T T W

- DATA MODEL INTEGRATION USING THE STRUCTURAL MODEL

Ramez El-Masri
Gio Wiederhold

Computer Science Department
Stanford University
Stanford, California 94365

ABSTRACT:

One approach to the design of a logical model

" for an integrated database requires each potential

user or application to specify its view as a data
model. An integration phase follows, where these
user data models are integrated into a global .
database model. We address the problem of view
integration when user data models are expressed
using the structural model [Wi77,WE79].

The structural model is built from relations in
Boyce-Codd normal form [Co74]. A basic set of
integrity assertions is implicit in the model. The
integrity assertions are defined by classification
of relations into types, and are represented by
connections between relations. We will show how to
integrate different representations of two related
real-world entity classes.

KEY WORDS AND PHRASES:

Logical database design, data model integration,
relational model, structural model, entity classes
and relationships, ANSI/SPARC DBMS architecture,
conceptual and external schema, data semantics.

1. INTRODUCTION:

An integrated database is expected to be used by
a number of users and their applications, not all
of whom have the same view of the database. Two
approaches exist that allow different user views of
the same database. The first approach assumes the
existence of a model for the entire database, and
allows users to define their views by specifying
the parts of the database model that interest them.
This approach is used in both network (or CODASYL)
[COoD74, TF76] and relational [CGT75] databases.

In network databases, a user may define his view
as a subschema which is identical to the part of

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is
glven that copying is by permission of the Associa-
tion for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific

permission.
© 1979 ACM 0-89791-001-X/79/0500-0191 $00.75

191

the database model that interests him. Relational
databases allow user views that are not identical
to parts of the database model. For example, a
relation in a user view may be a “JOIN" of two
relations in the database model. However, such
relations may not be updated. It has recently been
shown that in a general relational model, with
integrity constraints specified by assertions,
updatability of relational views is limited [DB78].

Recent work in logical database design [Wi77,
NS78, WE79] suggests a second approach. Each user
first specifies a data model which represents his
requirements. An integrated database model is then
created by the combination of user data models. If
conflicts arise that do not permit integration,
contrary data models will have to be changed.

In this paper, we show how to integrate two data
models that represent a relationship between two
real-world entity classes different ways. The data
models, and the integrated database model, are
specified in an extended relational model which
implicitly represents a limited set of basic integ-
rity constraints. Relations are classified into
types, and connections between relations specify
the existence dependencies of tuples from separate
relations.

All relations in the structural model are in
Boyce—Codd normal form [Co74]. In section 2, we
define this structural model. A more complete
discussion of the origin and use of the structural
model is given in [WE79]. 1In section 3, we show
how two related real-world entity classes can be
represented in the structural model, and in section
4 we show how the different representations may be
integrated.

2. THE STRUCTURAL MODEL:

In our discussion of the structural model, we
will often refer to entity classes and relation-
ships. An ENTITY CLASS is a set of real-world
objects or events of the same type, such as "CARS
IN CALIFORNIA" and "CAR MANUFACTURERS". A rela-
tionship between two entity classes is a mapping
that associates with each object of one entity
class a number of objects (possibly none) of the
other entity class. For example, a relationship
CAR : MANUFACTURER relates a car with'a manufac-
turer such that the car was made by this manufac-
turer.

Our model is constructed from relations which
are used to represent entity classes and some types
of relationships among entity classes. Other types
of relationships are represented by connections
between relations. Both relations and connections
are categorized into several types, according to
the structure they represent in a data model.

Connections between relations allow the repre-
sentation of additional semantic information in the
data model. In particular, existence dependencies
among tuples in separate relations are clearly
represented. The data model designer has several
choices for representation of a relationship, and
can choose the one best suited to his needs,

Relational concepts are well known. For com—
pleteness, we will concisely define relations and
relation schemas as we use them in the structural
model. We then formally define the concept of
connections between relations.

We use A, B, C, to denote single attributes; X, .
Y, Z, to denote sets of attributes; a, b, ¢, to
denote values of single attributes; and, x, y, 2z,
to denote values of sets of attributes. We assume
all sets of attributes are ordered for convenience.

2.1. REIATIONS:

DEF.1l: An ATTRIBUTE B is a name associated with a
set of values, DOM(B). Hence, a VALUE b of attri-
bute B is an element of DOM(B).

For an ordered set of attributes ¥= <Bl, ... Bm>

we will write DOM(Y) for the set { <bl, ... bm>|
bi is an element of DOM(Bi); i =1, ... m}. Hence,
DOM(Y) is the cross product DOM(B1l) X ... DOM(Bm).

DEF.2: A TUPLE (or value) y of a set of attributes
Y= <Bl, ... Bm> is an element of DOM(Y).

DEF.3: A RELATION SCHEMA, Rs, of order m, m> @, is
an (ordered) set of attributes ¥= <Bl, ... Bmw,
The RELATION R is an instance (or current value) of
the relation schema Rs, and is a subset of DOM(Y).

Each attribute in the set Y is required to have
a unique name. . .

The set Y is partitioned into two subsets, K and
G. The RULING PART, K, of relation schema Rs is a
set of attributes K= <Bl, ... Bk>, k <= m, such
that every tuple y in R has a unique value for the
(sub) tuple that corresponds to the attribute set K.
(For simplicity, we assume K is the first k attrib-
utes of Y.) The DEPENDENT PART, G, of relation
schema Rs is the set of attributes G =Y - K.
(The - is the set difference operation).

All relations are in Boyce-Codd normal form (see
[Co74)) .

We will write R[Y] or R[Bl, ... Bm] to denote
that relation R is defined by the relation schema
Y= <Bl, ... B,

Also, K(Y) will denote the ruling part of rela-
tion schema ¥, and G(Y) will denote the dependent
part. Similarly, for a tuple y in relation R, k(y)
will denote the tuple corresponding to attributes
K(¥), and g(y) likewise.

A relation R[Y] may have several attribute sub-
sets 2 which satisfy the unigueness requirement for

192

ruling part. In the structural model, the ruling
part of a relation will be defined according to the
relation type (see section 2.3).

2.2. CONNECTIONS:

We now define the concept of connections between
relations, A connection is defined between two
relation schemas. Instances of the connection
exist between tuples from the two relations. Two
major connection types will be distinguished in the
structural model: ownership and reference,

DEF.4: A CONNECTION between relation schemas X1 and
X2 is established by two sets of attributes Y1 and
Y2 such that:

a. Y1 is a subset of Xl.

b. Y2 is a subset of X2.

c. DOM(Yl) = DOM(Y2).

We then say that X1 is connected to X2 through
(Y1, v2).

The definition of connection is symmetric with
respect to X1 and X2, and thus it is an unordered
pair (X1,X2). An instance of the connection exists

~ between every two tuples that have matching values

(yl = y2) for the sets of attributes Yl and Y2.

Connections may also be defined for dissimilar
but related attributes, Condition (c) above then
becomes DOM(Y1l) = £(DOM(Y2)), where £ is a function
that defines matching values. We need the follow-
ing types of connections to define the structural
model.

DEF.5: A REFERENCE CONNECTION from relation schema
X1 to relation schema X2 through (Y1, Y2) is a

connection between X1 and X2 through (Y1, ¥2) such -

that:

a. Y2 = K(X2).

b. Y1 is a subset of K(X1), or Yl is a subset of
G(X1) (but Yl may not contain attributes from
both K(X1) and G(X1)).

DEF.5a: A reference connection is an IDENTITY
REFERENCE if Y1 = K(X1).

DEF.5b: A reference connection is a DIRECT
REFERENCE if it is not an identity reference.

Reference and direct reference are not sym-
metric with respect to X1 and X2, and are ordered
pairs <X1,X2> when the reference is FROM X1 TO X2.
The identity reference is defined symmetrically,
but we still consider it to be ordered. This is
because identity references will be used to
represent subrelations of a relation, defined in
section 2,3. We consider the reference to be from
the subrelation to the relation.

DEF.6: An OWNERSHIP CONNECTION from relation schema
X1 to relation schema X2 through (Y1,Y2) is a
condection between X1 and X2 through (Y1,¥2) such
that:

a. Y1 = K(X1).

b. Y2 is a proper subset of K(X2).

The ownership connection is also an ordered pair
<X1,X2> when the connection is from X1 to X2.

The connections defined above may be represented
graphically as in Fig. 1. They are represented by

~ 1 oo N] oo =00 . 0O QO

[a]

Lo e]

e orA o A M

-

directed arcs, with the ¢ representing the TO end

of the connection.
X:
o=
Tﬁ

o DIRECT REFERENCE (XX FROM THE
DEPENDENT PART OF X

e R s s

10 IDENTITY REFERENCE ()2) OMNERSHP CONNECTION 04,%2)

]

x2

Fig‘. 1. Types of connections
2.3. TYPES OF RELATIONS:

We now present the types of relations in the
structural model. The origin and use of these
relations in data model design are discussed in
© [Wi77] and [WE79]. We will only briefly mention
the use of each relation type here.

For the rest of the paper, we will use the term
relation for both relation schema and relation,
since the meaning is clear from the context.

DEF.7: An ENTITY RELATION is a relation R[X] which
defines a correspondence between objects of a class
of entities E and the tuples in R.

DEF.8: A REFERENCED RELATION is a relation which
has reference connections to it from some relations
in the data model.

We now define the five basic types of relations
in the structural model.

DEF.9: A PRIMARY ENTITY RELATION is an entity
relation that has no direct references or ownership
connections to it from any other relations in the
data model. :

DEF.16: A REFERENCED ENTITY RELIATION is an entity
relation which has direct references to it from some
relations in the data model.

Entity relations are used to represent entity
classes. The existence of objects from the class
in the relation is determined externally relative
to the model. The ruling part defines the tuple
that represents an object uniquely. The dependent
part attributes describe properties of the object.

The ruling part attributes of a referenced
entity relation R are also used for referencing R.
Each relation R” that references R will have a set
of referencing attributes, having the same domain
as the ruling part of R. This constrains insertion
and deletion of tuples in both R and R” as we shall
see in section 2.4. No such constraints exist for
primary entity relations.

DEF.11: A NEST RELATION is a relation, R2, which
has an ownership connection to it from exactly one

193

other relation, Rl, in the data model.
is the OWNER of R2.

Relation R1

The ruling part of a nest relation R2 consists
of two parts: attributes which define the connec-
tion with the owner relation Rl, and additional -
attribute(s) that uniquely identify tuples owned by
the same owner tuple in Rl. Existence of tuples in
R2 depends on the existence of an owner tuple in Rl.

DEF.12: An ASSOCTATION RELIATION of order i, i>l, is

a relation R that has i ownership connections to it

from i other relations in the data model, R1, ...

Ri, such that:

a. each Rj has an ownership connection to R
throwgh Xj, Yj; j=1, ... i.

b. ¥j intersection Yk = empty set for j # k.

¢. K(R) = Y1 wnion ... wnion Yi,

I —

S

\m./?

o[1]

TS © —

]

Fig. 2. An association relation, R, of order 2

The ruling part of an association consists of i
disjoint sets of attributes; each defines a connec-
tion to one of the owner relations. Every tuple in
the association is owned by i tuples, one from each
of the owner relations.

DEF.13: A LEXICON RELATION R[X] between two sets of
attributes Y1 and Y2 defines a 1:1 correspondence
between DOM(Y1) and DOM(Y2) such that:
a. Yl = K(X).
b. the set of attributes Y2 does not appear in
any relation other than R.
C. Y1 intersection Y2 = empty set, and Y1 union
Y2 = X,
d. R is referenced by one or more relations in
the data model,

The main use of lexicons in data model design is
to reduce the number of attributes in the core of
the data model by removal of equivalent attribute
sets to a lexicon., Only one of the attribute sets
is maintained in the remainder of the data model.
This is particularily useful when several candi-
dates exist for ruling part of a relation.

The above definitions define the five main types
of relations: primary entity, referenced entity,
nest, association and lexicon. A subrelation may
be defined on any relation.

A subrelation R° of some relation R defines a
subset of the tuples in R as belonging to the
subrelation, This subset of tuples either has a
semantic significance in the data model, or has
certain additional properties that have to be
described, but are not represented in other tuples
of the relation. The relation R is called the base
relation of the subrelation.

A subrelation has the same ruling part attrib-
utes as the base relation, and is connected to the
base relation through an IDENTITY REFERENCE. The
identity reference reflects the fact that a tuple
in the subrelation with the same value for ruling

part as a tuple in the base relation actually
represents the same object in the data model,

No attributes from the base relation are dupli-
cated in the subrelation other than the ruling part
attributes that define the connection.

DEF.14: A (non-restriction) SUBRELATION of relation
R[X] is a relation R°[Z] such that:

a. an identity reference exists from R” to R.

b. for every tuple z in R", there exists a
corresponding tuple x in R such that k(x) =
k(z) .

Cc. (Z - K(2)) intersection (X - K(X)) = empty
set,

R is the BASE RELATION for subrelation R’.

Def.l4a: A RESTRICTION SUBRELATION of a relation
R{X], restricting the set of attributes ¥, Y subset
of X, to the domain D°, D° subset of DOM(Y), is a
subrelation R'[Z] of R such that: for every tuple x
in R that has as value for the set of attributes Y
a tuple y in D°, there exists a corresponding tuple
z in R” such that k(z) = k(x).

An example of a restriction subrelation is a
relation "TECHNICAL EMPLOYEES®, a subrelation of an
"EMPLOYEES ~ relation, restricting the attribute
"JOB" of "EMPLOYEES® to the subdomain {engineer,
researcher, technician}, say. Existence of tuples
in such a restriction subrelation is totally de~
pendent on existing tuples in the base relation.,
All employee tuples with job value engineer, re-
searcher or technician must also exist in the
“TECHNICAL EMPLOYEES ™ subrelation. All other
employee tuples cannot exist in this subrelation.

An example of a non-restriction subrelation is a
relation ‘EMPLOYEES IN SPECIAL PROJECT X°. Tuples
in this subrelation are determined externally from
the data model, but confined to tuples in the base
relation of all employees.

We use subrelations to represent three cases:

1. Wwhen a subset of a relation has a semantic
significance to the data model, or has addi-
tional attributes that need to be represented
in the model.

2, When integrity constraints require a subset
of a relation to own a nest relation or an
association, or to be referenced from another
relation, :

3. When we combine data models to form an inte-
grated database model (see section 4), some
data models may represent a subset of a re—
lations from other data models. This will be
reflected in the integrated database model.

2.4. MAINTAINING THE STRUCTURAL INTEGRITY OF THE
DATA MODEL:

The structural model contains a basic set of
integrity constraints that govern existence depen-
dencies of tuples in distinct connected relations.
These constraints are expressed implicitly by the
connections between relations. Structural integ-
rity exists in our model when the tuples in the
database do not violate these constraints.

These constraints are quite useful when a rela-
tionship is represented. Many properties of the
relationship can be captured in the model.

194

We now give the constraints associated with each
connection. For two connected relations Rl and R2,
we say two tuples x and y from Rl and R2, respect-
ively, are connected if the values for the connec-
tion attributes in x and y match.

A direct reference from relation Rl to relation

~ R2 specifies the constraints:

1. Every tuple in Rl must be connected to a tuple
in R2.

2, Deletion is restricted for tuples in R2. Only
tuples that are not connected to any tuple from a
referencing relation may be deleted.

An ownership connection from Rl to R2 specifies
the constraints:
1. Every tuple in R2 must be connected to an owner
tuple in R1.
2. Deletion of an owner tuple from Rl requires
deletion of all tuples connected to it in R2,

An identity reference from a subrelation R’ to
its base relation R specifies the constraints:

1. Every tuple in R” must be connected to a tuple
in R,

2. Deletion of a tuple from R requires deletion of
the connected tuple in R’,

3. If R’ is a restriction subrelation, every tuple
in R that belongs to the subrelation (specified by
the value of the restricting attributes) must exist
in R,

We will use the following notation to represent
connections in our diagrams:

—% —_— >>>>> >
ownership direct identity
connection reference reference

The ownership connection is similar to the
Bachman arrow [Ba69] of data structure diagrams.

3. DATA MODEL REPRESENTATION OF A RELATIONSHIP
BEIWEEN TWO ENTITY CLASSES:

In this section, we consider how the structural
model represents two related entity classes. This
is important when we discuss data model integration
in section 4,

Consider two entity classes, A and B, related in
some way. One property of the relationship is its
CARDINALITY. The cardinality of the relationship
places restrictions on the number of entities of
one class that may be related to an entity of the
other class. The cardinality of the relationship
between A and B may be: i)

a. 1:1, an entity in A may be related to at most
one entity in B, and vice versa.,

b. 1:N, an entity in A may be related to N
entities in B, N >= @, but an entity in B may
be related to at most one entity in A.

c. M:N, an entity in A may be related to N
entities in B, N >= @, and an entity in B may
be related to M entities in A, M >= 0.

Aditional restrictions may be specified. For
example, one may specify that each entity in A is
related to exactly one entity in B, or the values
for M and N could be more stringently specified
(N>0, or 9 <NKS5, say).

e N S

Entity classes may be represented in the struc-
tural model by a primary entity relation, a refer—
enced entity relation, or a nest relation. A
direct relationship between two entity classes A
and B may be represented structural model as one of
four choices (Fig. 3):

1. a reference connection: entity class A is
represented as a relation Ra, referencing the
relation Rb that represents entity class B
(Fig. 3.a). The cardinality of the relationship
A:B is N:1, and each entlty in A must be related to
one entity in B,

2. an ownership connection: entity class A 1s
represented by a relation Ra that owns the nest
relation Fo which represents entity class B
(Fig. 3.b). The cardinality of the relationship
A:B is 1:N, and each entity in B must be related to
one entity in A,

3. an association relation: relations Ra and Rb
represent entity classes A and B, and an associa-
tion relation Rab represents the relationship
(Fig. 3.c). 1In this case, the cardinality of the
relationship A:B is M:N; M >= @, N >= 0.

4. a nest of references: relations Ra and Ro
represent the entity classes A and B. A nest
relation Rab owned by Ra, and a reference connec-
tion from Rab to Rb represent the relationship
(Fig. 3.d). The cardinality of A:B is M:N; M >= @,
N >= 0, '

[Ra] [Ra][Re] [Ral
Ru] [Rab] [Rebl—{Ro

Fig. 3. Representation of two directly related
entity classes

Other relationships may exist indirectly between
two entity classes. For example, if entity classes
A and B, and B and C are directly related, an indi-
rect relationship exists between A and C. We only
consider direct relationships. Note that we can
further restrict the cardinality of a representation
by specifying M or N to be a positive integer.

- Data models that represent the same two related
entity classes may choose different representations
for the relationship according to the way they view
the update constraints. Two reasons for such a
discrepancy can be distinguished: difference of
understanding and difference of representation. We
illustrate these differences by example. ‘

1, The two data models may differ in their under-
standing of the same situation. Consider the two
entity classes ‘DEPARTMENTS® and ‘EMPLOYEES’. One
user may consider the relationship between "DEPART-

MENTS® and “EMPLOYEES® to be 1:N (each employee may
work in only one department). A second user is
aware of exceptions and considers the relationship
to be M:N {an employee may work in more than one
department) . Here, a disagreement exists about the
situation being modelled, and one of the data
models is in error. It may be that the first user
only knows about employees that work in one depart-
ment. If such a conflict occurs between the two
data models, the situation being modelled will have
to be re-examined to determine its actual proper-
ties. We will not consider this problem further.

195

2. The two data models represent the same sit-
uation differently, each user choosmg the repre-—
sentation that best suits hls integrity control
requlrements. Consider the "DEPARTMENTS and ‘EMP-
LOYEES® example, and suppose that the relatlonshlp
cardinality is 1:N. It may be represented in -

‘several different ways in the structural model:

a. an association (Fig. 4.a).

b. a reference connection from E:MPI.OYEES to
‘DEPARIMENTS * (Fig. 4.b).
, C. anest of references from "EMPLOYEES® to
DEPARIMENTS ° (Fig. 4.c).

d. an ownership connection from "DEPARTMENTS * to

‘EMPLOYEES® (Fig. 4.4).
._€. a nest of references from "DEPARTMENTS® to
EMPLOYEES

(EMP |

[empdep] [empdep }[0EP]

Fig. 4. Some possible representations of DEP:EMP,.
a 1:N relationship

[EmP]

The different representations reflect different
integrity requirements.

a. The association does not place any constraints
on the existence of the actual entities, but it can
only be made between existing entities.

b, The reference representation requires each
employee to belong to a department, and restricts
deletion of a department from the database while it
is referenced by some employee.

c. The first nest of references representation
restricts the deletion of an employee while he is
referenced from his department, but allows both
employees and departments to exist that are not

‘related to an object of the other class.

d. The ownership connection representation re—
quires that each employee have one department, and
that deletion of a department from the database
results in the deletion of all the employees who
work in that department.

e. The second nest of references representatlon
restricts the deletion of a department while refer-
enced from some employee, but allows both employees
and departments to exist independently.

4. INTEGRATION OF DATA MODELS:

We now present the integration of data models.
First we briefly define our terminology for loglcal
database design.

A DATA MODEL is a representation of the require-
ments of a particular potential database user or
application. The definition of data models for
individual users or groups that expect to use the
database is the first step in the design of an
integrated database.

The DATABASE MODEL is the integrated model crea-
ted by merging the individual data models. During
merging, differences in view are bound to appear.
The differences may be resolved by transformations
of the original datamodels. If unresolvable
conflicts emerge, managemant decisions have to be
made to force data model changes, or to abandon the
integration with respect to some data models.

A DATABASE SUBMODEL is the user or application
view that is consistent with the integrated data-
base model. If the integrated database model can
directly support a user data model, the database
submodel for that user will be the same as his data
model. If some conflict had arisen during integ-
ration, some differences may exist between the data
model and the database submodel.

4.1, INTEGRATION OF DATA MODELS THAT REPRESENT A
RELATIONSHIP BETWEEN TWO ENTITY CLASSES:

In the following sections (4.1.1 - 4.1.4), we
assume that we have two data models, data model 1
{dml) and data model 2 (dm2). Both data models
represent two entity classes A and B, and a rela-
tionship A:B between them. - Other classes of data
will be represented, but we only consider entity
classes A and B, and the relationship between them.
If dml and dm2 use the same representation, there
will be no need for any transformation, and the
integrated database model (idbm) will use the same
representation, If the representations differ, we
must create an idbm that supports both dml and dm2
correctly,

We use Ra and Bb to denote the relations that
represent entity classes A and B, If the repre-
sentation involves an association relation between
Ra and B, we will designate it Rab. If a nest of
references, owned by Ra and referencing Fb, is
represented, we will designate the nest relation
Rab also. After integration, the idbm will support
database submodel 1 (dbsml) and database submodel 2
(dbsm2) , corresponding to dml and dm2 respectively.

In some cases, a subset of the relation Ra (or
Rb) in the idbm will correspond to the Ra (or Rb)
relation represented in dbsml or dbsm2., We will
then use a subrelation to represent this subset,
and an identity connection will connect it to Ra.
Hence, if the Ra relation of dbsml corresponds to a
subrelation of Ra in the idbm, we denote this sub-
relation Ral in the idbm, and Ral will have an
identity reference to Ra. The subrelation Ral of
Ra contains only the ruling part attributes of Ra,
so no duplication of information occurs in the
representation of the idbm. All other attributes
of Ra can be accessed through the identity
reference to Ra.

We do not address the problem of authorization
of users to perform insertion and deletion. We
assume that every database submodel has complete
insert, delete, and update authorization over the
part of the database model it represents. Hence,
if one submodel, dbsml say, inserts a tuple that
does not violate the integrity constraints of
dbsm2, the tuple is inserted in both. If the tuple
violates the integrity constraints of dbam2, it is
inserted but remains invisible to dbsm2. For dele-
tion, if deletion of a tuple is legal in dbsml,
say, but the tuple may not be deleted from dbsm2
because of integrity constraints, the tuple will be
kept in the idbm and in dbsm2, but will became
invisible to dbsml.

After integration, the idbm will support both
dbsml and dbsm2. A mapping will exist from each
submodel to the idbm. This mapping (Fig. 5) will
contain additional integrity rules, derived from
the integration process, which apply to the idbm

196

DATABASE
SUBMODEL

~N

BRI
d
N7

INTEGRATED
DATABASE. MODEL

additional

it

Fig. 5. Additional constraints on the idbm

whenever one of the database submodels performs an
insertion, deletion, or update, We list these
rules with each case of integration.

There are four ways of representing a relation-
ship A:B between two entity classes in the struc-
tural model {Sec. 3). The set of possible cases
for combining two different representations is 2 X
(4+3+2+1) =28, We remove 4 cases where
the relationship is represented in the same way,
and 4 cases because the association is symmetric
with respect to Ra and Rb. Then 12 cases remain to
be considered. We first consider integration with
the association (3 cases, sec. 4.1.1). We then
consider the cases that remain with nest of refer-
ences (5 cases, sec. 4.1.2), reference (3 cases, .
sec. 4.1.3), and nest (1 case, sec. 4.1.4).

Our assumption (sec. 3) that both original data
models accurately represent the same situation
implies that the cardinality of both representa-
tions is the same. Hence, the data model that can
represent more general cardinalities is restricted
to the cardinality of the relationship represented
in the other data model.

- Following each integration case, we give a sim-
ple example with attributes. In these examples,
some attributes are required to have unique values
in tuples of a relation at all times to enforce the
specified cardinality of a relationship. These
attributes will be marked (U). Attributes will be
separate by lines (), and the ruling part attrib-
utes are shown to the left of a double line ().

In order to demonstrate how two different data
models are integrated, we present the integration
of an association with the nest of references
(Fig. 6a). Here, the only difference is that in
dml, deletion of tuples from Rb is unconstrained,
while in dm2 such a deletion is restricted by
referencing tuples from Rab,

To concile this difference, we create two sub-
relations Rbl and Rabl in the idbm to represent the
tuples in B and Rab of dbsml. Some tuples in Fb
and Rab of the idbm may have been deleted by dbsml.
If these tuples were referenced, they are only
deleted from Rbl and Rabl in the idbm, but not from
Fb arid Rab due to the deletion constraint of the
reference in dbsm2. These tuples become invisible

. to dbsml.

The database submodels now obey the following
rules. Insertion and deletion in Ra from either
dbsml or dbsm2 is unrestricted, as is deletion of
Rab tuples, and of unreferenced Fb tuples, If
dbsml deletes a referenced Fo tuple (dbam2 may not
perform such a deletion), it is only deleted from

Bl (and the owned tuples are automatically deleted

from Rabl). These rules accurately reflect the

constraints of the original data models.

For brevity, we will use a standard format for
each integration case listed below. We first give
the differences between the two data models, then
the additional integrity constraints that have to
exist in the mapping information fram each database
submodel to the integrated database model.

when listing these additional constraints,
("relation name"”) will mean ‘do the specified
insertion or deletion if allowed by the integrity
constraints of the idbm°, Also, the relation name
to the left of the “-" refers to the database sub-
model, while those to the right refer to the data-
base model. We only consider cases which need
additional control from the mapping information.

We now present the demonstration case again in
the brief notation to clarify these conventions.

© 4.1.1. INTEGRATION WITH AN ASSOCIATION:

Here, dml represents the relationship A:B by an
association relation, and dm2 uses a different
representation. The cardinality of the relation-
ship A:B is hence M:N, possibly restricted to that
of the representation in dm2.

(a) Association and nest of references (Fig. 6a):

ami dm2 idbm
association nest of references

][] [Ra] [Ra
, [Rabl—{Rb |
YR R
A

Fig. 6.a. Integration of association and
nest of references

Differences:
In dm2, deletion of B tuples is restricted by
references. Dml has no such restriction.

Additional mapping information:
dbaml; ins B - Rb,Rbl dbam2: ins R - Rb,Rol
Rab—- (Rab,Rabl)
del B - (Rb) ,Rbl

To clarify our notation, we discuss the addi-
tional mapping information for this example.

Insert a tuple in Ra in dbaml (or dbsm2) means
insert it in Ra in the idbm, since it is not listed.
In dbaml, insert in Fb requires insertion in Fb and
Rbl in the idbm. Insert in Rab requires insertion
in (Rab,Rabl), the () brackets meaning if the
integrity check of the idbm will allow it (here if
both owner tuples exist). In dbsm2, insert inh Rab
requires insertion in (Rab,(Rabl)) which means
insert in Rab if the integrity check of the ibdm
holds (both the owner tuple in Ra and the refer-
enced tuple in Rb exist), then also insert in Rabl
(if the other owner tuple exists in Rbl).

Rab- (Rab, (Rabl})

197

In dbsml, delete a tuple £
from Rbl, and also from Bb if i

k.

LEMPNO[DEPNO—={ DERNORLOC]
A A

A A
[ENP-NO?DEP—NO]*—-{ (;\EP-NO]
IDBM

EMP-NOJ DEP-NO }—+{DER-NOJLOC]
DBSM2

(b) Association and reference (Fig. 6.b):

The cardinality of the relationship A:B is res-
tricted to N:l, since the reference cannot repre—
sent an M:N relationship.

daml dm2 idbm

association reference
Rel[Re] :
A
[Rab
ebl—{(Red]

Fig. 6.b. Integration of association and reference

>>>

Differences:

1. In dm2, every Ra tuple must reference an Rb
tuple, while in dml not all Ra tuples have to be
related to B tuples,

2. In dm2, deletion of Bb tuples is restricted by
references,

The unrestricted deletion of Bb tuples in dbsml
leads to the creation of the subrelation Rbl, and
the requirement that every Ra tuple must reference
an B tuple in dbsm2 leads to the creation of Ra2.

Additional mapping information:
dbsml: ins Rb - Rb,Rbl dbsm2: ins Ra - (Ra,Ra2,

Rab~ (Ra2,Rab) (Rab))
.del Bb - (Rb),Rbl Rb ~ Rb,Rbl
Rab— Rab,Ra2
Example:
[DEP-NOJLOC] [EMANOJAGETSAL] (ENP-NOJAGE JSAL |
A
A
Mﬁ@ [EMPROIDERRO}—{GERNGLOT |
DBSML
[EMP-NODEP-NO}
q
1DBM
[EvP-OfAGETSALTDERNO—{DERNOILC |
DBSM2 =

(c) Association and nest (Fig. 6.c): In the second example, identifying attributes
: are different. Dbsm2 uses the combination <"EMP-
The cardinality of the relationship A:B is NO", "CHILD-NAME"> as ruling part, and dbsml uses
restricted to 1:N. only "CHILD-ID". "CHILD-ID" uniquely identifies a
child tuple, while "CHILD-NAME" does not. Here, if
dm2 did not represent the attribute "CHILD-ID", it
has to be made aware of it to maintain the correct
mapping between "CHILD-ID" and "CHILD-NAME". Hence
dbsm2 will be different from dm2.

dml dm2
association nest

4.1.2, INTEGRATION WITH A NEST OF REFERENCES:

Dml represents the relationship A:B as a nest of
references from A to B, and dm2 represents it diff-

Fig. 6.c. Integration of association and nest erently, The cardinality of the relationship A:B
is M:N, but may again be restricted to the repre-

Differences: sentation in dm2. The nest of references is not

1. In dm2, existence of a tuple in Fb requires symmetric with respect to entity classes A and B,
the existence of the owner tuple in Ra, In dml, so we must consider it twice with each nonsymmetric
Rb tuples can exist independently. representation,

2, In dm2, deletion of a tuple from Ra reguires :
the deletion of the owned tuples in Rb. Dml does (a) Nest of references and nest of references (Fig.
not require these deletions. 7.a):

The B tuples in dbsm2 are only those in Rb2, ami - Aam2 idbm
since they require the existence of the owner tuple. nest of reterences nest of references
Those are the same as the tuples in Rab.
Additional mapping information: [B—a_l

dbsaml: dbam2: ins Rb ~ (Rb,Rb2)

Here, we must consider two examples, since the 3
nest relation may represent different tuple iden- Rab
tification attributes than the association. We
first consider the case where the identification is

the same. The attribute "EMP-NO" identifies the . Fig. 7.a. Integration of two nests of references
employee in both dbsnl and dbam2. Since the car-

dinality of DEPARTMENT:EMPLOYEE is 1:N, "EMP-NO" Differences: ’ '

must have unique values for the attributes marked 1. Deletion of ®b (Ra) is restricted in dml (dm2).
with a (U). Note that this does not violate Boyce- 2. Deletion of Ra (Rb) in dml (dm2) requires

Codd normal form. In this case, the integration is deletion of owned tuples in Rab (Rba).

" straightforward (Example 1).
Additional mapping information:

Examplel: . dbsml: ins Ra - Ra,Ral dbsm2: ins Ra - Ra,Ral
- Rb - Rb,Rb2 Rb ~ RFb,Rb2
DEPNORLOG] [E Rab- (Rab,Rebl,(Rba2)) Rba- (Rab,Rba2,
' 1 (1, (Rab del (Rabl))
del Ra ~ (Ra),Ral,) el Ra - (Ra,Rab)
DEP NOJEMPNO Rb - (Rb,Rab) Rb - (Rb) ,Rb2,
(Rab)
DBSM1 ' .
: When dbsml attempts to delete an Ra tuple that
is referenced in the idbm from Fba2, it is only k
: deleted from Ral. If the tuple is not referenced
DEP-NOJEMP-NOJAGE|SAL from Rba2, it will also be deleted from Ra. 1In the
)
DBSM2 Example:

EMP-NOJ AGE [SAL | DEP-NOJLOC |

[0] DEFHO}—{DEPNOILOG] [DEP-NOJEWRHO}—{EMAROJAGETSAL)

DBSM1 DBSM2

EMP-NOJDERNO]>>> | EMP-NO| DEP-NOJ <<<| EMP-NO| DEP-NOJ
DM

198

[EA=AN |

latter case, the tuples in Rab that correspond to
those deleted from Rabl (due to the deletion of Ra
and the ownership connection) should also be dele~
ted, since they no longer exist in either Rabl or
Rba2. Rab exists to ensure the consistency of the
tuples associating Ra with Rb (in Rabl and Rba2).

(b) Nest of references and reference (Figs. 7.b,
7.¢):

Both nest of references and reference are non-
symmetric, so we must examine two cases.

Case 1 (with reference from A to B):

The cardinality of the relationship A:B'is
restricted to N:1, since the reference from A to B
can only represent an N:1 relationship.

dml am2 idbm
nest of references . reference

Reb Rb | RabfRa2}—Rb |

Fig, .7.b. Integration of nest of references and
reference (case 1)

Differences:
In dm2, a tuple in Ra must be related to an B
tuple,

Additional mapping information:
dbgml: i dbam2: insert Ra - (Ra,Ra2)

Example:
Since the relationship is N:1, "EMP-NO" must
have unique values where marked (U).

EMP-NO] AGE [SAL |

*

[EmP-NOJ DEP-NO}—={DERNO]LOC]

w DERNOJLOC |
DBSM1 W
' IDBM
[EmpNOf AGETSAL [DERNO~{DERNOJLOC |
DBSM2

Case 2 (with reference from B to A):
The cardinality of the relationship A:B is
restricted to 1:N.

dml dm2 idbm
nest of references reference

E‘j

*

-3 -3 0 3 2

Bdditional mapping information:
dbgml: ins Ra - Ra,Ral dbsm2: ins Ra - Ra,Ral

Rab~ (Rabl,Rab,Rb2) R - (B,Rb2,
Rab,Rabl)

del Ra - (Ra),Ral,(Rab) del Ra - (Ra,Rab)
B - (Rprab) Rb -~ (mlRab) ’
Rab— Rabl, (Rab) Rb2

Example:

- [N AEEAL RO} {ERROIG |
[DEP-NOJEMP-NO}—{EMPNOJAGE[SAL | DBSM2

(c) Nest of references and nest (Figs. 7.d, 7.e):

Mjain, both nest of references and nest are non-
symmetric, so we must examine two cases.

Case 1 (with nest ownership from A to B):

The cardinality of the relationship A:B is rest-
ricted to 1:N, since the nest cannot represent an
M:N relationship.

Gml dm2 idbm
nest of references nest

Rebl—{ R] (jab

Fig. 7.4. Integration of nest of references
and nest (case 1)

Differences:
1. Rb tuples may exist independently in dml.
2. Deletion of Rb tuples is restricted in dm2.

Additional mapping information:
dbsml: ins Rab - (Rab,Rb2) dbsm2: ins Rb ~ (Rb,Rab,
Rb2)
del B -~ (Rb) ,Rb2

Example:
We consider an example with similar identifica-
tion.

Rabl—{ Rb | A
o> i J<fne]

Fig, 7.c. Integration of nest of references
and reference (case 2)

Differences:

1. Deletion of Rb (Ra) tuples is restricted in dml
(Am2) .

2. Bvery Rb tuple in dm2 is related to an Ra tuple.

199

[DEP-NO ' | DEP-NO
lDEP-NOIETOHEMFLNOIAGEfSALI [DEP-NOJEMP-NOIAGE]SAL |
()
DBSM1 DBSM2
|EMP-NOJAGE]SAL| {oEPNOJLOC|
A
A
MP-NOJOEP-NO

Case 2 (with nest ownership from B to A):
The cardinality of the relationship A:B is rest-
ricted to N:1.

dml
nest of references

[Re]

idbm

Rab

Fig. 7.e. Integration of nest of references
and nest (case 2)

Differences:

1. In dml, Ra tuples can exist independently,
but in dm2 an owner tuple must exist in Rb.

2. In dml, deletion of Rb tuples is restricted by
references, while in dm2, deletion of an Bb tuple
requires deletion of related Ra tuples,

Mditional mapping information:
dbsml: ins B - Rb,Rb2 dbsm2: ins Ra - (Ra,Ra2,
Rab- (Rab,Ra2) Rab)
B - Rb,Rb2
del Bb - (Rb) ,Rb2
Example:
This exanple has different identification.
Hence, dm2 is changed to include "EMP-NO",

[EMPANOJ AGE }SAL |

{EMP-NO| DEP-NOJ—{DEP-NOJLOC

Differences:

1. In dml (édm2), every Ra (Rb) tuple must
reference an B (Ra) tuple,

2. Deletion of Rb (Ra) tuples is restricted in
dml (dm2).

Additional mapping information:
dbeml: ins Ra — (Ra,Ral, dbsm2: ins Bb - (Rb,Rb2,

Rab,Rb2) Rab,Ral)
del Ra - (Ra) ,Ral,{(Rab) del Bb - (Rb),Rv2,
Ra - (RarRab)

Example:
LDEPNOmOCIM%;«oHMGR-No@q&u

pBSMl
MGRNOJAGE [SALDEP-NO
(V)

NBSM2
[EEPoJLoc] MeRFE

[DEPTOIMG Rl»(omomg«*

(b) Reference and nest (Fig. 8.b,

>'O

>

m

B'C)-:

Case 1 (with nest ownership from B to A):
The cardinality of the relatlonshlp A:B is N:1.

dml
reference nest

idl:m

>>>>

»:>>

w

w
DEP-NO[EMP-DJAGEJSAL] EMPNO]

DBSML DBSM2
[EMP-NO)
[EmP-NO[DEPNO] | DEPNOR.OC]

N A A .

A R

[EmP-nolpEP-NOJEMPD—{ DEP-NO]

[V]]

1D8M

4,1.3, Integratibn with a reference:

Dml represents the relationship A:B as a refer-
ence connection from A to B. The cardinality of
the relationship is N:1, possibly restricted by the
representation in dm2.

(a) Reference and reference (Fig. 8.a):

The cardinality of A:B is restricted to 1:1,
since it is N:1 in dml and 1:N in dm2. It would be
wnusual to encounter these two representations of a
1:1 relationship. However, it can be integrated.

dml
reference

dam2
reference

idbm

iRl

Fig. 8.a. Integration of two references

ol O

Fig. 8.b. Integration of reference and nest (case 1)

Differences:

1. In dml, deletion of Rb tuples is restricted by
references,

2. In dm2, deletion of an B tuple requires dele-
tion of owned tuples in Ra.

Additional mapping information:
dbeml: ins Ra - (Ra,(Ra2)) dbsm2: ins Ra ~ (Ra,Ra2)

Rb ~ Ro,Rb2 Rb ~ Rb,Rb2
del B - (Rb) ,Fo2
Example:
lemm_sulomm]—roepm@gj
DBSM1
 {DEP-NOJEMP-NOJ AGE [GAL
7 A v
[EMP-NOJDEP-NO [DEP-NO] DBSM2
© IDBM

Case 2 (with nest ownership from A to B):

The cardinality of the relationship A:B is rest-
ricted to 1:1, since in dml it is N:1, and in dm2
it is 1:N.

Differences:

1. Every Ra tuple in dml must reference an Fo
tuple. In dm2 every Fb tuple must be owned by an
Ra tuple.

2. Deletion of Rb tuples is restricted in dml.

200

dml
reference

=&l I

Fig. 8.c. Integration of reference and nest (case 2)

3. Deletion of an Ra tuple in dm2 requires the
deletion of owned Bb tuples.

Additional mapping information:
dbsml: ins Ra - (Ra,Ral, dbam2: ins B - (Rb,Ral,

Rb2) Rb2)
del Fb - (Rb) ,Rb2
Example:
Eim [MGR-NOJAGE]SAT |
~ [GERNOLOC
DBSM1
DEP-NOJMGR-NOJAGEISAL |
w w
DBSM2

4.1.4. Integration with a nest:
Nest and nest (Fig. 9):

The final case to consider is also unlikely.
The cardinality of A:B is restricted to 1:1.

nest nest

i3

Fig. 9. Integration of nest and nest

>>>>

Differences: -

1. In dml (dm2), every B (Ra) tuple must be owned
by an Ra (Rb) tuple.

2, Deletion of an Ra (Rb) tuple in dml (dm2)
requires deletion of the owned Rb (Ra) tuple.

Additional mapping information:
dbaml: ins Fb - (Rb,Rl) dbsm2: ins Ra - (Ra,Ra2)

Example:
[OEPNOJLOC] [MGR-NOJAGE[SAL]
{DEP-NOIMGRNOTAGEISAL
o O o O
DBSM1 DBSM2
[oer-nofLoc} [MGRIAGE]SAL]
N A
R A
w [(V)]
1DBM

201

-of its subrelations.,

4.1.5, Summary:

In sections 4.1.1-4.1.4, we showed how two diff-
erent representations of a relationship can be in-
tegrated. An integrated database model to support
the original data models correctly was created. 1In

- some cases, when one of the relationships was rep-

resented by an ownership connection, one of the
data models had to be changed slightly when the
identifying attributes were different in the two
data models.

This approach ensures the updatability of both
database submodels. The integrated database model
sometimes looks quite complex due to the creation
of several subrelations. FHowever, implementation
of subrelations can be quite simple. A single
record type can be created for a relation and all
One additional bit for each
subrelation is included in each record to indicate
vhether that record belongs to the subrelation or
not. Fields that exist only in a subrelation have
values only if the record is in the subrelation.

4.2. DATA MODELS THAT REPRESENT PARTS OF A RELATION
IN ANOTHER DATA MODEL:

We now consider the cases where one data model,
dml say, represents part of a relation represented
in the other data model, dm2 here. Two cases may
be distinguished:

1. Dml represents a relation represented in dm2,
but only represents some of the attributes in that
relation.,

2. Dml represents a subrelation (some of the
tuples) of a relation represented in dm2.

4.2,1. Representation of subsets of the attri-
butes:

Suppose both dml and dm2 represent a relation
‘EMPLOYEES ", and it is determined that both are
representing the same set of employees. Each data
model defines his own set of attributes. A common
set of attributes is represented in both models,
which includes the tuple identification attributes.
Then, the idbm will have to represent the complete
set of attributes. Dbsml and dbsm2 will each be
allowed access to the subset of attributes it
represents.

To integrate the two data models, we include in
the idbm a base relation "EMPLOYEES which contams
the common attributes, and two subrelations "EMPL’
and ‘EMP2° of ‘EMPLOYEES’. Each subrelation will
represent the additional attributes in one of the
data models (and the identifying attributes).

For example, dml could represent a relation
"EMPLOYEES® defined by the attribute set <"NAME",
"ADDRESS", "H-PHONE", "OFFICE", "O-PHONE", "DEPT">
(representmg a d1rectory of the employees) Dm2
represents a relation ‘EMPLOYEES® defined by the
attribute set <"NUMBER",. "NAME", "AGE", "JOB",
“"SAL", "DEPT™> (representing job mformatlon)
idbm then represents a base relation BdPIDYEES
<"NAME", "DEPT"> and two subrelations "EMP1”
<"NAME", "ADDRESS", "H~- ", "OFFICE", "O-PHONE">
and ‘EMP2° <"NAME", "NUMBER", "AGE" "JOB", "SAL">.
If dbsml inserts a tuple, it is only mserted in
the base relation and “EMP1” until dbam2 inserts it.

'I'ne

4.2,2. Representation of subsets of tuples:

Here, we have two possibilities. The first is
when one data model, dml (say), represents a
relation R, while dm2 represents a subset of the
tuples in R. In this case, the idbm will represent
R and a subrelation R of R. The subrelation R®
may be a restriction subrelation if the subset of
tuples in R™ is determined by attribute values in
R, or a non-restriction subrelation if the subset
of tuples in R’ is determined externally, indepen—
dently from the model, For example, the data model
for the payroll’ deparhnent could represent all
employees of a company in an ~"EMPLOYEES® relation,
whlle the data model for the sales deparment of

Armmnniaer wammnmamban Lo walallan ‘OATERO TMTTA

the company represencs the relation SALES EMPLO-
YEES®, the employees that work for the sales
depattment. In the idbm, the "EMPLOYEES relation
is represented, with a subrelation “SALES EMPIO-
YEES®, If ‘EMPLOYEES® has an attribute "DEPT"
represented, the subrelation ‘SALES EMPLOYEES®
would be a restriction subrelation, restricting the
"DEPT" attribute to the value “sales dept’, If the
"DEPARIMENT" attribute is not represented in
"EMPLOYEES ", "SALES EMPLOYEES® would be a non-
restriction subrelation. After integration, the
database submodel for the sales department would
only be allowed access to tuples in the subset,
while the database submodel would be allowed access
to all employee tuples.

The second possibility is that dml represents a
relation Rl and dm2 represents a relation R2 such
that:

Rl intersection R2 # empty set
Rl - R2 # empty set and R2 - Rl # empty set

The idbm will then represent a relation R = Rl
union R2, and two subrelations of R, Rl and R2.
Again, Rl and/or R2 could be restriction or non-
restriction subrelations. For example, refering to
a wmiversity database, dml (representing the comp-
uter science department of the university) could
represent a relation "CSD PROFESSORS®, and dm2
(representing information about permanent faculty)
could represent the relation "TENURED PROFESSORS®.
The idbm would then represent a relation "PROFESS-
ORS’, and two subrelations of "PROFESSORS®, °‘CSD
PROFESSORS* and “TENURED PROFESSORS . Each data-
base submodel is then allowed access to his subset
of tuples, and the base relation assures integrity
of common information.,

5. CONCLUSIONS: -

The structural model is an extended relational
model that provides tools for a more extensive
representation of the data semantics. In parti-
cular, many properties of relationships between
entity classes are captured.

The structural model can be used to represent
different user views of a database. These views
must be integrated in order to have a global
conceptual model,

We have shown here how different representations
of two related entity classes in two data models
can be integrated. The methodology for integration
has to be extended to more general cases, and we
are pursuing further work in this area.

202

ACKNOWLEDGEMENTS :

This work was supported by ARPA grant MDA993-77-
C-0322. We wish to thank Sheldon Finkelstein,
Daniel Sagalowicz, Bharat Bhargava, and other mem-
bers of the KBMS project for helpful discussions.

REFERENCES :
[Ba69] Bachman, C.W., "Data Structure Diagrams",
Database (ACM SIGBDP), Vol.l, No.2, Sumer 1969

[CGT75] Chamberlin, D.D., J.N.Gray, and I.L.Traiger,
"Views, Authorization, and Locking in a Relational
Database System", Proc. NCC, AFIPS, 1975,
PP.425-430 ' :

[Ch76] Chen, P.P.S., "The Entity-Relationship Model
- Towards a Unified view of Data", ACM Trans., on
Database Systems, Vol.l, No.l, March 1976, pp.9-36

[Co78] Codd, E.F., "A Relational Model for Large
Shared Data Banks®, Comm. ACM, Vol.13, No.6, June
1976, pp.377-387.

[Co72] Codd, E.F., "Further Normalization of t°
Data Base Relational Model", in R.Rustin (e .,,
"Data Base Systems", Courant Comp. Sci. Symp.,
Volume 6, Prentice-Hall, 1972, pp.33-64

[Co74] Codd, E.F., "Recent Investigations in
Relational Data Base Systems", Information
Processing 74, North-Holland, 1974, pp.1617-1821

[DB78] Dayal, U. and P.A. Bernstein, "On the
Updatability of Relational Views", in S.B.Yao
(ed.), Proc. Fourth Intl. Conf. on VLDB,
West-Berlin, 1978, pp.368-377

[EC75] Eswaran, K.P. and D.D.Chamberlin,
"Functional Specifications of a Subsystem for
Database Integrity", in D.S.Kerr (ed.), "Very
Large Data Bases", (Proc. Intl. Conf. on VLDB),
ACM, 1975, pp.48-68

[EM78] Hammer, M. and D.McLeod, "The Semantic Data
Model: A Modelling Mechanism for Data Base
Applications", in E.Lowenthal and N.B.Dale (eds.),
ACM SIGMOD Intl., Conf. on Management of Data,
Austin, Texas, 1978, pp.26-36

[NS78] Navathe, S.B. and M.Schkolnick, "vView
Representation in lLogical Database Design", in
E.Llowenthal and N,.B.Dale (eds.), ACM SIGMOD Intl.
Conf. on Management of Data, Austm, Texas, 1978,
Pp.144-156

[SS75) schmid, H.A. and J.R.Swenson, "On the
semantics of the relational model”, in W.F.King
(ed.), ACM SIGMOD Intl. Conf. on Management of
Data, San Jose, California, 1975, pp.211-223

[sS77) Smith, J.M. and D.C.P.Smith, "Database
Abstractions: Aggregation and Generalization",
ACM Trans, on Database Systems, Vol.2, No.2, June
1977, pp.165-133

[WE79) Wiederhold, G, and R. El-Masri, "A Structural
Model for Database Systems", Stanford University,
Computer Science Dept. Technical Report CS-79-722,
April 1979

[Wi77) Wiederhold, G., "Database Design", McGraw-
Hill, 1977, Chapter 7, pp.329-367

