
r

NUMERICAL ANALYSIS PROJECT
MANUSCRIPT  NA-92-w w

DECEMBER 1992

Use of Linear Algebra Kernels to Build

An Efficient Finite Element Solver

bY

H.C. Elman
D. K-Y Lee

NUMERICAL ANALYSIS PROJECT
COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305





USE OF LINEAR ALGEBRA KERNELS TO BUILD AN EFFICIENT
FINITE ELEMENT SOLVER

HOWARD C. ELMAN l AND DENNIS K.-Y. LEE t

Abstract. For scientific codes to achieve good performance on computers with hierarchical
memories, it is necessary that the ratio of memory references to arithmetic operations be low. In this
paper, we show that Level 3 BLAS linear algebra kernels can be used to satisfy this requirement to
produce an efficient implementation of a parallel finite element solver on a shared memory parallel
computer with a fast cache memory.

Key words. Finite element, hpversion, cache memory, Level 3 BLAS, parallel.

1. Introduction. The finite element method divides domains into elemental
subdomains, and it is therefore a natural candidate for parallel numerical solution
of elliptic partial differential equations. In this paper, we describe the results of an
experimental study of a parallel finite element solver, using the hpversion of the finite
element method for the discretization. This technique can achieve accuracy by either
refining a mesh or increasing the order of the polynomial basis functions [4].  Our com-
putational algorithm is to distribute elements among available processors; construct
local stiffness matrices; eliminate by Gaussian elimination (or static condensation)
certain unknowns associated with basis functions whose supports are entirely con-
tained within individual elements; and solve for unknowns associated with element
interfaces by a preconditioned conjugate gradient method. The tests were done on an
Alliant FX/8  computer, which contains eight vector processors and a shared memory,
including a fast cache memory.

These results build on [3], where it was observed that the steps of local matrix
construction and static condensation dominate the overall cost of the computation.
The implementation of [3]  used software from the Level 2 Basic Linear Algebra Soft-
ware (BLAS) library [6], in which the basic computation is the matrix-vector product.
These kernels have the property that the ratio of memory references to arithmetic op-
erations is of order one. Although in principle the local matrix construction and static
condensation are fully parallelizable, if memory references take more time than arith-
metic, as on the Alliant when data is not in the cache, then data movement dominates
the cost. Indeed, it was observed in [3] that the local computations displayed good
parallel efficiency provided all matrices that are treated in parallel fit into the cache,
but performance degraded otherwise.

We show here how to restructure both the construction of local stiffness matri-
ces and the static condensation to eliminate any degradation of performance due to
memory hierarchies. This is done using matrix-matrix oriented computations of the
type available in the Level 3 BLAS library [5]. With these kernels, for matrices of

l Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742, e-mail: ehuan@cs.umd.edu.  The work of this author was
supported in part by the U. S. Army Research Office under grant DAAL-0392-G-0016 and the
National Science Foundation under  grant ASC-8958544, aud by the National Science Foundation
under grant CCR-8821078 at Stanford University. Computer time was provided by the Advanced
Computing Research Facility at Argonne National Laboratory.

a t National Computer Board and Defence  Science Organization, Science Park Drive, Singapore
0511, Republic of Singapore, email: dleeQiti.gov.sg.  The work of this author was supported in part
by the U. S. Army Research Office under grant DAAG0389’K-0016  while the author was at the
Department of Computer Science, University of Maryland, College Park, MD 20742.



order n, the ratio of memory references to arithmetic operations is of order l/n. Con-
sequently, the costs of data movement become insignificant, and the resulting finite
element computations display essentially full parallelism regardless of the size of the
local matrices. In numerical experiments, the static condensation step reaches the
performance (in terms of megaflop rates) achievable for this class of computation.
The matrix construction step fails short of this performance, mainly because of limits
on vector lengths.

An outline of the paper is as follows. In $2, we give a brief overview of the problem
addressed and the mathematical methods used to solve it. In $3, we show how the
static condensation is performed using Level 3 BLAS tools and describe its perfor-
mance, and in $4,  we present the algorithm and results for local matrix construction.
Finally, in $5, we briefly discuss the results and compare the performance of these two
local computations.

the two-dimensional elliptic equation
2. Overview of computations. We are interested in the numerical solution of

- [(a us)= + (b u&] = f on Sz c R2,

where R is a-rectangular domain and a, b, f and via* are such that the solution to
(1) is uniquely defined. The discrete problem is to find the weak solution to (1) in a
finite dimensional subspace  of H’(R) [8]. We use the Q(p) variant of the hpversion
of the finite element method; see [l, 41 for theoretical properties of the discretization
and a comprehensive set of references, and [2, 31 for additional details concerning the
computations. For our purposes here, the following points are relevant;

1. The domain Q is partitioned into a collection of rectangular elements {Qi}  such
that 52  = Ufii.  We will assume that the number of elements divides the number of
processors on our parallel computer.

2. On each element Q;,  the basis functions of the finite element discretization have
the form i9jb(Z, 3) = $j(tMk(y) where +j is a polynomial of degree j, I 5 j 5 p.
Ifj=k= 1, then @jk  is the bilinear function used in the usual piecewise bilinear
discretization [8];  on any element there are four such functions, which we refer to as
nodo/ basis functions. If j = 1 and 2 5 k 5 p, or if k = 1 and 2 5 j 5 p, then @j, is
nonzero  on one side of s2i and zero on the other three sides; there are 4(p - 1) such
side basis functions. If 2 5 j, k 5 p, then the support of @jk is entirely contained in
fii; we refer to these as internal basis functions, of which there are (p - 1)2.  The local
stiffness matrix Si associated with S& is of order (p + 1)2  with entries

where @jk(z,y)  = 4j(z)4a(y)  and @,,(z, y) = +,(z)~~(Y)  range over all the basis
functions defined on Ri. Except in special cases, such as where a and b are constant
functions, (2) must be evaluated using a quadrature rule.

3. The discrete solution to (1) is obtained by solving a system of linear equations
scr = s, where the global matrix S has the form S = C Si and Si is the local stiffness
matrix associated with Ri. ’ Si can be identified with the Gramm matrix determined

1 The right hand side s is defined in a similar manner, and the computations in which it is involved
are similar to those outlined below for matrices; see [2, 31 for details.

2



by (2))  where <pjk  and @I,,, range over all basis functions. Under this identification,
S; can be ordered to have the form

(3)

where Ai corresponds to interactions among internal basis functions, C; corresponds to
interactions among side and nodal basis functions, and Bi corresponds to interactions
between internal basis functions and side and nodal basis functions. The internal
functions have local support, so that the unknowns associated with them can be
decoupled from the system. This entails computing the Schur complement

(4) ci = Ci - BiA,‘BT.

4. Once the “internal unknowns” are decoupled from the system as above, the result is
a system of linear equations S& = i for the unknowns associated with the boundaries
of {Q}. These unknowns can be solved efficiently using a preconditioned conjugate
gradient method where the preconditioner  comes from the portion of S associated
with nodal unknowns [2, 31. The cost of this step is lower than the cost of the local
matrix computations [3],  [9], and we omit a discussion of it here.

Details of the implementation are as follows. The tests were performed on an
Alliant FX/8  with a cache memory of size 512 kbytes. All computations were done in
double precision. Although the local stiffness matrices are symmetric, to enable use
of the Level 3 BLAS library, they were stored in square arrays, in full nonsymmet-
ric form. The Level 3 BLAS kernels used were those provided by the manufacturer.
Parallelism was achieved using compiler constructs, so that an outer loop over the
the number of elements distributed independent computations over separate proces-
sors. To determine parallel efficiency, runs on one processor were performed using the
runtime command “execute -c 1”.

3. Static condensation of local stiffness matrices. We first consider the
implementation of the static condensation (4), which entails a straightforward gen-
eralization of block Cholesky factorization described e.g. in [5].  Let M denote a
symmetric positive-definite matrix represented in block form as

(5)

where Mij is itself a matrix and i& is square for each i. A block version of the
Cholesky factorization of M is as follows.

(6)

for j = 1 to r do
Mj:r,j + Mj:r,j - Mj:r,l:j-lMl:j-1,j
Compute Cholesky factorization Mjj = LjjLz
Ad.3+1:r,j - Mj+l:r,j L;=

enddo

Here, we use the “Matlab-like” notation Mj:k,I:m to refer to the entries of A4 in block
rows j through k and block columns 1 through m. If only one block row or column,

3



FIG. 1. Submatrices of S participating in the dominant computation of block condensation.

1

. .

*- Sl:,-l,,

$r,l:,-1  *I- s3:‘J

say j, is referenced, then the subscript j : j is replaced simply by j. During the
course of the computation (6), the contents of the block lower triangle of the array
M are overwritten with the Cholesky factor of M. In an implementation, the entries
of Ml:j-l,j (which lie above the block diagonal) would be obtained as the transpose
Of Mj,l:j-1.

Now, consider a modification of (6) for computing the Schur complement (4). To
simplify notation, we omit the subscript i from the matrices of (3) and (4). Assume
that S is blocked into r blocks as in (5), where A occupies the first rg x rg subblock.
The following computation overwrites the part of S containing the block lower tri-
angle of A with its Cholesky factor L, places BLeT into the part containing B, and
overwrites the block lower triangle of C with the lower part of the Schur complement.

(7)

for j = ltordo.
3max = min(j - 1, v-0)
Sj:r,j + Sj:T,j  - Sj:t,l:j,.,S1:jrnar,j
if j 5 rg then

Compute Cholesky factorization Sjj = Ljj Lz
Sej+l:r,j - Sj+l:r,j L;’

endif
enddo

If the blocks are of order 1 (i.e., they are just the entries of S), then the quantity
S1 :j A o ,i appearing in the third line of (7) is a vector, and the dominant part of the
computation is a matrix-vector product; this was implemented using Level 2 BLAS
software in [3].  For other block sizes, this operation is a matrix-matrix product, and we
implemented here it using the Level 3 BLAS routine DGEMM. The submatrices in the
case j 5 ro are shown in Fig. 1. In addition, the block triangular solve Mj+r :r,j LTjT
was implemented using the Level 3 BLAS routine DTBSM. The Cholesky factorization
of Sjj was computed using the algorithm (6) with block size 1, i.e., in “BLAS2” style.

We have restricted our attention to the case where all blocks of S are square,
except possibly those of the last block row and column. Figure 2 shows how the CPU
times for the static condensation varies with the blocksizes, for several values of the
basis function degree, p. The data corresponds to an 8 x 8 element grid for p = 6 and
P = 8, a 4 x 4 grid for p = 8, and a 2 x 4 grid for p = 16. These grid sizes have no
effect on the overall trend of the data, and they were chosen so that the four curves
fit into the graph. The results indicate that a block size of 7 (highlighted by a vertical
line) is optimal. Table 1 shows the megaflop (Mflop) rates and parallel efficiency of

4



FIG . 2. CPU t i m e s  us. blockslze  f o r  sfaiic condensation.

3J- i . . . . . . . pr16
-.-.- p=l2

8
3-i / -H

A - s-6I
HU- /

.;
.  .‘.’’ ._ .’. . ..-

.j 2 ;
8
5 13 -
zu ‘; i

l-. .._._._._..._._._._.~.......~...~.-.-  -‘-.- _,_~_,_._,___._._._.~.~.-‘-.-.-.-.-.-.-.-.-.-.~.~~  _ _ _
, -.. :,..e.-.a.-
,, -.f, 0

oJ “.--<----
_-------__________--____________________

0 :I
0 10 20 30 40 50 60 70 80

Blocks&,  b

TABLE 1
Timings and performance of static condensation, for a 2 x 4 grid, on 8 processors.

P

4
6
8

10
12
14
16
18
20

Time Operations Rate Efficiency
(sets.) per matrix (Mflops) (%)
.0088 4,700 4.3 86

.0244 37,600 12.3 91

.0670 173,700 20.7 95

.1816 585,300 25.8 93

.4117 1,602,800 31.1 92

.8992 3,791,900 33.7 9 3
1.826 8,045,800 35.2 94
3.483 15,692,700 36.0 93
6.263 28.614.400 36.6 93

the static condensation on eight processors, for values of p between 4 and 20, and
block size 7. Here, efficiency is defined to be

1 CPU time on 1 processor x IO0
s CPU time on 8 processors *

We see that there is no degradation in efficiency as p increases, although the 8 local
matrices treated in parallel fit into cache only for p 5 8. The performance of 37
Mflops for p = 20 (where the matrix is of order 441) is virtually identical to empirical
limits observed for LU decomposition of comparably sized problems on the Alliant,
see [7, p. 971.

4. Construction of local stiffuess matrices. We now consider the use of
matrix-oriented routines to construct the local stiffness matrices (3), where again we
omit the subscript i. It is convenient to represent the local stiffness matrix S as a
quadruply-indexed array S[( j, k), (I, nr)], w rere  j, k, I, and m are essentially as in1

5



FIG. 3. Indexing scheme for A based on quadruples, with column corresponding to index (1,m) =
(p, 3) highlighted.

2 . ‘12~3~  . PI

(2).2  To simplify the exposition, we will concentrate our discussion on the portion of
S corresponding to internal unknowns, i.e., A of (3), denoted here as A[(j, k), (1, m)]
where 2 5 j, k, 1, m 5 p. See Fig. 3.

Using the tensor product form of the basis functions, we rewrite (2) as

This suggests the following quadrature strategy. If a and b are constant, then Gauss
quadrature with p + 1 quadrature points in each direction will produce the exact
integral for all values of j, k, I, m < p. This is more points than is needed when any of
j through m are less than p, but on the other hand, for more general a and b, exact
integration may not be possible. As a compromise between these two possibilities, we
fix our quadrature rule to use p + 1 Gauss points. The approximation to (8) is then
given by

where  it, I;=, and {+)fI=e  are the Gauss points in the horizontal and vertical direc-
tions, respectively, and { w,}~=, are the weights. Suppose the inner sums for all j,
1 and T are precomputed,  at a cost of O(p4) operations. The computation (9) then
requires O(p) operations. Since there are O(p4) entries in A, the total cost is O(p5)
operations, a savings of O(p) over the naive implementation. See [lo]  for related ideas.
Note that this is asymptotically less costly than static condensation, which requires
O(p6)  operations.

To structure these computations in terms of matrix-matrix products, let us first

2 We say “essentially” because, for example, there are two side functions that are linear in z:,  one
that is identically zero on the left side of Q and one that is zero on the right side of 52. In the notation
of (2), these would both have the form Qrk(z,  y) = ~$1 (z)+k(y).  To define  four-tuples for the local
matrix, we could assign one of these the index (0, k) and the other the index (1, k), with other side
functions and nodal functions handled in an analogous manner.

6



define the quantities

If these have been precomputed,  t,hen  t,he local stiffness matrices can be constructed
using the following algorithm:

for  m = 2 to p do
for I= 2 to p do

for k = 2 to p do
for j = 2 to y do

(10) Ah k>, (h m)] = Cflzo dr7r,j,  /)~o(P,  k, m) + T(+, jJ)h(q,-,  k, m.)
enddo

The loops over indices j and k construct the entries A[*, (1, m)], the column of A
corresponding to the (I, m) index pair; see Fig. 3. This data can also be viewed as
an unravelled version of an ordinary square matrix of order p, with row and column
indices 2 5 j, k 5 p - 1. Since the inner sum is a pair of inner products, this part of
the computation is (the unravelled result of) a pair of matrix-matrix products

(11) A[*, (I, m)] = F’i’)Giy’,) + f’i’)G!:),

where

\o(tlo,p,I) +?l,PJ) *** +?ptPJ) 1 \+lo,P,l)  T(‘lr,P,~)  *** +lprP,~)j

are of dimension (p - 1) x (p + l), and

/~0tvo~2~~) Iotv0,3,mn)  -es Io(vo,P,m)\

do;’ = I0(771,2,4  ~0(r11,3,74 -- Z0h9Pd

I :. . . . . ; 9
.

I

d,m,) =
’ i

Il(m,2,m)  Il(m,&m) --* ~l(rllr7hm)

i
9

.

: J
.

Zl(rlp,2,m)  Il(t)p,%m)  .a- Wkdv)

are of dimension (p + 1) x (p - 1). Moreover, defining

(12) A0 =  [a(tdh)l, BO =  [b(L17t)], 0 L 0 5 P,

we find that part of the preprocessing can be performed as

FL’) = [G$‘Ao, F;‘) = [G$TBo.



TABLE  2
Timings and performance of columnwlse local matrix construction, for a 2 x 4 grrd,  on 8

processors.

P

4
G

8
10
12
14
16
18
20

Time
(sets.)
.oioo
.1643
.3194
.5690
.9339
1.505
2.235
3.298
4.GG2

Operations
per matrix

12,400
55,200
174,000
442,500
971,700
,9 17,500
,488,500

1
3
5,953,300
9,648,iOO

Rate Efficiency
(RlfIops) @o)

1.42 91
2.69 93
4.33 93
6.22 92
8.18 92
10.19 91
12.49 91
14.44 91
16.56 92

TABLE  3
Timings and performance of blockwise local matrix construction, for a 2 x 4 grid, on 8 proces-

sors.

P

4
6
8

10
12
14
16
18
20

Time Operations Rate Efficiency
(sets.) per matrix (Mflops) (%o)

-BE- 14,300 3.70 90
.0771 68 JO0 7.12 93
.1873 231,300 9.88 9 2
.4223 620,200 11.75 88
.8633 1,420,OOO 13.11 8 7
1 .G29 2,897,900 14.23 8 8
2.985 5,418,200 14.52 8 9
4.886 9,458,400 15.49 91
7.667 15,624,200 18.10 90

That is, except for the matrices Ao, Bo, {Gt:} (1)and {G,,,},  the construction of A can
be completely structured using matrix-matrix products. A0 and Be require O(p’)
function evaluations. There are O(p3) quantities required for {Gr,‘,>  and {Gi:!,},
but each requires O(1) computations. 3 Thus, these preprocessing steps represent low
order costs. In our experiments, preprocessing made up at most 5% of the total cost
of local matrix construction.

We consider two variants of local matrix construction based on these observations:
1. Columnwise construction. A is symmetric, so that only the part of A on or below
the diagonal needs to be constructed. It is fairly easy to modify (11) to avoid some
unnecessary computation. Let us use

(13) F(l)@“) = f’(‘+~;~), . . . , (J$~)]

as a shorthand notation for each of the two matrix-matrix products of (11). The

3 This requires the efficient evaluation of {4k} and { 4;); for this, we make use of a special choice
of polynomial basis functions built from integrated Legendre polynomials, which can be evaluated
recursively [3].

8



product is unravelled for distribution into .d as

[(F(‘)$“))=?  . . . , (F”)!,;y)=) =,

The part of this vector corresponding t,o the block diagonal of .A is F(‘)gz”, and the
part below the diagonal is F(‘)g$““, 11%  < s 5 y. Thus, at step 712 of the construction
(lo),  we can avoid computing the part,  of .-I above the block diagonal by using only the
columns of G(‘)  with indices greater than or equal to 171. This entails some redundant
computation, of entries of the block diagonal above the diagonal, but it retains the
form of a matrix-matrix product.
2. Blockwise construction. The (I, 172)  column of A is determined from F(‘)G(“‘)
(in the shorthand notation of (13)), so t,hat all the entries of A can be obtained by
rearranging the contents of the block outer product

This variant works with larger matrices than columnwise construction, and we expect
an implementation based on it to be less dependent on the ability of system software
to place needed data in cache memory.

Tables 2 and 3 show the behavior of these two variants on eight processors, for
values of p between 4 and 20. VVe used the constant values a = 6 = 1 for the
coefficients of (1) but implemented Gauss quadrature as discussed above; this makes
the cost of function evaluations for (12) minimal, but it has no effect on the rest of
the computations. A strategy based on blockwise construction was used to compute
the entries of the other parts of the matrix, Bi and Ci of (3).

We see that for smaller values of p, the blockwise version is more efficient, since
it achieves a larger Mflop rate without a great deal of extra arithmetic. As the
matrix sizes grow, the computation rates of the two schemes become comparable, but
the number of computations required by blockwise construction is much larger, and
columnwise construction requires less CPU time. As above, it is possible to avoid
much of the redundant computation of the blockwise strategy by computing

~(2 1) $3) ,“‘, i?(p)) )
\ F(P) /

where g(m) = [gp),  . . . ,girn)]. We expect this strategy to display essentially the
same computation rate as the blockwise construction tested, which would make the
blockwise construction superior for all p.

5. Discussiou and coxnparisou of costs. Our primary goal was to show that
this class of (fully parallelizable)  finite element computations can be implemented
using matrix-matrix products so that hierarchical computer memories do not have



deleterious effects on performance. The efficiencies in Tables 1, 2 and 3 indicate
that this is true; efficiencies on the order of 90% are achieved for all computations,
irrespective of whether all data being processed in parallel fits into cache memory.

A comparison of the costs and computation rates of static condensation (Table 1)
and matrix construction (Tables 2 and 3) shows that the static condensation achieves
much higher computation rates than the matrix construction, and primarily because
of this, construction of the local matrices requires more CPU time than static con-
densation for p 5 16. This is not related to data movement. Note that the static
condensation entails matrix computations with matrices of order p2, and as the com-
putation (7) proceeds, the vector lengths of the rows of Si:j,,,,j and columns of
Sj:r,l:j,,,  9 which produce the dominant cost, become large. In contrast, the vector
lengths in (13) and (14) are of order p. Since the Alliant is a vector computer with
vector length equal to 32, the relatively small sizes of the matrices used in the ma-
trix construction limit the computation rates that can be achieved there. Thus, even
though their asymptotic costs are lower than for static condensation and (except for
P = 4 and p = 6) they require fewer computations, matrix construction dominates
the local cost for practical values of p.

REFERENCES

[l]  I. BabuSka,  A. Craig, J. Mandel,  and J. Pitkiiranta.  Efficient preconditionings  for the p-version
finite element method in two dimensions. SIAM J. Namer. Anal., 28:624-661,1991.

[2] I. Babuika  and H. C. Elman. Some aspects of parallel implementation of the finite element
method on message passing architectures. J. Comp. Appl. Math., 27:157-187,1989.

[3] I. Babtika,  H. C. Elman, and I<. Markley.  Parallel Implementation of the hpversion of the
finite element method on a shared-memory architecture. SIAM J. Sci. Staf.  Comput.,
13:1433-1459,1992.

[4] I. Babtika  and M. S uri. The p- and h-p versions of the finite element method, an overview.
Computer Methods in Applied hlechanics and Engineering, 80:5-26,199O.

[S]  J. J. Dongarra, J. du Croz, I. Duff, and S. Hammarling. A set of level 3 basic linear algebra
subprograms. ACM Trans. Mafh.  Sob., 16:1-17,  1990.

[S]  J. J. Dongarra, J. du Croz,  S. Hammarling, and R. J. Hanson. An extended set of FORTRAN
basic linear algebra subprograms. A CM Trans. Math. Soft., 14:1-17,  1988.

[7] K. A. Gallivan,  R. J. Plemmons, and A. H. Sameh. Parallel algorithms for dense linear algebra
computations. SIAM Review, 32:54-135,199O.

[8] C. Johnson. Numerical Solution of Partial Diflerential  Equations by fhe Finite Element
Method. Cambridge University Press, New York, 1987.

[9] Dennis K.-Y. Lee. Use of linear algebra kernels to build an efficient finite element solver.
Master’s Thesis, Department of Computer Science, University of Maryland at College
Park, 1992.

[lo] A. Weiser, S. C. Eisenstat, and M. H. Schultz. On solving elliptic equations to moderate
accuracy.  SIAM J.  Numer.  Anal. ,  17:908-929,198O.

10


