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THE CANONICAL CORRELATIONS OF MATRIX PAIRS AND
THEIR NUMERICAL COMPUTATION

GENE H.GOLUB AND HONGYUAN ZHA

ABSTRACT. This paper is concerned with the analysis of canonical correla-
tions of matrix pairs and their numerical computation. We first develop a de-
composition theorem for matrix pairs having the same number of rows which
explicitly exhibits the canonical correlations. We then present a perturba-
tion analysis of the canonical correlations, which compares favorably with the
classical first order perturbation analysis. Then we propose several numerical
algorithms for computing the canonical correlations of general matrix pairs;
emphasis is placed on the case of large sparse or structured matrices.

1. INTRODUCTION

Given two vectors u E 72” and tr E R”, a natural way to measure the closeness
of two one dimensional linear subspaces spanned by u and t, respectively, is to
consider the acute angle formed by the two vectors, the cosine of which is given by

We observe that C(U,V)  = 0, when u and v are orthogonal to each other; and
a(~, v) = 1, when the two linear subspaces are identical. Given two linear subpaces
that are spanned by the columns of matrices A E 72”‘” and B E Rmxl, we are con-
cerned with the problem of how to measure the closeness of span(A) and span(B),
the range spaces of A and B. One natural extension of the one dimensional case
is to choose a vector from span(A), i.e., a linear combination of the columns of
A, say AZ, and similarly By from span{ B),  and form cr(By, AZ). The closeness of
span(A) and span(B)  can be measured by the following

However, the two linear subspaces or rather the matrix pair (A, B) have more struc-
ture to reveal than that defined by the minimum. In 1936, Hotelling proposed to
recursively define a sequence of quantities which is now called canonical comdafions
of a matrix pair (A, B) [8].
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Definition 1.1. Let A E Rmxn and B E 7ZmX’,  and assume that

p = rank(A) 1 rank(B) = Q.

The canonical correlations ~1 (A, B), - . - ,u,(A, B) of the matrix pair (A,B) are
defined recursively by the formulae

(l.l)~(A,  B) =
AZ *i-yy*o, @Y, A4 =: a(Byk,Azk), k = 1,q.e  ,q.

Atl{Atl;.. ,Az~-~},
BYl{BYl,...,BYk-11.

It is readily seen that

and
d(A, B) = u4(A, B).

The unit vectors

Azi/llAzill~t BY~lllBYill2,  (i = 1, * * * 9 q)

in (1.1) are called the canonical vectors of (A, B); and

zi/llAzi, yi/llByill2,  i = 1, * * - ,q

are called the canonical weights. Sometimes the angles or: E [0, r/2] satisfying
cos 81, = uk(A, B) are called the principal angles between span(A) and span{ B}
[7].’ The basis of span(A) or span{ B} that consists of the canonical vectors are
called the canonical basis.

There are various ways of formulating the canonical correlations, which are all
equivalent. They shed insights on the problem from different perspectives, and as
we will see later, some of the formulations are more suitable for numerical com-
putation than others. The applications of the canonical correlations are enormous
such as system identification, information retrieval, statistics, econometrics, psy-
chology, educational research, anthropology and botany [l] [17]  [9].  There are also
many variants and generalizations of the canonical correlations: to the case of more
than two matrices (surveyed by Kettenring [ll],  see also [17]);  to sets of random
functions [Z];  to nonlinear transformations [17]; and to problems with (in)equality
constraints. Several numerical algorithms have been proposed for the computation
of the canonical correlations and the corresponding canonical vectors (see Bjorck
and Golub’s paper [4] and references therein); however, in the literature there is
very little discussion of the case of large sparse and structured matrix pairs, which
will receive a fairly detailed treatment in Section 4.

The organization of the paper is as follows: in Section 2, we present several
different formulations of the canonical correlations; in Section 3, we develop a de-
composition theorem for general matrix pairs having the same number of rows: this
decomposition not only explicitly exhibits the canonical correlations of the matrix
pair, it also reveals some of its other intrinsic structures. We also discuss the rela-
tion between the canonical correlations and the corresponding eigenvalue problem

‘As is pointed by G.W. Stewart [15],  the concept of canonical angles between two linear
subspaces is much aider  than canon&l correlations, and can be traced back to C. Jordan [lo,
p.129 Equation(6O)l.
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and the RSVD [20].  In Section 4, we present perturbation analyses of the canonical
correlations; the results compare favorably with the classical first order counterpart
developed in [4]. We derive perturbation bounds for the normwise as well as com-
ponentwise perturbations. In Section 5, we propose several numerical algorithms
for computing the canonical correlations. For the case of dense matrices, we also
discuss the updating problem. The emphasis of the section is placed on the case
of large sparse or structured matrix pairs. We will first present an algorithm using
alternating linear least squares approach which has a nice geometric interpretation.
We also relate this algorithm to a modified power method and derive its convergence
rate. Then we adapt the Lanczos bidiagonalization process to compute a few of the
largest canonical correlations. Our algorithms have the attractive feature that it is
not necessary to compute the orthonormal basis of the column space of A and B as
is used in Bjorck-Golub’s  algorithm, and thus one can fully take advantage of the
sparsity or special structures (e.g, Hankel or Toeplitz structures) of the underlying
matrices. Numerical examples will also be given to illustrate the algorithms.

2. SEVERAL DIFFERENT FORMULATIONS

There are quite a few different ways of defining and formulating canonical corre-
lations: Hotelling’s original derivation is based on matrix algebra and analysis [8];
Rao and Yanai used the theory of orthogonal projectors [14]; Escoufier proposed
a general frame work for handling data matrix by matrix operators, which also
includes the canonical correlations as a special case [6];  Bjijrck and Golub used
matrix decomposition of the given data matrices [4].  In this section, we give some
of the formulations and indicate their equivalence.

The Singular Vulue Decomposition (SVD) Formulation. Let the QR decompe
sition of A and B be

A=QARA, B=QBRB,

where QA and QB are orthonormal
triangular matrices, then

matrices, and RA and RB are nonsingular upper

yTBTAx
u(BY’Ax)  =  IIByllallAxlla =

Y~@~?~QARAx

llRB?d2~~RAx~/2
=I v~Q~QAu,

where we have designated u = RAX/]]RAX]]~  and v = &y/]]&y]]2.  Using a
characterization of the SVD [7, p. 4281, we see that the canonical correlations are
the singular values of Q~QA  , and if

QTBQA= PTdi&n(A B), +. . j Qk B>)Q

denotes the SVD of Q~QA, then

QA~(:,~:Q)= [UK-- JQ], and QBQ= [VI,- ,vq]

give the canonical vectors of (A, B). Note that since Q’,QA is a section of an
orthogonal matrix, ak(A, B) 5 1, k = 1,. .. , q. We also note that the canonical
vectors are not unique if, say ~1: (A, B) = ak+l(A,  B). However, the above formu-
lation is rather general in the sense that it can also handle the case when A and/or
B are rank deficient.



4 GENE H.GOLUB AND HONGYUAN ZHA

A Trace Mazimiration Formulation. Let us consider the following maximization
problem:

(2.2) max
L=B=BL-I

trace(LTBTAM),

M=A=Ai--;-*

where for simplicity we have further assumed that p = q; otherwise we can append
zero columns to B to make the pair (A, B) satisfy this assumption. Again using
the QR decomposition of A and B, we see that the two equality constraints in (2.2)
imply that RAM and RBL are orthogonal matrices, and we arrive at the following
equivalent maximization problem

(2.3) U and V f%thogonal
trace(uT(QgQA)v).

To this end, we cite a well-known result of Von Neumann [16].

Lemma 2.1. Let the singular values of A and B be

Then

U and V !$?kmgond
trace(  BUTAV) = CiuiTi.

The above problem (2.3) is a special case of the lemma by choosing B = I and
A=QT,QA.

Remark 2.1. Since LT BT BL = Ip, MTATAM = &, the maximization problem
(2.2) is equivalent to the following minimization problem:

(2.4) min
L=B=BL-I

IlAM - BLIIF,

M=A=AM--;-?

which can be interpreted as finding an orthonormal basis of span(A) and span{ B)
respectively, such that their difference measured in the Frobenius norm are mini-
mized. It is equivalent to the following orthogonal 1 I ocrustes problem. Let QA  and
QB be any orthonormal basis of span{ A} and span{ B}, respectively. Then (2.2) is
equivalent to

We note that the above is a special Procrustes problem where QA and QB are
orthonormal, while in the general case, QA and QB can be replaced by two general
matrices [7,  Section 12.4.11.

A Lagrange Multiplier Formulation [S]. For the constrained minimization prob-
lem (l.l), write the Lagrange multiplier functior,

f(x, y, A+) = yTBTAx - ~(IlAxll; - 1) - P(IIBYII; - 1).
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Differentiating with respect to x, y, A, and p leads to:

P-5)

BTAx - pBTBy = 0,

ATBy - AATAx = 0,

yTBTBy = 1,

xTATAx = 1.

It follows that A = p and

PAIRS 5

Therefore finding the canonical correlations, which are the stationary values, cor-
responds to solving for the eigenvalues of the above generalized eigenvalue problem.
On the other hand, since

the first canonical correlation can also be computed by solving the minimization
problem

min ‘$l;i(2  - IIByl12 2’At, BY#O
%I .

One way of solving the minimization problem is to first fix y, and find the optimal
x; then fix x at this optimal value, and then solve for y and so on. At each iteration
step, we can reformulate the problem as

min
subject to llAz111=1

11~  - A4127

where w is of unit length. Using the Lagrange multiplier method, we seek to
minimize

f(G 4 = lb - A4l; + wwl~ - 0
Writing down the first order condition for the stationary values, we obtain

ATAz = ATw/(l  +X),  zTATAr  = 1;

and the solution is given by

A = (AT~)T(ATA)-‘(AT~)  - 1 z = (ATA)-‘ATw/(l  + A)
= WTP,@) - 1, = A+,/(1  + A),

where Pi = PA is the orthogonal projection onto span(A). We note that z is in
the direction of Atw, and is the least squares solution of

mm llw - Azllz.

Actually, this approach will lead to the alternating least squares (ALS) method
that we will discuss in Section 5.
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3. A DECOMPOSITION THEOREM

It is readily checked from Definition 1.1 that the canonical correlations are in-
variant under the following group transformation

A- QAXA, B -+ QBXB,

where Q is orthogonal and XA  and Xg are nonsingular. The following theorem
gives the maximum invariants of a matrix pair (A, B) under the above group trans-
formation. It also provides information on other structures of the matrix pair as
well. It can be considered as a recast of Theorem 5.2 in [16,  pp. 40-42  ] (cf. [4,
Equation (15)]  [18,  Equation (2.2)]).

Theorem 3.1. Let A E Rmxn  and B E Rmxr, and assume that

p = rank(A) 2 rank(B) = q.

Then there exists orthogonal matrix Q and nonsingular matrices XA and XB such
that

A = Q[CA,O]XA, B = Q[CB,O]XB,

where CA E Rmxp  and CB E Rmxq  are of the following form

(3.6) CA = CB =

with

C = diag(oi+l  * * 'ai+j), 1 > cYi+l 2 ’ * ’ 2 CYi+j > 0,

(3.7) S = diag(&+r  , * * * tPi+j), 0 < A+1 I “’ L Pi+j < 1,

cYf+l + p,‘+l  = 1, * ’ * 9 af+j + pi;j = I,

and p = i + j + k. The canonical cofi-elations  of (A, B) are the diagonal elements
of c := diag( 1i ) C, 0). Moreover, we have

i = rank(A) + rank(B) - rank([A,  B]),

j = rank([A,  B]) + rank(BTA)  - rank(A) - rank(B)

k = rank(A) - rank(BTA).

Proof. Using the QR decomposition, we can transform A and B to

A=[QA,O]RA, B = [QB,O]RB

where QA E Rmxp  and QB E R”“‘J are orthonormal, and RA and Rg are nonsin-
gular. We then find U orthogonal such that
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We partition UTQ~  as UTQ~  = [AT, A$‘lT with Al E Rqxq.  Let the SVD of Al
be

Ii
AI = U1

( )
c VT;

0

C defined as in (3.7), and A2I-5 = [All, A12,  AIS] be partitioned compatibly. 2 Then
we have AlI = 0 and A13 is orthonormal and can be written as A13 = Uz[O, IkIT
with U2 an orthogonal matrix. Hence U,TA12 = [AT2,01T,  with its last k rows
equal zero. Since the columns of A 12 are orthogonal to each other, we can find
an orthogonal matrix Us such that 212 = Ua[O, SIT. The relations in (3.7) follow
from the fact that UTQ~  is orthonormal. Accumulating all the transformations
establishes the decomposition
we observe that

(3.6). For the rank expressions of the integer

rank(A) = i + j + k, rank(B) = q, rank(BTA)  = i + j, rank([A, BJ) = j + k + q.

Some elementary calculation leads to the result (3.8). q

Remark 3.1. The dimension of 72(A)MZ(B) is exactly the number of those canon-
ical correlations of (A, B) which are equal to one.

Corollary 3.1. Let Q = (&I,  Q2r  Q3, Q4r 95796) b e compatibly partitioned with
the block row partitioning of CA, i.e., &I E Rmxi, Q2 E Rmxj and so on. Then

span{Ql,  Q2C + Q5S 96) = R(A);
wn(Ql,  Qz, Qs} = R(B);
spaniQ3,  -Q2S + &SC, 94) = R(A)‘;
span{Q=t,  Q5, Qd = R(B)‘;
wn{Ql}  = R(A) n R(B);
span{Qs}  = ‘R(A)* n 72(B);
span(Q4)  = a( nR(B)L;
Span{&} = 72(A)  n7t(B)‘.

Proof. We prove span{Qz} = 7Z(A)l n ‘R(B); the other formulae can be similarly
established. It is easy to see that span{Qs}  C 7Z(A)I n 72(B);  However

G := (&I, 92, QdT(Q3,  -QzS + &SC, 94) = (1 -; ;).

It follows that the number of singular values of G that are equal to one is exactly the
column dimension of Q3; the result follows from the comment in Remark 3.1. 0

Corollary 3.2. We also have the following expressions for the dimensions of some
of the linear subspaces in Corollary 3.1:

dim(R(A) n R(B)) = rank(A) + rank(B) - rank([A, B]);
dim(R(A)l n R(B)) = rank(B) - rank(BTA);
dim(‘R(A)’ n 7Z(B)l) = m - rank( [A, B]);
dim(R(A)  fl7Z(B)I) = rank(A) - rank([A, B]).

2 Since
one.

Al is a section of an orthogonal matrix, all its singular values are less than or to
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Proof. All the expressions can be proved by using the above corollary and the rank
formulae in Theorem 3.1. 0

Corollary 3.3. The finite and zero eigenvalues of

are fuI(A, B), -. - ,fu,(A, B). And if BTA = I, then the nonzero  singular values
of the matriz  product ABT are l/ul(A,  B), . . . , l/u,(A, B).3

Proof. The result can be proved by using the decomposition in Theorem 3.1 and
direct computation. It follows that the canonical correlations can also be found by
the RSVD of the matrix triplet (BTA, BT, A) [20, p. 1931;  if BTA = I, the RSVD
of (BTA, BT, A) reduces to the PSVD of ( BT, A) [20,  corollary 4.2 1. q

4. PERTURBATION ANALYSES

In this section we establish some perturbation bounds for the canonical corre-
lations; some of the techniques used here are first devised by Paige in his analysis
of the generalized singular value decomposition [12]. We also mention that Bjijrck
and Golub developed a first order perturbation analysis in their paper[4].  Before
we discuss the general case, let us first consider a simple example:

Example 4.1. We consider the matrix pair:

A = ( ; ) ,  B.(p ;),

where E is a small quantity. Since A = (B(:, 2) - B(:, l))/e,  hence u(A, B) = 1.
But if we perturb B to

i$ ‘j’)=B-(! a),

since A is orthogonal to ihe columns of h, we have u(A, fi) = 0. Therefore a small
change in the matrix eair (A, B) causes u large change of its canonical correlations.
We note that B and B are of the game rank.

We observe that cond(B)  k: l/e. This example suggests that the canonical
correlations are sensitive to perturbations if the condition number of A or B is large.
Now we turn to the discussion of the general case. Using the QR decomposition
with column pivoting, A and B can be factorized as

A = QARA, B = QBRB

where QA and QB are orthonormal, and RA and RB are of full row rank. The
canonical correlations are simply the singular values of Q$QB (cf. [4]).  Let the
SVD of Q~QB be

QZQB = UCVT.

3The fkst  result is proved in 181, and the second is also implicit in (201.
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We denote the perturbed quantities by adding-“ -” to the corresponding unper-
turbed ones. We assume that A and A, B and B are of the same rank.

Let the orthogonal complement of Q,J and QB be denoted by QA and QB re-
spectively. We define

52(A) = min
U is orthogonal II&A - Q&Y2j

b(A) = min
U is orthogonal IIQA - QAIF.

We note that SF(A) is introduced in [12],  and actually it is a special case of the
following well known Procrustes problem [7]:

min
Q is orthogonal

IIA - B&lb,

where A and B are arbitrary matrices with same number of columns and rows.
The solution of the Procrustes problem can be obtained using the SVD of BTA: let
BTA = UCV*, then the optimal Q is given by Q = UVT [7]. For OF, some inter-
esting relations can be derived by invoking the CS-decomposition of (&A,  QA)~&A
[12]  [16]:.

(  if;; ) =  (  zg$Y!  ) 7

where VA,  VA and WA are orthogonal, and CA and SA are quasi-diagonal. Then
we have [12]:

OFF = 2ci (1- bi) 5 2c j (1 - 0;)

(4.9) = Wll; = 2ll&~Q~ll~
= 2Ci (1 - ur)(l  + aI) 5 26F(A)2.

where we used CA = diag(ar,  . . . , a*) with 61 5 ** * 5 bq.
For the 62(A), we proceed as follows:

(4.10)

II&A - Q$# = arnax(21+ &:&A(-U> + (QZQA(_U)>~)
2 2 - ~rnax(Q~Q~(--U) + tQ:Q,+WT)
2 2 - hnax(Q~Q/+u))
= 2 - 2~max(Q~Q~)
= 2(1 - u9)

hence &(A) 2 dm. However, by choosing the canonical basis in the CS-
decomposition we have

(4.11)

62wll( 8) - ( 3112

max((I - cA>2 + $)

= &i=q.
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Therefore we ontain

It follows that

(4.12)
62(A)2 5 2( 1 - al) 5 2( 1 - u;)

= Wll~ = 2ll~:Q&
We should remark here that, there is generally no closed form solution to the
following Procrustes problem:

min
Q is orthogonal IIA - BQll2,

when A and B are orthonormal. With the above preparation, we are now ready to
prove the following perturbation theorems.

Theorem 4.1. Let A and A, and B and i have the same rank, and let the condi-
tion numbers of A and B be

K(A) =  llA~~2~~At1~2,  n(B) =  11B11211Bt112

then

Proof. For any orthogonal matrices U and V, we have

11x - 2112  5 IIQ?IQB  - u=Q$Q$$
(4.13) = IKQA - Q,&YQB  + UT&:(&~  - Q&llp

I IIQA - QdJll2 + IIQB - Qsvlln,
Since U and V are arbitrary, we obtain

(4.14)
IlC - 5112  L 62(A)  + 62(B)

5 45(lI&;Q~ll2  + Il0;0~112)~

Let A = A + AA, then

(4.15) c~~AA = -Q~QARA,  Q~AA = c~~Q~R~.

Since RA and Ri are of full row rank:

@QA  = -i)$AA&  tjztijA = (j:AARji.

Therefore
l@$Q~llz  = I@?$11112  I IPAll minWtl12, llAtll2h

We can also establish similar results for B; therefore

(4.16)

IP - 2112
L JmIA - 41 2 min{IlAtl12, llAtl12)  + IIB - @2 min{ll@ 112, I@+ 112))
5 JZbwlIA - 412/11412  + @W - ~ll2/llBll2~~
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which establishes the result. c]

Using the same
Frobenius norm:

technique, we can also prove the following result for the case of

Theorem 4.2. Let A and A, and B and fi have the same rank, then

IlC - 211~ I @IA - AlI F min{llA’11~, llAt 112) + llB - & min{ll@llz,  ll@ 112))
Remark 4.1. In [4],  Bjorck and Golub derived the following first order perturba-
tion bound:

IIC - 211~  5 cAsinemax(A, B) + eBsinBmax(A,  B) + O(S2),

where

IlA - A112  5 41A112, llB - @2 5 ~#3ll2, 6 = CAK(A) + CBK(B).

Our result (Theorem 4.1) compares favorably to the above.

The above theorems well the perturbation result in Example 4.1, but they do
not tell the whole story as is demonstrated by the following example. First, let us
consider the following matrix pair

Example 4.2. Given the matriz pair,

A = (  jI), B = (  p I”;“).

The computed Q in the QR decomposition of B is

Q =
-0.70710678118655 0.00000125385069

0 -0.999999999998~3
-0.70710678118655 -0.00000125385069

and the computed canonical correlation is
1.773212653OS7Z~c-06.

All the computation in this section was carried out on a Sun 3/50  worksta-
tion using MATLAB  version 3.5e with machine precision epsks 2.22e-16. Since
cond(B)  R lOlo, this result coincides with the prediction given by the bounds in
Theorem 4.1. Now let us consider another matrix pair,

Example 4.3. Given the mat& pair

AI=( jI), BI=( .i ;;i:).

The matrix Q in the QR decomposition of B1 is

Q =
-0.680~13817~3977 0.19~5008972988
-0.272165526S7591 -0.962250&86@8
-0.680@3817~3ST 0.192s$5008972987.

We also compute u(A, B) as
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But since cond(B1)  a lOlo, and the machine precision is approximately 10-16,
the bounds in the above theorems will predict a perturbation of size

cond(B)  x eps * 10m6,

which is much larger than the computed result. However, theoretically if we scale
the last column of B, we get a well conditioned matrix, and column scaling does not
change the canonical correlations. The perturbation bounds in the above theorems
are not invariant under the column scaling of A and B, therefore we need a refined
version of the perturbation bounds.

Before we proceed, we introduce some more notation. If A = (aij),  then we
write IAl := (laijl);  We denote IAl 5 IBI, if laijl 5 Ibijl;  it is easy to verify that if
A = BC, then IAl 5 IBllCl.

We define the column-scaling independent condition number of A as

44 = ~pw-‘1~~2~
if the QR decomposition of A is A = QR. Obviously, KS(A) is independent of the
column scaling of A; i.e.,

Q(AD) = m(A)

for all positive definite diagonal matrix D.

Theorem 4.3. Let A and B be of full column rank, j = A + AA and 8 = A+ AB
with IAAI  5 eIAI and IABI 5 eIBI, and A and B are also of full column rank.
Then

Proof. From (4.15),  we have

S~QA = -@$AR,?

It follows that

1Q;Q.d  I I&;llW
Hence

WI I ~Q~IIQAII~A I * IR3.

/ A  171 11x - 211 I fi(ll8~Q~ll~ + Il&;Q&-)
\-X.Li)

L JZ~(IIIQ~IIQ~I~~,~S(A)  + III~~IIQ~III~~~P%
and the result is established. 0

5. NUMERICAL ALGORITHMS

In this section, we discuss numerical computation of the canonical correlations
and the corresponding canonical vectnrs. For simplicity, throughout the section we
assume that both A and B are of ft lumn rank, i.e., A E Rmxp  and B E RmxQ,
and

p = rank(A) 2 rank(B) = q.
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5.1. Dense Matrices. The following algorithm based on SVD was proposed by
Bjiirck and Golub [4],  [7, Chapter 121.

Algorithm 5.1. Given A and B, the following procedure computes the orthonor-
ma1  matrices U = [u1,... ,uq] and V = [VI,... ,vq] and al(A, B), ..a ,oq(A,  B)
where {q(A, B)} are the canonical correlations of (A, B) and the Uk and vk are
the associated canonical vectors.

i) Compute the QR decomposition of A and B:

A=QARA, where Q~QA = Ip,

B=QBRB, where Q’,QB  = Iq.
ii) Form C = Q$QA, and compute the SVD of C: C = Pdiag(ui(A,  B))Q.

QA%1:q)=[Ul,*-  ,uq], Q~&=[vl,*.* ,vq].

As discussed in Section 4, there is no need to scale the columns of A and B
before we compute their QR decompositions. Some numerical experiments were
reported in [4], where QR decomposition with column pivoting was used to handle
the rank deficient case.

5.2. Updating Problems. Let B be augmented by a column vector b. We want
to investigate the relation between the canonical correlations of (A, B) and those
of (A, [B, bl). We will develop an algorithm for updating the canonical correlations.
We summarize the result in the following theorem.

Theorem 5.1. Let g be a unit vector that spans 72([B,  b]) f~ ‘R(B)’ .4 Let Q8 be
the orthonormal basis of the subspace  Z(A)’ I-I R(B)‘. Define

Then ’
(a) ar(A,  [B, b]) = 1, I= 1, - - - , i;
(b) W, B) I ~(4 [B, b]) 5 a@, B)& + (1 - q2)tan2h,

I= i+ l,--- , i+ j ;
where 81 is the I-th canonical (principal) angle (see Definition 1.1); and

(c) 0 5 ui+j+l(A, [B, bl) L l- q2, w(A, [By b]) = 0,
l=i+j+2,---,i+j+k.

Proof. We consider the case when g # 0; the other case when g = 0 is trivial. Let
the QR decomposition of A and B be

A = QARA,  B = QBRB.

Using Theorem 3.1, we write

QA=QCAU~, QB=QCBV~
where Q, U and V are orthogonal, and CA and CB are given by (3.6). The QR
decomposition of [B, b] can be written as

[WI = [QBJIR[B,~]
‘If ‘R((B,  b])L7Z(B)‘,  i.e., b E 72(B)  then we take g = 0.
‘The integer indices refer to those in Theorem 3.1.
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with R[B,~I a nonsingular upper triangular matrix. Let Q = (&I, Qz) with Qr E
Rmxq, then there exists a unit vector 5 E R"-Q such that g = Q2j. Hence i = Q$g.
Let jT = (gT,gz,g,‘)’ with g2 E Rj and gz E Rk. Using Corollary 3.1, we have
QTg = gr. On the other hand

QA = diag{ V, 1)

where P is an orthogonal matrix. Hence the singular values of H are the square
roots of the eigenvalues of

, with X =

where G, = (g~,g,‘>T<g~Y&).  We have

and

(5.19)

Ad( ; 7 ) (I-G,)  (  ; 7 ))=d((I-G.): (  ; 7 ))

Since the diagonal elements of S are given in non-decreasing order and those of C
are in non-increasing order, and

u?-ni,((I - G)+) = 1 - (Ilg2112  + llg2112)  = $,

we have

Hence from a,(A, B) = 01 = cos(&),  it follows that

&% [B, b]) 5 J1-p:(1- (I- +)j
(5.20) = 4(I; + (1 - f$)(l - 112)

= ul(A,B)fi(  1 - q2)tan26,.

Now we have that X is a rank one update of diag(C2,  0). Hence X has at most
one additional nonzero eigenvalue. 0
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Here is how the numerical computation of the updating proceed. Suppose House-
holder transformations or Jacobi rotations are utilized to compute the orthonormal
basis of A and B so that we have [7, Section 5.2.1

B = Q (  2 ) = (QB,Q~) (  2 ).

Let QTb = (xT, &T)T.  Apply a Householder transformation or a sequence of Jacobi
rotations Qb,  we get

The QR decomposition of [B, b] can be written as

LB,bl = [QB, Q$-h]

Then [QB,  Q~(i/llill2)]  is the orthonormal basis of [B, b].

Remark 5.1. We note that the modified Gram-Schmidt algorithm could also be
used to compute the orthonormal basis of A and B. Although it is twice as fast
as the Householder transformation based algorithms, it has the drawback that the
orthonormality of the computed basis depends on the condition numbers IEZ(A) and
K~(B).~

For updating the SVD in (5.18),  both the secular equation method (or the bisec-
tion method) [7, Section 8.6.3.1, or the two-way chasing method [21]  can be used.
For a more detailed account of the bisection method the reader is referred to [5].

5.3. Large Sparse or Structured Matrices. If the matrix pair (A, B) is large
sparse or structured, then explicit computation of the orthonormal basis of A and
B will usually gives rise to a dense matrix or destroys the underlying structure.
The purpose of this subsection is to propose a class of algorithms that will avoid
explicit formation of the orthonormal basis of span(A) and span{ B}. Let us first
consider a simple case: let A consist of one column, say a. Also, let the orthogonal
projection onto span(B) be PB. Then the canonical correlation of the matrix pair
(a, B) is given by

u(a,B) = I(pBa)Tal/llpBali211al12,

and the canonical vectors are a/lla112 and PBa/llPBall2.  Since &a can be obtained
by solving the following least squares problem:

=:gq lb - WI2 := Ila - Bxoll2,  PBa = BZO,

the sparsity or structure of the matrix B can be fully exploited. For example, if
the LSQR algorithm (cf. [13]) is used to solve the above least squares problem, the

‘It is our belief that ~2 (A) and 62(B)  in the error analysis by Bjkk  [3] can be replaced by
the condition numbers defined  in Sectionsec: cc4.
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matrix B is only used to form the matrix products Bx and BTy for given vectors
x and y.’

In the general case, we propose the following alternating least squares (ALS)
method to compute the largest canonical correlation of the matrix pair (A, B).

Algorithm 5.2. Choose 60 E span(B) wiih ]]bc]]s  = 1.
For k = 0, 1,2, * * - until convergence do

(a) Solve linear least squares problem:

mkq llh - Ax112 = llh - hll2, and form ok = Axk/llAxkll2;

(b) Solve linear least squares problem:

min lbk  - By112  = Ilak - &&,
yERq

and fom bk+l = BYk/l(Bykllz;

Iterate.

Assume convergence in K steps. Now we compute

For the convergence criterion, we choose either

Ilb~+lak+ll  - I&kI17 of mdbk+l  - akll2,  llbk+l  - bkll2)

be below a certain given tolerance.

Remark 5.2. The alternating least squares method is an old and natural idea,
which goes back to J. Von Neumann. It has been used extensively in the psycho-
metrics literature, and a recent application can be found in [17].

Convergence analysis of the ALS method. We relate the ALS algorithm
to a - * ant of the power method, and thus derive its convergence rate. First let us
cons :he power method. Since finding the canonical correlations is equivalent
to comyuting the SVD of Q~QA. Let

(5.21) (Q~QA)~

0
9

then the eigenvalues  of T are {~tai(QgQ~)}.  Applying the power method to T, we
have

( 5 . 2 2 ) t‘k+l = Tzk, with z. an initital vector.

Let 2) = (zT,$)~;  equation (5.22) can be written as

zk+l = &:&zimk, yk+l = Q;QAxk.

We can use the most recent zk+i  to compute yk+l so that

zk+l =  Q:&BYL yk+l  =  Q;QAxk+l.

‘For a detailed presentation of fast alga Gnu for computing
Hank4 or Toepli t z matrices, the reader is referred  to [19].

a matrix-vector product
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It follows that

The above two equations are equivalent, since we assume that A and B are of full
column rank. Define

2k = Q.Gk, Yk = QBYk,

we have the following modified power method.

Algorithm 5.3. Choose yo E span(B) with llyol12 = 1.
For k = 0, 1,2, - - - until convergence do

xk+l  = QAQ:6k, Sk+1  = tk+1//1xk+1112;

Iterate.

Yk+l  =  @d&k+1  @k+l  =  !/k+l/IIYk+1112;

To see-that Algorithm 5.3 is equivalent to the ALS algorithm, we observe that
bc E R(B), and can be written as bc = QBS for some vector s. The solution of the
least squares problem

mgq  llbo - A42  = llbo - AxoIl

is given by xc = Atbo. Hence 00 = YoQAQ~(QBs),
factor. By induction we can prove

where yc is the normalization

Qk =  Yk&A[(&~&A)T(&TB&A)]kQ~QBS;  bk =  SkQB[(QTBQA)(QTBQA)*]I;s.

where 71:  and 6, are the normalization factors. Therefore the convergence rate of
the ALS algorithm is dependent on

CC =  (~(Q;QA)/~?;QA))~  =  (o(A, B)/al(A, B))2.

Example 5.1. We consider the mat& pair

where U is an orthogonal matriz and PI and P2 are nonsingular matrices. The
canonical correlations are a2(A,  B) = 1, a2(A, B) = 0.8. Therefore the convergence
rate of the AM algorithm is 0.64. We compute log,(O.64)

Zog,e(O.64)=- .44628710262842.

We have truncated the data at both ends. The best computed linear polynomial fit
to the computed data gives the slope

-. 44614014758065,

which matches the convergence rate quite well.
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In the literature, various ways to accelerate the power method are given [7,
Chapter lo]. We can adapt these acceleration schemes to the ALS algorithm, but
we will not go into the details here.

The drawback of the ALS algorithm together with its various acceleration schemes
is that only the largest canonical correlation is computed. To compute several
canonical correlations at the same time, we can use certain versions of subspace
iteration and we use various acceleration schemes. We will not discuss these ex-
tensions here, but instead we will show how to adapt the Lanczos method to our
problem by using a similar idea as the ALS method. We apply the Lanczos algo
rithm [7,  Chapter 91  and start with the matrix T defined in (5.21).

Algorithm 5.4. (Lanczos Algorithm)
v1 is given with llvlll2 = 1
PO = Vl,PO =  1 ,  j=o,u()=o
while @j # 0

uj+l =Pj/Pj;j= j+l
Fj = QgQAVj  - flj-lUj,l

“j = llFjll2; % = Fj/aj

pj = Q:QBUj - CvjUj

Pi = llPjll2
end

We observe that the operator Q’,QA is not available, since we do not explicitly
form the orthonormal bases for span(A) and span{ B}. The device we use is to
make a bases transformation. Let us transform the vectors generated in Algorithm
5.4 to the column spaces of A and B, i.e., span(A) and span(B), and denote

cj = QBUj, Cj = QAtlj, Fj = QBrj, fij = QApj.

Rewrite Algorithm 5.4 in the new basis, we obtain the following algorithm

Algorithm 5.5. (Modified Lanctos Algorithm)
Choose v = As; set G1 = u/1lvll2
PO = T&p0 = 1,j = o,fic = 0
&de pj # 0

i?j+l =pj/@j; j =  j +  1
i;i = QBQgCj  -Pj-l;ij-l
"j = lli;j112; i2j = i;j/&j
fij = QAQzGj  -ajCj
pj = ll6jll2

end

Note that pj and cr. in Algorithm 5.5 is the same as those in Algorithm 5.4. The
+-computation of QBQBUj and QAQzGj  are again carried out by solving the least

squares problems:

(5.23) min ]]Gj - By112  = IIGj - Byjll2.
yERq

Then QBQT,Gj = Byj. Similarly,

(5.24) min ]]iij - A~112 = lluj - Axjjl2,
XER~
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and QAQxiij  = Axj.

Remark 5.3. The above algorithm can be easily adapted to computing the canon-
ical correlations between two linear subspaces defined either by the range space or
null space of matrices. If for example, one of the subspace  is defined by the null
space of A, then instead of using QA Qz in the above, we use I - QAQ~.

We have also tested the Modified Lanczos  Algorithm. The matrix pair is given
as follows

where U is orthogonal and PI and P2 are nonsingular, with

C = diag(0, l/n, 2/n,. . . , (n - 1)/n), and S = dm.

Therefore the canonical correlations of (A, B) are 0,1/n,  2/n,. . . , (n- 1)/n.  For the
particular example in Figure 1, we chose n = 100. We do not solve the least squares
problems in (5.23) and (5.24) exactly, instead we simulate the LSQR algorithm [13]
by first using a direct method to solve the least squares problem and add noise to
the solution. More numerical experiments using the LSQR will be carried out in
the future. In Figure 1, the relative errors of the first three computed canonical
correlations are plotted against the iteration numbers.

There remains a number of problems associated with this technique such as
determining a preconditioner  for solving the least squares problem. Nevertheless, we
feel that the approach is of great potential use in computing canonical correlations
of large or sparse matrix pairs and it certainly deserves further investigation.
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FIGURE 1. Convergence behavior of the modified Lanczos method
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