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A.M. Stuart’ and A.R. Humphries2v3

Abstract. In the past numerical stability theory for initial value problems in ordinary
differential equations has been dominated by the study of problems with essentially trivial
dynamics. Whilst this has resulted in a coherent and self-contained body of knowledge, it
has not thoroughly addressed the problems of real interest in applications. Recently there
have been a number of studies of numerical stability for wider classes of problems admitting
more complicated dynamics. This on-going work is unified and possible directions for
future work are outlined. In particular, striking similarities between this new developing
stability theory and the classical non-linear stability theory are emphasised.

The classical theories of A, B, and algebraic stability for Runge-Kutta methods are
briefly reviewed, and it is emphasised that the classes of equations to which these theories
apply - linear decay and contractive  problems - only admit trivial dynamics. Four other
categories of equations - gradient, dissipative, conservative and Hamiltonian systems - are
considered. Relationships and differences between the possible dynamics in each category,
which range from multiple competing equilibria to fully chaotic solutions, are highlighted
and it is stressed that the wide range of possible behaviour allows a large variety of appli-
cations. Runge-Kutta schemes which preserve the dynamical structure of the underlying
problem are sought, and indications of a strong relationship between the developing sta-
bility theory for these new categories and the classical existing stability theory for the
older problems are given. Algebraic stability, in particular, is seen to play a central role.
The effects of error control are considered, and multi-step methods are discussed briefly.
Finally, various open problems are described.
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1. Introduction

Many problems of interest in the physical sciences and engineering require the under-
standing of dynamical features which evolve over long-time periods. Examples include the
process of coarsening in solid phase separation, where metastability causes extremely long
time-scales, turbulence in fluid mechanics, where statistical measures (such as Liapunov
exponents) require averages over long time intervals, and the simulation of planetary in-
teractions in the solar system. Thus the numerical approximation of evolution equations
over long time intervals is of some importance.

For simplicity we concentrate here on the system of ordinary differential equations

g = f(G), u(o) = uo, (1 1).

where u E CJ’ and f( 0, t) : CP ---) 0’ for each t E R+. We will assume that f is, at least,
continuously differentiable with respect to its arguments. The large time dynamics of
(1.1) can exhibit a variety of behaviour ranging from very simple, such as reaching steady
state, through moderately complex periodic or quasi-periodic behaviour, to the extremely
complex chaotic behaviour observed in, for example, the Lorenz equations. Throughout
the following we will denote the inner product on CP by (o,o) with corresponding norm
11 l 11 denoted by ~~u~~2  = (‘11,  u). The precise inner-product used will be that which appears
in the structural assumptions made on f.

A fundamental question in the numerical analysis of initial value problems is to deter-
mine how closely, and in what sense, the numerical approximation relates to the underlying
continuous problem. If we let Un denote an approximation to the true solution u(t,),  where
t, = nAt and the time-step At is typically chosen to be small relative to an appropriate
time-scale in the problem, then standard analysis on sufficiently smooth problems of the
form (1.1) shows that the error satisfies

IIu(t,,)  - U,,  11 5 cleC2TAtr, (12).

for 0 < nAt 5 T. Here T > 0 is the order of the method and, typically, cl and c2 are positive
constants. Notice that, for fixed T, letting At -+ 0 results in a proof of convergence of
the numerical scheme on finite time intervals. However, fixing At and letting T -+ oo
.gives no error bound; thus standard error analysis tells us nothing about the relationship
between the long-time dynamics of the discrete and continuous problems. Understanding
the behaviour of algorithms for fixed At as T + 00 is what we shall term numerical stability
for the purposes of this paper. In contrast to the question of convergence on fixed time
intervals, it is necessary to impose structural assumptions on j(o) to make substantial
progress with the question of numerical stability. These structural assumptions confer
certain dynamical properties on the underlying equations and numerical stability is the
question of whether, and in what sense, these dynamical properties are inherited by the
numerical approximation.

The purposes of the paper are: 1) to unify the classical and the currently evolving
numerical stability theories as far as possible; 2) emphasise the extremely restrictive nature
of the problems covered by classical stability theories and to stress other, more realistic,
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categories motivated by applications in science, engineering and the theory of differential
equations; 3) to show that there are strong relationships between the classical and modern
theories and, in particular, to emphasise the unifying role of algebraic stability; 4) to

. highlight the importance of interactions between the theory if dynamical systems and the
numerical analysis of intitial value problems; 5) to discuss open problems.

For the purposes of this paper it is possible to think of the numerical methods which
approximate (1 .l) as mappings of the form

un+l = $( Un; At). (13).

We shall only study Runge-Kutta methods in detail here and, for the purposes of this re-
view, it is sufficient to be aware only of the following facts concerning these approximation
met hods:

(i) whilst the numerical solution sequence { UO,  Ul, U2, . . .} remains in a compact set B
there is At(B) such that the Runge-Kutta method may be though of as a mapping of the
form (1.3) for 0 < At < At(B).

(ii) Runge-Kutta methods satisfy a local approximation property which may be expressed
as

II$(U(tn); At) - u(tn+l)ll I CAtr+’
where u(t,)  satsifies (1.1); this approximation property implies an estimate of the form
(12). .

(iii) Runge-Kutta methods depend on certain parameters (see below) which form a matrix
A and vector b. In particular, the matrices M and B formed from A and b will be important
in framing our stability results. The parameters in A and b are generally adjusted to
achieve many different, sometimes conflicting, goals. An example is the integer T in (1.2)
which depends upon the choice of A, b. In this paper we shall concentrate on the choices
of A and b which ensure important stability properties, in the sense alluded to earlier. We
shall not discuss the important question of how these choices interact with other chocies
(such as the determination of T.)

The notation used for Runge-Kutta methods is now described:

Runge-Kutta Methods. Given a sequence of points t, = nAt and approximations
'un z u(t,)  to the solution of (1.1) we define a general L-stage Runge-Kutta Method
@KM) bY

rli = Un +ateQif(qj,tn  +cjAt), i = ~,...,k,
j=l

Un+l = un •I- At6 bif(Q,tn + cjAt>, Uo = uO.
i=l

The following notation will be used throughout: let A, I denote the k x k matrices with
entries
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let
k

C = 1Cl,-- *,Ck]*, where ci = c aij 7
j=l

let
b= [b l,-,bk]T, 1 = [l, . . .) 11*,

let B denote the k x k matrix

B := diag(bl,  b2,  . . . , bk) (14.

and let M denote the k x k matrix

M := BA + ATB - bbT. (15).

We use the notation
77ilij  = WI -. = biaij  + bjaji  - bibj.'J

Note that, assuming the solvability of the equations for the vi, the RKM defines a map
from CP into 0’. For any given Un , the solvability of the Runge-Kutta equations is ensured
for sufficiently small At [5]. However, the question of solvability for a complete sequence
UJ 1n r&-, and given arbitrary At and u. is non-trivial and we will return to it throughout
the paper when particular structural assumptions on j(u) allow us to make more detailed
comments. However, all general statements about the large n behaviour of the RKMs  are
made on the implicit assumption that a solution sequence exists. 0

Here we discuss stability theory for the numerical solution of (1.1) by Runge-Kutta
methods: the behaviour of numerical algorithms is studied for fixed time-steps over ar-
bitrarily long time intervals under structural assumptions on the underlying differential
equations which guarantee certain asymptotic properties for large time. Ensuring stability
usually boils down to certain constraints on the co-efficients in the matrix A and vector b

. which define the Runge-Kutta method.
The classical theories of A- and AN- stability (for linear decay problems) and B- and

algebraic stability (for contractive nonlinear problems) are reviewed with emphasis placed
on the implications of the structural assumptions for the dynamics of the underlying
equations. It is stressed that the dynamic possibilities are very limited for linear decay and
contractive problems; consequently the range of applications is also limited. Various other
classes of problem are discussed, motivated by real applications. All these classes admit
very complicated dynamics and hence the range of application is immense. Specifically
gradient, dissipative, conservative and Hamiltonian equations are considered in turn. (Note
that contractive problems are often referred to as dissipative in the numerical analysis
literature; this conflicts with the more widely used and widely applicable definition of
dissipativity in differential equations [29], which is essentially one of dissipation at large
amplitude - we defer to the usage in the theory of differential equations; see section 5.)
For most of these problems numerical stability theory is far from complete and is currently
developing. Nonet heless,  we make it clear that there are striking relationships with the
classical theory.
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Sections 2-7 go through a sequence of model problems relevant to numerical stability,
starting with linear decay and ending with Hamiltonian systems. In section 8 we discuss
briefly analogous problems for linear multi-step and one-leg methods. Section 9 contains a
brief description of the effect of error control on numerical stability and section 10 contains
the conclusions and open problems.

In summary we find the following important role played by the matrices M and B in
numerical stability theory; the precise meaning of stability in each case can be found by
reference to the appropriate section. The symbols 2 and > 0 in the context of matrices
mean positive semi-definite and positive definite.

l Contractive Problems (section 3);

M 2 0, B > 0 + stability.

l Dissipative Gradient Problems (sections 4 and 5);

M 2 0, B > 0 j stability.

l Dissipative Problems (section 5);

M 2 0, B > 0 =S stability.

l Conservative Problems (section 6);

M E 0 =+ stability.

l Liapunov Exponent Calculations (section 6);

M E 0 + stability.

l Hamiltonian Problems (section 7);

M s 0 =+ stability.

Throughout we illustrate the various categories of equations by considering the follow-
ing partial differential equation:

Example The Ginzburg-Landau equation for a complex function u(x, t) satisfys

ut = (6 + ib)u,, - (i + ici)lu12u  + t%L, x E (0, l), (16).

u(0, t) = u(l,t), u,(o,t) = u,(l, t).

Here &, &, t, Ci, Z E R. In this context we introduce the complex inner product

’ ( u , v )  =  /‘Re(uG)dx
0

(17).
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and corresponding L2 norm

Ilull = J1 lu12dx.
0

Provided that ic and t are positive this equation has a unique bounded solution for all
time t 2 0 given arbitrary initial data in L2 [49].

Under spatial discretisation this equation yields a system of ordinary differential equa-
tions in the form (1.1). Thus alI statements about the complex partial differential equation
have natural analogues for related systems of ordinary differential equations provided that
the spatial discretisation confers those properties from the infinite dimensional problem
to the finite dimensional one. For simplicity of exposition we shall discuss (1.6), (1.7)
directly as an illustrative example and ignore the (important) issue of appropriate spatial
discretisation. 0

2. Linear Decay

The analysis of the large-time behaviour of numerical methods for initial value prob-
lems begins with the study of the linear, constant coefficient, test problem (1.1) together
with the assumption of linear decay

f(u) = Au, Re(X)  < 0, p = 1,- (2 1).

where u E C and p is the dimension of the problem. See [14, 191  and the references cited
therein. In this section we use the standard norm 11~11  = UE on C. The following solution
behaviour may be easily established:

Result 2.1 Any two solutions u(t), w(t) of (l.l), (2.1) satisfy

IMt> - 4t)ll L II49 - 4o)ll~
for all  t > 0. Furthermore, if inequality in (2.1) is strict then-

kc& u(t) = 0

for any u f C. 0

Numerical stability analysis focuses on determining conditions under which the nu-
merical method replicates these properties. This is the motivation behind the following
definition [7]:

Definition 2.2 A RKM is said to be A-stable provided that the function

S(z) = 1+ .zbT(I - aA)-’

satisfies IS(z)1 < 1 for all z : Re(z)  < 0. 0

It is worth noting that there are also algebraic characterisations  of A-stability; see [41].
Straightforward analysis shows that, for a RKM applied to (l.l), (2.1), Un+l = S(Atx)Un
and hence [7]:
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Result 2.3 Any two solution sequences (Un)~zo  and (Vn)r!o of an A-stable RKM applied
to the problem (1.1),  (2.1) satisfy

IVn + l - Ka+l  II L llun - Vnll ( 2  2).

for all n 2 0. Furthermore, if the inequality in (2.1) is strict then

lim IlUnII  = 0
n+m (2 3).

for all At > 0 and any U. f C. 0

Remark For A-stable RKMs applied to (l.l), (2.1) the unique solvability of the defining
equations is guaranteed for all At > 0 if I - zA be invertible for any z = xAt in the left-
half plane. Typically I - zA will be invertible in the left-half plane since, where it is not,
poles occur in the stability function and A-stability cannot hold. However, cancellation of
factors in the stability function can lead to methods which are A-stable but not invertible
for certain isolated values of z = AAt in the left-half plane; the scheme

~1 = un + Atf(ql),

r/2 = un + 2Atf(ql)  - Atf(q2),

Un + l = Un + 2Atf (71) - Atf (712),

has a linear stability function which is equivalent to backward Euler (which is A-stable)
but I - aA is non-invertible for z = xAt = -1.

It is possible to generalise this theory into a conditional theory where the properties
of Result 2.1 are inherited for sufficiently small At. This leads to the following result.

Result 2.4 The region of absolute stability S for a RKM is the open set in the complex
plane for which z E S t-)  I S( z)l  < 1. If z = xAt E s then any two solution sequences
UJ 1 O”n n=O and (Vn)~=o of a RKM applied to the problem (1.1),  (2.1) satisfy (2.2) and if
z E S then (2.3) holds. 0

Remark Remarks analogous to those following Result 2.3 also apply in this case.

There is an important point to raise about Results 2.3 and 2.4 in the context we
are considering: since the problem is linear, conditions for ensuring this correct large
time behaviour are independent of the amplitude of initial conditions. As we shall show,
in general, dependence on initial data is a barrier to complete conditional theories for
nonlinear problems.

Non-autonomous analogues of (2.1), with X depending on t , are considered in [4]. Hence
we briefly consider the problem

ut = A(t)u, Re(X(t))  5 0, p = 1. (2 4.

For such problems it is clear that:

Result 2.5 Any two solutions u(t), v(t) of (l.l), (2.4) satisfy the same conclusions as
Result 2.1. 0
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In [4] the notion of an A-stable scheme was generalised to cope with the non-autonomous
problem and consequently AN-stability was defined:

Definition 2.6 Given any RKM, let

where Re(ri)  < 0 and Ti = Tj if ci = cj. The RKM is said to be AN-stable if, for all such
I?, the matrix I - Al’ is non-singular and

R(r) := 1+ bV(I - Ar)-‘1

satisfies IR(l?)l  < 1. 0

The motivation for this definition is to ensure that the numerical solution decays on a
step-by-step basis, to mimic the behaviour of the differential equation [4]:

Result 2.7 Any two solution sequences {Un}FCo and (Vn)~zo  of an AN-stable RKM ap-
plied to the problem  (l.l), (2.4) satisfy the conclusions of Result 2.3 0

As we shall see in the next section, this nonautonomous linear theory is best discussed
in the context of a general class of nonlinear problems.

3. Contractive  Nonlinear Problems

Clearly the linear problems of section 2 are very restrictive and naturally attempts
were made to study nonlinear problems. The first class of nonlinear problems studied
in any systematic way were contractive  problems (1.1). For simplicity of exposition we
will consider the case where (1.1) is autonomous and real for which f(u, t) E f(u) E
C1(lRp,  W’) and the condition for contractivity becomes

(f(u) - f (4, u - ?I)<0  vu,vEIJxp,u#v. (3 1)..

This class of problem was introduced by Dahlquist [15,  161 and the motivation was to
genera&e the error propagation results from linear decay theory. A simple example of an
equation satisfying (3.1) is the following:

’ Example For p = 1 and f(u) = -u3 we have

(f(u) - f(v), u - v) = -(u2 + uv + d)(u - vy = -$(u + v)2 + u2 + v2](u  - v)2 5 0. 0

Example Consider equation (1.6), (1.7) with b = d^ = Z = 0 and ti = c = 1 and u(x, t) E IR.
This gives the scalar reaction-diffusion equation

ut = u,, - u
3

together with periodic boundary conditions on the unit interval. Then, taking the right-
hand side of this equation as f(u) we can show that (3.1) holds, using integration by
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parts:

1

( UXX - u3 - v,, + v3,u - v> = J ((u - v)(u - v),, - (u3 - v3)(u  - v)}dx
0

J 1
=- u UX

0
- v,)~ + ;[(u + v)~ + u2 + v2](u - v)2}dx  5 0.

Thus the problem is contractive  and satisfies an infinite dimensional analog of (3.1). 0

Throughout we will use the following definition for the distance between a point x E Rp
and a set B C LRp :

dist(xJ3)  = in:  llx  - yll.

For problems satisfying (3.1) it may be shown that:

Result 3.1 Any two solutions u(t), v(t) of (l.l), (3.1) satisfy

IMt> - WI L lb(O) - 49ll,
for all t > 0. Furthermore, the set of steady states of the system define a closed convex set
& and, iTthe inequality (3.1) is strict for all u, v : v f C, u 6 & then

ji$ dist(u(t),  E) + 0.+

Finally, if the inequality in (3.1) is strict and 321 : f (‘11)  = 0 then 9 is a unique equilibrium
point and

)&II u(t) = ii.

Proof A calculation shows that

Id- -
2 dt II u - VII2 = (u - v, f (4 - fW> 5 0. (3 2).

Thus the first result follows.
To prove that the steady states of the system define a convex set it is sufficient to

show that any convex combination of zeros of f is also a zero of f. Let z = Xx + (1 - A)y
where f(x) = f(y) = 0, X E (0,l) and define z’ = z + 6f(z),S > 0. Then z’ - x =
Sf(z) + (A - 1)(x - y). Now (3.1) implies that

(f@‘>, 2’ - 4 L 0

and hence
(f (4, Sf (4) I (1 - x>o (4, x - Y)*

Similarly
(f (t’),  2’ - Y) ,< 0

implies that
(f (4, sf (4) 5 -vf (0 2 - Y).
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Notice that, since ( l- X) and -X have opposite signs, we have (f(.z’),Sf(z))  5 0 which is
equivalent to (f (z + 5f( z)), f(z)) 5 0 since S > 0; letting S + 0 and using the continuity
of f, we obtain llf(z)l12 5 0, and thus f (2) = 0. C onvexity follows. Let ui + u* be such
that  f(ui) = 0 for each i. By the continuity of f(o) it also follows that f(u*) = 0 and
hence that E is closed.

Now assume that (3.1) is strict for v E C and u $ C. Define the set U by

U = (u E IRp : r 5 dist(u,  C) 5 R).

Then, if u(0) E U it follows that there exists G E I for which

lb(O) - 41 < R.
Thus it follows that, for all t 2 0,

di+(t),  f) 5 lb(t) - till 5 Ilu(O)  - iill 5 R. (3 3).

Now assume, for the purposes of contradiction, that dist(u(t), E) > r for all t 2 0. Let

b = Ufl{u E IELp : IIu - iill 5 R}

and then define
t: :=c(r,R)=  inf(f(u),ti-u).

ufg

Note that fT is compact since it is formed as the intersection of a compact set with a
closed set. Clearly c > 0 since 0 is compact, and since strict inequality holds in (3.1) as
21 E E, u 4 C. Thus, by assumption and by (3.3) we have u(t) E 0 for ah t 2 0 and hence

Id- -
2 dt II u - q2 5 --f vt > 0.

Hence, as t + 00
II u - iill + -00,

a contradiction. Thus there exists a time t*(T, R) for which dist(u(t), E) 5 T. Replacing R
by T we deduce from (3.3) that dist(u(t),E) < T for au t 2 t’ (T, R). Since T is arbitrary
the result follows.

For the case of strict inequality for all u, v : u # v, uniqueness of U follows automatically
since otherwise we have a contradiction. Thus C = {E} and the preceding argument
establishes that

jilil u(t) = ii. 0

The original motivation for the study of these problems was to generalise the notion
of contractivity from linear to nonlinear problems since this notion is fundamental in
understanding certain hinds of error propagation for numerical methods. However, as
a result, the large time behaviour of (l.l), (3.1) is very closely related to that of the
model linear problem (l-l), (2.1) (cornpare Results 2.1 and 3.1) and is essentially trivial.
Runge-Kutta methods for (l.l), (3.1) were studied in [6, 41. These studies resulted in the
following definitions:
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Definition 3.2 An RKM is said to be aZgebraicaZZy  stable if the matrices B and M defined
bY W), (l-5) are non-negative definite. An RKM is said to be B-stable if, when applied
to (1.1),(3.1),  any two solution sequences { Un}rzo,  { Vn}rzo  satisfy

IVn+l - V,+lll  L llun - V,ll ( 3  4 ).

for any Uo,  V. E IRp and any At 2 0.

Example The simplest example of an algebraically stable scheme is the Backward Euler
method

Un+l = un + Atf (V,+,)-

There exist arbitrarily high-order schemes which are algebraically stable, but all of them
are implicit - that is, they involve the solution of nonlinear equations at each step. 0

Once again, numerical stability is the requirement that a certain qualitative property
of the differential equation is inherited by the numerical method; the following result shows
that the purely algebraic criterion of [4] and Definition 3.2 is important in this context:

Result 3.3 Any two solution sequences (Un)~zo  and (VnjFCo of an algebraically stable
RKM applied to the problem (1.1),  (3.1) satisfy

for all  n > 0. Hence-

IVn+l - Vn+lII  I IV,  - Vnll

algebraic stability + B-stability.

Furthermore, if the inequality (3.1) is strict for all u, v : v E c, u $I!  & then the set of fixed
points of the RKM is equivalent to the set Z of equilibrium points for (1.1),  (3.1) and

,,l.i.im dist(U,,  C) + 0.

Finally, if the inequality in (3.1) is strict and 3ti : f (ti) = 0 then G is a unique equilibrium
point of the RKM and

’lim Un = 21n-00

forall&>OandanyUoEIRP.  0

Proof Let the sequence Vn satisfy

t i = VnfAt&a;if(G),  i  =  l,...,k,
j=l

Vn+l = Vn +Atkbif(Ei)T  Uo = ~0.
i=l

We also define
Dn=Un-Vn,  Ei=qi - ti, E = f(rl;)  - f(ti)*
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Then

and

D n+1 = Dn + AtkbjF,
j=l

and it follows that

11D,+1112  = lIDnIl + zAtkb,(Dn,F,)  + At2 2 hbj(E,  4).
j=l i,j =l

= lIDnIl + At ebj(D,,Z$)  + Atkbi(o,,  fi) + At2 2 bibj(E,Fj)-
j=l i= 1 i,j =l

Using the fact that

and that

(Dn, E) = (Ei,  I$) - Atkaij(F,, J’j>
j=l

(D,,Fj)  = (Ej,Fj)  -Ateaji(F,,4)
i= 1

we obtain, since the scheme is algebraically stable,

llDn+1112  = lIDnIl + 2At 2 bj(Ej, 4) - At2 fJ mij(E, Fj)
j=l i,j=l

< lIDnIl + 2Atk bj(Ej, 4)*-
j=l

Thus we have

IVn+l - K+1112  L llun -Kl12 +2Atkbj(Vj -tj7.f(77j)-f(tj))*
j=l

(3 5).

Using (3.1) it follows that
IVn+l - K+1II  L llUn  - Kll

and B-stability is established.
Now we assume that (3.1) holds with strict inequality for v f C and zc 4 &. First

we consider the case of a DJ-irreducible method (see remarks after proof). To obtain
a contradiction assume that there exists ti $ E which is a fixed point of the Runge-
Kutta method and let ti E C. Since f (6) = 0 the Runge-Kutta equations have a solution
17; =  ii,i =  l,...,k and ‘1L is also a fixed point of the Runge-Kutta method. Thus from
(3.5),  setting U,, = G and V, = Ur,

II -ii - ?ij12 5 IIii - till’+2At&b,(p - tj7f(e> - f(tj>>- (3 6).
j=l
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In addition it is not possible for all the <j to be contained in C for, if they were, then
f(u)) = f (5;) = 0 which implies that Zo E C and this is not possible. Hence there exists j
such that

and furthermore, it is known from general theory [28]  that D J-irreducible, algebraically
stable Runge-Kutta methods satisfy bi > 0 Vi. Thus, from (3.1), (3.6) we have that

II ii - till2 < IIG - till’,
a contradiction, and hence such a ti cannot exist. Now note that a DJ-reducible method
cannot possess a fixed point W 6 C, since W would also be a fixed point of the reduced
method, and we have just proved that a DJ-irreducible method cannot possess such a
fixed point.

We now prove that C is attracting; the same notation is employed as for the proof
of Result 3.1. Since the solution sequence for a DJ-reducible method will be the same
as for some DJ-irreducible method, we need only establish the result for DJ-irreducible
methods. Let U0 E U. Then, by (3.1) and (3.5) it follows that there exists G f I such that

dist(U,J)  5 llUn  - ~11 5 IlLJo  - ~11 5 R.

Assume for the purposes of contradiction that U,, E 0 Vn 2 0. Now notice that, if U,., 4 E
then gj : qj 4 C since otherwise U,, = qi E C. Thus

and

From (3.5) we have that

bmin = min bj > 0.
l < j < k- -

IVn+l - K+1112 I IlUn - Kill2 - 2Atbmin  max @ - qj, f(qj)))-l<j<k- -
, so that, since ti f 0

IF-Jn+1 - q2 L pn - ‘1LI12 - ZAtbminE(T,  R) Vn 2 0.

Letting n + 00 gives a contradiction and hence we deduce that %*(T,  R) for which
dist( Un,  E) 5 T. Since T is arbitrary the result follows as for Result 3.1.

Finally assume that (3.1) hoIds with strict inequality for all u # v and that f (‘11)  = 0.
Thus ti is a fixed point of the RKM [35].  In Result 3.1 we established that 6 is the unique
fixed point of (l.l), (3.1) and hence that E = ii. Applying the previous part of this result
to the case where the inequality (3.1) is strict for all u, vu: v E C, u $ E proves that G is
the unique fixed point of the RKM. Since f = 21 the convergence result from the previous
case can also be applied to show that Un + ti as n + 00. 0

Remark (i) The role of algebraic stability in the proof is to enable a certain quadratic
form, which is defined by the matrix M, to be bounded above when manipulating inequal-
ities and yielding (3.5). This basic idea, and variants on it, will recur throughout the
paper.
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(ii) The first part of this Theorem, showing that algebraic stability implies B-stability is
proved in [4].
(iii) DJ-irreducibility is a technical property defined precisely in [28]. Roughly speaking a
method is DJ-reducible if one or more stages have no effect on the solution. Since such a
method can be simplified by deleting the irrelevant stages, DJ-reducible methods are not
used in practice.
(iv) In Result 3.3 we have not considered the solubility of the implicit Runge-Kutta equa-
tions. The existence of unique solutions under (3.1), for any Un and any At 2 0, has
been established for many classes of algebraically stable methods including those based
on Gauss-Legendre quadrature, for which M = 0, the Radau IA, IIA and Lobatto IIIC
methods; see [19],  [28].
(v) Notice that, in the course of the proof, we ruled out the existence of spurious fixed
points of the algebraically stable RKM applied to contractive problems. The possible
existence of such spurious fixed points was first observed in [35]  and, in [27], the class
of regular methods which do not possess spurious fixed points was identified and various
order barriers established. Result 3.3 shows that a wider class of methods exists which do
not have spurious fixed points, provided that structure is imposed on the function f.

Butcher [S] took B-stability as a basic definition and it was only later that the signif-
icance of algebraic stability was discovered in [4]. Th’is was achieved through the study
of AN-stability as defined in section 2. It is clear from Results 2.1, 2.5 and 3.1 that
the classes of problems (1.1),(2.1) and (l.l), (2.4) and (1.1),(3.1) are very closely related
and this is reflected in the close relationship between the stability theories The following
remarkable result proved in [34] is an extension of results proved in [4] and [13].

Result 3.4 For S-irreducible RKMs

algebraic stability # AN-stability e B-stability + A-stability. o

Remark S-irreducibility is a technical property defined in [28]. We will not reproduce the. definition here, but restrict ourselves to noting that these methods are widely occurring
in practice, and in particular that every non-confluent RKM (ci # ci for i # j) is S-
irreducible.

This is only a brief overview of the theories for linear decay and contractive nonlinear
problems; for further details see [19]  and [28]. These theories are very complete but, as
is transparent from Results 2.1, 2.5 and 3.1, they only apply to problems with a very
limited range of dynamical behaviour. The theory of nonlinear contractive problems has
been extended to contraction in norms other than those induced by an inner product [43],
[45] and a very clear account can be found in [36]. However, these theories are similarly
restrictive in terms of the range of dynamical behaviour admitted by the underlying model
problems.

In contrast to the linear decay problem, any conditional theory of numerical con-
tractivity (a generalisation of absolute stability) will involve dependence of the allowable
time-step on the initial data and is hence much harder to develop. The following example
illustrates this point:
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Example Consider the equation ut = -u3 which is strictly contractive  in the sense of (3.1)
for all u # v and also satisfies f( 0) = 0. Hence, by Result 3.1, u(t) + 0 as t --) 00. The
explicit Euler scheme gives the map U,+r = (1 - Atv,“)U,,  from which it is possible [47]  to
deduce that U,, + 0 as n + 00 if and only if At < 2/(Ul).  For general nonlinear problems
and general non algebraically stable methods it is very difficult to isolate explicitly such
initial data dependent bounds on At. 0

To make progress with a conditional theory for nonlinear problems it is necessary to
impose still further restrictions on the class of problems. Indeed much of the generalised
theory of contractivity reviewed in [36] is further restricted by employing the circEe con-
dition [ 171

IIfW - f(v) + P(U - v>ll I Plb - VII, bv E RP (3 7).
and some p > 0. This unnatural condition can only be satisfied by globally Lipschitz func-
tions which limits even further the range of direct applications. Of course the motivation
behind (3.7) is to combine it with some a priori analysis of the underlying equation and its
numerical approximations which enables the vector field defining the differential equation
to be replaced by a globally Lipschitz one satisfying (3.7). However this important step is
rarely addressed in the literature.

Result 3.5 A function f(m) satisfying (3.7) is necessarily globally Lipschitz.

Proof Assume to the contrary. Then, for any K > 0, there exist u, v f IRp with u # v
such that

IIfW - f(v) + P(U - v>ll L IIfW - fWII - PIIU - VII 2 w - P)llU - VII.

NOW choosing K > 2p contradicts (3.7). This completes the proof. 0

It is worth noting that the circle condition (3.7) is implied by the assumption

3cr > 0 : (f(u) - f(v)+- v) < -alIf - f(v)II” Qu,v E Rp,u # v.

The circle condition (3.7) then holds with p = l/o. In this sense it can be seen that (3.7)
is a very special case of the contractivity condition (3.1).

4. Gradient Systems

As in section 3, for simplicity of exposition we will consider the case where (1.1) is
autonomous and real and for which f (u, t) G f(u) E C1 (Rp, lRp). It is clear from sections
2 and 3 that linear decay and contractivity are such strong conditions that they rule out
interesting dynamics and hence it is natural to relax the notion of contractivity to allow
some expansion of trajectories. The function f is said to satisfy a one-sided Lipschitz
condition if there exists a constant c > 0 such that

(f(u) - f(v), u - v) 5 cllu - vl12, vu, v E lRp. (4 1).

This allows exponential separation of trajectories and specifically it is straightforward to
show that
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Result 4.1 Any two solutions u(t),v(t)  of (l.l), (4.1) satisfy

lb@>  - VNII 5 ec’ll@> - e9ll7
for all t > 0. 0-

Numerical counterparts of Result 4.1 have been studied and these may be useful in
establishing continuity of the numerical solution with respect to initial data - see Butcher
[7] and [28]. Solvability of the Runge-Kutta equations in this context is discussed in
[lo]. The importance of continuity with respect to initial data will become apparent from
Result 4.4.

Since exponential separation of trajectories allows the possibility of exponential growth
of the solutions themselves, (4.1) alone is far too broad a class of problems to work with
and make substantial progress; for this reason it is sensible to add further structure to the
problem. Both linear decay and strictly contractive nonlinear problems are characterised
by the property that u(t) approaches a unique equilibrium as time increases. This can be
relaxed to the notion that u(t) approaches an equilibrium as time increases but that it
is not necessarily unique. This leads naturally to the class of gradient systems for which
there exists F E C2(IRp,IR)  such that

f(u) = -VF(u),  Vu E IRp
F(u)  2 o ,  vu E IRK,

F(u)  + 00 as ~~u~~  + 00.
(4 2).

For gradient systems it follows that

;(F(u)) = (Wu),ut)  = -(f(u),ut>  = -llutl12~ (4 3).

Hence, arguing loosely, that u will be driven to the critical points of F, which are the
equilibria of (1.1). If F is convex so that

.
(VF(u) - VF(v),u-  v)> 0 Qu,v E Rp.

then (4.2) is a contractive problem and the analysis of section 2 applies; in particular the
set of equilibria define a convex set. However, for non-convex F equation (l.l), (4.2) may
have multiple isolated equilibria. A simple example is the following:

Example Consider equation (1.1) in dimension p = 1 with f(u) = u - u3. This is in
gradient form with

F(u) = ;(u2 - 1)“.

Notice the three equilibria 0, 1, -1. 0

Example Consider equation (1.6),  (1.7) with b = d = 0 and ii = y,? = 6 = 1 and
u(x, t) E IR. Then, defining

F(u) = 1’ ;u; + ;(u2 - 1)2dx,
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the equation may be written as
Ut = -VF(u)

where V is now interpreted as the variational derivative of F(u) with respect to changes
in u, confined to an appropriate function space satisfying the boundary conditions. 0

Gradient systems arise in a variety of applications; in particular, many phenomenolog-
ical models of phase transitions such as the solid/solid Cahn-Hilliard equations [22] and
the super/normal conducting Ginzburg-Landau equations [9] are in gradient form. Fur-
thermore, gradient systems have been fundamental in the development of many important
concepts in the theory of ordinary differential equations and are important for this reason
alone; see [29] and the references therein. As suggested by (4.3) gradient systems are
characterised  by the following behaviour, proved in [31]:

Result 4.2 For any solution u(t) of (1.1),(4.2) and any sequence ti + 00 for which the
w-limit point

2 := ili_mm u(&) (4 4).

exists, it follows that x E C, the set of zeros of f. Furthermore, if all members of & are
isolated then, for each u(0) there exists G := ii(u(0))  E & such that

Jjl u(t) = ii.

Proof Given u(0) E lRp let w(u(0))  be th e union of points such that (4.4) is defined
for some sequence ti. Then w(u(0)) is known as the w-limit set and is a closed, invariant
(under forward evolution of the differential equation) set which is connected if compact
PI

’ Let x,y E w(u(0)). Then F(y) = F(x) for otherwise we obtain a contradiction to (4.3).
Now consider the solution u(t) of (l.l), (4.2) with u(0) = x f w(u(0)); since the w-limit
set is invariant it follows that u(t) E w( u( 0)) and hence that F(u( t)) = F(u(0))  Vt > 0.
By (4.3) this implies that ut = 0 Vt 2 0 and hence that u(0) = x E C.

, Finally note that since 0 5 F(u(t)) 5 F(u(0))  it fo11ows from (4.2) that all trajectories
are uniformly bounded as t -+ 00. Thus w( u(0)) is compact since it is closed and we deduce
that it is also connected. Since the equilibria are isolated it follows that the w-limit set
must be a single point E E C. Since the closure of the trajectory is compact it follows that

lim u(t) = C. 0t+cm

For gradient systems it is natural to ask that a numerical approximation replicates the
property (4.3) that there is a Liapunov function which drives the solution to equilibrium.
Even if the additional constraint (4.1) is imposed it is unlikely to be possible to find a
stability theory which holds for arbitrary At, since the problems under consideration admit
both contractive and divergent behaviour. However, it is both feasible and desirable to find
restrictions which are independent of initial data. This motivates the following definition.

Definition 4.3 A RKM is said to be gradient stable if, when applied to (l-l), (4.1), (4.2)
there exists At, > 0 and a function F,,(o) : lRp + IR such that, for all At E (0, At,) :
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(i) F*,(U)  2 0 VU E IRp;
(ii) F*,(U)  + oo as IlU(l  + 00.

(c) K&Jn+l)  L K&Jn)  Q'vn E Rp;
(iv) if F’t( K) = FAt( UO)  Qn 2 0 then U0 E C, the set of equilibrium points for
(1.1),(4.2).  0

Such a definition was implicit in the work of Elliott [22] where discrete gradient systems
were used in the analysis of numerical approximations of the Cahn-Hilliard  equation. A
theorem closely related to the following result is proved in [24].

Result 4.4 Assume that, given initial data in LRp, the RKM generates a unique C’ map-
ping from BP into itself which depends continuously on initial data. Then, for any solution
of a gradient stable RKM applied to (l.l), (4.2) and any sequence ni + 00 for which the
w-limit point

2 := lim Un,
i-+00

exists, it follows that x E E, the set of zeros of f. Furthermore, if all members of E are
isolated then, for each u(0) there exists ‘1~ := ‘IL(u(0))  E & such that

lim Un = u.n+ca

Proof As for the differential equation, the w-limit set, w(u(0)) is defined as the union of
all possible limit points corresponding to given initial data. A similar argument to that
in the Result 4.2 shows that Un is uniformly bounded in n. From Lemma 2.1.2 in [29]
it follows that, since the RKM defines a unique sequence, continuously dependent upon
initial data, w(Uo is non-empty, compact and invariant and an argument identical to that)
in the proof of Result 4.2 shows that x E Z.

However, for dynamical systems defined by mappings it does not follow that w(Uo)  is
connected if compact, and a different argument is needed for the last part of the result.

. Now assume that the members of I are isolated. Since the solution sequence is bounded it
is contained in a compact set B and this implies that there are a finite number of possible
equilibria contained in w(V,), say xj, j = 1,. . ., J, in f. Let Bj = B(x,-,S) := {U E lRp :
II u-x~II  < 5},B+ = Ujzl ,..., J Bi and B- = B\B+, * note that B- is closed by construction.
.Assume that 6 is sufficiently small that dist(x,  Bk) 2 A > 0 Qx E Bj, j # k. Note that
w(Uo)  is non-empty. Assume for the purposes of contradiction that xl E w( Uo) and that
it is not the unique member of w(Uo).  Then for all 6 > 0 there exists a sequence ni + 00
such tha t  Uni E Br and Uni + ~1 as  ni + co. Since x1 is not the unique limit point
there is an infinite sequence of integers mj such that Umj E B1 and U,,,j+l 4 B1. Since the
mapping defined by the RKM is Cl, it is Lipschitz with constant L on B1 and since x1 is
a fixed point, we deduce that

IVmj+l - ‘Ill I Lll”mj  - ‘Ill  F Lss

Hence, if LS < A we deduce that Umj+l  E B- for each j. But B- is compact and hence the
infinite sequence Urn  j + 1 must have a limit point; such a limit point cannot be contained
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in E by definition of B- and this contradicts the first part of the result. This completes
the proof, since the sequence is bounded. 0

Remark The assumption that the RKM generates a unique continuously dependent solu-
tion sequence is often made, and is usually a very strong assumption. However it is not an
unreasonable assumption to make for a system that satisfies (4.1): the one-sided Lipschitz
condition implies unique solvability of the Runge-Kutta equations for many classes of im-
plicit methods, if At is sufficiently small (but independent of V,), including those based on
Gauss-Legendre quadrature, the Radau IA, IIA and Lobatto IIIA, IIB and IIIC methods;
see [19], [28]. Cont inuous dependence on initial data can be similarly established.

Further studies of gradient stability may found in [20] where one-step methods for the
Cahn-Hilliard equation are examined. Here we present a proof that the theta method

Un+l = Un + At[(l-@)f(Un)+‘f(Un+l)I (4 5).

is gradient stable for 8 E [$, 11. This illustrates some of the issues involved in establishing
gradient stability. Note that the condition on 6 is equivalent to the condition that the
method be A-stable. We require a preliminary lemma.

Lemma 4.5 For a gradient system, (4.1) implies that

F(u) - F(v) 5 (f(u), v - ‘1~) + cllu - ~11~ (4 6).

foranyu,vERp.

Proof Let G(x): [0, l] + IR be defined by

G(x) = F(v  + x[u - v]).

Then we have

G’(x) = (VF(v + x[u - v]), u - v)
= (f(v + x[u - ?I]), v - 21).

Now by the mean value theorem G(1) - G(0) = G’(x) for some x E [0, 11. Hence writing
5 = v+x[u- V] implies that

F(u) - F(v) = (f(I), v - ‘1L)

and since

it follows that

v - u t-u
II v - 41 = IIS - 41

IIF(u) - F(v) = 11s _ ullv - ull (f(I),  t - 4

Now substituting t for v in (4.1) implies that

(f (0, c-- 4 L (f (47 5 - 4 + cllu - Sll’
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1Yu> - F(v) 5 )i; 1 :/I (f(u),< - u) + clll - ull-llv - uII

as required. 0

Result 4.6 The
c is the constant

I (f(u),  ?J - u) + cllv - ul12

theta method (4.5) * g d2s ra ient stable for 8 E [f , l] with At, = l/c, where
in (4.1), and

h(U) = J-‘(U) + $1 - @llf(U)ll”.

Proof By (4.6)

and hence

F(Un+l)-F(Un) I (f(Un+l),Un  - Un+l)+CllUn+l-  UralI

1
=

( Pat
n+l - un - At(l  - @)f(Un) - Atef(Un+l)]  9 Un - Un+l)

+(f(V,+l>7Un-Un+l)+CllUn+l-  Unl12

1
=

( >C-at
IVn+l- unl12 +(l- e>(f(Un>- f(Un+l), Un+l- Un)

1
=

( >=-at
IVn+l - unl12 + $C1 - e, [Ilf(Un)l12  - Ilf(Un+l)l12]

-$(l - e)(2e - l)llf (un) - f (un+l>l12-

Hence, for 8 E [$, 11,

FAt(un+l) - FAt(U,) L - unl12-

. Clearly Fat is bounded below for 8 5 1 and, since FAt(U) 2 F(U) for ah U f IRp  (ii)
of Definition 4.3 fohows. It is also clear that FAt( u) is non-increasing for At E (0,1/c).
Furthermore, if FAt(Un+l)  = FAt(Un)  then Un+l = Un- The equilibrium points for (4.5)
coincide with those of (l.l), (4.2) [35] and so gradient stability has been established. 0

. A similar method of proof establishes that the one-leg counterpart of the theta method
(4.5) is also gradient stable; see [32].

As can be seen a complete theory of gradient stability is not yet developed. However,
it is worth observing that, if the additional assumption (5.3) (a form of dissipativity) is
appended to (4.2) and the equilibria are isolated then the conclusion of Result 4.4 follows
provided M is positive semi-definite and B is positive definite [33].

5. Dissipative Systems

As in sections 3 and 4, for simplicity of exposition we will consider the case where (1.1)
is autonomous and real so that f(u, t) = f(u) E C1(IRp,IRp).  Even the one-sided Lipschitz
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condition which we introduced in the previous section is far too restrictive for many
interesting applications and so we relax this condition in our study of dissipative problems.
Furthermore, gradient systems only allow solutions to approach equilibria for large time so
that periodic, quasi-periodic or chaotic behaviour is not admitted; the dissipative problems
we study will admit such behaviour.

The notion of dissipativity is an important one in many physical applications and
naturally there is a mathematical abstraction of this idea in the theory of differential
equations; see, for example, [29] and [49]. Roughly speaking an initial value problem is
said to be dissipative if there is a bounded set, in an appropriate function space for the
problem, which all solutions enter after a finite time and thereafter remain inside: thus
some measure of energy is dissipated outside the bounded set.

To motivate the study of dissipative problems consider first the equation (1.1) under
(3.1),  together with the assumption that f(0) = 0. Taking v = 0 in (3.1) we then deduce
that

(f(u),  u) I 0. (5 1).

It is straightforward to prove from this that

Ilu(t) I Ilu(O) Qt 2 0. (5 2).

This property is often termed montonicity or weak contractivity. The numerical analogue
of property (5.2), under the assumption (3.1) together with f(u) = 0, is studied by a
number of authors including [12], [46],  [44]. A straightforward application of the theory
in section 3 shows that algebraic stability is sufficient for a numerical analogue of (5.2) to
hold for all step-sizes At > 0 and all initial data. In fact, a wider class of methods suffices
in this context as described in [12].

The monotonicity induced by (5.1) can be weakened to enforce monotonicity only
outside a certain bounded region of phase space. This corresponds to a notion of dissipation
at sufficiently large amplitude. In this section we will concentrate on a particular class of
problems where dissipativity is induced by the structural assumption

(f(u),  u) I 7 - wIIuI12,  Qu E RP (5 3).

Under (5.3) monotnicity is induced outside the set B = {u E IRp : ]]u]]~ 5 y/w}. An
.example  of a system satisfying (5.3) is the Lorenz equations, after translation of the
origin. Many other examples exist; in particular, infinite dimensional systems such as
the complex Ginzburg-Landau equations (see below) and the Navier-Stokes equation (in
two dimensions) satisfy generalisations of (5.3) (see [49]) and, under appropriate spatial
discretisation, the resulting system of ordinary differential equations satisfy (5.3). (Note
that the contractive problems of section 3 are sometimes referred to as dissipative in
the numerical analysis literature; since this conflicts with the terminology in the theory of
differential equations we have deferred to the usage in the differential equations literature.)

Example Consider equation (1.6), (1.7) with ti = & = t = d^ = i? = 1. Then we obtain

ut = (1 + i)u,, - (I+ i)lu12u + u, x E (0, I),



22 A.M. Stuart & A. R. Humphries

together with periodic boundary conditions (1.7). Taking f(u) as the right-hand side of
this equation and employing the standard L2 norm and inner-product we obtain

((l+i)uzz- (l+i)lu12u+u,u)  = - J1 lu.12dx+/1  lul’- lu14dx  5 Jld’ 1- lu12dx  = l- ~~u~~~.
0 0

Thus an infinite dimensional analog of (5.3) is satisfied with 7 = l,w = 1. 0

Result 5.1 For (l.l), (5.3), any u(0) E BP and any p > 0 there exists t’ := t*(p,u(O))
such that

for all t > t*.

ll”w12 5 ;+P

Proof Taking the inner product of (1.1) with u gives

;-$11’ = (11,  Ut) I Y - wllul12.

Thus

* Ilu(t) 5 t + e-2wt Ilu(O)  - t
[ I

.

The result follows. 0

Thus ail the information about the asymptotic behaviour for (l.l), (5.3) is captured
in a bounded set; within this set the dynamics may be very complicated, for example
chaotic. It is important to note that problems in the class (5.3) do not necessarily satisfy
a one-sided Lipschita condition, as the following example shows:

Example Consider the 2dimensionaI problem

i = -a:+xy

j, = -y-x2.

. We wiII show that this problem is dissipative in the sense of (5.3) but that the system does
not satisfy aone-sided Lipschitz condition. Let u = (x, y)’ and f(u) = (-x+xy,  -Y-x~)~
then

(f(u),u)  = -x2 - y2
= - u 2.II II

Thus (5.3) is satisfied with +y = 0 and w = 1, and Result 5.1 implies that Ilull + 0 as
t + 00. Now, to show that a one-sided Lipschitz condition is not satisfied, let v = (x’, y’)r
so that

(f(u) - f(v), u - v) = -(x - .I), + (x - x’)(xy  - xly’)  - (y - y’>” + (y - y’)(x’” - x2)
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Suppose that (4.1) holds and let u = (p, cr)= and v = (o,p)’ where the constants cy and
p are to be specified below. Notice that ]]u - vii2 = 2(p - CY)~  and observe that

(f(u)  - f(v), u- v) = -2(P - cg2 + (P - cr)(P2 - a2)

= [& + P) - l] Ilu - 412.

Choose Q + p > 2(c + 1) to obtain a contradiction. Thus this system does not satisfy a
one-sided Lipschitz condition for any c > 0, even though this system is dissipative in the
sense of (5.3) and, in fact, the origin is globally attracting. 0

This is not an isolated example. In [33]  it is shown that the Lorenz equations do not
satisfy a one-sided Lipschitz condition and there are many other examples within the class
of dissipative systems. Because of this, we will not assume that (4.1) holds for systems in
the class (l-1),(5.3).

It is natural to ask for a property analogous to Result 5.1 for the numerical method.
However, in the light of the example above it perhaps seems too much to ask for a stability
theory which is independent of initial data for problems satisfying (5.3) since there is
not even a one-sided Lipschitz constant for these problems. However this view is overly
pessimistic as we now show. First we make a definition:

Definition 5.2 A RKM is said to be dissipative stable if, when applied to (l-1),(5.3),
there exists At,, R > 0 both independent of Uo such that for all At E (0, At,) and any
U. E IRp there exists n* := n*( Uo,  At) for which any sequence { Un}rzo  generated by the
RKM satisfies

llunl12 L R

foralln>n*. 0

The following result shows a remarkable correspondence between the contractive non-
linear stability theories and the appropriate theory for problems satisfying (5.3): alge-
braically stable RKMs are again seen to have desirable stability properties.

Result 5.3 Consider a DJ-irreducible, algebraically stable RKM applied to (l.l), (5.3)
with any At > 0. Then the RKM is dissipative stable with At, = 00 and hence

algebraic stability + dissipative stability. 0

Proof From the definition of the Runge-Kutta method it follows that

IIun+1112 < IIunl12  +2Atkbj(Un,fj) +At2 2 bibj(fi,fj)
j=l i,j =l

where fi := f(qi)a Using the equation for the Q we have

(un,.fi>  = (Q,fi) - At&aij(ji,B)
j=l
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and this gives

k k

II”n+1112 L llUnl12 + 2At C bj(7j, fj) - At2 C mij(fi, fj)-
j=l i,j=l

Using algebraic stability and (5.3) we deduce that

II”n+1112 I ll”nl12 + 2At & bj[7 - wll~jl121*
j=l

Thus we have, for any given E > 0, that either

IIUn+1112 L llUnl12 - 2Atc

or
k

C bj[7 - wll~jl12]  2 --E
j=l

* &bjllqjI12  5 e.
j=l W

(5 4).

(5 5).

Since the method is D J-irreducible it follows that the bi > 0 [28] and thus (5.5) implies
that

(5 6).

However, using the bound (5.6) it is possible to deduce a bound on Un+l  simply by noting
that

k

Un+l = qi + At C[bj - a;j]f(qj).
j=l

, Squaring both sides of this expression we obtain

llun+ll12 I ll~il12  + KAt (5 7).

where K is independent of U. and depends only on the bounds (5.6) on the qj. Performing
. a sum weighted by the bi, and recalling that ‘$=, bj = 1 by consistency, we obtain from
(54, (5.7)

IIun+1112  L ~bi[ll~il12 + KAt] 5 I-I!Z + KAt*
j=l W (5 8).

Thus either (5.4) or (5.8) holds. An induction based on these quantities yields the desired
result with

R = Y+c-+KAt.  •I
W

Remarks (i) In [33] ti is shown by use of the Brouwer fixed point theorem that under
(5.3), for a DJ-irreducible algebraically stable method with invertible A, the Runge-Kutta
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equations have a solution for all At > 0 and any Un E IRp. However, uniqueness cannot
be established under (5.3) alone.
(ii) Notice that the bound R on Un obtained for sufficiently large n is very close to the
bound (y/w) + p for the differential equation; thus the set into which the large time dy-
namics are confined is also closely related to the equivalent set for the differential equation.
(iii) Notice again the role of algebraic stability: it enables us to determine the sign of the
quadratic form defined by M, just as in the proof of Result 3.3.

6. Conservative Systems

We shall start this section, as in sections 3,4 and 5 by considering the case where (1.1)
is autonomous and real for which f(u, t) = f(u) E C1(lRp,IRp).  We will then go further
and, look at certain complex matrix systems of differential equations.

In many physical applications, no energy-loss mechanism is present and conservative
systems result. As a simple example of a conservative system, which arises naturally from
the limit y, w + 0 of the dissipative systems considered in section 5, we take the structural
assumption

~ (f(u)+) = 0, Vu E IELp. (6.1)

Example The equations
xt = -XY2, Yt = x2y

satisfy (6.1) 0.

Example The nonlinear Schrodinger equation, which is a non-dissipative limit of the
complex Ginzburg-Landau equation, satisfies an infinite-dimensional analogue of (6.1) and
arises throughout mathematical physics. Specifically we take ti = 2 = I? = 0 and b = d = 1
in (1.6), (1.7) and we obtain

ut = iu,, - ilu12u. (6 2).

Note that, using integration by parts,

( iuzz - ilu12u,  u) = -
J

’ Re{iju,12  + ilu14}dx = 0
0

.and so we have an infinite dimensional analog of (6.1). 0

By following the proof of Result 5.1 it is straightforward to see that:

Result 6.1 The solution u(t) of (l.l), (6.1) satisfies

Il”O>ll  = Il”@)ll
for all t > 0. 0-

Again it is natural to ask for numerical schemes which mimic this property. This
approach was taken by Cooper [ll] and a modification of the classical theory of [4] and
the use of ideas from the proof of Result 5.3 enables proof of the following result, which
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shows a remarkable correspondence with the classical theories of sections 2 and 3 and the
new theory described in section 5.

Result 6.2 Consider the numerical solution of (l.l), (6.1) by a RKM. If the RKM satisfies
M E 0 where M is defined by (1.5) then

ll”nII = ll”Oll
for all n > 0.-

Proof By definition of the RKM we have

IIUn+1112  = llUnl12  + 2Atebi(li,,f(qi)) + At2 2 hbj(f(qi),f(rli))*
i=l i,j =l

Using the defining equation for the vi gives

IIUn+lII”i  IIUnI12  +2At&bi(~iyf(~i))  - At2 & mij(f(qi),f(qj)).
i=l i,j=l

Using the fact that M = 0, and the structural assumption (6.1), the result follows. 0

Remark (i) Algebraically stable methods of arbitrarily high order which satisfy M E 0
do exist: they are those schemes based on Gauss-Legendre quadrature and discussed in
[6],  [3]. In particular, the implicit mid-point rule

Un+l = Un + Atf ( ““,2f un )

is algebraically stable and satisfies M E 0.
(ii) Again the role of the matrix M is crucial; in this case not only is a bound on the
quadratic form important but it is necessary to remove its contribution. Setting M E 0
does this.
(iii) The solvability of the RK equations has not been investigated for RKMs under (6.1).
(iv) In the related case where (f(u), u) 5 0 there is relevant numerical analysis contained
in the work of Spijker [46].

We now consider a stronger kind of conservation: we consider the matrix system of
differential equations (with * denoting Hermitian transpose)

Qt = s(Q>Q, Q*(O)Q(O) = I, (6 3).

where Q(t) is a time-dependent p x p complex-valued matrix, S(Q) is a skew-Hermitian
matrix-valued function of Q which satisfies

S*(Q) = -S(Q) QQ E lEtpxp (6 4).

and I is the pxp identity. Equation (6.3) arises in applications such as the continuous SVD
and closely related problems arise in the computation of Liapunov exponents for systems
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of ordinary differential equations. The system is conservative in a very strong sense: the
orthonormality of the columns of the matrix Q are preserved with time evolution.

Result 6.3 The solution Q(t) of (6.3),  (6.4) satisfies

Q*(t)Q(t) = I

for all t > 0.-

Proof Clearly

But

and hence, by (6.4),

-$Q*Q)  = Q*Q~ + QTQ.

Q*Qt  = Q*S(Q)Q

$Q*Q) = Q*[~(Q) t s*(Q)]Q = 0.

Thus Q*(t)&(t) = Q’(O)Q(O)  = I as required 0.

Applying the standard Runge-Kutta method to the matrix system (6.3) gives, for
Qn = Q(nW,

Q n+l = Qn + At & bjS(I’j)I’j,
j=l

I’i = Qn +Atka;jS(I’j)I’j, i = 1,...,k
j=l

where Ii is a complex-valued p x p matrix. We will employ the notation Si := S( I’;).
It is important in some contexts to find numerical methods which will automatically

enforce the orthonormality of the columns of Q(t) during numerical simulation. This was
realised in [18]  where the following result is proved:

, Result 6.4 The solution of (6.3),  (6.4) by a RKM with M E 0 where M is defined by
( 1.5) satisfies

Q;Qn = I
for all 72 > 0.-

Proof From the definition of the RKM applied to (6.3) we obtain

Qi+lQn+l = [Qi + At&biFi*Sr][Qn  + At&bjSjI’j]
i= 1 j=l

Now, from the defining equation for the Ii,

ri*STQn,=  ri*S,Ti - At&aijIi*STSjI’j
j=l
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and

Combining these three expressions we find that

k k

Qi+lQn+l = QzQn t AtCbiri*[Sl  + Si]ri - At2 C mijri*S:SjI’j.
i= 1 i,j =l

Setting M E 0 and employing (6.4) we obtain

Qi+lQn+l = QiQn

and the desired result follows. 0

Remarks (i) The proof presented in [18] is considerably more elegant than the proof given
here, employing the theory of symplectic integrators as outlined in the next section and
also yielding an “if-and only if” result. However, the proof given here once again makes
clear the role of the positive definite quadratic form defined by M and its annihilation by
the choice M E 0. Recall again that algebraically stable schemes satisfying M I 0 exist
and so, once again, the importance of algebraic stability is apparent.
(ii) The solvability of the Runge-Kutta equations has not been addressed here. However,
in [18] an explicit iteration scheme is constructed which, if iterated to convergence, satis-
fies the Runge Kutta equations but which also retains the orthonormality of the system
regardless of the number of iterations used. This then corresponds to a linearly implicit
numerical method which is “stable” in an appropriate sense.
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7. Hamiltonian Systems

The class of conservative systems induced by the inner product structure (6.1) is clearly
a somewhat restrictive one and it is natural to broaden the scope somewhat to include
more general schemes with conservation properties. To this end we consider the case where
(1.1) is a real autonomous Hamiltonian system of even dimension with f(~, t) z f(u) E
C’(W’,IR!‘) and p = 2N. To establish a connection with section 6 we consider first the
linear problem

ut = JAu, (7 1).

where A is positive definite symmetric and where J is a skew-symmetric matrix satisfying

JT = J-’ = -J. (7 2).

Then we may define a norm based on A by

II IIu 2 = ;uTAu.

It follows that
d 2

z”II II = @Au + uTAut]

= i[uTAJTAu + u~AJAu]  = 0,
k

using F = -J. This is equivalent to

However, for nonlinear Hamiltonian
Given H E C2(IR2N,IR),  general

and J is a skew-symmetric matrix
where

J

Result 6.1 and shows conservation of the Hamiltonian

H(u) := ;uTAu.

systems this equivalence does not hold.
Hamiltonian systems are of the form (l.l), where

f(u) = JVH(u) (7 3).

satisfying (7.2). We shall mainly consider the case

=

and I is the N x N identity. Equation (Ll), (7.3) then takes the familiar form

Pt = VqH(U), qt = --V&w

where uT = (pT, q’) for p, q E RN and V, (resp. 0,) denotes the gradient with respect
to the p (resp. q) variables.

Example A simple example is the system

Pt = p2q, qt = -pq2
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which corresponds to the Hamiltonian q. 0

Example The nonlinear Schrodinger equation, (6.2), (1.7) is Hamiltonian with conjuga-
tion replacing the transpose and i playing the role of the skew symmetric operator J :

ut = -iVF(u)

where

J’(u) = l1 &I2 + ;lu/4ds,

and V represents the variational derivative with respect to changes in u, confined to an
appropriate function space. 0

Two important properties of Hamiltonian systems are described in Result 7.2. In order
to explain the result we need to define the following:

Definition 7.1 A mapping G(U) E C(lR2N, lR2N) is said to be symplectic if

DG(U)TJDG(U)  =  J  VU E IR2N.

Here DG denotes the Jacobian of the mapping G with respect to the variable U. We
will use an analogous notation for mappings other that G throughout this section.

Result 7.2 Solutions of (l.l), (7.3) satisfy

(i) H(u(t)) = H(u(0))  Vt 2 0;
(ii) if the solution operator G(U;  t) is defined by u(t) = G(u(0); t) for given initial data
u(0) then G(o,  t) is a symplectic mapping for each t f R+.  0

Proof The first fact follows in a straightforward way since

-&wt)) = ;[VH(u)Tut  + u;VH(u)]

= +?(u)~JVH(U)+  vf+~)~J~vH(~)]  = 0,

since JT = -J. The result follows.
For the second part, let R(t) denote DG( U; t), where D denotes the Jacobian with

respect to U. Then R(t) satisfies the matrix differential equation

Rt = JA(t)R, R(0) = I

where A(t) is the Hessian of H(u) evaluated at u = u(t) and is hence symmetric. Now let
V(t) = RTJR  and note that V(0) = J. Clearly

G = RTJR + RTJRt  = RTAJTJR  + RTJJAR.

Now, using (7.2) we obtain
V,=RTAR-RTAR=O



Numerical Stability for IVPs 31

and hence V(t) = J for all t. By definition of V the result follows. 0

Clearly (i) is a conservation property; since H is in general not a positive-definite
quadratic form this property is not equivalent to Result 6.1 except for the linear problem
(7.1) with positive definite A. Although it is heavily disguised, (ii) is also a conservation
property: it states that the area of the projection of any set in JR2N onto certain distin-
guished planes in R2 is preserved under the solution operator G [l]. Again it is natural
to ask that the conservation properties (i) and (ii) are inherited by any numerical approx-
imations. In this context the following result of Sanz-Serna [38] and of Lasagni [37] is of
interest since it again shows a close relationship with the classical theory of section 3 and
in particular the role of the matrix M from algebraic stability theory in preserving (ii).

Result 7.3 Solutions of (l.l), (7.3) by the RKM with M E 0 where M is defined by (1.5)
define a symplectic mapping for each At 2 0. 0

Proof The Runge-Kutta method defines a mapping U + W determined implicitly by the
equations

W = U + AtLbjf(qj)y
j=l

qj = u + Atkaij  f(qj)-
j=l

We let R = DW(U) and I’j = Dqj(U)  and denote the Jacobian of f (7) with respect to q
evaluated at 7 = Q by D fi = D f (q). Then, differentiating the mapping with respect to
U gives

R = I + At&bjDfjI’j,
j=l

Thus we obtain

ri = I + Atea;jDfjrj.
j=l

RTJR  = [I + AtkbiI?iTDfT]JII  + AtkbjDfjI'j]
i=l j=l

so that

k k k

RT JR = J + AtCbiriTDf,TJ  + AtCbj JDfjl’j  + At2 C &bjriTDfTJDfTrj* (7.4)
i=l j=l i,j =l

Now, from the defining equations for the I’i ,

riTDf;TJ = riTDf~Jri - At&aijriTDfTJDfjrj
j=l
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and

JDfjI’j = I’jTJDfjI’j  - At&a,iTiTDfTJDfjI;.
i= 1

Combining these expression with (7.4) we obtain

RTJR = J + AtkbiTiT[DfTJ  + JDf#,. - At2 e mijlYiTDf,TJDfjrj.
j=l i,i =l

Since the method satisfies M = 0 we obtain

RTJR = J + AtkbiI’iTIDfTJ  + JDf;]l?;.
j=l

Now, Dfj = JAi where Ai, the Hessian of H evaluated at vi, is symmetric. Hence, using
(7 2)* 7

<DfTJ+ JDfi=ATJTJ+ JJA; =A;--A; =O.

Thus RTJR = J so that the RKM defines a symplectic mapping for each At 2 0. •I

Remarks (i) Again this result assumes the solvability of the Runge-Kutta equations. This
matter has not been investigated in detail for Hamiltonian systems and little is known in
general.
(ii) Again the role of the matrix M is clear: a certain quadratic form is annihilated by
setting M E 0.
(iii) Recall from section 6 that there exist methods of arbitrarily high order satisfying
M - 0; see [5].

For general nonlinear, nonintegrable Hamiltonian problems it is not possible to enforce
both properties (i) and (ii) from Result 7.2 onto a numerical scheme since it would then
have to be exact; see [25]. Thus it is an open and interesting question to determine
the relative merits of preserving the two properties under discretisation; see for example
[42]  where energy-momentum conserving methods are shown to be superior to symplectic
momentum conserving methods for an application in elasto-dynamics.

To discuss Hamiltonian systems in detail is well beyond the scope of this review. Here
our purpose is merely to emphasise connections with other classes of problems. For a
.complete  overview of the numerical analysis of Hamiltonian systems see [40].

8. Remarks on Multi-Step Methods

Throughout the paper we have concentrated on Runge-Kutta methods; this has allowed
a unified exposition and the theme of algebraic stability has run throughout. Nonetheless,
much of the theory for RKMs  was developed in tandem with that for Linear Multi-Step
and One-Leg Methods (LMMs and OLMs) and indeed in the 1960s and 1970s the theory
for RKMs was often pre-dated by that for multi-step methods. Thus it is in order to briefly
sketch how the theory for LMMs and OLMs fits in to that described here. An important
point to appreciate is that LMMs and OLMs naturally define a dynamical system on a
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space of higher dimension than the original problem - specifically in IRPk for a k-step
method - and this is a source of some difficulty.

For linear decay problems the properties of A-stability and absolute stability have nat-
ural analogues for multi-step methods and indeed this was the starting point for numerical
stability theory [14]. The importance of contractive problems in numerical analysis was
recognized by Dahlquist in [15] in the context of multi-step methods; the notion of G-
stability was defined for multi-step methods applied to (1. l), (3.1) and inheriting a notion
of contractivity; subsequently a remarkable equivalence Theorem, analogous to Result 3.4,
was proved: G-stability is equivalent to A-stability [16]. For gradient systems there has
been a little work on multi-step methods; in particular in [23] it is proved that the first
three backward differentiation formulae are gradient stable, employing a natural general-
ization of Definition 4.3. The concept of dissipative stability is unstudied for multi-step
methods. Ideas relating to conservation properties and symplectic structure for multi-step
methods are considered in [21]. The preservation of orthonormality properties in matrix
differential equations are studied in [18].

9. The Effect of Error Control

An important question which we briefly analyse here is whether the variation of time-
step according to local error control will automatically enforce some form of numerical
stability, even for explicit schemes. Such results are conjectured in [39] based on an
illuminating study of a particular example. The question now becomes whether it is
possible to find stability theories which hold for a wide range of the error tolerance r,
given arbitrary initial data in lRp. Thus r takes on the role played by At in the remainder
of the paper.

However, it is not immediately clear that such results should be true since local error
control is an accuracy requirement whilst we are seeking stability results. In a notable
paper, Hall [30]  established a remarkable connection between accuracy and stability for
error control schemes. We illustrate this with a simple example modified from [30] and
[26]:  consider (1.1) with p = 1 and

f(u) = -u.

If we apply the explicit Euler scheme with variable time-step then we obtain

Un+l = Un - AtnUn

where the time-step At, now varies with n. This is a second-order accurate approximation
to the true solution over a step At; that is the error is proportional to At2. A third-order
accurate approximation is formed with error of O(At”)  by calculating the first step of a
Trapezoidal rule correction:

Vn+l = Un - +[Un+l  + Ural-

A simple error estimate for Un+l is then formed as the difference between V,+l  and Vn+l
on the assumption that At is SI&L  The error per unit step strategy requires that At, is
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chosen so that

IFn+l - Vn+lll I fatnr, (9 1).
where r << 1 is an error tolerance. Under this local error control we ded.uce that, since
the standard Euclidean norm I] l I] is equivalent to I l I in dimension p = 1,

IUn - Un+lI  I 7

is required for the step to be acceptable and hence that

is required. If we choose the largest time-step compatible with this error control then we
obtain

Un + l = Un(l- h), A t ,  =  -& (9 2).
n IV In

Straightforward analysis shows that

whilst
lunl  5 i * IUn+ll  L r*

Using this it is possible to show that the local error control forces iterates to enter and
remain in interval [-7, r] about the origin; during this process the time-step approaches
the linear stability limit.

This kind of desirable behaviour can be generalised to the dissipative and gradient
systems studied in sections 4 and 5 - see [48] for details. Here we outline the key to that
analysis which revolves around the fact that certain error control mechanisms force the
RKM to behave like an
algebraically stable in a

One of the simplest
explicit Euler scheme

and then form the more

algebraically stable RKM even if the underlying method is not
fixed time-step implementation.
error control strategies for the solution of (1.1) is to take the

Un+l = Un + ALf(Un)

accurate approximation
(9 3).

V At n
n+l =u,+-2 [fCUn) + f(Un+l>l* (9 4).

This genera&es what we did for the linear problem above. Thus the difference of Un+l
and K+l is an estimate of the error incurred in (9.3) and the error per unit step strategy
then requires that At, is chosen so that (9.1) is satisfied. This implies that

llf(Un> - f(Un+l>ll  5 r (9 5).

and hence that, under error control, the explicit scheme (9.3) is never far from the backward
Euler scheme (9.3). Specifically we have that

u ‘=n+l un + Atnf (Un+l) + ALE,
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where lIEI 5 r by (9.5). The backward Euler scheme is algebraically stable and for this
reason we might expect that the error control confers desirable stability properties on the
explicit scheme. This intuition is placed on a firm mathematical foundation in [48] for the
contractive, gradient and dissipative problems studied here in sections 3,4 and 5.

As a second example we consider the Fehlberg (2,3) method given by

772 = un + A4af(%),

V3 = un + +Lf (771)  + f (qz)],

Un+l = Un + +rr (rll) + f (q2)],

V - Un +n+l - $fh) + f(772)] + Ff(,3.

We define f by

f(Un;Atn)  = ;rr (771) + f (r/2)1

and thus
Un+l = un + AtnJ(U,;Atn);

note that
Vn+l = Un + Ff(u,;  At,)  + %f(V3)*

Thus the error control

implies that

IVn+l - Vn+lII I :Atnr

II.f(“n)  - f(V3)ll I r*

, Then, since

‘[Un+l + V,],73 = 2

we deduce that the error control ensures that the explicit Fehlberg (2,3) pair is close to
the implicit mid-point rule. Specifically we have that

Un+l = Un + At, f ( ““12’ un ) + AtnE

where lIEI 5 r. The mid-point rule is also an algebraically stable scheme and, in fact
satisfies M = 0. Again, desirable stability properties follow for dissipative problems (see
[48]) and we might expect relatively good behaviour for the conservative and Hamiltonian
problems considered in sections 6 and 7. The effect of error control on numerical methods
for Hamiltonian systems is studied in [8].

These two examples are incorporated in a general framework of algebraically stable
RKM pairs in [48]. This facilitates an anlysis of the the behaviour of variable time step
Runge-Kutta methods on contractive, dissipative and gradient systems.
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10. Conclusions and Open Problems

It will be clear from reading this article that the numerical stability theory for prob-
lems in sections 4-9 is far from complete. Nonetheless, it should also be clear that the
classes of problems in sections 4-9 all form a natural progression from the simple problems
in sections 2 and 3. Furthermore, the problems in sections 4-9 arise in many applications
and admit a variety of interesting and complicated dynamical features ranging from mul-
tiple competing equilibria, through dissipative chaos to conservative systems and finally
Hamiltonian systems which can exhibit both integrability and Hamiltonian chaos. In con-
trast, the classical problems discussed in sections 2 and 3 admit only trivial dynamics.
Our main aim is to emphasise this point and at the same time to motivate and encourage
study of the broader classes of problems suggested. An important point is that there are
clear indications of connections in the numerical stability theory for the problems admit-
ting trivial dynamics and those admitting complicated dynamics. In particular, algebraic
stability plays a fundamental role. With this in mind we make a subjective list of open
problems:

l To explore the class of numerical methods which are gradient stable in the sense of
Definition 4.2. Currently only the theta method (0 E [i, l] - see section 4), the first three
BDFs [23] and a modification of Crank-Nicolson ([22], [20]) have been identified. There
are many open questions for RKMs,  LMMs and OLMs.

l To determine whether A(o)-stability is sufficient for gradient stability; this is a reason-
able conjecture to make since the Jacobian of a gradient system is symmetric.

l To determine whether Definition 4.2 is appropriate; there may be RKMs  which do not
satisfy part (ii) of the definition on a step-by-step basis, but may satisfy an analogous
property over several steps or for all sufficiently large n. In any case the crucial point is
that conditions are required under which convergence to an equilibrium is guaranteed.

l To explore the class of LMMs which are dissipative stable for the problems defined by
(1.1),(5.3).  To frame a suitable definition of dissipative stable for LMMs and OLMs and
to identify schemes in this class.

l To extend the analysis of dissipative problems induced by the inner product structure
(5.3) to others fitting into the precise notion of point dissipative as defined in [29]. The
work of [43], [45] and [36] on contractivity in non-inner-product norms is of interest in this
context.

l To examine the affect of numerical approximation on Liapunov functionals  other than
those arising in sections 4 and 5.

l To assess the relative merits of Hamiltonian conserving algorithms which preserve the
property of Result 7.1(i), and symplectic algorithms which inherit the property of Result
7.2(ii).  In particular it is of interest to determine what can be said about the behaviour
of the Hamiltonian for symplectic schemes.

l To impose structural assumptions on the Hamiltonian H in an attempt to further assess
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symplectic and conserving algorithmss. For example, the convexity of H is important
in some applications and its implications for numerical algorithms should be studied in
detail. As another example, consider the class of Hamiltonian systems satisfying the
following property: for any cl there exists c2 such that H(U)  = cl =+ Ilull  5 c2. This
implies global existence and boundedness of trajectories and again, its implications for
numerical algorithms should be investigated.

a To develop rational numerical stability theories for variable time-stepping algorithms,
in particular for the classes of problems outlined in this paper. Some work in this direc-
tion may be found in [48],  [8].  In particular it is of interest that typical software codes
including local error control lead to discontinuous dynamical systems since the time-step
sequence chosen may change discontinuously as a function of the initial data. Thus new
mathematical machinery is required to analyse this problem.

l To identify other classes of problems motivated by either by real applications or by a
need for theoretical understanding of the differential equations, for which it is beneficial
to develop numerical stability theories. The need for applications to differential equations
should be directing numerical stability theory; to date this has not always been the case.

Finally we conclude with a disclaimer: it is not our purpose to completely review the
subject of numerical stability theory for initial value problems. We have concentrated on
the mathematical properties of the underlying problems and this has been our unifying
theme. For this reason there are numerous references to related work in the numerical
analysis literature that have not been made here.
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