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Abstract.

The dynamics of numerical  methods  with  local  error control  are studied for three  classes  of
ordinary  differential  equations:  .dissipafive, contractive  and  gradient systems.  Dissipative  dynamical
systems  are  characterised  by having  a bounded  absorbing set B which  all trajectories  eventually  enter
and  remain  inside.  The exponentially  contractive  problems  studied have  a unique,  globally  attracting
equilibrium  point  and  thus  they  are  also  dissipative  since  the absorbing set B may be chosen  to be a
ball  of arbitrarily  small  radius  around  the equilibrium  point.  The gradient  systems  studied are those
for which  the set of equilibria  comprises  isolated points  and  all  trajectories  are bounded  so that each
trajectory  converges  to an equilibrium  point  as t -+ 00. If the  set of equilibria  is bounded  then  the
gradient  systems  are also  dissipative.  The aim is to find  conditions  under  which  numerical  methods
with  local error control  replicate  these  large-time  dynamical  features.  The results  are  proved without
recourse  to asymptotic  expansions  for the truncation  error.

Standard  embedded  Runge-Kutta  pairs  are  analysed  together  with  several  non-standard  error
control  strategies.  These  non-standard  strategies  are easy  to implement  and  have  desirable  properties
within  certain  of the classes  of problems  studied. Both error  per  step  and  error per  unit  step  strategies
are considered.  Certain embedded pairs  are identified  for which  the sequence  generated  can be
viewed  as coming from  a small  perturbation  of an algebraically  stable scheme,  with  the  size of the
perturbation  proportional  to the tolerance  7. Such embedded  pairs  are  defined to be algebraically
stable and  explicit  algebraically  stable  pairs  are  identified.  Conditions  on the tolerance  T are identified
under  which  appropriate  discrete  analogues  of the properties  of the underlying  differential  equation
may be proved  for  certain  algebraically  stable embedded  pairs.  ln particular,  it is shown  that for
dissipative  problems  the discrete  dynamical  system has  an absorbing set B, and  is hence  dissipative.
For exponentially  contractive  problems  the radius  of B, is proved  to be proportional  to a positive
power  of T. For gradient  systems  the numerical  solution  enters  and  remains  in a small  ball  about  one
of the equilibria  and the  radius  of the  ball -+ 0 as 7 + 0. Thus the local  error control  mechanisms
confer  desirable  global properties  on the numerical  solution. It is shown  that for error per  unit
step  strategies  the conditions  on the tolerance  T are independent  of initial data  whilst  for error  per
step  strategies  the  conditions  are initial  data dependent. Thus error per unit  step strategies  are
considerably  more robust.
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1. Introduction. In this paper  we consider  numerical  approximation  of the ini-
tial value  problem

(1-l) ut = f(u), u(O) = K

where  u(t) E Rp for each t > 0, and f: Rp -+ BZp is assumed to be locally Lipschitz.
We study  variable  time stepping  strategies designed to control  the local  error incurred
at each step. In particular,  our interest  lies in the effect  of the error control  mechanism
on the long time dynamics of the problem  (1.1) and in assessing  whether,  and in what
sense, the dynamics are reproduced  by the approximation  scheme.

Embedded  explicit  Runge-Kutta schemes are studied.  Let t, denote  a sequence  of
(unequally  spaced)  grid points  in time and let Un denote  an approximation  to u(tn),
then the embedded  Runge-Kutta  pair is defined  as follows:

(l-2) a=Un+At,eeij.f(qj),  i=l,...,k,
j=l

Note that the sequence  (Vn}~=l is introduced  only to estimate  the error  so that the
time-step  may be varied accordingly.  The  sequence  {V,}$T.-,  is considered  as the
numerical  approximation  to u(t) and it is the asymptotic features of this sequence
that we shall study. The time-step  At,, is chosen  so that either

(l-5) IIUn+l  - ~+lll  I ~AL/leol,

w-9
where  r << 1 is the error tolerance  and ec is a scale  factor  to be specified later.  The
strategy  (1.5) is known as error per unit step whilst the strategy  (1.6) is known as
error per step.

In the following it will be useful  to define  the matrix A and vectors b, 6 by

(l-7)
These  matrices  and vectors  are assumed to be chosen  so that the difference  of U, and
V, provides  an estimate  of the error incurred over  one-step  of the numerical  method
(1.2), (1.3) as is standard  for embedded  Runge-Kutta pairs  [3]. We say that the
scheme (1.2),(1.3),(1.4) h as order (p, q) if A, b is an order p method and A, 6 an order
q method. In many software  codes  q = p + 1 and IIU,-,+l - Vn+l I] is an estimate  of the
local truncation  error  for Un+l. However,  q = p - 1 is sometimes  used in codes  so that
the solution  is advanced  using the higher order method, although  the error estimate
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is only strictly  valid for the lower  order scheme - this is known as extrapolation. The
framework  also includes methods  where  the error is estimated  by step-halving:  in
this case the method for advancing  U,, + Un+l is simply to take  two half  steps  of
the method U, ---) Vn+l and then form from this a method of order of accuracy  one
greater  than that which takes U, to Vn+l ; hence p = q + 1.

In addition  to studying  these  standard  methods,  we will also introduce  some sim-
ple schemes with desirable properties  where  q = 1; for these  methods the construction
of &a+1 is computationally  inexpensive. Furthermore,  we analyse  some  simple mod-
ifications  of standard  error  control  strategies which are tailored  to given structural
assumptions  about  the differential  equations.

To study  the effect  of local error control  on large time dynamics  it is necessary
to work with particular  structural  assumptions  on the vector  field  f(o) which defines
the differential  equation  (1.1). Throughout we assume that II l II denotes  a norm
in Rp induced  by the appropriate  inner  product - i.e. one inherited  from one of the
assumptions  (D), (C) , (E) or (Gl-G5) w ic we now introduce.  Here, and throughouth h
the remainder  of the paper,

(l-8) B(w, 6) = {u E RP : Ilw - ull < a} :

The four conditions  on the vector  field  f( l w ic we consider  are (D), (C), (E) and) h h
(Gl-G5):

(D) 3a 2 0, P > 0 : (f(u), u) 5 a - Pllul12, v u E Rp;

(C) 3p > 0 : (f(u)  - f(u), u - v) 5 -/3llu - ZJ~[~,  V u,~ E Rp and f(0) = 0;

(E) 3r > 0 : (f(u),  u) < 0, Vu E Rp satisfying  ~~u~~2  2 r;

(W f(u) = -VF(u),  where  F E C2(R, R);
(G2) F(u) 2 0,Vu  E Rp and IF(u)1  + 00 as Ilull + 00.

(G3) F(u) - F(w) < (f(u), v - u) + cllu - wl12, V u, ZJ E Rp.
(G4) Let E = {v E Rp : f(u) = 0). Then E consists of isolated  points.
(G5) There  exists  D > 0 such that I Iu - ~11 2 D for all u, TI E E with u # 21. Let

B(b) = u B(v, 6);
VEE

then for any 6 > 0 there  exists  E > 0 such that

See  1191  for a review of the relevance of these  classes  of problems  in numerical
analysis and in applications.  We now charaterise  the behaviour  of (1.1) under  these
different  structural  assumptions  on f(o); the following  definition  is fundamental:

DEFINITION  1.1. The equation (1.1) is said to be dissipative if 3 a bounded
absorbing set l? C Rp and, for each U E Rp, a time t* = t*(U) such that u(t) E
l3vt 2 t*.

The following  properties  hold for (1.1):

THEOREM ODE
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(i) under (D), (1.1) is dissipative with B = B(0, (CY + p)/@, any p > 0;

(ii) under (C) every solution of (1.1) satsifies  u(t) 4 0 as t + 00. Thus (1.1) is
dissipative with B = B(O,p)  any p > 0;

(iii) under (E), (1.1) is dissipative with B = B(0, ri);

(iv) under (Gl-G5), for every U E lRp 3v E E such that the solution of (1.1) satisfies
u(t) + v as t -+ 00. If, in addition, E is bounded then (1.1) is dissipative with
B = {u E Rp : F(u) 5 ma&@ F(v) + p}, any p > 0.

Proof. The proof  of (i) may be found  in [19]  and underlies  much of the work in
[20].  The  proof of (ii) is straightforward.  The proof of (iii) is similar to the proof of
(i). The proof of (iv) may be found  in [S]. cl

Throughout  this paper  our aim is to derive  discrete analogues  of Theorem  ODE
under the weakest  possible  assumptions  on the tolerance  r. Note that,  in fixed-step
implementation,  only implicit methods  will replicate  the behaviour  of the ODE unless
the time-step  is restricted  in terms of initial data  [19].  Thus it is of interest  to derive
explicit  embedded  pairs which  yield discrete  analogues  of Theorem  ODE without the
tolerance  r being restricted  in terms of initial data.  The  key to our analysis is the
observation  that,  under certain  conditions  on the underlying  Runge-Kutta method,
the local  error control  ensures  that the embedded  pair  is close  to an algebraically
stable  Runge-Kutta scheme;  the “closeness” is proportional  to the error tolerance.
We call such embedded  pairs algebraically stable and in section  2 we construct  explicit
embedded  pairs which are algebraically  stable in this sense. Note that fixed step
algebraically  stable  schemes are necessarily  implicit. In addition,  we prove an order
barrier min{p, q} < 4 for explicit algebraically  stable embedded  pairs  of order (p, q),
with non-negative  bi .

In section  3 we conisder  the question of whether it is possible  to find sequences
{un ~~0 and {Atn}Fco such that the error  control  schemes  (1.2)-(1.4),  (1.5) or (1.2)-
(1.4), (1.6) are satisfied.  In particular  we determine  conditions  under  which schemes
admit  sequences  satisfying  inf,>c At, > 0 since, without  this,  the time integration
may terminate  at a finite time.  -

It is known that fixed time-stepping  algebraically  stable Runge-Kutta methods
define  dissipative  numerical  methods  for (D) and (C) respectively  - see [l], [12], [19].
In section  4 we show that  algebraically  stable error per unit step  and error per step
embedded  pairs also preserve the dissipativity  of the underlying  system. Under  (D)
there  is an absorbing  set B, centred at the origin and under  (C) this set has radius
proportional  to a positive  power  of r- see Theorems  DC1 and DC2 which are discrete
analogues  of Theorem ODE(i)  and (ii).

For (D) and (C) we consider  both error  per step  and error per unit step  strate-
gies. The  error per unit step schemes have the advantage  that the properties  of the
underlying  differential  equation  are inherited for r sufficiently small, but independent
of initial data;  this means that codes based  on such a strategy  are extremely  robust
since they operate  effectively  given  any initial data. In contrast,  the error  per step
strategies can only be guaranteed  to mimic the differential  equation  if r is bounded
above  in terms of the initial data U. In sections  5 and 6 we consider only error per
unit step  strategies  although  it is straightforward  to generalise  the results  to the error
per step  case as is done  in section  4.

We next consider  condition (E); we state  and prove a discrete analogue of Theorem
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ODE(iii)  in section  5 for the simplified error  per unit step  strategy  (2.30), (2.31), (2.32)
together  with (1.5) - see Theorem E.

In section  6 we consider  gradient systems under  (Gl)-(G5).  (Gl)  is the standard
gradient  assumption,  (G2) ensures  global  existence,  uniqueness  and boundedness  of
solutions  to (1.1) whilst (G3) is equivalent to a one-sided  Lipschitz condition [13].
(G4) and (G5) are structural  stability  conditions  on the gradient system.

For r sufficiently  small,  but independently  of initial data, we prove in Theorem
Gl that  the simplified  order  (p, 1) error control  scheme (2.24), (2.27)  together  with
(1.5) forces  the numerical  solution  to enter and remain in a ball centred  on one of the
equilibria  in E; the radius of the ball + 0 as r + 0. If E is bounded  then dissipativity
follows.  In addition,  a modification  of this error  control  is proposed  which actually
ensures  that the solution  is driven  to an equilibrium  point  as n + 00. This is based
on error per unit step  control  relative to a discrete  time derivative - see Theorem G2.

Finally, in section  7, we present  some numerical  results  to illustrate the theory.
The work contained  here  is inspired by the papers  of [9] and [15]  where  the dy-

namics  of error controlled  schemes are studied for linear  decay problems;  in particular
they show that  for such problems  standard  error  control  mechanisms  drive  the numer-
ical solution  to a neighbourhood of the origin which scales  with the error  tolerance.
This motivates  the results  proved  here for contractive  and gradient systems.

The work is also an extension  of the work of Stetter [18] (see also [ll], [17])
where it is shown that,  over fixed time intervals 0 5 t 5 T, the error  is proportional
to some positive  power  of the tolerance  - essentially  a convergence  result  for error
controlled  schemes as r + 0; here we show that the “error” in the asymptotic behaviour
(t + 00) is proportional  to a positive  power of the tolerance,  essentially  a practical
stability  result  for error controlled  schemes. In our analysis  we do not need asymptotic
expansions  for the truncation  error  to prove results;  we simply  use the closeness  of
the scheme to an algebraically  stable one.

Recently  there  has been some interest  in the subject of spurious solutions  intro-
duced  by fixed time step discretisation  - see [14] for a summary.  One reason these
spurious  solutions  are of interest  is that they  can exist  for arbitrarily  small At and
thereby  destroy  the large time properties  of the underlying  differential  equation.  How-
ever,  in [16], a valid criticism  of the body of literature on spurious  solutions  is voiced:
in practice,  error control  mechanisms  will prevent  spurious solutions.  Our work goes
some  way towards  substantiating  the claim in [16].

Summary

l It is possible  to make some progress  in the rigorous analysis of error  control  strategies
without  the use of asymptotic  error  expansions.  To this end:

l We have  introduced  the notion  of algebraically  stable embedded  Runge-Kutta pairs.
These  are error control  strategies which ensure  that the solution  is an U(T) pertur-
bation  of an algebraically  stable scheme, where  r is the tolerance.  It is shown that
explicit algebraically  stable  embedded  pairs  exist  but an order barrier of min(p,  q} 5 4
is proved  for such explicit  methods  with non-negative  weights bi. See  Corollary  2.7.

l New simplified  and computationally  inexpensive  embedded  pairs  are introduced  with
order (p, l), p arbitrarily  large, which are algebraically  stable and computationally
inexpensive.  These  embedded  pairs may be explicit.  See  Example  2.9.

l New error control  strategies are introduced  for gradient systems for which the error
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control  is relative to a discrete time-derivative.  See  section  6.

l For certain algebraically  stable embedded  pairs applied to dissipative,  contractive
and gradient systems we prove that the underlying  long time behaviour  of the differ-
ential equation  is inherited by the error controlled  scheme - see Theorems DCl, DC2
(section  4), Theorem E (section  5) and Theorems  Gl and G2 (section  6).

l For error  per unit step  strategies  we find that the underlying  properties  of classes
(D)> (C> and w are inherited for sufficiently small tolerance,  but independent of
initial data. This implies a strong degree  of robustness  for codes  based on such
strategies.  The main technical  difficulty in the analysis is to obtain results  for r, the
tolerance,  independent  of initial data. The  error  per step  strategies  require initial
data  dependent  tolerance  restrictions  and are hence far less  robust.

l Nowhere  in the analysis do we actually  describe  how the time-step  is chosen to
satisfy the error control  criteria.  Instead we prove that,  at each  step, the error control
criteria  can be satisfied.  Furthermore,  under  the appropriate  structural  assumptions
on f (0) we also show that it is possible  to find step size sequences uniformly  bounded
from zero.  This approach  facilitates  a straightforward  approach  to the analysis. To
our knowledge  this is the first rigorous  treatment  of error  control  strategies  over  long
time intervals. _

2. Algebraically Stable Embedded Pairs. Given any scalar ec # 0 and any
vector  e = (er , ez, . . . , ek)T  we create  a new Runge-Kutta method from the embedded
pair (1.2)-(  1.4)  by defining

(2.1) i=(l- eo)b  + ed,

and

P-2) a = A + eoe(& - b)T.

We use the notation

{A},j=tiij, i=(~1,~2r~-~~~~)T~

From (2.1), (1.4) it follows  that

Vn+l = Un + At, k[(l
j=l

- djbj + $ij]f(s,-

Thus  the error controls  (1.5) or (1.6) imply respectively  that

(2.3) IIEII 5 r
or

(2-4
where

IIEII L g
n

P-f9 E = CLbj - &jlf (rlj),
j=l
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Using  (2.5), equation  (1.3) may be rewritten  as

P-6) Un+1 = Un + Atnkb, f(qj) + At,E.
j=l

Furthermore,  (1.2), (2.2)  gives

vi = un + Atn&&jf(qj)  - ccciAt,k[&j  - bj]f(qj),
j=l j=l

and, by (2.1) we have & - b = ec(b - b) and hence

(2.7) Vi = Un + Atne&jf(qj)  + eiAt,,E.
j=l

Thus  (2.6), (2.7) hs ow that,  under  error  control,  the Runge-Kutta method (1.2), (1.3)
is a perturbation  of the new Runge-Kutta method defined  by (2.1) and (2.2); the
perturbation  E is small and controlled  by (2.3)  or (2.4) depending  upon the type  of
error control  used. The  basic idea  behind  this work is that,  if the scalar ec and the
vector  e can be chosen  to make  the new Runge-Kutta method a, & have desirable
properties  then it may be possible to prove that those properties  are also shared  by
the underlying  embedded  pair  A, b, b. In particular,  recalling  the definition  of algebraic
stability  of a fixed-step  method A, b from [l] and of DJ-reducibility  from [lo],  we make
the following  definition  for variable-step  embedded  pairs:

DEFINITION 2.1. The embedded Runge-Kutta pair (1.2)-(1.4)  (briefly  A, b, b,J is
said to be algebraically stable if there exists e E Bk and eo E JZ such that the Runge-
Kutta method A, b defined by (2.1), (2.2), is algebraically stable.

Note that it is possible  that for explicit embedded  pairs to be algebraically  stable
and we will give examples  of such schemes. With this possibility  in mind we now
examine  in detail the existence of algebraically  stable embedded  Runge-Kutta pairs.
In the following  we shall  the need the matrices

P-8)

We shall  denote  by I c R the closed interval  for which  B is positive  semi-definite
if ec E I and also define

s = (x E Rk : XT, = l},
V = (x E S : (6 - b)Tx  = 0},

Vc = {z E S : I(6 - b)TxI 5 E}.

LEMMA  2.2. Given eo E I \ (o)  for which B is positive definite, the embedded
pair A, b, b is algebraically stable if M is positive definite on V. Conversely if for each
eo E I there exists x E V for which xTMx < 0 then the embedded Runge-Kutta pair
A, b, b is not algebraically stable.
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Proof. The Runge-Kutta method a, & is algebraically  stable if &f, fi are positive
semi-definite  [ 11. Now

XT&ix = xTBAx + xTATBx - xTihTx
= 2(Sx)TAx - (STxy

= ~(I?x)~(Ax  + eoe(6 - b)Tx) - (&Tx)2

= HOAX + 2eo(&  - b)Tx(xTbe)  - (6Tx)2
= xTfix + 2eo(6 - b)Tx(xTBe).

If fi is positive  definite on V then, by continuity,  for E sufficiently small 36 > 0 such
that

Furthermore,  since S is a bounded set 3y > 0 :

xTiGx 1 -y on {x E S\VC}.

If we chose  X > y/(2ezE2) and let e to be the solution  of
.

Be = A(b - b)eo

(2.10) xTfix  = xTax + 2Xet[(&  - b)Tx]2 > 0 on {x E S\V,}.

The first part of the result  follows  since (2.9), (2.10)  give lower  positive  bounds  on
xTMx on S.

The second  part of the result  follows  in a straightforward  fashion  since
.

xTMx = xTMx on V.

cl

This lemma shows that,  although  there  appear  to be k + 1 parameters  to play
with to ensure  that a, & is positive  definite  in fact  there  is only one in almost  all cases
- this follows  since ec is the only free parameter  in n?. Thus we now concentrate  on
studying  fi on V. Notice  that if A, b is explicit  then, since k is the algebraic  stability
matrix for the explicit Runge-Kutta method A, & it cannot  be positive  definite on S?.
Furthermore,  it is well-known  that the extreme  values  of the quadratic  form xTfix
on V interleave  the eigenvalues  of B [21] and so we trivially  find from Lemma 2.2
that:

COROLLARY  2.3. If fi has two negative eigenvalues for all eo E I then the
embedded pair A, b,& is not algebraically stable.

Lemma  2.2 and Corollary 2.3 are suggestive  of an order barrier for explicit  al-
gebraically  stable  methods  and we now prove that if A, b, b has order (p, q) with
min{p, q} 2 5 and bi 2 0 then it is not algebraically  stable. Preceding  this theorem
are two lemmas  needed in the proof:

LEMMA 2.4. If A, b,b has order (p,q) with min{p, q} > 5 then A, & has order
2 5.
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Proof. Note that if a, b and a, 6 have  order 5 then so does  A, b since  & appears
linearly in the order conditions  131. Thus  it is sufficient  to show that a, b (and hence
by an identical  argument  that A, 8 has order 5. Noting  that

(2.11) pi = &hij = &aij + eoei(&j  - bj) = &aij = ci
j=l j=l j=l

the result  follows  from straightforward  but tedious  manipulations  of the order condi-
tions,  using  (2.2). II

The following definition  will be needed:

DEFINITION 2.5. The embedded pair A, b, b is irreducible if no stages vi can be
simultaneously removed from both the methods A, b and A,b to yield an equivalent
method with fewer stages.

LEMMA 2.6. Assume that the embedded pair A, b, b is explicit, irreducible, alge-
braically stable and has order (p, q) with min{p, q} 2 5. Let T = {j E 2 : bj = 0).
Then:

(i) 3J 2 3 : T =-{j : 1 5 j 5 J}.
(ii) Ci=ltiijcj  = C:,laijcj  = $12, i 4 T.
(iii) bj # 0, bj # bj Vj E T;
(iv) Uij = eibj,&j = O,Vi, j : i $! T, j E T;
(‘vj3jET:bj <O.

Proof In the following we define

(2.12)
k k

di= -~,~i=C~ijcj-~.
c

t&j Cj

j=l j=l

Since  a, &, A, b and A, b have  order at least  five,  it follows  from the proof  of Lemma
IV.13.12 in [lo] that

(2.13)
k
c &d! = 0, kbid: = 0, ebid: = 0.
i= 1 i= 1 i= 1

Since  a, 8 is algebraically  stable  it follows  that Si 2 0 for all i. Let T = {j : bj = 0.).
Thus

(2.14) di = 0 i $ T.

Also
k k

c-CQjCj = C[aijcj + eoei(bj - bj)cj]
j=l j=l



since the methods  A, b and A, b have order greater  than  2. Thus,  by (2.12) and (2.14),
di = & Vi and SO

(2.15) di = 0 Vi @ T.

Equations  (2.14), (2.15)  establish (ii).
Because  the method a, & is algebraically  stable it is DJ-reducible  [lo]  to a method

with & > 0. Thus it follows  that

(2.16) aij = Clij + eoei(bj -bj)=O,Vi@T,jET

and that

(2.17) ij = bj + eo(Ej - bj) = 0,Vj E T.

For the purposes  of contradiction,  let j E T and bj = 0. Then bj = 0 since ec # 0 and
it follows that aij = 0 Vi e T, j E T. But this contradicts  the irreducibility  of A, b, b.
Thus bj # 0 and then &j # bj by (2.17). Hence

(2.18) bj # 0 and bj # bj V j E T.

Combining (2.16), (2.17)  gives

(2.19) aij = eibj,Vi,  j : i 4 T, j E T.

Equations  (2.16)-(2.19) establish (iii) and (iv).
Now we characterise  T. Clearly 2 E T for if not we have  by (2.15)

(2.20)
k

d2 = ca2jCj = -4/2= 0
j=l

which  is not possible  for an irreducible  explicit  method. For the purposes  of contra-
diction, let 1 4 T. Then, since the method  is explicit  ~12 = 0 and (2.19)  gives er = 0
since b2 # 0, by (2.18). Now el = 0 implies tirj = arj = 0 Vj, by (2.2). This gives a
contradiction since &rr = 0 implies

e
xTMx = -8; < 0

if 2 = (l,O,...,O)T and since  br > 0 if 1 6 T; this violates  the algebraic  stability  of
a, ii

Thus 1,2 E T. Assume  that j E T for 1 5 j 5 J and that J + 1 6 T. For the
purposes  of contradiction,  assume that 3j* > J + 1 : j* E T. Then,  since the method
is explicit, a~+l,j* = 0 and so, by (2.19), eJ+r = 0, since bj* # 0 by (2.18). Thus,  by
(24,

aJ+l,j = bJ+l,j,V.i.

If the vector  x is defined  by {x}i = 6i,J+r with the usual  Kronecker-delta  notation
then it follows  that ax is orthogonal  to Bx :

{AX}; = &,.l+l) { BX}i = &bi,J+l,
10



so that

(Bx)~(Ax) = ~J+$J+I,J+I  = b+m+l,J+l = 0,

since aii = 0 for explicit methods.  Hence  xTax = -is+, < 0 and the contradiction
follows  since &J,, > 0 as J + 1 4 T.

Finally, to complete  (i), we need  to show that J 2 3. By (2.12), (2.13)  and (2.15)
we deduce  that

(2.21)
J

c bid: = 0.
i= 1

Note that d2 # 0 for an irreducible  explicit  method  by the argument  following  (2.20).
Since dl = 0 for an explicit  method, d2 # 0 and b2 # 0 by (iii), we decude  that J > 3.

To complete  (v), note  that since b2, d2 # 0 it follows  that 3j E T for which bj < 0.
Cl

It follows  automatically  from Lemma  2.6(v) that

COROLLARY 2.7. There are no explicit algebraically stable embedded pairs with
non-negative weights bi and order (p, q) satisfying min{p, q} 2 5.

Proof. Assume  to the contrary  that p, q 2 5 and the weights  bi 2 0. By Lemma
2.5(v) we obtain a contradiction. Cl

REMARK Most  standard  methods  are constructed  with the simplifying  assumption
that the bi 2 0 [3]; thus  Corollary  2.7 maybe of interest.

We now proceed  to give some examples  of algebraically  stable embedded  pairs.

EXAMPLE  2.8.

One of the simplest  error  control  strategies is to take  the explicit  Euler  scheme

(2.22) Un+l = un + &f(k)

and then form the second  order accurate  approximation

(2.23) Vn+l = un + $f(Un) + f(Un+1)1.

This method has order  (1,2). In the standard  Butcher notation  we have that

A = ( ;  1). b=(:). 6=( ;).

If we take  ec = 2 and e = (0, l)T then

The new method is DJ-reducible  [lo]  to the backward  Euler scheme and hence alge-
braically  stable.  0

11



EXAMPLE 2.9.

As a second  example  we consider the Fehlberg order (2,3) method given by

771 = Ka,

172  = Un + &f(ql),

un+l = u* + $wVl)  + f(t72)],

Vn+l = Un + $wl) + f(772)] + Ff(q3).

In the standard  Butcher  notation  we have that

If we take  es = $j and e = (O,O,  f>’ then

i 0 0 0
fL 100

0 0 3

I 0

&= i1 0.

1

The new method is DJ-reducible  to the implicit mid-point rule and hence algebraically
stable.  0

EXAMPLE  2.10.

Because  of the order barrier established in Corollary  2.7, it is not possible  to find
explicit  algebraically  stable embedded  pairs  with order (p, p + l), p 2 5 and positive
weights bi. However  it is possible  to seek  methods  of order (p, 1) for arbitrarily  large
p .  Let

(2.24) un+l = Un + Atnfx(Un;  Ah),  UO = u,

denote  any Runge-Kutta method  where  f( Un ; At,) is defined  in the natural way from
the internal stages of the Runge-Kutta method by (1.2), (1.3). Thus  in the case  of
explicit  embedded  pairs  we have

i - l

(2.25) ii(~, At) := C a;jf(~ + Atij(U,  At)), i = 1,. . . , Ic,
j=l

12



(2.26) f(u, At) I= &bjf(u + Atjj(u, At))-
j=l

Now define,  for 0 E (0, l]

(2.27) Vn+l = un + Atn[(l - e).f(Un; At,) + Of(Un+l)]

The error controls  (1.5), (1.6)  with eo = 0-l then imply that

(2.28) II.f(un;  Ain) - f(Un+l)II  L 7

or

(2.29) ILf(un;  AL) - f(Un+l)ll 5 T3/Atn

respectively  so that the original  scheme is close  to the backward  Euler  scheme and
hence the embedded  pair  is algebraically  stable.  Notice  that whilst this error control
is non-standard,  it is cheap  to implement  since f(Un+l) must be calculated  as the
first function  evaluation  in the next  step  of any explicit  method. Indeed the error
controls  (2.28)  or (2.29) can be implemented  directly  without  calculating  Vn+l and
could  be used,  for example,  in addition to a standard  error control  mechanism  based
on an order (p, p + 1) pair.  This does  not greatly increase  computational expense.

If (2.24) is the explicit  Euler  scheme and 0 = l/2 then the method is simply the
order (1,2)  pair of Example  2.8. However,  if the method (2.24)  has order p > 1 then
(2.27)  has order 1: assume  that  (2.24)  is defined  by a (Ic - I)-stage Runge-Kutta
method and let { bi, ci )fzt and {b;, ?;)fzl denote  the standard  weights  for the Runge-
Kutta  methods  (2.24) and (2.27) respectively. If (2.24)  has order p > 1 then, by

k - l

c
b; =

i=
1, 5 bici = f.

1 i=l

The method (2.27) has

bi =(l-B)bi, Ei =ci, i= 1)“‘) x:-l

and

Clearly

bk = 8, ck = 1.

k

c 6; = 1;
i= 1

however
k
c I;$; = i-e 1 8 1

z+e=2+5#2
i= 1

since 8 = 0 is not admitted.  Thus  (2.27) has order 1. 0
13



EXAMPLE  2.11.

The methods  of Example  2.10 can be generalised as follows.  Let

Un+l = Un + Atn.f(Un;  AL), UO = U>

Vn+l = un +&[(I - @)f(Un;At,)+Of(~)]

where

(2.32) 17 = (1 - 4)un + Wn+l,

and 4 E [$, 11. Equation  (2.30)  represents  any explicit  Runge-Kutta method defined
by (1.2),(1.3)  and f is there ore defined  by (2.25), (2.26). This particular  method willf
be considered  in detail in section  5, with the time-step  chosen according to the error
per unit step  criteria  (1.5) with ec = 8-l. The assumption  that 4 E [$, l] is necessary
and sufficient  for the embedded  pair to be algebraically  stable.  If 8 = $, 4 = 1 and

f(u; fyj E f(u) then the method is the embedded  (1,2) pair of Example  2.8. If
4 =2, =32 and f is appropriately  chosen  then the method is the Fehlberg (2,3) pair
described  in Example  2.9.

Notice  that the methods  of Example  2.9 correspond  to choosing  4 = 1. Setting
4 # 1 allows higher order error  control  than is possible  with the methods  of Example
2.9, but at the cost of introducing  an extra stage to the Runge-Kutta  method.

The order barrier; min(p,  q) 5 2 for (2.30)-(2.32) can be established  by manipu-
lating the order conditions.  It is also easy to see that if p 2 2 and.4 = $ then Q = 2
and hence that there  exist schemes of order (p, 2) for arbitrarily  large p. 0

3. Satisfaction of Error Control Criteria. The numerical  approximation to
(1.1) is given by a sequence { Un}F’io  generated  by (1.2)-( 1.3). In order to specify
such a sequence, given initial data  UO = U, it is necessary to show that there  exists
a sequence  {At,}:‘-0 so that the Runge-Kutta equations  (1.2) are solvable  for every
n 2 0 (which  is, of course, trivial,  if the error  control  scheme is explicit)  and so that
the error  control  criteria  (1.5) or (1.6) is satisfied  for every  n 2 0.

Furthermore,  for the kind of problems  in which are are interested here,  the un-
derlying differential  equation  has solutions  defined  for all t 2 0. For this reason it
is important to show that the error control  criteria  may be satisfied for a time-step
sequence  {At,}:=0 uniformly  bounded  from zero - i.e. inf,>, At, > 0.

In this section  we describe  a general framework  in whichwe  analyse these  issues.
Note that the error control  criteria (1.5) or (1.6) determine At, implicitly  as a function
of Un, once  a method has been  determined  to ensure  their  satisfaction.  Thus  we may
think of At, in the following  way:

Atn = l?(Un,T>-

We shall  not need  to specify  a particular  I in this paper - we shall  simply  show that,
under  suitable  conditions,  (1.5) or (1.6) can be satisfied.  However, it is worth  noting
that, in typical  impmentations  I’(., 7) is a discontinuous  function,  since (1.5) or (1.6)
is usually achieved through  an iterative  procedure  in which the prospective  time-step
is determined  by decreasing the candidate  time-step  by a constant  factor, until (1.5)
or (1.6)  is satisfied.

14



We commence by defining appropriate  classes  of functions  and making a definition.

NOTATION 3.1. We denote the class of Lipschitz continuous functions mapping
lRp into lRp and satisfying (D), (C), (E) or (Gl-G5) by 3(D), 3(C), 3(E) and 3(G),
respectively.

DEFINITION 3.2. Given an embedded pair (1.2)-(1.4),  (1.5) or (1.2)-(1.4),  (1.6)
a sequence {(UT, Vz, Atn)}r.io  with (UT, V,T, At,) E R2p+1  satisfying (1.2)-(1.4),
(1.5) 07. (1.2)-(1.4)  (1.6) is admissible if inf,,zc At, > 0. An embedded pair is 3(o)-
admissible if for every function f E 3(o) and all U E lRp there ezists r* = r*( f, U)
such that the embedded pair has an admissible sequence for each r E (0, r*). The pair
is 3(o)  - globally admissible if a r+ may be found which is independent of U.

Note that an 3(o) - globally admissible embedded  pair is considerably  more  ro-
bust than an 3(o)- admissible embedded  pair since a suitable  T can be found  which
is independent  of initial data  U.

We now address  solvability  of the Runge-Kutta equations.  In the following  it will
be useful  to define

LEMMA 3.3. For any y > 1 let

Q(X) = {u E Rp : 11~ - XII 5: At%llf(X>ll),

L(X) be the Lipschitz constant for f(o) on Q(X) and let K(X) = SUP,,,Q(X) 11f(u)11-
Then, for all At E [0, At,(X)),  where

At,(X) = min : At = &$$,
AtEm+

there exists a unique solution (~i)~Z=l,~;  E RP of the equations

(9-s) qi = X + AtCa;j f (qj)
j=l

satisfying 7); E Q(X). Furthermore if {qf}fZ1,  I= 1,2 are solutions of (3.3) correspond-
ing to distinct values At = At1 and At = At2 respectively, At’ E [0, A&(X)),  1 = 1,2
then

llq; - $11 5 GlcyK(X)lAt’ - At21

and

IIUn+l - unll  I At&l/f (X)11*

Proof Note that the construction  of At, in (3.2) is slightly non-trivial  since  L(X)
depends  upon  At. Nonetheless  it is clear  that At, > 0 and that,  furthermore,

(3.4 At < ’ -7-l
&c(X)
15



for all At E (0, At,).
The existence  of a solution  satisfying  the appropriate  bound on the qi follows

from a contraction mapping argument,  similar to that in [2] and here based on the
iteration  scheme

ei”+l = X + Atka;jf(<f), i = 1,. . . , K.
j=l

If biE1~ 1 = 1,2 solve (3.3) then

q~=X+At’~a,r(r$),  i= l,..., k, l=l,2.
j=l

Hence

!I$ - $11 = Il&aij(At’f <b> - At2f($I)ll
j=l

I &~~lllfh;~  - f($)ll + Pt’ - ~t2111f~$M
j=l

5 CkL(X)At’ Ip.k 11~; - $I+ iikK(X)lAt’ - At’].
--

Since  this is true for any i and since iikL(X)At’ _< (1 - 7-l) it follows  that

II

Next we discuss whether it is possible  to satisfy (1.5)  or (1.6). To this end,  define
&, V, W : R x Rp --) Rp which are functions  of At and X satisfying

(3.5)

P-6)

and

WI

Fi=x+Atkaijf(E,), i= l,...,k
j=l

W = X + At&bjf((j),
j=l

V = X + AteSf(&)-
j=l

Note that  these  functions  are well-defined  by Lemma  3.3 for any X E Rp and any
At E [0, W(X)). Hence we may define  G : [0, Ate(X))  x Rp + R by

(3.8) G(At, X) = ‘IWAt ‘]I,
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and H : [0, At,(X))  x Rp ---* R by

w H(At,X)  = AtG(At,X).

The functions  G(o, Un) and H(o, Un) must be made sufficiently small in order to sat-
isfy the error controls  (1.5) or (1.6) respectively.  Thus their  properties  are important.

LEMMA 3.4. The functions G(At, X) and H(At, X) satisfy G(0, X) = H(0, X) =
0 VX E lRp and are Lipschitz continuous in At E [0, At,(X)).

PrOOf Since  CF=lbj = Cr,lSj = 1 and [j (0, X) = X VX E Rp it follows  that
G(0, X) = 0. We now show that G(o, X) is Lipschitz continuous  in At E [0, At,(X)).
Note that

=

IG(At’,  X) - G(At2,  X)1

II&cS - bj).f(& (X9 At’)>11  - lIk(bj  - sj).f(rj(X, At2))ll
j=l j=l

L II&C6, - ij)V(G (X9 At’)> - f(tj (XT At2))J11
j=l

I kL(X) l~jyk Ibj - ij I II&(X, At1) - &(X9 At2)ll.--
Thus,  by Lemma 3.3,

(3.10) IG(At’,X) - G(At2,  X)1 5 CaL(X)K(X)lAt’ - At21,

with Cz independent  of X. Thus G(o, X) is Lipschitz.
The properties  of H(o, X) follow immediately  from those  of G(o, X) since H(At , X) =

AtG(At, X). Cl

We can use Lemma 3.4 to establish admissibility.

THEOREM 3.5. Assume that 3~* = T*(U)  > 0 and a compact set I = I(U) c Rp
such that, for r E (0,~‘) any solution sequence {U,,}~=,  satisfying (1.2)--(1.4), (1.5)
remains in I Vn 2 0. Then 3 an admissible sequence satisfying (1.2)-(1.4),  (1.5).

Proof. Let

(3.11) At c = ,;yf,,{Atc(X),
7

le0lC3L(X)I~(X)
1

where Ca is defined  in (3.10)  and At,(X) in (3.4). Notice that  At, > 0 since both the
Lipschitz  constant  for f and and K( )l are bounded  on any compact set. Now consider
(1.2)-(1.5)  with At,, G At, Vn 1 0. Assume, for the purposes  of induction, that 3
solution  sequences  { Un}rzo and (Atn)fL,l  satisfying  (1.2)-(1.5) for n = 0, . . . , N - 1
with At,, 3 At,. Then, by assumption  UN E I(U) and hence,  by Lemma 3.3 and
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(3.11) 3 a solution  {~;}~=i to (1.2) and thus a vector  UN+~ E Rp satisfying  (1.3) with
n = N and AtN = At,. By Lemma  3.4 and (3.11)

IG(Atc,  UN)I = IWO, UN) - G(, A&, UN)~ 5 r/leol.

So, by construction,  the error  control  criteria is satisfied. Thus 3 solution sequences
{un >,“=‘o’ and {Atn}r.o  satisfying  (1.2)-( 1.5)  for n = 0, . . . , N with At, G At,. The
inductive  hypothesis  is true  for N = 1 by an identical  argument  since U E I(U) and
hence an admissible  sequence has been constructed  satisfying  infnzc At, = At, > 0.
II

The following  Corollary  is immediate.  Furthermore,  Theorem  3.7 and Corollary
3.8 follow similarly  for the error  control  scheme (1.2)-( 1.4),  (1.6).

COROLLARY 3.6. Assume that, for every function f E 3(o)  and all U E Rp
37* = T’(f,U) > 0 and a compact set I = I(f, U) c Rp such that, for r E (0, r*)
any solution sequence {Un)z=o satisfying (1.2)-(1.4),  (1.5) remains in I Qn 2 0. Then
(1.2)-(1.4),  (1.5) is3(0)- da missible. If r+ is independent of U then (1.2)-(1.4),  (1.5)
is 3(a)  - globally admissible.

THEOREM 3.7. Assume that 37* = r*(U) > 0 and a compact set I = I(U) c Rp
such that, for r E (0, 7’) any solution sequence { Un}pzo  satisfying (1.2)-(1.4),  (1.6)
remains in I Vn 2 0. Then 3 un admissible sequence satisfying (1.2)-(1.4),  (1.6).

COROLLARY 3.8. Assume that, for every function f E 3(o) and all U E lRp
37* = T*(f,  U) > 0 and a compact set I = I(f, U) c Rp such that, for T E (0, T*)
any solution sequence {Un)~=o satisfying (1.2)-(1.4),  (1.6) remains in I Vn 2 0. Then
(1.2)-(1.4),  (1.6) isF(o)-  da missible. If r* is independent of U then (l-2)-(1.4),  (1.6)
is 3(o) - globally admissible.

4. Dissipative and Contractive  Problems. In this section  we analyse error
control  schemes under  assumptions  (D) and (C) respectively.  We assume throughout
that  there  is an upper bound  At,,, on the time-step;  this need  not be small and
can be thought  of as an U(1) bound independent  of r. Such  an upper bound if often
imposed by an actual implementation  of an embedded  pair in a software  code  to
prevent enormous  steps  from begin taken  - see [7] for a discussion  of this point.
Furthermore,  we make  the following  assumption,  noting that any algebraically  stable
method a, b is DJ-reducible  to one with positive  weights [lo]:

(K) For the u e ruically stable scheme A, b DJ-reduced so that B is positive definite,lg b
there ezist vectors z = (21,. . . , zk) and (dl, . . . , dk) such that

ATd + fiTz = b - diag(e)&

and

wTd=l

where w = (1,. . . , l)T.

Note that (K) qre uires that some linear  combination  of the columns  of h and a
is an invertible  matrix.  The schemes  in Examples  2.8 - 2.11 all satisfy this condition.
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In order to clearly state the sense in which the numerical  method inherits the
properties  of the differential  equation  for problems  under (D), (C) and (E) we make
the following  definition.

DEFINITION 4.1. The embdedded pair (1.2)-(1.4),  (1.5)  or (1.2)-(1.4),  (1.6) is
said to be 3(o)- dissipative if it is 3(o)-admissible and if 3 rc = TV and an
absorbing set B, C BZp, independent of U and uniformly bounded us r + 0, such
that, for-r E (0, G) and every admissible sequence with inf At, 1 dt > 0 3n* =
n*(U,  r, At) : Un E B, Vn 2 n*. The pair is 3(o) - globally dissipative if in
addition, re is indepdendent of U.

We prove the following  two results  which show that the error control  enforces
discrete analogues  of Theorem  ODE(i),  (ii). No ice that,  for the error  per unit stept
scheme, the upper bound on the tolerance
true for the error per step scheme.

is independent of initial data. This is not

THEOREM DC1 Consider (1.2)-(1.4) with error control (1.5). Assume that A, b, b
. is algebraically stable and satisfies condition (K) and that At, < Atmat Vn 2 0. Then

the embedded pair is 3(D) - globally dissipative and 3(C) - globally dissipative. In
the second case it follows that ~~u~~2  5 cr Vu E B,, the absorbing set.

THEOREM DC2 Consider (1.2)-(1.4) with error control (1.6). Assume that A, b, b
is algebraically stable and satisfies condition (K) and that At, 5 At,,, Vn >, 0. Fur-
thermore, ussume that the unique solution of the Runge-Kutta equations (1.2)  sutisfy-
ing 77i E S(V,) constructed in Lemma 3.3 is used for each n 2 0. Then the embedded
pair is 3(D)- dissipative and 3(C)- dissipative. In the second tase it follows that
~~u~~2  5 CT Vu E B,, the absorbing set.

Noe that Theorem DC1 is considerably  stronger than DC2 since global  dissipa-
tivity is achieved.

We now derive a preliminary  lemma for the scheme (1.2)-(  1.4), using the repre-
sentation  (2.6), (2.7). 0ur approach  is motivated  by the papers [l] and [12]  where
similar manipulations  are performed  in the case E E 0. Throughout we use the nota-
tion fj = f(qj).

If A, b, b is algebraically  stable then the new Runge-Kutta method  A, & is alge-
braically  stable by definition.  Furthermore  a, & is DJ-reducible  to a method  with B
positive  definite  [4], [lo]. If such a non-trivial  reduction  is possible  then we define  a
reduced  Runge-Kutta method  from a, & by removing  vj, j E T, (where  T is defined  in
Lemma 2.6) from the definition. However  we will use the same notation  A, & for the
reduced  method and the same index k for the number of stages.  All subsequent  ma-
nipulations  of (2.6), (2.7) apply with k, a, 6 given by reduced method. Notice  (from
Examples  2.8 and 2.9 ) that the reducibility  of the method  a, & does not imply the
reducibility  of the method A, b, b.

LEMMA 4.2. Let the embedded pair A, b, b be algebraically stable and satisfy (K).
Then, under the structural assumption (0) on f, solutions of the embedded pair (1.2)-
(1.4) satisfy

(4.1)
llUn+1112 L llUnl12  + 2AtnEfz,iiCa  - Pll%ll”l

+2At,Cf=ldi(E,  vi) + CAt~IIEI12,
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where
k k

(4.2) ’ = C I+ijzixjI + 2Cldjej I + 1.
ii=l j=l

Proof. From (2.6) we obtain

IIUn+1112  = IIUnI12  + zat,Lij(Un,  fj) + At: 2 bibj(fi,  fj)
j=l i,i =l

+2Atn(E,  un> + 2Atzkij (E, fj) + AtillEl12.
j=l

Now, from (2.7)  we have  that

(%,fi>  = (Un,fi> + Atn&&j(fi, fj) +eiAt,(E, fi).
j=l

Combining these  expressions  gives

IIun+1112 = llunl12  + 2AtnCf=lh(~i,  fi)

+At;Cks,j=liiij(fi, fj) + 2Atn(E,  un) + 2AtXC;=lbj  (E, fj) + At~ll&‘ll”.

Now note that,  by assumption  (K) on d and by (2.7),

(4.4) un = ed,cS. = kdil)i - Atnedik&j fj + Atn&dieiE.
i=l i=l i=l j=l i=l

I

Recall  IQ defined  by (2.8) and let 7s.lij = {Ik)ij. By the symmetry of M it follows
that

(4.5) cf,j=,&j(fi,fj)
+2Cf,j=1

= Cf,j=l&j(fi - XiE, fj - XjE)
kjxi(E, fj) - C~,j,l~ij~ixjllE’l12-

Noting  that

2 & ii&j(fi, fj) = k [iiiiij + bjiji](fi, fj)
i,j =l i,j =l

and combining (4.3)-(4.5)  gives

IIUn+1112 = II’~I12+‘A’n~‘~~~~,B)-atZ~Aij(f~-xiE,  fj-xjE~-2At~~~~j~~~E,fj~
i= 1 i,i =l i,j =1
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+Ati k tiijzixjllE(12 + 2Atzkbj(l - ej)(E, fj) + AtiIIEll” + aat.e&(E, vi)
i,i=l j=l i= 1

k k

-2Ati C &jdi(E, fj) - 2At~~dieillE112.
i,i=l i= I

Using  the structural  assumption  (D) on f, the positivity of 2 and condition (K) on
the method  we deduce that (4.1), (4.2) hold.  This completes  the proof.  Cl

4.1 Error Per Unit Step

We now prove Theorem  DC1 through  a basic lemma onAadmissibility.  Recall  that,
for the DJ-reduced  method  which for simplicity we denote  A, &, it is known that ii > 0
for all i. Now, using

2di(E, vi) I Idi1 lIEI [1 + h1121
we obtain  from Lemma  4.2, in the error per unit step case (1.5) (which  implies (2.3))

IIun+l  II2 5 llun II2 + 2Atnkh [G - Pllqi II”]
i= 1

where

fs=a+ r2CAtmaz
2

and we have  assumed that At,, 5 At,,,. If we define

(4.8) r* 2/3&j=min-
i Idi]

then p > 0 provided  that r < r*.

LEMMA 4.3. Assume that At, 5 At,,= Qn 2 0. Then, under the conditions
of Lemma 4.2, the embedded Runge-Kuttu pair (1.2)-(1.4),  (1.5) is 3(D) - globally
admissible and 3(C) - globally admissible.

Proof. Note that 3(D) global  admissibility  implies 3(C) global  admissibility
since assumption  (C) implies (D) with cy = 0. Let r* be defined  by (4.8), noting  that
it is independent  of U. Given any p > 0, define

(4-9)

where

C= max
llll*lll7i

R G+p= - + At,&
P

k
2 C bieij (Vi, f (Vj)) + Atrnaz~b~ll&eij  f (qj >Ij2

_ i,j=l i= 1 j=l 1 I
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eij = bj -aij,

and

(4.10) Y?
h+p

=piii-

Let

I(U) = {u E Rp : ~~u~~2 5 m={llul12, R}} .

We show that any solution  sequence  must remain in I(U). Noting  that Uc E I(U), we
proceed  by induction.

Assume  that  UN E I(U). Now, if

then (4.6), which follows  from Lemma 4.2, gives

and UN+~  E I(U) follows.  Alternatively,  if

&gi[e -P11~il12]  10
i=l

then

2bj II ljj II 2 a5 2 * 11%112 5 %, p > 0.
i=l i

Now (1.2), (1.3) give

Un+l = vi + Atn~eijf(~j)
j=l

and hence

IIUn+1112 = IIWI12 + 2Atn~eij(~;, f(qj)) + Atijleeij f(qj)l12.
j=l j=l

Noting  that

llun+1112  = &iillU.+ll12
i= 1

we obtain UN+~ E I(U) and the inductive  step  follows.  This completes  the proof  by
Corollary 3.6, since r* is independent  of U. II

Proof of Theorem DC1 The 3(D) and 3(C) global  admissibility  of the scheme
are established  in Lemma 4.2. Thus it remains to exhibit  an absorbing  set B, for
every admissible  sequence.

22



Let rc = r* defined  by (4.8) and define

(4.11) BT = {u E ltifp : Ilull < R},

where  R is defined  by (4.9). Take any p > 0. Whilst

(4.12) fJ&i[& - PII%I12]  5 -p
i=l

we have  from (4.6)

(4.13) IIUn+1112  5 IIUnI12  - 2&p-

Alternatively,  if

(4.14) kiila - 8~~~i~~2] 2 -p
i=l

it follows that

6 II II
i=l

~j qj 2 L ~

and then, as in the proof  of Lemma 4.3, that

(4.15) IIUn+1112 L R-
NOW, if llUnIj2  5 R and (4.12)  holds then,  from (4.13)  we have that llUn+1112  5 R.

On the other  hand,  if (4.14)  holds then llUn+1j12 5 R by (4.15). Hence  the set it;,
is positively  invariant.  It remains to show that iterates starting outside  B, enter  8,
after  a finite number  of steps  n*(U,  T). A simple contradiction  argument  shows that
this must occur for,  if IlUn+lII”  > R Vn 2 0, then (4.13)  holds for all n 2 0 and hence,
since the sequence  is admissible,  36t > 0 :

lluNl12  < Ilull - 2htpN, N > 0.- -

Letting  N --) 00 gives a contradiction.  Thus  we have  3(D) and 3(C) global dissipa-
tivity.

In the second  case where  (C) holds we have that o = 0 so that G, defined  by
(4.7), is O(T).  The proof  proceeds  as for (D) except  that now we take  p = r in the
construction of R given by (4.9). Clearly  yi = O(T*) and by the Lipschitz continuity
of f it follows  that

for some  constant  c independent  of r. Thus  (4.9)  shows  that R = CT, c independent
of r and this completes  the proof. 0
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4.2 Error Per Step

We now extend  the analysis  of subsection  4.1 to the error per unit step case.  We
define  R as in (4.9) and set

(4.16) RI

We may then  define

(4.17) I(U) = {u E Rp : ~~u~~’ 5 m~{~~~~~2,  RI}} .

Now let

(4.18) ,

where  r* is defined  by (4.8), the constants  6, & and y are as in Lemma 3.3,

LI = SUP L(X)
XEI(U)

and L(X) is the Lipschitz constant  for f described  in Lemma 3.3.
We now prove Theorem  DC2  through a basic lemma on admissibility,  paralleling

the proof  of Theorem DC1 .

LEMMA 4.4. Assume that At, < At,,, Vn 2 0. Furthermore, assume that the
unique solution of the Runge-Kutta equations (1.2) satisfying vi f &(Un)  constructed
in Lemma 3.3 is used. Then, under the conditions of Lemma 4.2, the embedded
Runge-Kuttu pair (1.2)-(1.4),  (1.6) is 3(D)-admissible and 3(C)- admissible.

Proof Assume  for the purposes  of induction  that

Clearly  this is true for N = 0. Recall  the bound (2.4) for IjEll under (1.6). Clearly,
if AtN 2 r2 then lIEI 5 r and (4.6)  f 11o ows just as in the error per unit step case.
Thus,  if AtN 2 r2 we deduce that,  as in the Proof of Theorem DCl, either

(4.19) IIuN+1112  5 lluNl12 - 2AtlvP,

or

(4.20) llvEi+1112 5 Rl

since R 5 RI by (4.16).
If L&N 5 r2 then we may exploit  the size of AtN and work with the numerical

method in the original  form (1.2)-(1.3).  From (1.3) we obtain

uN+1 = ‘N + AtNkbjf(LiNfl) i- AtNkbj[f(qj) - f(UN++l)].
j=l j=l
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Taking  the inner  product  with UN+~ we obtain,  from (D) and using  L(o) as defined
in Lemma  3.3,

Applying Lemma 3.3 we obtain

11% - un+lll I llrlj - UnII  + IIUn+l - UnII

Hence

$h~12 + &v[o - PIICv+1/12]  + fNv2~ik2L~ sup Ilf(u)llllu~+lII.
UEI(U)

Using  r 5 7; we obtain

;l-h+~ll” I fllhI12 + &v[(~ + 7) - (P - ~)llvlv+111~].

Thus,  either (4.19)  holds, or’

IlUlv+1 II2 I “+r+p<R1
P-T

which is equivalent  to (4.20).
Hence  we have shown  that (4.19), (4.20) are true  regardless  of whether  At, 5 r2

or At, 2 r2. From these  it follows  simply that UN+~  E I(U) and the induction .is
complete.  The proof  then  follows  from Corollary  3.8, noting  that 7; depends  on U. 0

Proof of Theorem DC2 The proof  is identical  to that of Theorem DCl,  noting
that (4.19)  and (4.20)  form the basis  for the induction;  we take  rc = 7: and

B, =  {u E H :  lluj12 5 RI}.

Because of the dependency  of 7; on U only F(D)- and F(C)-  admissibility  are
obtained.  0

5. Weaker Forms of Dissipativity. In this section  we analyse error control
schemes under the assumption  (E). As in the previous  section,  we assume that  there
is an upper bound Atma= on the time-step,  which need  not be small. We are unable  to
prove results  for general  algebraically  stable Runge-Kutta pairs, and must work in a
restricted  class. Throughout this section  we consider the explicit  methods  of Example
2.11 with the time-step  chosen  according  to (1.5)  with eo = 6-l.

We shall  prove Theorem  E for the error  per unit step  scheme (2.30), (2.31),
(1.5))  a discrete analogue  of Theorem  ODE(iii).  However,  the numerical  analysis of
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this problem turns out to be more  subtle  than the analysis under  the dissipativity
assumption  (D) because  it is necessary  to choose  T depending  upon initial  data. The
discussion  in Example  7.2 indicates  why this is necessary.

Throughout the remainder  of this section  the definition  of R2 is given by (5.1)
with r defined  as in (E):

(5.1) R2 = r+ + At,,& - 4) ,;r;;i”,” IIf + Atma& - 4)~ 2 .
-r 1

THEOREM E Consider the embedded pair (2.30), (2.31)  with error control (1.5).
Assume that At, 5 At,,, Vn 2 0. Then the embedded pair is 3(E)-dissipative.

It is possible  to generalise  Theorem E to error per step strategies of the form (1.6)
as done in Theorem DC2  for the stronger form of dissipativity.  However  this is not
particularly  illuminating  and we omit the details.

We prove Theorem E through  a basic lemma on admissibility,  again paralleling
the proof of Theorem DC1 .

LEMMA 5.1. Assume that At,, 5 At,,, Vn 2 0. Then the pair (2.30), (2.31)  and
(1.5) is F(E)-admissible.

Proof Let

I(U) = {u E lRp : llu[12 5 M)

M = max{llul12,  R2))

and R2 is defined  by (5.1). Since (2.30), (2.31) is explicit,  f is Lipschitz  and At, 5
At maz there  exists M’ > 0 such that if llUnjj2 5 M then llU~+11j2  5 M’. Let

X = {x E Rp: r 5 11~11”  < M’}

and note  that X is compact.  Thus,  since (j(u), U) < 0 for all u E X there  exists & > 0
such that  (~(u),u)  < --E for all u f X. Now let

F-2) 2E
7<r(M)==.

For the purposes  of induction, assume that  UN E I(U) noting  that  this is true
for n = 0 by construction  of I(U). Note that,  by (2.32),

(5.3) IlQv+1II = 1177 + (1 - dwv+1 - Wll I llrlll  + (1 - ~WNSl  - hII>
and that the defining equations  (2.30), (2.31)  and (1.5) imply that,  since ee = 8-l)

(5.4) Ilm; MJ - ml1 I 7.
Now using  (2.30), (5.3), (5.4) and the fact that At,, < At,,, it follows  that

(54 llR~+111~  L & 5 max{llul12,  Rd, if lMl2 5 p.



Now suppose  that ~~~~~2  2 r. Taking the inner  product of (2.30) with q we obtain

W) (u~+~ - uN, 77) = AtN(f(q),  77) + At&UN; ANN) - fk?), ‘7).

Noting  that

(UN+1 - UN, ‘I) =  (UN+1 - UN, (I- d)uN +  4uN+l)

= -; [ll~N+1112  - lluNi12]  + (4 - ;)IlhV+l  - ud12

2 ;llliN+1112  - fllc’“ll’

for 4 E [i, 11, together  with (5.4)  we see that (5.6) implies

(5.7) $IuN+l II2 5 fllLi”ll’ - AiN& + &v+‘~~

for ]]v]]~  1 r. Since, by (2.32)

b?ll 5 (l - d)lIuNII + dIuN+lII,
(5.8) _

* b?ll 5 + + 3<l - dlluNl12  + $l~N+1112

we obtain,

(1 - &V~)llh+d12  5

(5.9)
(1 + AtzV(1  - ~))lluNl12  - At@& - 7)) 11’7[12  2 7‘.

Now since  T 5 7(M) and lluNl12 5 Ilull 5 M by assumption,  (5.2) implies  that

~IluNl12 5 2& - 7,

and thus from (5.9))

which implies that

(5.10) llvhr+1112 5 lluNl12  5 m={llUl12, &I, if 11~112 2 r.
Equations  (5.5))  (5.10) complete  the induction.  Since r(M) depends  on U, Corollary
3.8 with r* = 7(M) gives  3(E)-admissibility.  Cl

Proof of Theorem E The 3( E)-admissibility  follows  from Lemma 5.1. Thus we
need  only exhibit  an absorbing  set for every admissible  sequence.  Let r < rc = r(M)
defined  by (5.2). Define

(5.11) B, = {u E Rp : ~~u~~2  5 R2},
where  R2 is defined  by (5.1). We show that B, is positive  invariant,  by an argument
identical  to that in the Proof of Theorem  DCl,  using (5.5) and (5.10); thus if U, E B,
then Un+l E BT. Hence  it remains  to show that U,, enters  B, given U E Rp\Br.
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Assume  to the contrary  and note  that  this implies  that llUnl12  > Rz for all n 1 0 and
hence that 11~112 > r Vn 2 0 by (5.5). Then,  by (5.7) we have

llK+~ll~ 5 llKl12 - 2AtnE + 2Ak~llqll, f o r ~~~~~2 > r

Using (5.8) and noting  that IIUnll, IIUn+lll 5 IfUll by Lemma 5.1, it follows  that

(5.12) IIun+l~12  L llunl12  - 2Atn& + 2Atn+JII.

Since IlUll”  5 M, (5.2) implies  that

Hence  3~’ > 0 such that

TIlUll  - & 5 -&‘.

Thus  (5.12) implies  that

llun+1112  < llKl12 - 2&d-

A contradiction argument  as in Theorem DC1 shows that U,, enters  B, and the result
follows.  0

6. Gradient Systems. In this section  we consider error  control  schemes for
gradient systems satisfying  (Gl)-( G5). We are unable to prove results  for arbitrary
algebraically  stable embedded  pairs,  but derive  positive  results  for the order (p, 1)
embedded  pair (2.24), (2.27) constructed  in Example  2.10. We will impose  an upper
bound  At,,= on the time-step.  Unlike  previous  sections,  where  for dissipative  prob-
lems At,,, could  be taken to be arbirarily  large,  for gradient systems At,,, will be
bounded  above  in terms of the one-sided  Lipschitz constant  c appearing  in (G3).

Recall  that the equation  (1.1)  has the property  that,  under  (Gl-G5)  all trajecto-
ries approach  equilibria  as t ---) co. In subsection  6.1, we consider the error  per unit
step  strategy  (1.5) and prove  the following  result:  .

THEOREM Gl Consider (2.24)-  (2.27) and (1.5). Assume that At, 5 At,,, <
1/c Vn 2 0. Then the embedded pair is 3(G) - globally admissible; furthermore, for
any d > 0 there is r*(d) > 0 such that, for any r E (0,~‘)  and any admissible sequence
3N’ = N*(U)  7, d) > 0, and v E E : IlU,, - VII 5 d Vn 2 N*. If E is bounded then
(2.24)-(2.27) is 3(G) - globally dissipative.

This result  is analogous  to Theorem  ODE(iv),  noting  that d can be made arbi-
trarily small by choice  of 7. It is possible  to generalise  Theorem Gl to the error  per
step  case as for the dissipative  case in section  3 and also to implicit  (2.24)  but we do
not give details here.

Note that (G5) is a nat ural condition  to
of all gradient systems. For example,  if

impose,  and holds generically  within the
set



then, by continuity  of f, (G5) is automatically satisfied  for any 6 > 0.
From a dynamical systems viewpoint  (G5) may be considered  as a structural

stability  condition. If (G5) does not hold for any 6 > 0 then arbitrarily  small per-
turbations  of f can introduce  new zeros  to E, and hence  alter  the dynamics  of the
system. Regarding  the numerical  solution  as a perturbation  of the continuous  system,
we cannot  expect to globally reproduce  the dynamics  of the underlying  system if that
system is not structurally  stable.

Theorem Gl ensures  that the solution  approaches  a small neighbourhood  of an
equilibrium  which scales with the error tolerance.  In accordance  with the work of Hall
[9] and Griffiths  [15] on linear  decay problems  we know that the numerical  solution
may perform  small oscillations  about  an equilibrium  and hence that Theorem Gl
is best possible  for the error control  (1.5). If we wish to ensure  that the numerical
solutions  is actually  driven to equilibrium  then we must improve  (1.5). We consider
a modification  of the error control  mechanism  (1.5)  specifically  designed  for gradient
systems. We replace  (1.5) by

(6-l) IIUn+l - K+1ll  L ~~llUn+l  - Gall.

This is a form of error per unit step  error  control  relative to an approximation  of the
time derivative - when the time derivative is small then  the time-step  is made small
also.  It is clear  that  this should  drive the solution  to equilibrium  and we prove this
in subsection  6.2. Specifically  we shall  show that:

THEOREM G2 Consider (2.24)-  (2.27) and (6.1). Assume that At,, 5 Atma= <
l/c Vn 2 0. Then the embedded pair is 3(G) - globally admissible; furthermore, for
any d > 0 there is r*(d) > 0 such that, for any T E (0, r*) and any admissible sequence
SEE:

lim llUn - VII = 0.n-+00

If E is bounded, then (2.24)-(2.27) is 3(G) - globally dissipative.

Note that,  with error  control  (6.1) in Theorem  G2, the structural  stability  as-
sumption  (G5) is not required in the proof  and a modified  statement  could be made
to reflect  this fact.

6.1 Gradient Systems; Error Per Unit Step

Under  (G4) the equilibria  of (1.1) are isolated and hence  countable.  We label them

vi, 2‘= 1,2,... .

The  following definitions  and lemmas  will be needed  to prove Theorem  Gl. Choosing
E and 5 given by (G5) we let

r E I-(&) = (2: ~~f(x)~~  < E]

and

Bi E B;(E) 6) = qvi, 6) n L
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where  B(v, S) is defined  by (1.8). Notice  that ~~f(x)~~ < E if x E Bi for some  i, whilst,
since E is defined  from 6 by (G5), II f(x)11 2 E if x 6 Bi for any i.

LEMMA 6.1. Consider (2.24)-(2.27) and (1.5) under (Gl)-(G5),  and assume that
At, 5 Atma= 5 l/c. Let

cj E Ci(&,  6,T) = (21 E RP : IIU - vi11 5 6 + t(T + &)I

If U+I E Bi then Un E Ci. Furthermore, if u E Bi then

IF(u) - F(v;)l 5 cb2

and if u E Ci then

IF(u) - F(vi)( 5 ~(6 + +T + E))~.C

Proof. By (2.24)

UT& = un+1- At,~(U,,; AL).

Thus,  if Un+l E Bi,

ll”n - uill I lIUn+l -vill+ &llfl(Un;Atn)lj

5 6 + f [Ilf(Lln+l) + @kAtrd - f(u,,l)ll]

5 6 + i [llf(lin+djl + llf(Un; AL) - f(k+dll]

by (2.28))  which implies that U, E Ci as required.
If u E Bi then by (G3)

IF(G) - F(u)1 5 I(f(vi), u - vi> + +i - ~11~1
5 cb2

since f (vi> = 0. A similar proof  holds for u E C;. Cl

For equation  (1.1) under  (Gl) F(u(t)) is a decreasing function  of t for all t 1 0.
The following result  shows that F(Un) is a decreasing function  of n outside  the union
of all Bi.

LEMMA 6.2. Consider (2.24)-  (2.27) and (1.5) under (Gl)-(G5).  Assume that
At, 5 At,,, < l/c for all n > 0, and that

Then

T< E( 1- CAtmaz)
2- CAtma=  ’

(s- $1 Ilf(Un+1)ll  ’ E
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I

implies that

(6-4IF(Un+l)  - F(Un) I -At* [(I- CAtmaz)E - (2 - cat,,,)r] IIf(Un; Atn)ll.

Furthermore suppose (6.3) holds for M 5 n 5 N - 1 then

(s- 5) F(Un) 5 F(~M) - [(I- CAtmao)& - (2 - cAt,az)r] llun - UMII

for M + 15 n 5 N.

Proof. Note that (2.24)- (2.27)  imply (2.3). By (G3) and using  (2.24), (2.28) we
have

F(Un+l)- J'(k) 5 cllun+l  - unl12 +(f(v,+l),v,  - &+I>

= +-Jn+l - &II2 + (f(Un; At,), un - &+I)

+ (f(Un+l)- ~(KGn),Un - &+I)

= (cat; - Atn)llf(v,;  &)l12 + ~Atnllf(Kz;  Atn)ll
= -AtnIl&;  Atn)ll  [( 1 - cAtn)ll?(v,; Atn)ll  - ~1.

Now note  that

& < Ilf(Un+l)ll  I IIf&; At,)/ + Ijf(Un+l)  - f(Un;  At,Jl 5 I/?(&; At,)/ + 7,

by (1.5). Thus

(6.6) F(Un+l) - J’(k) 5 -Atnllf(Un;  Atn)ll [(l - cAt,)(& - T) - 71.

By (6.2)  r < E and hence

(1 - CAtn)(E  - T) - T 2 (1 - cAtmaz)(& - T) - T
= (1 - CAtmar)&  - (2 - cAtma=)r

and (6.4) follows  from (6.6). Summing  this for n : M < n 5 N - 1 gives

(6-7)F(Un)  5 F(~M) - [(I- CAtma, )E - (2 - CAtmaz)T] *c Atjllf(Uj;  Atj)ll,
j=M

for M + 1 5 n < N. Now, by (2.24),

n - l

u* = UM + C Atjf(Uj;Atj),
j=M

so that

WV IlUn - UMII L *e AtjIlf(Uj;  Atj)ll.
j=M

Combining (6.7) and (6.8) gives  (6.5) as required. El
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We now use Lemma 6.2 to prove the following  two lemmas  which  are fundamental
in the proof  of Theorem Gl:

LEMMA 6.3. Consider (2.24)-(2.27) and (1.5) under (Gl)-(G5). Assume that
At, 5 Atmaz < l/c for all n 2 0 and that (6.2) holds. If U e Bj for any j then
either:

(i) 3M, i: UM+~ E Bi, UM E Ci with F(Q) 5 F(U) + c(d + $(T + E))~; or

(ii) Un $,! Bi, for any i, n and then At,, --) 0 as n + oo and F(U*) 5 F(U) V n 2 0.

Proof.  Assume  that,  for 0 5 n 5 M U, @ Bj for any j and 3 : UM+~ E Bi .
Then, by Lemma 6.1, UM E Ci. By Lemma  6.2 with  M = 0 and N j M we have

F(h) L F(U) - [(I-  cAtma&  - (2 - cAtma&] IIUM - VII< F(U).

But, since UM E Ci, by Lemma  5.1

F&f) 2 F(zQ) - c(b + +T + &))2
C

F(Q) 5 F(U) + c(6 + i(T + E))2.

Finally, if U, @ Bi for any i, n then Ijf(Un+l)jl > E,V n 2 0. Hence, by (2.28)
and (6.2),

Ilfl(v,;&)ll  > & - T-
&

’ 2 - cAtmar

for all n 2 0. Thus  Lemma 6.2 gives

F(k+l) I F(k)-At,& --7 , Vn 101
+ F(Un) 5 F(U) -e (;- ;;tmaz)E - T] *2 At,, Vn 2 0.- mat j=O

Since  F satisfies  (G2) and (6.2) holds,  we deduce  that At, --$ 0 as n + 00 and that
F(Un) 5 F(U), Vn 2.0. Cl

Given any d > 0, (G5) impl ies that  there exists E* > 0 such that

NOW notice  that  if Atma, < l/c, it is possible  (since inequalities  (6.9) and (6.10)  are
strict  if E = 6 = r* = 0) to satisfy
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and

(6.10) 6 + i(r* + E) 5
d
4c

[(l - cAtma=)&* - (2 - cAtma,)r*]

with min(&, 6,~‘) > 0, and such that

(6.11)

and

(6.12)

Moreover,  note that given such E, 6 and T*, (6.9)-(6.12) also hold if r* is replaced  by
r where  r E (0, r*). We now prove

LEMMA 6.4. Consider (2.24)-  (2.27) and (1.5) under (Gl)-(G5). For any d > 0
let Di = B(vi, d) and assume that At, _< At,,, < l/c for all n >, 0. Then there
exists r* > 0 and b > 0 such that if r < r* and UM E Bi then either

(i) U,, E D; for all n 2 M; or

(ii) 3N, j : UN+~  E Bj with F(vj) < F(v~);  or

(iii) 3N : Vn 2 N, UN @ Bj, for any j and then At, + 0 as n -+ oo and

F(&) 5 F(Q) + cb2 V n 2 N.

Proof Without  loss of generality  we supppose  0 < d < D/2. Choose  E, S, r* > 0
such that  (6.9)-(6.12) hold.  If UM E Bi iterate until U,, 4 Bi. (If such an n does not
exist then (i) holds since, by Lemma  6.1 and (6.9), Bi c Di.) Re-label  (n - 1) -+ M;
hence UM E Bi and UM+~ e Bi.

If U, $! Bj, for any j, V n 1 M + 1 then,  since (6.11) implies (6.2), Lemma6.3(ii)
implies At,, + 0 as n + 00 and that

F(k) 5 F(Ku), V n 2 M.

Furthermore,  by Lemma 6.1,

F(U,,)  5 F(UM) 5 F(vi)+d2

and thus (iii) holds.
Now suppose  that 3N > M such that for M < n < N, U, 4 Bj for any j, and

UN E Bj for some j. Either j = i or j # i.
Consider  j = i first;  we show that in this case U, E Di for n such that M 2 n 5 N.

For contradiction  suppose  that there  exists n2:  M < n2 < N such that Un2 @ D;. Let
nl be the largest  integer such that M 5 nl < n2 and U,.,, E B(vi, d/2). By Lemmas
6.1 and 6.2

(6.13) F(UnJ < F(UM)  5 F(Q)  + d2.

33



By Lemma 6.1 UN- 1 E Ci and hence

(6.14) F(Q) - ~(6 + f(~ + E))~ 5 F(U& < F(U&.

Now note by construction of nl and E* that II f(Un)ll  2 E* for n1 + 1 5 n 5 n2 and
hence by Lemma 6.2

(6.15) F(Un2) 5 F(un,) - [(I- CAtma,)&* - (2 - CAtmaz)T] IIun, - un,ll-

Combining (6.13)-(6.15) and noting  that IIUn, - Un,ll 2 d/2 implies that

cb2 + c(a + i(T + E))2 > i [(l - cAtma=)&* - (2 - cAtma,)r]

(6 + ‘(T + E))’ >C 2 [(l - cAtma=)&* - (2 - cAtmaz)T]

which  contradicts  (6.10). Thus  Un E Di for M 5 n 5 N. We can re-label  N + M
and repeat  the argument  from the beginning  of the proof.  Either  (i) or (iii) holds or
we must consider  j # i.

If j # i then, by Lemma 6.1, UN-~ E Cj. Let nl be the largest integer such
that  M 5 n1 <‘ N and Un, E B(vi, d/2). L e n2 be the smallest integer such thatt
nl < n2 5 N - 1 and Unz 4 B(vi, d). Note that by (6.9)  and since d < D/2 that such
nl and n2 exist. Now note that by construction  of nl and n2 we have  that  (6.13)  and
(6.15) also hold in the case i # j. Also,  since UN-~ E Cj , by Lemma  6.1 we have

f’(vj)  - ~(6 + :(T + E))~  5 F(UN-~) < F(Un2).

Combining  (6.13)-(6.15) and noting  that IIUn, - Unl II 2 d/2 we obtain  F(vj) < F(Q)
as required. 0

We are now in a position to establish F(G)  global  admissibility.  Let

(6.16) I*(a) = {u E RP : F(u) 5 u}.

By (G2) I(o) is bounded and it is clearly closed since  F is continuous,  and hence I
is compact.  Hence since the equilibria  of f are isolated,  by (G4),  I(a) contains  only
finitely many equilibria  for any a E R To show that all trajectories  remain  bounded
define

(6.17) I(U) = I(F(U) + 2c(b + f(~* + E))~)

where 6, &, T* satisfy (6.9)-(6.12).  With this definition we may now show:

LEMMA  6.5. Consider (2.24)-(2.27) and (1.5) under (Gl)-(G5) and assume
that At, 5 Atma= < l/c V n 2 0. Then %*, S > 0, both independent of U such
that if r < r* then U,, E I(U) V n 2 0. Hence the embedded pair (2.24)- (2.27) is
3(G) - globally admissible.

Proof Let M 2 0 be the least  integer  such that UM f Bi for some i. (If there  is
no such integer then F(Un) 2 F(U) Vn 1 0 and the result  is trivial.) If M > 0 then
by Lemma6.1  UM-~ E Ci and F(UM,-~)  5 F(U). Hence

J-(Q) 5 F(U) + ~(6 + ;(r + E))~
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(for M 2 0), and if Un E Bi then

(6.18) F(U,J< F(U)+&’ 5 F(U)+k(b+  ;(r+&))2a

If U,, E Bi for all n 2 M then the result  follows.  Otherwise,  let N be the least  integer
such that UN +! Bi and relabel N -+ M + 1; hence 27~ E Bi and UM+~  @ Bi.

Now if U,, $ Bj for any j and for all n 1 M then we are in case (iii) of Lemma
5.4 and F(Un) 5 F(U) + 2c(S  + f(~ + E))~ for all n 1 M. Otherwise  let N be the
least  integer  such that N > M and UN E Bj for some  j. Either  j = i or j # i.

Consider  j = i first.  Then,  by Lemma 6.1, UN-~ E Ci and by Lemma 6.2 and
(6.18), since  UM E Bi,

F(Un) 5 F(~M)  L F(U) + 246 + :(T + E))~, n:M<nLN-1

whilst, by (6.18),

F(UN)  5 F(U) + 2c(b + $7 + E))~

since UN E Bi.
Now consider  i # j. Then, by Lemma 6.1, UN-~ E Cj and by Lemma  6.4

F(vj) < F(vi). By Lemma 6.2 and (6.18), since UM E Bi

F(Un) 5 F(UM) 5 F(U)+2c(6+  ~(T+E))~, M 5 n 5 N - 1,

whilst, since UN E Bj C Gj it follows  that

F(Un) 5 F(vj)+ c(6 + i(~ +E))~

< F(vi)+c(b+ :(T+E))'

< F(U)+C~~+C@+++E))~

5 F(U)+ 246 + f(~ +~))~a

Repeating  the above  arguments  inductively  implies that

F(Un) 5 F(U)+2c(6  + ;(~+c))~

for all n 2 0 as required. Since  r* given by (6.11) is independent  of U, 3(G)  global
admissibility  follows  from Corollary  3.6. II

Proof of Theorem Gl The 3(G) global  admissibility  follows  from Lemma 6.5.
Thus  we examine  the asymptotic  behaviour  of admissible sequences  satisfying  At,, 2
At, > 0 Vn 1 0. Since  At,, 2 d;t > 0, V n 2 0, Lemma 6.3 shows that,  without loss of
generality,  we may assume that 3i : UO E Bi by re-labelling.  By Lemma  6.4 we deduce
that 3M, j : U,, E Dj V n 2 M since, if not,  by (ii) 3 subsequences  Nk, j, + 00 with
Urv,  E Bj, and

F(vN*,~) < F(VNI, )a
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But U,., E f(U) for all n ,  and I(U) only contains  finitely many equilibria  so such
sequences  cannot  exist.

Now, to establish dissipativity,  let

B, = {UE Rp : F(u)<_ ye@‘(v)  + 346  + ;(T + E))~}.

If

then

F(U) L yEyF(v) + ~(6 + ;(T + E))~

by Lemma 6.5. Alternatively,  if

F(U) > yEyF(v) + ~(6 + $(T + E))~

then U $ Ci, any i, by Lemma 6.1. Hence  U $ Bi , any i since Bi c Ci. By Lemma
6.3 3M, i : UM E Ci. Hence

F(UM) 5 yEagF(v)+ ~(6 + t(~+ E))~

by Lemma 6.1. Letting  UM + U and applying  Lemma  6.5 we have

U,, E B, Vn > M.

The result  follows.  0

6.2 Gradient Systems; Relative Error Per Unit Step

.

We now consider  the relative error strategy  (2.24)-(2.27) and (6.1). Notice  that
(6.1) can be re-written  as

(6.19) IIf(un; AL) - f(Un+l)ll  L ~ll~(~n;  Atn>ll.
The proof is similar to that for Theorem  Gl but simplified because  the function F(U,.,)
will be shown to be non-increasing  for all n > 0. We prove this result, together  with
boundedness  of the solution  sequence  in the following  Lemma;  recall I*(o) defined  by
(6.16).

LEMMA 6.6. Consider (2.24)-  (2.27) under (6.1). Assume that (Gl)-(G5) hold.
If & L Atma, < l/c Vn 2 0 and r < r* 5 1 - cAtma=  then there exists E” > 0
such that

Thus

F(Un+l) -F(Un)<  -&*Atnllf(Un; Atn)l12,  Vn 2 0.

un E I*(F(U))  V n 10.
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Proof As in the proof  of Lemma  5.2 we have that

F(Un+d - F(Un) L (f(un; AL), un - &+I) + (f (Un+l) - f”(Un; At,), un - &+I)
+ Wn+l - vnl12.

Applying  (6.19) we obtain

F(Un+l) - F(Un) 5 - IIUn+l - UralI
At + &llUn+l - UralI + CIIU*+l - Utal12-

n n

Thus

F(Un+l)  - F(K) 5 - (l- r - cAtqlv,,l - uAt 112n -n
If T < P and At, < Atma= then there  exists  E* > 0 such that 1 - T - cAtma=  2 E*
and hence it follows  that

F(Un+l) - F(k) I --&IIUn+1 - Unl12.n
By (2.24)  the first part of the result  follows.  Clearly

F(b)< F(U), Vn 20

and hence the second  part  of the result  follows  automatically.  II

LEMMA 6.7. Consider (2.24)-  (2.27) under (6.1). Assume that (GI)-(G5)  hold.
If At L Atma, < I/c then the embedded pair is 3(G) - globally admissible.

P r o o f  Let 7” = 1 - cAtmac where  r* is given in Lemma  6.6. Thus  Un ’ E
I*(F(U))  V n  2 0. The  error  control  (6.1) is to find At = At,, such that,  given
X = Un we have

IW - VII 5 8711~ - XII
. where W and V are defined  in (3.5), (3.6)  and (3.7). Thus we define  the function

IIW - VIIR(X, At> := p- _ WI1 Y

and, letting di = bi - bi we may write

R(X, At) = IICf=,djf(C)II
IICjk=lajf(G)II *

Let

In order to show that the error  control  may be satisfied  we show that 3C = C(X)
independent  of At such that R(At; X) 5 C(X)At for At sufficiently small.
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By Lemma  3.3,

for

where

lIti - Xl1 L At?ikTllf  Cx)ll

At 5 (1 - r-‘)/[Z&],

LI = sup L(X).
XEI(U)

Noting that Cf=ldj = 0, xi=lbj = 1 by consistency  we deduce  that

R(X, At) = IIC~,,djV(tj) - f(x)lll
Ilf Cx) + C:=Ibj [f (6) - f (x)lll

5
At~~~2rLIIlf(X)II

Ilf Pal - At~~~2TLIllf ml

At?iJk2rLI
1 - Atiibk2yLI

= 5 C(X)At

for At sufficiently small. Hence,  for any r E (O,r*)  and any X E I*(F(U))  3At, =
07/c such that the error  control  criteria is satisfied. Since the scheme is explicit,
the existence of a solution  sequence  is guaranteed.  Thus 3(G)  global  admissibility
follows.  0

LEMMA 6.8. Consider (2.24)-(2.27) under (6.1). Assume that (Gl)-(G5) hold.
If 4 5 Atma, < l/c, and T < T* 5 1 - cAtma=  then any admissible sequence
satisfies

lim f(V,; At,) = 0
n-cc2

and

Jic f(Un+1) = 0.

Proof The first result  follows  directly from Lemma 6.6 since At, is bounded
below  by A& > 0 and (G2) holds. Now, from Lemma 6.6 and (6.19)  if follows  for
some E* > 0 that

f’(Un+r) - F(K) L -&*Atnllf(v,+l) + f(Un; At,> - f(k+1)112
I -&*&a [Ilf(Un+dll  - Il?(Un; AL) - f(k+dll] 2

L -&*A& [Ilf(k+l)ll - ~lf(Un;at,,ll]  2.
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To obtain  a contradiction  suppose  that

limsupIlf(U,)II = I> 0,
n-00

which implies that Ilf(Un)ll  2 $1 for infinitely  many  n. By the first part  of the lemma
we know that, for any & > 0 3 N = N(E)  > 0 such that

Il.f(V,;  &)ll L e, Vn > N-

Taking E = & we see that

F(U,,+l) - F(Un) 5 -&*  At, [$1 2

for infinitely many n 2 N. But since At 2 dt > 0 and F(U,.,+l)  5 F(Un) Vn, this
implies that F( U,,) + -oo as n --) 00 which contradicts  (G2).  Thus

lim sup IIf (&)[I = 0
n--m

as required. 0

Proof of Theorem G2 From Lemma 6.8 and (2.24)  we know that, for any ad-
missible sequence,

(6.20) Ilfwa+l>ll~ WI+1 - WI --) 0
as n + 00, since At, 1 at > 0, Vn 2 0. Since  the sequence {Un}Fzo  is bounded, by
Lemma  6.6 and (G2), we deduce that  it has at least one convergent  subsequence  and,
by (6.20), that every limit point  is contained  in E, defined  in (G4). Let v E E be
such a limit point.  Note further that  v E I(F(U))  by Lemma 6.6. Thus  all possible
limit points lie in the intersection  of E with the compact set I(F(U)).  This implies
that there  are a finite number  of possible  limit points,  say vj, j = 1, . . . , J. Let

Bj = B(vj 7 b), B+ = Uj=l,...,J Bj and

B’ = Cl{I(F(U))\B+).

Notice  that B- is closed and bounded  and hence  compact. Now consider  the given
limit point  vi. Either  the whole sequence converges  to vi and the proof  is complete  or
3{mj}  + 00 such that

V,j E Bi, V,j+l 6 Bi-

Since II&+1 - &II + 0 as n -+ 00 we can assume, without  loss of generality, that
IIUn+l - UnII ,< 6, Vn 2 mo. Hence  Umj+l E Bi(vi,26) and hence Urn,+1 E B-. But
B- is compact and hence the sequence  Umj+l must contain  a convergent  subsequence
with limit in B- . This is a contradiction  since B- contains  no points  in E. The result
follows.

To establish dissipativity,  let

& = {u E Rp : F(u) 5 ryiaF(v)}  u B(6)
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where B(S) is defined  in (G5). Since B, is formed  as the union of two bounded  sets
it too is bounded. By (G5) it follows  that

Note  that,  for any admissible  sequence YA&-,  > 0 : At,, 2 A&, Vn 1 0. Assume for
the purposes  of contradiction that B, is not absorbing  so that there  is a sequence  of
integers ni + 00 with U,,;  6 B,. Then,  by Lemma  6.6,

F(Un;+l) 5 F(&;)  5 -A&E*E~.

Since (G2) holds  this is a contradiction  and dissipativity  follows. 0

REMARK Some of the arguments  contained  in this proof are similar to those used
by Elliott  [6] in the study  of discretisations  of the Cahn-Hilliard  equation.

7. Numerical Results. In this section  we describe  numerical  results  which sup-
port our theoretical  results.  Throughout “energy” refers  to the quantity  ]]u]].  In the
Figures E, denotes  IIUnll.

EXAMPLE 7.1.
- Illustrating  Theorem DC1 We consider the Lorenz  equations.

(74

with initial data

xt = WY - 4,
Yt = 28x- y-xz,
Zt = ++xy,

V-2) x(0) = y(0)  = z(0) = 100.

These  equations  satisfy (D) after  translation  of the origin;  see [20]. For this example,
u = (2, y,z)T.

Figure 7.1 shows the result  when  applying  the explicit  Euler  scheme to (7.1), (7.2)
with fixed time-step  At = l/200. The  energy is plotted  and clearly starts to grow very
rapidly;  eventually  the scheme breaks  down after  several  more steps  as the solution
becomes unbounded  for computational  purposes. This contrasts  with the behaviour
of the underlying  equation  (1.1) for which, under  (D), the solution  should  eventually
lie in a bounded  set.

We now apply  the variable  time-step  scheme (2.22), (2.23)  and (1.5) with ec = 2.
The step selection  mechanism  is to choose

U-3) At, = (0.8)kAtma,

where Atma= = l/200 and k is the minimuminteger  for which the error  control  criteria
(1.5) is satisfied. The  tolerance  is set at r = 0.002. Figure 7.2 shows  the behaviour  of
the energy and clearly the solution  is forced  into some bounded  set with energy less
than approximately 45, illustrating  Theorem DCl.  Figure 7.3 shows the time-steps
selected and Figure 7.4 a plot  of y against z from which the bounded  set property  of
Theorem DC1 is clear.



EXAMPLE  7.2.
- Illustrating  Theorem  E We start with an example  which shows that the de-

pendence  of T on initial data is required  in Theorem  E and is not an artifact  of the
analysis. Consider  equation  (1.1) in dimension  p = 1 where

f ( u )  =  -;, IuI > 1

and with f constructed  on {u : ~~u~~ 5 1) so that the function  is Lipschitz on R. We
apply  the scheme from Example  2.8 with error  control  (1.5) and eo = 8-l. Now let

ut, = (-l)*q, At,, = 2q2

With these  choices,  the explicit  Euler scheme and the error  control  criteria are both
satisfied. Clearly  the solution  does not enter  a set bounded  independently  of initial
data since it just oscillates  with the amplitude  of the initial data; hence no discrete
analogue  of the behaviour of (1.1) is possible  unless r depends on U. Notice  that,  to
apply  Theorem E with U = q would require  by (5.2) that r < & contradicting
(7.4) and thereby  ruling out the undesirable  periodic  solution.  •I

Now consider  the equations

(7.5)
xt = y--22+y2  '
yt = -x-&T.

The initial  data  is taken to be

(7.6) x(0) = y(0)  = 45.

These  equations  are not defined  by a Lipschitz vector-field,  but a simple modification
close to the origin can be made to this end;  we consider solutions  bounded  away from
the origin  so that explicit  description  of the modification  need not be made. Notice
that

X(Y- L)+y(-x--&)=-l
x2 + y2

so that (f(u),u) 5 -1 outside  a bounded  set and (E) is satisfied  - the precise  value
for r is determined  by the modification to make  the vector  field Lipschitz.

Again (2.22), (2.23) and (1.5) are used to advance the solution.  The  time-step  is
chosen according  to (7.3) with Atma, = 0.001. Figure 7.5 shows  the behaviour  of the
energy for r = 0.1 Notice  that it is linearly increasing and this trend is continued  as
time evolves.  The energy for the differential  equation  should  be linearly decreasing.
Figure 7.6 shows the behaviour  of the energy in the case r = 0.0004 which is beneath
the critical  value  for r given by Theorem  E which, for this initial data,  is 0.00049.
As predicted  by the theorem,  the energy is decreasing.  Computational experiments
reveal  that  the bound (5.2) for the critical value of r is overly pessimistic  and that the
true critical  value  is actually  close to 0.04. Nonetheless,  the discussion at the start of
this example  shows that this value  must be initial  data  dependent  and our numerical
experiments  bear this out.
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EXAMPLE 7.3.
- Illustrating  Theorems  Gl and G2 First consider the scalar equation

ut = -u, 40) =u

This is a trivial example  of a gradient system. If we apply  the numerical  scheme
(2.22), (2.23) and (1.5) of Example  2.8 and take  the maximumpossble  time-step  (i.e
equality  in (1.5)) then

At, = 7
IUnl’

Un+l = (1 - -qu*.
IUnl

Straightforward  analysis shows  that

IW > ; * IKa+1l<  lUnl

whilst

Thus it may be-shown  that an absorbing  set for this problem  is the interval  [-7, ~1.
Figure 7.7 illustrates the behaviour  of a solution  sequence for initial data  U = 1 and
tolerance  7 = 0.1. This behaviour  is essentially  what is predicted  by the analysis of
Hall  [9] and Griffiths [15] - notice  that the solutions  oscillate  in a small neighbourhood
of the (unique)  equilibrium  of the system. This agrees  with Theorem Gl.

If instead we apply the error  control  scheme (2.22), (2.23) and (6.1) with 8 = 2,
again with the maximum possible  time-step  (i.e. equality  in (6.1))  then we obtain

Atn=T,  un = (1 - +Ve

and the solution  converges to the origin as n + 00 as predicted  by Theorem G2.
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