nonsingular for k = 1, . . . , I - 1, and DC’)  is nonsingular if n = nl+l  - 1.

With these preliminaries, the look-ahead Lanczos algorithm can be sketched as follows.

Algorithm 2.1 (Sketch of the look-ahead Lanczos process)
0) Choose nonzero vectors vl, zq E CN.

Set V(l)  = vl, l/r/(‘)  = wl, D(l) = (W(l))TV(l).

Set n1 = 1, I = 1, vg = wg = 0, v, = w, = 0.

For n = 1,2,..., do :
1) Decide whether to construct v,,+~ and w,+~  as regular or inner vectors

and go to 2) or 3), respectively.
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2) (Regular step.) Compute

p,, = (D(‘))-‘(  W(‘))TA~
un = @I-*))-‘(w(‘-‘))& n9

%+1 = Av,, - V(‘)p,  - V(‘-‘)v,,

%+1 = ATw,  - W(‘)p,  - W(‘-‘)v,.

Set n&l = n + 1, 1 = I+ 1, V(l)  = W(l) = 0, and go to 4).

3) (Inner step.) Compute

un = (D(‘-‘))-‘(  W(‘-‘))TAV n9

%+1 = Av, - &,v,,  - q.,~,,-~ - V(‘-‘Iv,,

%+1 = AT w, - c, w, - 77,w,m1 - W(‘-‘)v,.

(2 3).

(24

4) If %+1 = 0 or %a+1 = 0, stop. Otherwise, set

VU) =
[ v(‘) vu,+* ] , w(‘) = [ w(‘) w,+* ] ,

D(‘) = (WO)qA’),

- In [18], it is shown how one can implement Algorithm 2.1 so that only two inner products are
computed at every step, for either pn and v,, in (2.3),  or for u,, in (2.4). The crucial part of
Algorithm 2.1 is the look-ahead strategy used in step 1). As described in [18], the decision in 1) is
based on three checks. For a regular step, it is necessary that D(‘) be nonsingular. Therefore, one
of the checks monitors the size of smallest singular value of D(l). The other two checks attempt
to ensure the linear independence of the Lanczos vectors. The algorithm monitors the size of the
components pn and u,, along the two previous blocks V(‘) and V(“‘),  respectively W(l)  and W(‘-‘),
in (2.3),  and performs a regular step only if these terms do not dominate the components Av,, and
AT w, in the new Krylov spaces. Complete details of the implementation of the look-ahead Lanczos
Algorithm 2.1 are given in [18].

We note that, in (2.4), cn and q,, are arbitrary inner recurrence coefficients, with c,,k = 0. One
possibility is to choose the Chebyshev iteration [25, 391 parameters for c,, and q,,. However, since
the length of look-ahead steps is usually small, the choice of the inner recurrence coefficients is not
crucial; in our experience, cn = 1 and, if n # nk, q,, = 1, works satisfactorily. Indeed, with the look-
ahead strategy proposed in [18],  the algorithm performs mostly regular steps, and typically, only
a few look-ahead steps of length bigger than 1 occur. In our experiments, the longest look-ahead
step we encountered was of length 4.

For later use, we remark that the recurrences in (2.3) and (2.4) can be written compactly in
matrix form. For example, for the right Lanczos vectors v,, we have

AK = Ka+*H,, (2 5).

where
vn := [q 212  *** %I,
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and
P2

a2

. . .

0

. .
. . .
. . .

. . .

. .

. . .

Yl
0

is a block tridiagonal matrix. The diagonal blocks ok are square unreduced upper Hessenberg
matrices, whose size is equal to the number of vectors in the corresponding block Vtk). The
matrices rk have only one nonzero element, in their upper right corner, and thus H, is an upper
Hessenberg matrix, with full rank

rank H, = n. P-6)
If only regular steps 2) are performed, then the Algorithm 2.1 reduces to the classical Lanc-

zos process. In this case, the blocks V(“) and WC”) consist of just the single vector vk and Wk,
respectively, and the orthogonality relations (2.2) now read:

T
wjvk =

6, # 0 if j = k,
0 if j # k,

j,k = I,..., n. (2 7).

Moreover, H,, is just a scalar tridiagonal matrix. The condition 6k # 0 in (2.7) is crucial, since
each step of the classical Lanczos algorithm involves a division by 6k. The point is that one cannot
guarantee s, # 0, and in fact, when Sk = 0 with vk # 0 and Wk # 0, the algorithm breaks down.
Note that bk x 0 signals a near-breakdown of the procedure.

Algorithm 2.1 will handle exact and near-breakdowns in the classical Lanczos process, except
for the special event of an incurable breakdown [52].  These are situations when the look-ahead
procedure would build an infinite block, without ever finding a nonsingular D(l). Taylor [52]  has
shown in his Mismatch Theorem that in case of an incurable breakdown, one can still recover
eigenvalue information. For linear systems, an incurable breakdown would require restarting the
procedure with a different choice of starting vectors. Fortunately, in practice round-off errors will
make an incurable breakdown highly unlikely.

Finally, we remark that, for the important class of p-cyclic matrices A, exact breakdowns in
the Lanczos process occur in a regular pattern. In this case, as was shown by Freund, Golub,
and Hochbruck [16],  look-ahead steps are absolutely necessary if one wants to exploit the p-cyclic
structure. For details of a look-ahead Lanczos algorithm for p-cyclic matrices, we refer the reader
to [16].

2.2 Historical Remarks and Related Work

The problem of breakdowns in the classical Lanczos algorithm has been known from the beginning.
Although a rare event in practice, the possibility of breakdowns has certainly brought the method
into discredit and has prevented many people from actually using the algorithm. On the other
hand, as was demonstrated by Cullum and Willoughby [8], the Lanczos process-even without
look-ahead-is a powerful tool for spa,rse  matrix computation.

The Lanczos method has intimate connections with many other areas of Mathematics, such as
formally orthogonal polynomials (FOPS), Pad4 approximation, Hankel matrices, control theory, and
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coding theory. The problem of breakdowns has a corresponding formulation in all of these areas,
and remedies for breakdowns in these different settings have been known for quite some time.
For example, the breakdown in the Lanczos process is equivalent to a breakdown of the generic
three-term recurrence relation for FOPS, and it is well known how to overcome such breakdowns
by modifying the recursions for FOPS (see [26, 9, 311 and the references given there). In the
context of the partial realization problem in control theory, remedies for breakdowns were given
in [36, 271.  The Lanczos process is also closely related to fast algorithms for the factorization of
Hankel matrices, and again it was known how to overcome possible breakdowns of these algorithms
(see [32, 221  and the references therein). However, in all these cases, only the problem of exact
breakdowns was addressed.

The look-ahead Lanczos algorithm of Taylor [52] and Parlett, Taylor, and Liu [44]  was the first
procedure that remedies both exact and near-breakdowns. We point out that their implementation
is different from Algorithm 2.1. In particular, it always requires more work per step than Algo-
rithm 2.1, and it does not reduce to the classical Lanczos process in the absence of look-ahead
steps. Furthermore, in 152, 441,  details are given only for the case of look-ahead steps of size 2, and
their algorithm does not generalize easily to blocks of more than two vectors.

In recent years, there has been a revival of the nonsymmetric Lanczos algorithm, and since 1990,
in addition to the papers we have already cited in this section, there are several others dealing with
various aspects of the Lanczos process. We refer the reader to [2, 3, 4, 22, 29, 34, 431 and the
references given therein.

3 The Quasi-Minimal Residual Approach-
We now return to linear systems (1.1). From now on, it is always assumed that the matrix A is
nonsingular. In this section, we describe the QMR method. The procedure was first proposed by
Freund [13, 151  for the case of complex symmetric matrices A = AT, and then extended by Freund
and Nachtigal [19]  for the case of general non-Hermitian matrices.

3.1  The Standard QMR Algor i thm

Recall that the nth iterate of any Krylov subspace method is of the form (1.2). If now we choose

vl = r. (3 1).

in Algorithm 2.1, then, by (2.1), the Lanczos vectors vr, . . . , v,, span K,(T,, A); hence we can write

for some 2, E C”. Together with (3.1) and (2.5), this gives the corresponding residual vector

(3 2).

where er denotes the first unit vector in IV+‘. As VI,,, is not unitary, it is not possible to minimize
the Euclidean norm of the residual without expending 0(Nn2)  work and C7(Nn)  storage. Instead,
one minimizes just some weighted Euclidean norm of the coefficient vector in (3.2). More precisely,
let

0, = diag(wl,w2,. . .,~~+r), Oj > 0, j = 1,. . ., n + 1, (3.3)
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be a weighting matrix. Then Z, E Cn is chosen as the solution of the least squares problem

(3 4).

Note that, in view of (2.6) and (3.3), the problem (3.4) always has a unique solution. Usually, the
weights in (3.4) are chosen as wj G ll~jll, which means that all components in

T, = (V,+#,*) @VI - Q,El,z,)

are treated equally.
The least-squares problem (3.4) can be solved by standard techniques based on a QR decompo-

sition of R,H,. One computes a unitary matrix Q, E C(“+‘)‘(“+‘)  and an upper triangular matrix
R, E CnXn such that

and then obtains Z, from
2, = R,%,,  t, = ~1 [In OlQneu (3 6).

which gives
2, = x0 + v,R;‘t,. (3 7).

This gives the following QMR algorithm.

-Algorithm 3.1 (QMR algorithm)

0) Choose x0 E CN and set q = r. = b - Axe.
Choose w1 E C” with q # 0.

For n = l,2,..., do :

1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.1.

This yields matrices T/,, Vn+1,  and H,., which satisfy (2.5).
2) Update the QR factorization (3.5) of H, and the vector t, in (3.6).

3) Compute x, from (3.7). If x, has converged, stop.

We note that Q, in (3.5) is just a product of n Givens rotations, and thus the vector t, is easily
updated in step 2). Also, as H, is block tridiagonal, R,., also has a block structure that is used in
step 3) to update x, using only short recurrences. For complete details, see [19].

The quasi-minimization (3.4) is strong enough to obtain convergence results for QMR. One can
derive error bounds for QMR that are comparable to those for GMRES. Also, it is possible to relate
the norms of the QMR and GMRES residual vectors. This is in contrast to BCG and methods
derived from BCG, for which no such convergence results are known. Finally, if desired, one can
recover BCG iterates from the QMR Algorithm 3.1, at the expense of only one additional SAXPY
per step. For these and other properties of QMR, we refer the reader to [19, 411.

Algorithm 3.1 is only one possible implementation of the QMR method. Instead of using three-
term recurrences as in the underlying look-ahead Lanczos Algorithm 2.1, the basis vectors {vn} and
{w,} can also be generated by coupled two-term recurrences. Empirical observations indicate that,
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in finite precision arithmetic, the latter approach is more robust than the former. Details of such
an implementation of the QMR. method based on coupled two-term recurrences with look-ahead
are presented in [20].

FORTRAN 77 implementations of the QMR Algorithm 3.1 and of the look-ahead Lanczos
Algorithm 2.1 are available electronically from netlib.’

3 . 2 BCG and an Implementation of QMR without Look-Ahead

We now look at BCG in more detail. The BCG algorithm attempts to generate iterates xECG  that
are characterized by the Galerkin condition

xfCG E x0 + K,( TO, A) and wT(b - AxfCG)  = 0 for all w E Kn(‘u)r, AT). (3 8).

Unfortunately, such iterates need not exist for every n, and this is one source of possible breakdowns
in BCG.

As noted already, BCG is closely related to the classical Lanczos process. More precisely, the
BCG residual vectors are just scalar multiples of the right Lanczos vectors:

rn = b - Ax,BCG = &p,+*, 8, E c, 8, # 0. (3-9)
In addition to T,, the BCG algorithm also involves a second sequence of vectors r’,, E K,+,(i;,,  AT).
Here F. E CN is an arbitrary nonzero starting vector; usually one sets i;, = r. or chooses i;, as a
vector with random coefficients. The vectors r’,, are connected with the left vectors generated by

- the classical Lanczos process:

cl = &a%+*  7 e, E c , e, # 0. (3.10)

From (3.9) and (3.10), we have

-TT,-lTn-l  = ~n&,-lw~V,e (3.11)

Recall from (2.7) that the classical Laaczos process breaks down if w~v,, = 0 with v, # 0 and
w, # 0. In view of (3.11), this is equivalent to ’

-T
G-1 s-1 = 07 T,-1 # 0, i;,-, # 0. (3.12)

As Algorithm 3.2 below shows, BCG also breaks down if (3.12) occurs. In addition to (3.12),  there
is a second source of breakdowns in BCG, namely

CI:-lA~,+l  = 0, in-1 # 0, &-I # 0. (3.13)

Here Q,+~  and Gnal are the vectors generated by Algorithm 3.2 below. It can be shown (see,
e.g., [46])  th t ba a reakdown of the kind (3.13) occurs if, and only if, no Galerkin iterate xFCG  with
(3.8) e.xists.

Unlike the BCG iterates, the QMR iterates are always well defined by (2.6). In particular,
breakdowns of the kind (3.13) -can be escluded in the QMR Algorithm 3.1. We stress that this

‘To obtain the
netlib@ornl.gov.

codes, one needs to send a message consisting of the single line “send lalqmr from mis? to
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remains true even if, in the Qh/IR Algorithm 3.1, one uses the classical Lanczos process in step 1).
Of course, the use of the look-ahead Lanczos Algorithm 2.1 avoids breakdowns of the first kind
(3.12), except for incurable breakdowns.

As already noted, existing BCG iterates can be easily obtained from quantities generated by
the QMR Algorithm 2.1. Therefore, QMR can also be viewed as a stable implementation of BCG.
It is also possible to reverse the roles of the two algorithms and to get QMR iterates directly from
the BCG algorithm. Such an implementation of QMR without look-ahead was derived by Freund
and Szeto in [21],  and is as follows.

Algorithm 3.2 (QMR without look-ahead from BCG)

0) Choose x0 E cN and set x2MR = xtCG  = x0.
Set q. = r. = b - Axe,  fi, = 0, 7. = qllr,ll,  29, = 0.
Choose i;, E Q3 N, F. # 0, and set o. = Fo, p. = i;Tro.

For n = 1,2,..., do :

1) Set u,-1 = 4,T-l Aq,-, .

If on-1 = 0, stop. Otherwise, compute

s-1 = Pn-II%-1,
rn = r,,-1 - a,,-+&,-1 9
i;, = r’,,, - (Y,-~ A=&+

If BCG iterates are desired, set

.BCG =
n xfly + qJ_lQpl-

3) If Pn-1 = 0, stop. Otherwise, compute

We remark that, exact for the additional updates in step 2), this algorithm is just classical BCG.
Of course, unlike the QMR Algorithm 3.1, the implementation of QMR in Algorithm 3.2 can break
down due to (3.12) and (3.13).

Algorithm 3.2 is only one of several possible implementations of the BCG approach; see [34, 281
for an overview of the different BCG variants. As in the nonsymmetric Lanczos process, exact
and near-breakdowns in the BCG methods can be avoided by incorporating look-ahead procedures.
Such look-ahead BCG algorithms ha.ve been proposed by Joubert [34]  and Gutknecht [29].
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4 Transpose-Free Met hods

Krylov subspace  methods such as BCG and QMR, which are based directly on the Lanczos process,
involve matrix-vector products with A and A =. This is a disadvantage for certain applications,
where AT is not readily available. It is possible to devise Lanczos-based Krylov subspace  methods
that do not involve the transpose of A. In this section, we give an overview of such transpose-free
schemes.

First, we consider the QMR algorithm. As pointed out by Freund and Zha (231,  in principle
it is always possible to eliminate A T altogether, by choosing the starting vector wr suitably. This
observation is based on the fact that any square matrix is similar to its transpose. In particular,
there always exists a nonsingular matrix P such that

A=P = PA. (44
Now suppose that in the QMR Algorithm 3.1 we choose the special starting vector w1 = Pv,. Then,
with (4.1),  one readily verifies that the vectors generated by look-ahead Lanczos Algorithm 2.1
satisfy

‘ufrt = Pv, for all n. (4 2).

Hence, instead of updating the left Lanczos vectors {w,} by means of the recursions in (2.3) or (2.4),
they can be computed directly from (4.2). The resulting QMR algorithm no longer involves the
transpose of A; in exchange, it requires one matrix-vector multiplication with P in each iteration
step. Therefore, this approach is only viable for special classes of matrices A, for which one can

- find a matrix P satisfying (4.1) easily, and for which, at the same time, matrix-vector products
with P can be computed cheaply. The most trivial case are real or complex symmetric matrices
A = AT, which fulfill (4.1) with P = I. Another simple case are Toeplitz matrices A, i.e., matrices
whose entries are constant along each diagonal. Toeplitz matrices satisfy (4.1) with P = J, where

is the N x N antidiagonal identity matrix. Finally, the condition (4.1) is also fulfilled for matrices
of the form

, A=TM-‘,  P=M-‘,

where T and M are real symmetric matrices and M is nonsingular. Matrices of this type arise when
real symmetric linear systems TX = b are preconditioned by M. The resulting QMR algorithm for
the solution of preconditioned symmetric linear system has the same work and storage requirements
as preconditioned SYMMLQ or MINRES [42]. However, the QMR approach is more general, in
that it can be combined wit.h any nonsingular symmetric preconditioner M, while SYMMLQ and
MINRES require A1 to be positive definite (see, e.g., [24]). For strongly indefinite matrices T, the
use of indefinite preconditioners A1 typically leads to considerably faster convergence; see [23]  for
numerical examples.

Next, we turn to transpose-free variants of the BCG method. Sonneveld [50]  with his CGS
algorithm was the first to devise a transpose-free BCG-type scheme. Note that, in the BCG
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Algorithm 3.2, the matrix AT appears merely in the update formulas for the vectors en and &.
On the other hand, these vectors are then used only for the computation of the vector products
Pn = TTr,, and on = @rAq,. Sonneveld observed that, by rewriting these products, the transpose
can be eliminated from the formulas, while at the same time one obtains iterates

X2,., E x0 t &n(~O,A), n = 1,2,.  . ., (4 3).

that are contained in a Krylov subspace of twice the dimension, as compared to BCG. First, we
consider p,,. From Algorithm 3.2 it is obvious that

r?l = $J~(A)T~  a n d  ?,, = $,(AT)Fo, (4 4).

where $,, is the nth residual polynomials of the BCG process. With (4.4), one obtains the identity

Pll = 6 WnVN2 TOY (4 5).

which shows that p,, can be computed without using AT. Similarly,

Qn =  cp,(A)~,  and Qn =  v,(AT)&

for some polynomial y,, E P,, and hence

u, = %A h(4>2 TO’ (4 6).

-By rewriting the vector recursions in Algorithm 3.2 in terms of $, and cp, and by squaring the
resulting polynomial relations, Sonneveld showed that the vectors in (4.5) and (4.6) can be up-
dated by means of short recursions. Furthermore, the actual iterates (4.3) generated by CGS are
characterized by

7’;;” = b - Ax*,, = (~,BCG(4)2  ro* (4 7).

Hence the CGS residual polynomials $Fzs = ( >$zCG
2

are just the squared BCG polynomials. As
pointed out earlier, BCG typically exhibits a rather erratic convergence behavior. As is clear from
(4.7), these effects are magnified in CGS, and CGS typically accelerates convergence as well as
divergence of BCG. Moreover, there are cases for which CGS diverges, while BCG still converges.

For this reason, more smoothly converging variants of CGS have been sought. Van der Vorst [53]
was the first to propose such a method. His Bi-CGSTAB again produces iterates of the form (4.3),
but instead of squaring the BCG polynomials as in (4.7), the residual vector is now of the form

T2n = eG(A)X,(4ro*
Here x,., E P,, with ~~(0) = 1, is a polynomial that is updated from step to step by adding a new
linear factor:

x,(8 = Cl- %J)Xn-IN- (4 8).

The free parameter qn in (4.8) is determined by a local steepest descent step, i.e., qn is the optimal
solution of

$t IU - 77A)X,-1(A)~,BCG(A)TOIl.
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Due to the steepest descent steps, Bi-CGSTAB  typically has much smoother convergence behavior
than BCG or CGS. However, the norms of the Bi-CGSTAB residuals may still oscillate considerably
for difficult problems. Finally, Gutknecht [30] has noted that, for real A, the polynomials xn will
always have real roots only, even if A has complex eigenvalues. He proposed a variant of Bi-
CGSTAB with polynomials (4.8) that are updated by quadratic factors in each step and thus can
have complex roots in general.

In the CGS algorithm, the iterates (4.3) are updated by means of a formula of the form

CGS = CGS
52n X2(7+1)  + crn-dY*n-I + Y*?a>. (4 9).

Here the vectors yl, ~2, . . . , yzn satisfy
sPantY,,Y*,.'*9 y , }  =  Km(rO,A), m= 1,2 ,..., 2n.

In other words, in each iteration of the CGS algorithm two search directions y2n-1  and y2n are
available, while the actual iterate is updated by the one-dimensional step (4.9) only. Based on
this observation, Freund [l4] has proposed a variant of CGS that makes use of all available search
directions. More precisely, instead of one iterate 2::’per step it produces two iterates x2,-r and
x2,,  of the form

5, ="o+[Y1 Y2 l  * *  ym]tm, zm EC? . (4.10)

Furthermore, the free parameter vector Z, in (4.10) can be chosen such that the iterates satisfy
a quasi-minimal residual condition, similar to the quasi-minimization property of the QMR Al-
gorithm 3.4. For this reason, the resulting scheme is called transpose-free quasi-minimal residual

- algorithm (TFQMR). For d t 1e ai s, we refer the reader to [ 141, where the following implement at ion
of TFQMR is derived.

Algorithm 4.1 (TFQMR algorithm)

0) Choose x0 E CN.
Set w1 = yr = r. = b - Ax,,  v. = Ay,, do = 0.

Set 7. = Ilr,ll, 2p. = 0, q. = 0.
Choose f, E C”, i;, # 0, and set p. = i$ro.

For n = 1,2,..., do :
1) Compute

u -T
n - l = To vu,-1 7

s-1 = Pn-1 hl-17
?/*?I = Y*n-1 - q&-l  Q-1 ’

2) For m = 2n - 1, 211 do :
Compute

%Tl+1  = ‘w7n - Qn-pJYm,

%-& = IIWm+1ll/L1,  %a = w-K7
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~fxrn has converged, stop.

3) Compute
Pn = cb*n+*~
A = PnlPn-1,

Y2n+1 = W2n+l  + PnY27l7

% = AY2n+1  + Pn(AY2, + Pn%d

We would like to point out that the iterates generated by the QMR Algorithm 3.1 and the
TFQMR Algorithm 4.1 are different in general.

Another transpose-free QMR method was proposed by Chan, de Pillis, and Van der Vorst [5].
Their scheme is mathematically equivalent to the QMR Algorithm 3.1, when the latter is based on
the classical Lanczos process without look-ahead. The method first uses a transpose-free squared
version of the Lanczos algorithm (see, e.g., Gutknecht [28])  to generate the scalar tridiagonal
Lanczos matrix H,. The right Lanczos vectors v,, are then computed by running the standard
Lanczos recurrence, and finally the QMR iterates are obtained as in Algorithm 3.1. Freund and
Szeto [2l] have derived yet another transpose-free QMR scheme, which is modeled after CGS and
is based on squaring the residual polynomials of the standard QMR Algorithm 3.1. However, the
algorithm given in [5] and the squared QMR approach both require three matrix-vector products
with A at each iteration, and hence they are more expensive than CGS, Bi-CGSTAB, or TFQMR,
which involve only two such products per step.

Finally, we remark that none of the transpose-free methods considered in this section, except for
-Freund and Zha’s simplified QMR algorithm based on (4.1), addresses the problem of breakdowns.

Indeed, in exact arithmetic, all these schemes break down every time a breakdown occurs in the
BCG Algorithm 3.2. Practical look-ahead techniques for avoiding exact and near-breakdowns in
these transpose-free methods still have to be developed.

5 Concluding Remarks

In this paper, we have covered only some of the recent advances in iterative methods for non-
Hermitian linear systems. A more extensive survey of recent developments in this field can be
found in [17].

The introduction of CGS in the 1980s spurred renewed interest in the nonsymmetric Lanczos
algorithm, with most of the effort directed towards obtaining a method with better convergence
properties than BCG or CGS. Several BCG-based algorithms were proposed, such as Bi-CGSTAB,
introduced by Van der Vorst [53]. Tlle q uasi-minimal residual technique was introduced by Fre-
und [13, 151 in the context of complex symmetric systems, then later coupled with a new variant of
the look-ahead Lanczos approach to obtain a general non-Hermitian QMR algorithm [19].  Finally,
several transpose-free algorithms based on QMR have been introduced recently, which trade the
multiplication by AT for one or more multiplications by A. However, their convergence properties
are not well understood, and none of these algorithms have been combined with look-ahead tech-
niques yet. In general, it seems that the transpose-free methods have more numerical problems than
the corresponding methods that use AT, and more research is needed into studying their behavior.

Finally, even though the field of iterative methods has made great progress in the last few years,
it is still in its infancy, especially with regard to the packaged software available. Whereas there are
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well-established robust general-purpose solvers based on direct methods, the same cannot be said
about solvers based on iterative methods. There are no established iterative packages of the same
robustness and wide acceptance as, for example, the LINPACK library, and as a result many of the
scientists who use iterative methods write their own specialized solvers. We feel that this situation
needs to change, and we would like to encourage researchers to provide code for their methods.
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