SST/TIHI Demonstration Script

Neal Sample

15 October 2002

Summary
This document is a script for showing the updated TIHI capabilities through a two-part demonstration of the DBGate and TIHI client interfaces. This demonstration assumes that there are two laptops available, one for the DBGate and database and a second for the client. Two laptops are used to A) underscore that the demonstration is of a live system, with the database, security officer, and client all active, and B) to aid the demonstration by cleanly separating the client and server interfaces. However, the demonstration can be run on a single laptop with proper consideration for screen real estate.
Physical Setup

The ideal setup for a large group demonstration would be to two have two laptops projecting both screens onto a forward area. For smaller audiences, using two laptops in a table top setting is appropriate. The single laptop situation, while not ideal, is usable projected or stand-alone.

Note: Currently, the DBGate/TIHI server and client machines are directly connected with an Ethernet “cross-over” cable during the demonstration. In the future, obtaining wireless cards to ease the setup and reduce clutter would be advisable. During my last demonstration (Neal Sample, 14 Jan 2002, to NEC), the demonstration space became quite cluttered with mice, power cables, etc., and the cabling binding the two machines together proved to be frustrating.
Software Setup

The TIHI laptop is simple to make ready for demonstration.

1. Log into the machine using the {tihi/gio} account
2. Click the desktop icon for the “Orion” server (Orion is the Java web-server that executes the TIHI rules to filter client requests)

3. Click the desktop icon for the “DBGate” information officer’s console
The client laptop requires no special setup.
1. Point a web browser from the client to the TIHI server laptop

Demonstrating the Software

Demonstrating the features of the TIHI system exposes both the DBGate SOC (Security Officer’s Console) and the client performance to the viewers. Showing both the client and server is important to demonstrate the desired features, how they are managed, and how they work for the client.

1. SERVER - Log in to the DBGate SOC {gio/gio}
2. SERVER - Show and describe the elements of the SOC. This can be done by highlighting and expanding the appropriate bullet in the SOC.
a. Multiple databases – the SOC can manage multiple databases simultaneously
b. Rules – there are many types of possible rules, including inclusionary, exclusionary, aggregate rules, etc.

c. Roles – roles represent classes of users to determine their rights to the data sources

d. Auditing – auditing is a critical component for tracking user activities, stopping information leaks, etc.

e. Dictionaries – represent word/phrase lists used for filter based rules

3. SERVER – Create a new role. Pick an unused name for the new role. For this document, we will assume a new role named “test”

4. SERVER – Create a new user. Create a new user under the role “test” that you just created. For this document, we will assume a new user named “foo,” password “bar”
a. Add a database – add a database for user “foo” to access. In this case, we will add the ophthalmology database, and will we add the ophthalmology table from that database.
b. Add columns – from the ophthalmology table, add the following columsn to the “foo” user

i. Patient_name
ii. hospital_name
iii. history
iv. medical_history
5. CLIENT – Log into the SST/TIHI web client using your newly created credentials {test/foo/bar}

6. CLIENT – Search the database, with no query restrictions. You will see a large number of records return, the full “optho table”

7. CLIENT – Search the database, this time with the query restriction LIKE “Ed%”. You will see just a few records. (The one should draw attention to is our good friend Eduardo! Note to the viewer that Eduardo is “manic depressant” in his medical_history)

8. SERVER – Return to the SOC and create a new rule for our user “foo.”

a. Rule type – check_field_bad

b. Table – medical_history (spell this properly, case sensitive)
c. Dictionary – c:\tihi2\dictionary\OphResBad.dic
i. This dictionary contains only two terms “depressant” and “manic.” Consider showing the contents of the dictionary to the viewer.
ii. It is a very limited dictionary with exactly enough information to “make the point,” and nothing more.

9. CLIENT – Search the database, again with the query restriction LIKE “Ed%”. Note that Eduardo’s medical_history has changed, and the “manic depressant” information is no longer present. (This is a good time to discuss the transparent nature of TIHI. The query from the client (the SQL) has not changed. The client is unaware that the filtering occurs, and does not have to alter her application to query a filtered source.)

10. SERVER – return to the rule for user “foo” and change the action to “kill_field”.
11. CLIENT - Search the database, again with the query restriction LIKE “Ed%”. Note that Eduardo’s medical_history has changed again! Now, instead of just filtering out “manic depressant,” the entire medical_history field is omitted, but just for Eduardo. This is an interesting rule effect, in that you can now have a conservative “all or nothing” behavior for suspect results in a single column.

12. SERVER - return to the rule for user “foo” and change the action to “kill_row”.

13. CLIENT - Search the database, again with the query restriction LIKE “Ed%”. Note that Eduardo is missing! Now, instead of just filtering out Eduardo’s medical_history, he has been removed from the result set. This is an interesting rule effect, in that you can have a more conservative behavior for suspect results in any row.

14. SERVER - return to the rule for user “foo” and now click to disable the rule.

15. CLIENT – Search the database, again with the query restriction LIKE “Ed%”. Eduardo has returned; the world is safe!

The preceding section showed how the filter-based rules and actions interact with the SOC and client queries. If time permits, you can further demonstrate numeric aggregate rules.

1. SERVER – Show the viewers that we have already created the role/user/rules set {njs, njs, njs} in the SOC
a. Disable the single rule for njs if it is still enabled from the last demo

b. Explain the semantics of the rule, that it will exclude averages that are formed with too few contributing tuples.
2. CLIENT – return to/start with the SST front page. (Use the user and rules that have been created already, {njs, njs, njs})

3. CLIENT – Select Employee/Employee for queries

4. CLIENT – Move to the bottom of the query form and choose to query: Average->Rating->country
5. SERVER – Show the viewers that we will enable the njs rule in the SOC

6. CLIENT – Again use the query form and choose to query: Average->Rating->country. Explain the changes, that now we are seeing only averages that are formed from the minimum number of tuples.

The preceding section showed how the numeric- and aggregation-based rules and actions interact with the SOC and client queries. If time permits, you can further demonstrate the auditing mechanisms.

1. SERVER – You can directly show the logs of operations executed throughout the time of this demo. These logs will include:

a. User queries for “foo”

b. SOC rule updates by “gio”

c. User queries for “njs”
2. SERVER – You can also show that the logs are query-able and sortable by date, user, activity, etc. to ground the utility of the Audit mechanism.

3. SERVER – Finally, this is a good place to discuss a comparison between auditing within access-control systems and release control systems. With access control, metadata auditing is simple and straightforward, but is really all that is audited. Users either have the right to query certain data (or do not) based strictly on the metadata. With release control, richer auditing is available (and automated). Defining rules in a release-control system defines the metadata to audit (rules), but also implicitly defines data elements to audit (those affected by rules).
