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Abstract

          We study requirements to make information systems used for decision-making support effective. Lacking today is support for projection within these systems: the action that a decision maker initiates has effects in the future, and these must be assessed.  Information systems however, focus on the past, and leave projection to be performed either by the decision makers intuition, or to a variety of tools that are not well integrated.  After enumerat9ing needed functions, we present concepts needed for an adequate infrastructure. 

We then describe some research that has demonstrated a capability for integrating output from spreadsheets and other simulations into information systems.  We close by indicating research and development direction that should be pursued to make the vision of information systems that can also project into the future a reality.

1. Introduction.

An important objective of our information systems is to provide support to decision makers, so that the actions they initiate will be well informed and optimal within the bonds of our knowledge. A focus for the last 8 or so years has been integration of information from diverse sources. Technologies as middleware [Charles:99] and mediation [WiederholdG:97], has greatly increased the breadth of information an reduce the fraction of missing information. Historical records, now part of many databases, has increased the reach of the timelines [DasSTM:94], sometimes back to the period when electronic records were first collected.  When data arrive continuously new approaches to extract information out of streaming. Data mining increases the depth of the search, and provides insights into relationships and functions for projecting into the future [BettiniWJ:96].  All these technologies are being integrated into the information systems we are building now, although each topic is still of active research interest.

Does that mean that the decision maker is well served by information systems?  An answer to this question can be obtained by seeing decision makers in action: they rarely use our information systems directly.  They do rely on information from them, collected by staff, summarized, and often placed into reports.  These reports contain tables of alternative conditions and results, and often on-line pointers to spreadsheet used to justify those results.  The ability of word-processing documents to contain active spreadsheets has become a valued capability, more so than the ability to access databases. Dozens of books on this topic are on the market and sell well [MooreWW:01]. In situations where the amount of data is modest and relatively static, files associated with spreadsheets have supplanted the use of database technology, and extensions to allow sharing of such files are being developed [FullerMP:93].
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Fig 1.  Information and Decision making
Unless information systems can narrow the gap between the past and the future this isolation of the information gathering and information using disciplines is not likely to change. Our vision is then one where decision makers can move seamlessly from the past to the future (Fig.1) . Given that the focus in the past has been on past data, we will here focus on information that is obtained by using tools that project into the future [Wiederhold:99]..
2. Projective Services for Decision Makers


In order to provide decision makers with effectively projective capabilities a number of computation functions are needed.  These in turn will require additional infrastructure capabilities in our information systems. The results that these function s compute replace on the whole the results that information systems obtain by accessing databases for past, recorded data. The computational predictive functions we discuss and the infrastructure capabilities needed have already been demonstrated in isolation. The intellectual sources are in the planning sciences, in simulation technology, databases, software composition, workflow management and the distributed extensions of all of these. However, their integration has not yet been achieved. 

2.1 Predictive computations


Basic to this our vision is access to a variety of information sources that try to predict the future. Prediction invariably requires computation, but the computational models vary widely. Just like databases, instances are differentiated by content, but the tools used in diverse application areas overlap a great deal. Existing sources for predictions are spreadsheets, more formal discrete simulations, computations based on continuous equations, some dynamic programming formulations, all of them aided at times by published projections of economists, and environmental scientists, and even politicians whose models are not open to inspection. 
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Figure 2:  Past information and future projections 
Published projections appear in print and now often on the web [FishwickH:98]. The results are generally at a high level of abstraction since they are intended for a broad audience, and most be combined with local an domain specific information in order to become actionable information for decision makers.  For instance, projections of future inflation rates must be combined with capital reserves, cash flow, production capacities, personnel information, purchase and sales rates in order to project corporate performance. Datamining over past data can provide a source for future projections as well, given an assumption that the past is an adequate predictor of the future. 

The spreadsheet is the most common tool used in business for computation. When used for projection typically columns are assigned for timepoints that reach into the future, and rows handle the variety of given, intermediate, and result values at each timepoint. 

A typical example is a budget projection, with estimates of income, sales, and as well as on product, personnel, and interest costs. The parameters for future income are often based on past growth, while costs include published projections. Published parameters can be loaded through import interfaces, although we find that in the majority of cases they are entered by cutting and pasting from the source data. Internal parameters, as production factors are most commonly hidden within the spreadsheet's formulas, although the parents which require frequent modification may be assigned to initial cells, to allow easy reassessment of alternative futures.  Results are again either extracted through standard interfaces, or by cutting and pasting. Many interfaces are used to drive graphic presentation, with curves plotting results over future points in time, but not well suited to integartion. Complex spreadsheets are often created by experts, and the actual decision maker will never change the formulas, but only enter alternate values for selected parameters. Such parameters may represent values under control of the decision maker, say investments, or values that represent external risks, say prices of input commodities.

Discrete simulations have a similar computational model, but deal with larger scale cases. Here the provider and the user are more explicitly separated. Future values are computed at determined points in time, perhaps days, but may be aggregated to longer, say monthly, periods to satisfy the needs of the decision maker. An example we have used is a business model for a gas station, which included seasonal factors. Specific models are common in health care, in order to predict outcome for various patient types and treatments.  The result presentation in this models is already oriented towards convenient presentation at future points in time, often 1, 3, and 5 years hence.  A disincentive to their use of detailed discrete simulations in health care is the cost of entering data, since a patient may have to be described using many parameters.  Computations may explicitly compute risks, by being carried out at low and high ranges of input parameters, and then statistically summarized. Computational performance becomes also a concern, since predictions are only of value if they are produced much faster than real-time. There will be carefully designed input formats for variables that drive alternative outcomes, and the results will be placed directly in reports or databases.  If parameters from mined data are used then the predicted results will often mirror the mined data at a high level of abstraction. 

Continuously executing simulations provide up-to-date results continuously, refining results and projecting them as far into the future as their computational capabilities permit. They must also be constantly re-initialized with new data observations. Weather prediction is the most familiar example. Here computational resources become limiting. Probabilities are routinely produced, although not always well understood. What does 60% chance of rain mean? Here the individual decision maker has little control, the results are intended for a wide audience.  The user can only select the date and place for the prediction, and if the output must be integrated with further computation one has to resort to cut-and-paste or screen-scraping.  On long-range flights we can often observe a specialized simulation of this type, computing the expected arrival time of the aircraft at its destination, which aggregates flight parameters, weather predictions, and landing conditions.  Some automotive navigation systems try to provide a similar function, but as of today cannot acquire expected road conditions. 

Functional simulations have been used mainly where little detail is available. Here the predictions are based on differential equations, initialized from parameters based on fitting prior observations. Since these observations are due to prior results, rather than based on a detailed model of underlying relationships they have to applied with extreme care.  An early, well known example were the projections about future world energy and food needs and resources, estimated by the Club of Rome for over 20 years  [vanDieren:95]. Recent examples include the modeling of global warming and, on a smaller scale, the expectations about Internet commerce [SA:97]. Stability of the projections can be estimated by varying input parameters within bounds of likelihoods. The ranges of resulting values at the projected points can then be reduced to risk factors; however, for complex models an assessment of all combinations becomes computationally extravagant. Computing with little real data means that much uncertainty remains and can seriously affect the value of the results [BenHaim:01]. In these models the decision maker will have little influence, and can only enter the future pint-in-time and observe the results. 

Interpolation is a secondary function needed for effective support of decision making. The points in time where existing, general prediction tools provide results may not match the point in time of interest of the decision maker. When published data are used or intermediate results have been stored in databases or files the points-in-time are also preselected. In those cases projected results must be adjusted to the decision makers framework. In many cases simple linear interpolations between the prior point and the next point suffice. If the differences a relatively major a second-order interpolation may be needed.  Similarly, measures of risks or uncertainties around that number must be interpolated. Here reducing the information to statistical variances, and then applying their mean to the interpolated value produces credible results.

Extrapolations are much more risky. Going more than a few intervals beyond the last predicted value is generally unwise, and using complex functions induced from prior points is especially risky. We have seen many business extrapolations during the Internet bubble that provided results that did not make sense of they had been placed in a more global model [PerkinsP:00]. Perhaps short range simulations can be combined explicitly with long range simulation, larger granularity to minimize risks. 

Computational comparison of  alternatives is needed by decision makers who have investigated more than one alternative. Now for each point in time multiple results exist, so that for that point a series of values should be displayed, each value clearly labeled with the assumptions that led to the result. If the set of alternatives is complete, then the sum of probabilities at any point in time should be equal to 1.0, allowing some validation of the model used to describe the possible futures.  Reports that are manually produced commonly show graphs of results under different conditions, but do not support comparative computations.   

A tree of alternatives will be needed if at successive points in time new decision can be made or external factors can affect outcomes (Fig. 3). Game trees are familiar to all scientists, but grow rapidly when at each point in time more than a few alternatives must be considered. if, say five alternatives exist at 10 successive points in time the tree will have grown to nearly 10 million branches. Low probability paths must to be pruned, both for the sake of the presentation and to reduce computational effort. Now the sum of probabilities over all alternatives shown at a point in time will be less than one, but preferably not much less. Labeling the branches of the tree so that their ancestry is clear will be challenge. Effective reasoning in this space becomes complex [Winslett:88]. Alternate sequences of events may combine, creating DAGs. There is a high volume of a literature on dealing with trees in planning, a recent contribution is [DomshlakB:02], but little connection to data-oriented practice. 
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Figure 3.  A tree of alternatives 

Attaching outcome values is another function needed to complement many simulations. If the decision are purely business then financial measures suffice. Outcomes are the profits and losses at the terminal nodes in the planning tree. These outcomes can be substituted back along the branches to the current time, perhaps with corrections to net present values. At each node the sum of the set of results of its alternatives should be available. When simulations are used to also assess the risks or likelihood of various alternatives the decision maker may need to augment that final values of the outcomes: one outcome may have a large expected gain, but an intolerable risk, others modest gains and little risk. When dealing with other metrics, as human welfare, then setting the relative values of the outcomes at these periods requires much insight, and perhaps interviews with the patient to assess their utility function [ChajewskaEa:98]. 

2.2 Infrastructure requirements

From the summary of needed functions we perceive that information systems cannot tightly integrate all the candidate functionalities to support decision making. We will need interfaces for the information sources, and means to store and access their results.

Since the world changes which each passing time interval we also need a capability to rapidly recompute predictions.

Interfaces are needed to support interaction with any and all of the candidate methods  that predict future information.  In Section 3 we will describe an initial experiment with such a language, modeled om SQL, where the schema defines the variables accessible to the decision maker and the SELECT statement is replaced with a PREDICT statement which retrieves both the value and a variance. Other interface choices are certainly feasible. Of importance is that we cannot conceive the major extension we foresee can be managed in a tightly integrated approach.  

Storage for Alternative Futures has to be provided. Alternative futures have not been integrated into today's information systems. These systems have focused on past information, with the assumption that there is only one truth. 

If the predicted alternative results branch out into bushy trees available storage systems will be severely challenged. Databases being developed to handle XML hierarchies should be able to cope with some of the requirements, including the labeling of time points and provenance [Connolly:97]. DAGs are not that easily handled, although they would reduce the breadth of the trees. Overall, the volumes to be stored should be modest in terms of database technology, since only results will need to be stored. Storing large amounts of predictive information is of little value, since most predictions will be invalidated one the next point-in-time is reached and alternatives that once were feasible, are closed forever. 

Effective presentation has to be supported so that the decision maker can effectively investigate the results at any point in time, together with its likelihood. The most likely or valuable alternatives must be shown. In planning textbooks and demonstration exercises the number of alternatives shown is limited, and easily presented [Tate:96].  When the choices become complex a clear presentation becomes harder. Summarization will often be needed [DeZegherGeetsEa:88]. Some advanced spreadsheet programs allow graphing from multiple sequential sheets to show alternatives. Temporal seamlessness is desirable, so that data from the past, stored in databases are obtained  in the same way as the projections into the future. Dialing forwards or backwards should create a trail that can be easily visualized.

The probability of any alternative path must always be stored and shown to the decision maker. When predictive systems do not provide probabilities or certainties directly ancillary estimates can be computed, based on an expert's assessment of the credibility of the source or by comparing past predictions with actual observations.  For past data one would expect the certainty to be one, but since probabilities are inherent in the information system we envisage, that aint necessarily so [GershwinH:34].  For instance, intelligence data may well be labeled with uncertainties, and those uncertainties would be carried forward into the projections. Uncertainties also exist in past data sources, and here technology transfer from the projected models to needs in historical databases may occur [GarciaMolinaBP:92].

Composition of probabilities and uncertainties is still an open question. While statistical measures are composable, the semantics associated with the various risks encountered in decision making differ. We have used probability whenever statistical methods seem adequate and certainty when the focus is on the decision maker [DeyS:96]. Once systems as we visualize here are used in practice it is likely that new insights and computational approaches will develop.   

Recomputation of the entire set of predicted results should be easy and fast. Conceptually, recomputation is needed whenever a time interval of the smallest contributing source has been passed.  That might be every week, every day, every hour, or every minute.  It need not be more frequent than the decision maker needs results, but deferring recomputation to the time of need would make for a very poor system response.  Many optimizations can  be devised to deal with specific situations, including automatic selective recomputation.  Results from maintaining warehouses might be useful here [ZhugeEa:95]. To support the process the entire task must be effectively encoded. The capabilities of automated workflow models might be exploited [GaudiotB:91].

2.3 Summary 

We can now recapitulate our initial vision. Information systems are being extended to encompass wider access and analysis capabilities to provide more information for decision makers.  However, the decision maker has to plan and schedule actions beyond the current point-in-time. Simulation tools are required for projecting the outcome at some future time of the decisions that can be made today.  Many tools are available for projections, ranging from back-of-the envelope estimates, spreadsheets, business-specific simulations, to continuous simulations, as used for weather forecasting. These tools provide information which is complementary to the information about the past provided by databases, and help in selecting the best course-of-action [LindenG:92].  

The need for integrating information systems and projection has been felt primarily in military planning [McCall:96] and in health care [GustafsonEa:01] two fields where decision maker can not afford to have long delays between information processing and acting on the results.  
Any implementation will require cooperation of specialists in distinct fields, and a willingness to learn about the methods and paradigms used by others. The task is of a scale that building a tightly integrated system is not feasible. On the other hand, we believe that relatively simple advances can provide convincing demonstrations, since most of the computational components exist already.

3. An Interface Implementation

We indicated that a crucial component for a system that can present past and future information is an interface to the variety of predictive services . We have demonstrated such a system, using concepts from SQL, calling it SimQL [Jiang:96]. Experiments with SimQL have demonstrated that a single interface, using a style that is easy to understand can indeed be used to drive and return predictive information from multiple sources.

3.1 Language 

To introduce the language we provide an example in SQL which retrieves weather information from a historical database and corresponding SimQL statement that retrieves weather predictions, with their results:  

SQL 

 SELECT Temperature, Cloudcover, Windspeed, Winddirection FROM  WeatherDB 

   

WHERE Date = `yesterday' AND Location = `ORD'.

  


--->   {75, .30, 5, NW}

SimQL

 PREDICT Temperature, Cloudcover, Windspeed, Winddirection FROM  WeatherSimulation   
   

WHERE Date = `tomorrow' AND Location = `ORD'.

--->   { (75, .8), (.30,.8), (5, .8), (NW, .8) }

The weather simulation in our demonstration case was accessed via a wrapper [HammerEa:97].

Note that there are two aspects of SQL that SimQL mimics: 

a. A Schema that describes the accessible content to an invoking program, its programmers, and its customers. A SimQL schema is a view, providing access only to the input and output parameters of the simulation. The computational complexity is hidden. 

b. A Query Language that provides the actual access to information resources. 

Using familiar interface concepts simplifies the understanding of customers and also enable seamless interoperation of SimQL with existing database tools in supporting advanced information systems.   There are some significant differences in accessing past data and computing information about the future: 

1) Not all simulation information is described in the schema. Simulations are often controlled by hundreds of variables, and mapping all of them into a schema to be accessed by the decision maker is inappropriate.  In SQL similar subsetting is achieved thorough the view mechanism. In SimQL only those variables that are needed for querying results and for controlling the simulation are externally accessible.  The rest will still be accessible to the simulation developer by direct interaction with the forecasting tools.  Defining the appropriate schema require the joint efforts of the developer, the model builder, and the customer.   
2) The SimQL schema and query languages differentiate between IN, OUT, and INOUT variables, restricting the flexibility seen in SQL relational access. 
3) Unlike SQL views, which are supported by real underlying SQL tables having static data, SimQL models only keeps information about interfaces to wrapped simulations, which can change constantly.
4) Predictions always incorporate uncertainty.  Thus, measures of uncertainty are always reported with the results; the OUT variable in SimQL has two parts in the form of (value, uncertainty).
5) We do not expect to need persistent update capabilities in SimQL.  Model updates are the responsibility of the providers of the simulations.  The queries submitted to SimQL supply temporary variables that parameterize the simulations for a specific instance, but are not intended to update the simulation models.

We were able to demonstrate SimQL by adapting an exsting SQL compiler.

3.2 System design

Components of the demonstration system include four component types

1. a compiler for  a. the SimQL schema  statements that during execution link the queries via the wrappers to the prediction tools and  b. the SimQL query language, which generates code to access wrapped forecasting resources. 

2. a repository containing the schemas for the wrapped resources, identifying input and output parameters for each.

3. a wrapper generation tool to bring existing forecasting tools, as simulations, spreadsheets,  and dynamic web sources into compliance 

4. The actual forecasting tools, note that we only access pre-existing predictive tools. 

Wrappers are used to provide compatible, robust, and `machine-friendly' access to their model parameters and execution results [HammerEa:97].  Our wrappers also convert the uncertainty associated with simulation results (say, 50% probability of rain) to a standard range ( 1.0 - 0.0 ) or may estimate a value if the simulation does not provide a value for its uncertainty.
3.3 Experiments 

Our experiments used diverse simulations as sketched in Figure 4.. They were wrapped to provide information to a SimQL interface.

a. Two spreadsheets containing formulas that projected business costs and profits into the future.  Inputs were investment amounts, and results were made available for years into the future.

b. A short-range weather forecast available from NOAA on the world-wide web. Temperature and precipitation results were available for major cities, with an indication of uncertainty, which rapidly increased beyond 5 days. 

c. A long-range agricultural weather forecast for areas that overlapped with the cities.  The initial uncertainty here was quite high, but increased little over a period of a several months.

d. A discrete simulation of the operation of a gasoline station, giving required refill schedules and profits.
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Figure 4: Examples
Combining b. and c. in an application allowed us to report weather data with minimal uncertainty over a wide range. Details of the prototype are given in [WiederholdJG:98] and on our webpages.

4. Research Questions

The focus of traditional database technology has been highly reliable and consistent services for operational systems. As decision-making support has become more important, the constraints due to this emphasis have restricted the services needed for effective decision-making support. There are many research opportunities, from tool development for understood issues to conceptual research to deal with new issues that arise in the integration of predictive capabilities into information systems.

The hardest issues appear in providing the infrastructure and presentation capabilities. While there are many good examples for modest effort, they don't appear to scale well to the volume of data and complexity of models that an integration of systems will allow.  

Storage of predicted results

For database specialists the immediate question is: why not store all predictive data that is obtained in databases, and query those? Our response here is at least twofold:

a. the information produced is transient, and becomes invalid after each interval. While database technology deals well with simple updates, here the change process differs greatly. The relative frequency of updates to read request, in databases typically greater than 1:5 is likely to be much lower and could be 5:1..

b. current databases do not deal with the bushy data created by alternative futures. 

However caching technology may help in improving response times. Caching should consider the volatility of the results.  The volatility will depend on the soyurces being used, and may be easier to manage than in a setting where updates are not manageable.  

Recomputation

Recomputation of the predictions should be automatic, but must be optimized with respect to the users needs. Caching and recomputation of results are alternatives that must be balanced.  Recomputaion may also be needed if parametrs used in prediction change, pehaps as a result of ongoing datamining  [SalatianH:99] . 

Interoperation

Interoperation with past information is essential to realize the vision.  Information systems must integrate past, present, and simulated information, providing a continuous view. The source data will have different temporal granularities, and simulated results must be computed to coincide with expected future events. Complementary research includes stream technology, which dynamically extracts information from continuous data streams  [MotwaniEa:01].

Probabilty and Uncertainty

Important research into uncertainty processing has not been applicable in the traditional database model [Pearl:88]. There have been multiple definitions of uncertainty and their range of applicability is not clear [BhatnagarK:86]. The information systems that process forecast results will have to take uncertainty explicitly into account, so that the decision-maker can clearly weigh risks versus benefits. By supplying data about the future that have intrinsic uncertainties developers will be forced to deal with the issue explicitly.

By explicitly considering the utility of various outcomes modeling, greater support can be provided to decision makers. Pruning of the tree can reduce the alternatives faced by the decision maker to a manageable number say about 7 at a time [Miller:56]. Some planning models are intended to automatically select optimal actions. That assumes that the model has all, and perfect information, and does not seem to be an acceptable approach in the military and healthcare domains we are familiar with [Wiener:93]. When the assessment involves multiple attributes that are mutually non-commensurate human decision making will be important to strike a balance. 

Incorporation of risk balancing

Balancing benefits versus risk when selecting alternatives is another task that seems to be hard to automate. There are examples in  financial investments, as in hedge funds [Zask:00] , and in healthcare, both using the beta function [DavidianC:87].
4. Conclusion.

We have presented requirements for effective support of decision making by integrating predictive capabilities, as provided by spread sheets and other simulation tools, into information systems. An interface language, SimQL, combined with wrappers technology, has provided an initial positive answer to one of the research questions: are these simulations similar enough that a common interface is feasible. 

More experiments are needed to further demonstrate the feasibility of the vision. Establishing scalable infrastructure technology and good interfaces for the decision maker will require substantial efforts over time. Better tools will improve decision making in situation where the decsion make is overwhelmed with past information and simply choses an approach that has worked before or recent experience [HammondKR: 98].  

Not all prediction will look into the future. Already, when historic records are a bit out-of-date, planners routinely make undocumented projections to extrapolate to the current situation and obtain an approximate current picture as sketched in Figure 5.. Predicting values for the current time when the source databases that are not fully up-to-date, can be of great value to decision-makers.


[image: image5.wmf]time

time

past

past

now                 

now                 

future

future

last recorded observations

simple simulations

to extrapolate data

point

-

in

-

time for

situational 

assessment


In discussing our vision the hardest problem appears not to be conveying the general concept, but the breaking down the barriers between communities which focus on building better simulations and those that want to build better databases. We are convinced that there integration, even if not perfect will be more significant for our customers than the achievements which can be created in isolation.  
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