Dealing with Semantic Interoperation of Data*
	Prasenjit Mitra
Penns. State Univ.,Univ. Park

pmitra@ist.psu.edu
	Gio Wiederhold

Stanford University, Stanford
gio@cs.stanford.edu
	Stefan Decker
Digit. Enter. Res. Insti., Galway
Stefan.decker@deri.org

Abstract*
There is a real promise of achieving technical interoperation of large data sets from many widely dispersed sources. Where such shared access is achieved we find differences in the meanings of the terms used to describe the data (the metadata or schemas) and the terms used in the data themselves: the descriptors, the names, the classifiers, and also in the data structures, i.e., the hierarchies, the scope and the level of detail represented in the data files. We present a means to interoperate when terminologies differ by presenting an algebra over ontologies. Those ontologies cover terms used in the descriptive metadata and within the data files themselves. Use of the concepts in our approach involves two phases: compiling the terminological matches, using expert-mediated tools, and executing interoperation processes, focused on a specific application subsequently.

1. Introduction

Ideally, a consumer wants everyone in the world to use the same terms, with the same meaning. There have been efforts at standardizing the terms used in well-defined, stable, and narrow fields, but standardizing terminology across large domains or even across large domains to enable interoperation is expensive to create and difficult to maintain.
The issue of mutual global consistency is becoming a major research challenge in growing fields, for instance in biological data management. We depend on words to express our ideas. Even when we replace words by codes, as in clinical diagnoses, words remain the medium in which we share the meaning, the semantics, of the concepts being discussed. Words derive their power in science from identifying conceptual abstractions.

When we are working in a narrow context, we have a very clear mapping of a concept to its instances, say a set of patients that have been diagnosed with a specific disease. We link the specific disease with a set of symptoms and signs. Higher level abstractions group diseases into categories, at ever higher levels. But in the end we deal with data instances, here patients having diseases. The mappings of terms to actual instances are the actual metric of consistency. Unfortunately, it is unlikely that two sets of clinical data, created in independent institutions, with different patient populations and different approaches to therapy, will use the same terms, or, where the terms are the same, attach them to identical populations. The issue gets worse when institutions have different objectives. A walk-in clinic will not collect data to the same level of detail as an intensive care unit. Forcing both to use the same terms, level of detail, and structure would induce unacceptable inefficiencies.

We experienced that problem many years ago when data from the Stanford tertiary care setting could not be merged with data from private clinics, nor with data from Canadian settings where healthcare was well-nigh free. The patient distributions differed so much that diagnostic terms were applied differently, even though all settings treated patients in the same narrow disease category. A major effort, multi-year effort to standardize terminology helped, but even after years of sharing data many inconsistencies remained [1].

 The same issues exist everywhere. In a logistics application as FedEx, a rented truck can be described by its capacity for carrying packages, but within the firm owning it, its exact dimensions for more general purposes, fuel consumption and other detail will be an issue as well, and for the mechanic maintaining it, maintenance data will be needed. For other transport needs, aircraft, trains, warehouses, etc., yet other parameters come into play. In today's practice, experts, say, a logistics’ specialist, handle the required adaptations of data. We count on such domain experts to provide the input for the ontology algebra used to enable interoperation (presented below).

 When applications must interact with domains that have fundamentally different objectives, inconsistencies among terms become even more pronounced. A researcher will use terms differently than a clinician, a surgeon will use terms with more definite emphasis than a pathologist will, etc. Similar distinctions occur in all fields of biology. Since our knowledge of biology is increasing rapidly, and is less regulated than medical care, terminological divergence is greater than before. Having descriptive information, metadata, helps in understanding similarities and differences.
1.1. Precision
For business transactions, precision is important. Lack of precision leads to errors and wastes time. Much research on the web has been oriented to search for information in the bibliographic realm. Here completeness is the ultimate goal, and researchers are willing to filter out results that are not relevant. If we wish to use the web for routine business purposes we have to adopt a new balance among the metrics available for assessing performance.

These metrics, precision and completeness, are well known. Statistically, absence of completeness, or missing some relevant results, is known as a Type 1 error. Lack of precision, as being presented results that are not relevant is a Type 2 error. In most systems, there is always a trade-off. A low occurrence of Type 1 errors leads to a high occurrence of Type 2 errors. The volume of information on the web is such that, if we seek completeness, that is a fairly low rate of Type 1 errors, we will have an overload of Type 2 errors, i.e., much junk, as any web surfer has experienced. While browsing we may complain of `information overload', but when trying to automate these processes, an essential aspect of business-oriented operations, the imprecision due to semantic heterogeneity can be become fatal.

In a typical business situation, Type 1 errors cause missed opportunities. In many routine cases, those cost might be modest. When ordering office supplies on Friday for the next week, missing two out 20 candidate vendors for an item has a low probability of loss of benefits: the chance that one of the two has better prices for the same goods is low, and even if that happens, one of the other 18 is likely quite competitive. Enlarging the search to include the missed vendors may retrieve also 40 false hits. Manually filtering those out of the response set is likely to more costly than any benefit.

Now that the objective is quantifiable we can analyse the issues in the setting of the web. Much information is becoming available on the world-wide-web, on Intranets, and on publicly accessible databases. Most sources are established autonomously, and hence are heterogeneous in form and content. Resolution of heterogeneity of form has been an exciting research topic for many years now. We can access information from diverse computers, alternate data representations, varied operating systems, multiple database models, and deal with a variety of transmission protocols. But progress in these areas is raising a new problem: semantic heterogeneity.

1.2. Ontologies as Metadata

Increasingly, ontologies have been used to describe the terminology used in information sources. Ontologies are a means for knowledge sharing and reuse, and capture the semantics of a domain of interest. An ontology is a formal specification of vocabularies used to describe a specific domain. Ontologies provide a terminological basis for information exchange among a community of interest. Since there will be no ontology available describing all possible data from all sources, we need multiple ontologies for different application domains.
Currently, there are two different kinds of ontologies:

· Domain specific ontologies, often developed in community processes by, e.g., specific industry consortia. Examples include PapiNet (For the Paper Industry), XML-HR (for Human Resources), DMTF (Enterprise Management) and hundreds more (see OASIS
). These ontologies are specific to certain domains, usually not reusable and frequently large in number of terms (greater than 1000).

· Small vertical ontologies. These are usually small ontologies capturing a broadly applicable set of concepts. Examples include ontologies like FOAF (capturing user profiles), RSS (News syndication) etc. These ontologies are often not derived by specific industry consortia, but by a community of interest. These vertical ontologies are reusable among many domains and can be regarded as “glue” ontologies or “real upper level ontologies”, which can be used to connect more specific domains.

1.3. Integration
We recognize three conceptual levels of integration:

1. Data integration: Data from distinct sources are assembled together for further processing. Metadata, typically a schema, is used to match data, but no transformation is expected. All value encodings, numerical and textual, are retained as given.

2. Information integration: Metadata and value encodings are captured in an ontology. Where the semantics do not match transformations are applied. The focus is on the data that are needed to produce information, and value encodings are transformed to match the needs of the objective. Where the abstraction levels differ, data are aggregated before merging. A destination ontology describes the result.

3. Process integration: Information is extracted using analysis programs within their source context. Any matchings require information integration. Subset ontologies describe the result.

Each entry in an ontology refers to many data elements. A process result displays little of the source data and information except when the user is concerned about the methods used and the provenance of the data generating the result. The semantics and their metadata representation are handled differently in the three cases.

The first level is the province of much current technology, and rapid progress is being made. The last level is the province of web-services. This paper focuses on the middle tier. We believe that progress on that level is essential to fulfill the promise of global interoperation of web-based information services.

2. Interoperation and the Semantic Web
 The Semantic Web effort
 provides standards and technologies for the definition and exchange of metadata and ontologies. Available standard proposals provide ways to define the syntax (RDF) and semantics of metadata based on ontologies (OWL). Research covering data transfer, privacy and security issues is now also under development. In essence, the RDF recommendation
 has paved a way to create a global object space, whereas the Web Ontology Language (OWL) provides one way to specify vocabularies for this object model. RDF provides a joint global object space (URIs) and simplifies interoperation since the object model has been unified, but does not answer the question with respect to semantic heterogeneity.
In the DAML program, within the DARPA-supported Ontoagents project, we investigated and transitioned the results from the SKC
 project to the Semantc Web realm. Within the Semantic Web effort, the role of SKC is defined by its function within an information food chain. Etzioni distinguished different stages
 from ontology and metadata production, metadata and ontology middleware (of which SKC is a part of), and ontology and metadata consumers (e.g., business information systems, portals or agents) [2].
The food chain starts with the construction of an ontology. Constructing an ontology involves human interaction. Creators of ontologies need an ontology-construction tool in order to construct ontologies in a cost-effective manner. Either ontologies may be constructed with a consensus reaching community process and may be adopted subsequently by its members, or they are created within a limited community and become a de facto standard by usage and distribution. Ontologies are also used to annotate web content, e.g., in webpages.

Today, most webpages are in the form of unstructured HTML pages. For the information to be machine-interpretable, we need some semantic information about the page. An annotator uses a webpage-annotation tool to browse an ontology and to select appropriate terms of the ontology and map them to sections of a webpage. Other ways of metadata generation includes publishing or creation of metadata direcly, without other media, as is demonstrated by the FOAF effort
.

In order to solve a task that involves consulting multiple information sources that have unknown ontologies, an automated agent needs to bridge the semantic gap between the known and the new or unknown ontologies. Here the technologies from SKC can be exploited by semi-automatically generating articulations or semantic bridges, among multiple ontologies (by consulting online dictionaries and using other heuristics), and presenting it to an expert for validation. These articulations are then used to compose knowledge and interoperate among the diverse sources.

Due to the need to describe the relationships between the data in a declarative way (otherwise a new agent has to be programmed for every new task), an agent needs an Inference Engine for the evaluation of rules and queries. An inference engine helps reduce the amount of explictly stated metadata by infering further implicit metadata [3].

Various applications exploit the metadata to integrate and generate new data. An application, e.g., a Community Web Portal, presents a community of interest (distributed on the web) to the outside world in a concise manner. The data collected from the annotated webpages helps automate the task of maintaining a Community Web Portal drastically. A Semantic Community Portal Website is an application demonstrating the use of ontology-based markup.
3. Dealing with Semantics

Semantics is the meaning of terms. Higher-level abstractions help enable intelligent communication. These terms will relate to each other, as defining generalizations, subsets, synonyms, etc. The whole has to form a consistent model, so that references to, say, `vehicles', `trucks', `tankers', `HMMVs', etc. will create consistent results. Operationally, we expect the lower level terms to refer to real-world objects, as instances of `trucks', `towns', `roads', etc.

Consistency is achieved if a search though a representation of the world using a specific term retrieves all of the expected instances, and no others. However, we do not have a single world-wide consistent database representing all the objects in the world and we cannot expect to ever have such a collection. Hence, the operational use of terms often differs depending on context, and hence the operational semantics differ as well. For instance, in a suburban setting people refer to their SUVs as `trucks', but that is not the usage in the military or in coast-to-coast transportation, so that retrieved instances, even if limited to a well-defined and documented neighbourhood, will differ. In a semantic web setting this would be distinguished by using two different URIs – e.g., http://www.suburbaincarseller.org/ontology/#Truck and http://www.logistics.mil/ontology/#Truck. The different meanings of the term truck are captured by different ontologies – the suburban car sellers would not subscribe to the military ontology and vice versa.

Of course, the integration problem still exists – e.g., for a car seller which sells suburban Trucks and military vehicles, or maybe for owners of a Hummer, who probably like to refer to their vehicle as a military one. In most theoretical work, the operational issues can be ignored, since in those settings, the consistency of the model is assumed. However, in order to enable information integration, in practice, the semantic differences between information sources must be accounted for.
The most common form of semantic inconsistency is due to synonymous terms, as common in sources from the UK and the US. A lorry can be matched to a truck, a sleeper to a tie, and a pullman to a sleeper when dealing within a railroad. But in practice there are more serious cases of semantic differences. We will use simple examples to make the point for several types of semantic differences:

1. Differences in granularity: When a homeowner needs a nail, he or she can ask a store clerk for a three inch-long thin nail, with a big head, and the clerk will find one. A carpenter has nearly as many terms for nails as the apocryphal Eskimos have for snow: sinkers, case, box-nails, etc. It would be inefficient for the carpenter to use the homeowners' terminology, and impossible for them to learn and adopt the carpenters', and the plumbers', etc. terminologies in their household chores.

2. Differences in scope: In all but the smallest organizations, payroll and personnel files are distinct, and managed by different departments. That means that soon the definition of a key term, as `Employee' in the two files will differ as well. A retired faculty member will not be on the payroll at Stanford, but must stay in the personnel file so that the right to a little emeritus office and free parking is documented. Some students that receive stipends from some donor fund will be on the payroll, without being part of personnel. It is better to understand and account for the differences than to force these files, and the programs that operate on the files to keep their entries and processing decisions in lockstep.

3. Temporal differences: Cash accounts should always be current. For quarterly analyses, one will want to have stability at the end of the quarter so that various analyses can be run and compared. Synchronization of what appears to be identical data is again unwise.

All these differences are of little import until integration is attempted.

3.1. The Simple Solution
The obvious solution to deal with semantics is to define each term as unambiguously as possible. But it is rare that higher-level concepts can be completely specified with measurable parameters, so that dependence on words remains. Examples can help. If a concept defines a certain set of actual patients, or cells, or mice, then consistency can be tested. But consistency grounded on extant instances disables generalization and projection into new populations, the objective of science. We see terminological mismatches in many fields, especially in areas where rapid growth in many subfields has cause term usage to diverge.
Many people, when first encountering semantic differences, assume that such differences can be resolved by negotiation. While it is fine when such an approach is feasible, it often is not. If negotiation is used in cases where it should not be used, compromises are made that lead to imprecision, resentment, or both.

 Establishing a committee with members from diverse groups to establish terminological consistency is unlikely to help. First of all, a committee is a mechanism to define compromises, and compromises are likely to create less precision, hurting all participants. It is also difficult to enforce acceptance. A financial stick can help, as in the case of reporting diagnoses and related treatments to insurance companies, but now reimbursement considerations will cause misuse of terms and reduce truthfulness.
 Enforcing consistent naming for disjoint enterprises will also make those enterprises less efficient. If say, seven terms are used to partition one concept into seven groups, then the efficiency of language is high if those groups are approximately equal in size. But in a different setting dealing with another population, the groups may be very unequal in size, so that word usage becomes inefficient. A common case is the use of abbreviations. In any setting abbreviations are used to efficiently refer to frequently occurring cases. Outsiders are often bewildered when insider lingo is full of such usage abbreviations. But when the same insiders enter the outsider's domain, they will be similarly bewildered if the insider’s and outsiders’ domains are not the same.

In summary, the words we use to denote concept are precise only in their narrow domain. The mathematical notion that a = a independent of setting fails. It is wise to recognize that we cannot expect full consistency, and instead try to deal with inconsistencies. What are methods to deal with inconsistency?

 If we can formalize the sets of terms in a well-defined domain, i.e., establish an ontology, then we can define a mapping for interoperation. Such a mapping will define when the same word has the same meaning in two domains, when there are synonyms in the two domains, when terms are used in a narrower or broader sense, and when homonyms are completely distinct. An expert does not need to match all terms from two domains be matched, but only define the mappings for terms used to link information from two domains, with respect to some objective. We call such a linking set of terms an articulation.

We encounter equivalent problems in information retrieval, where keyword searches will return incomplete and imprecise (i.e., wrong) results due to inconsistencies of term usage. When searches are broadened, using thesauri or tools as UMLS, completeness is improved, but precision is reduced.

3.2. Dealing with Inconsistencies
In the end, we will have to live with inconsistencies. We cannot wish it away. Negotiation is futile. We cannot demand that our information sources use and adhere strictly to definitions that we establish. We cannot expect that there will be a global language police, than can insist that we all use words so precisely that mutual inconsistency disappears. We just have to take care that inconsistencies among domains does cause us to make serious errors.

Starting with the assumption that terms from distinct domain are different, and then developing matching rules only among elements that are needed for their articulation to solve some new application is adequate, and fosters cooperation rather than resentment.

3.3. Semantic Heterogeneity

Semantic heterogeneity comes about because the meaning of words depends on context, and autonomous sources are developed and maintained within their own contexts. Types of semantic heterogeneity include spelling variations, use of synonyms, and use of identically spelled words to refer to different things. The effect of semantic heterogeneity is not only failure to find stuff, but also lack of precision in selection, aggregation, comparison, etc., when trying to integrate information.
3.3.1. Resolving Semantic Heterogeneity

Manual resolutions to the problem do work today, but it forces businesses to limit the scope of their partnering. Businesses become efficient by rapidly carrying out processes on a regular schedule. In expanding supply chains and globalized commerce we have to deal in many contexts, but cannot afford manual, case-by-case resolution. XML is touted as the new universal medium for electronic commerce, but the meaning of the tags identifying data fields remains context dependent.

Attempting a global resolution of the semantic mismatch is futile. The number of participants it immense, growing and dynamic. Terminology changes, and must be able to change as our knowledge grows. Using precise, finely differentiated terms is important for efficiency within a domain, but frustrating to outsiders. While customers would benefit from consistency among sources we access, it is often not important for the sources to be consistent with the external world, and in many cases, because their objectives and scopes differ among them, even inefficient to be mutually consistent. In fact, the generalization of mutual consistency implies global consistency, and such a state would take an infinite time to achieve, and even if achieved, and infinite amount of effort to maintain. The words we use are an expression of our knowledge about the world, and the world and our knowledge about the world evolves continuously, requiring changes in terminologies.

3.3.2. Ontologies for Semantics

The semantics of diverse sources can be captured by their ontologies, the collection of terms and their relationships as used in the domain of discourse for the source. When sources are to be related we rely on their ontologies to make the linkages. The traditional task of builders of ontologies has been to define a single ordered structure for the domain terminology, in the form of a tree or lattice. Within a limited and circumscribed domain a high degree of consistency can be achieved, although maintenance by local domain experts will be required.

Many applications will need information from multiple ontologies. To allow shared use one has to define their articulations, namely the points where the meanings of terms in distinct ontologies match, overlap, or intersect. These intersections will depend on the application context. The approach in our SKC project is to provide tools that define articulations that would benefit an application. Now these applications will benefit from multiple reliable and perhaps deep local ontologies. Information from articulated ontologies is acquired for use as needed. The composition of independent, specialized ontologies makes the issue of semantic mismatch explicit. Hence, our algebra has to support rules that resolve mismatches dynamically. Creating a sound algebra encompassing the required operation allows manipulation and composition of the process. Inconsistencies can be resolved incrementally, as needed by the application.

We will indicate research and development to improve the effectiveness of the web as information source. Our work contributes to the vision of a semantic web, where businesses can effectively interoperate globally.

4. An Ontology Algebra

We enable interoperation among information sources by defining an algebra that can combine the ontologies that describe structured and semi-structured information sources. Such an algebra requires application-sensitive rules (articulation rules) that define precisely the correspondence among the terms used to describe the distinct resources, databases, knowledge-bases or information on the web.

Today, anyone who needs information from multiple websites, since it is not available in one single site, is aware of the amount of effort required to perform the simplest of composition tasks. Our aim is to provide a system that makes reliable interoperation among information sources a reality.

Often, creating ontologies from scratch is unnecessary and more expensive than constructing ontologies by composing selected parts of existing ontologies. Applications that reuse the same ontology can easily communicate with each other because the terms they use come from the same ontology. In this paper, we describe an algebra that is used to declaratively specify how to derive ontologies by reusing and composing existing ontologies. A declarative specification allows easy replay of the composition task when the source ontologies change and the change needs to be propagated to derived ontologies. Besides, the properties of a declarative specified composition task can be characterized more easily than those of a programatically specified one.

4.1. Articulation of Ontologies

We now present our alternative to integrating ontologies into ever larger bodies. Two important aspects of articulation - as we define it - are:

1. Instead of merging the sources, we will create linkages to the sources. Physically, the source ontologies might remain with their creators and owners, or be copied for faster access, but logically they should remain unchanged by our needs.

2. Instead of establishing all meaningful linkages between all terms in the source ontologies, we only create linkages relevant to a particular application. The articulation is limited to a relevant intersection of the terms.

Since the sources are still accessible, domain specific, unlinked information can still be extracted from those sources, but such information is then not already matched with corresponding information across the sources.

[image: image1.wmf]Articulation Context c

personnel

Source Context 1

Factory

domain

Source Context 2

Store

domain

 relevant slices

Real world objects

manufactured

Real world objects

sold to customers

Articulation Context b

taxes

Articulation Context a

purchasing

Purchasing

Application

other applications

splicing rules

Figure 1. Concepts of the SKC approach

Figure 1. illustrates our approach. We consider two sources of information, a Factory and a Store, that must share information in order to enable the purchasing of the Factory's goods by the Store. An articulation serves the Purchasing agents, which can be humans or automated agents. Other articulations between the two sources are feasible, however, they are distinct from the Purchasing articulation. The initial knowledge needed to define the Purchasing articulation precisely would come from the existing purchasing agents, or on a broader level, from experts at a Society of Purchasing Agents for specific types of goods. Other articulations, say regarding taxes, would be developed and maintained by other experts.

4.2. Mismatch between specifications and their extensions
 Mismatches abound in today’s information sources between the specification of a concept and the extension of the specification in the sources. Figure 2 below expresses such a mismatch.

[image: image2.wmf] false

negatives

 false

 positives

 source instances

 concept intension

Figure 2: Concept Specification Mismatch

An agent can resolve mismatches between specifications and the actual instances of a class by extracting information about the mismatch and refining specification rules, including constructing rules to include or exclude single anomalous instances. In realistic settings, serving existing applications there are always some people that have dealt with resolving such mismatches in their daily work. Finding them may be hard. Formally describing the articulations is a useful aspect of retaining corporate knowledge, as our organizations change, shrink, and merge.

We assume that narrow, domain-specific ontologies are internally consistent. An ontology, by itself, can be reused in its narrow domain, however, if we are able to compose an adequate new context from the existing ontologies using algebraic operations, following our model, new applications can use it too. The ability to compose ontologies reduces the overall cost of building and maintaining an ontology specific to each application.

Defining the Intersection.

Maintainability is made simpler by keeping the amount of material to be maintained small. Hence we will only include linkage rules in an articulation that are in the semantic intersection of the domains, and define or relate concepts needed in the application. Concepts that exist in both ontologies but are irrelevant to the application should not be placed into the articulation ontology.

As we have seen, in our scenario, information resides in multiple sources. An application that answers the queries or performs other tasks posed by an end-user needs to compose information from these sources. In order to compose the information, an articulating agent needs to examine the source ontologies and establish rules that relate the concepts in the ontologies. We will refer to such an agent as the articulation generator.

 Ideally, we would like an automatic articulation generator that would precisely understand the semantics of the information sources and the application and generate the minimum articulation between pairs of ontologies as needed by the application. However, in order to declaratively capture the semantics of the ontologies and the application that uses them, we would have to use a very expressive language. Automated reasoning with very expressive languages soon becomes intractable. Therefore, we have built a semi-automated articulation generator that uses a simple rule language and interacts with a domain expert.

 The articulation generator generates articulation rules semi-automatically. It is based on the SKAT (Semantic Knowledge Articulation Tool) system [15] developed to articulate ontologies and involves the participation of an expert who can ratify the automatically generated semantic matching rules.

An important feature enhancing the scalability of the approach is that not all terms of interoperating ontologies have to be matched, as is the case when complete data integration and fusion is attempted. Only the terms covering data that are to appear in the result for a given application, and secondary terms that support those data elements need to be matched. That constraint matches closely the knowledge of the application expert who constructs the articulation ontology, as the logistics planner mentioned in the introduction. When wholesale information integration is attempted, there will have to be a committee of experts to cover each possible use of the information. We all know how effective these committees can be.
The Ontology-Composition Algebra

In this section, we will describe the algebra for the composition of ontologies that we have designed for use in our ONION (ONtology compositION) system [7]. Before we can examine the algebraic operators, we will introduce the format in which the articulation generator we designed expects ontologies to be and then introduce a few definitions that we use later on in the discussion.

4.2.1. The ONION Ontology Format

The term “ontology” has many definitions[9],[8]. Our approach is to use a definition and data format that is simple - a “least common format”. The format captures the basic features common to most machine­represented ontologies and is simple enough to allow easy transformations from various other ontology formats to ours.

 The ONION Ontology Format is based on the work done by Gyssens, et al., [14]. At its core, we represent an ontology as a graph. Formally, an ontology O = (G,R) is represented as a directed labeled graph G and a set of rules R. The graph G=(V,E) comprises a finite set of nodes V and a finite set of edges E. R is expressed as Horn clauses.

 An edge e belonging to the set of edges E is written as (n1, , n2), where n1 and n2 are the labels of two nodes belonging to the set of nodes V and  is the label of the edge between them. In the context of ontologies, the label is often a noun-phrase that represents a concept. The label  of an edge e = (n_1, , n_2) is a string. The label of an edge is the name of a semantic relationship among the concepts that are depicted as nodes in the edge and it can be null. We assume that tno two nodes in the same ontology share the same label and no two ontologies are named the same. Thus, we will use the label of a node along with the ontology name as a unique identifier for the node.

Rules in an ontology are expressed in a logic-based language. The choice of the rule language, in principle, is left open to the ontology constructor. However, to keep the system simple, ONION uses the language of Horn Clauses.

The semantics of the relationships are typically specified in the document it is defined in and the namespace of the relationship is tagged along to clarify the relationship we are referring to. For example, rdfs : subClassOf, where rdfs is an alias of http://www.w3.org/2000/01/rdfschema# indicates that the relationship that is being used is the relationship “subclassOf” as specified in the document whose URL is aliased by rdfs. In the rest of the paper, we omit the namespace unless we need to differentiate between two relationships of the same name or the actual URL is relevant to the discussion.

A more detailed description of the ontology format can be found in [10].

4.2.2. Preliminaries

For ease of description of the algebra, we will introduce the following terminology:

For a statement s = (Subject R Object), Nodes(s) contains Subject(Object) provided Subject(Object) is not a variable (that is, it is a node in some ontology graph). For an ontology O1, Nodes(O1) represents the nodes in the ontology graph for O1. For a set of rules R, Nodes(R) represents the union of Nodes(r) for all rules r  R, where Nodes(r) is the set of all nodes used in the rule r.

Example 1: We introduce an example in Figure 3. O1, O2, and O3 are three ontologies. We only show selected portions of the ontology graphs corresponding to the three ontologies. In order to specify which ontology a concept is defined in, we tag the name of the ontology it belongs to the name of the node. For example, the node labeled O2.Car refers the concept Car as defined in the ontology O2. However, where the origin of the definition

[image: image3.wmf]
Fig. 3. Articulation Rules among ontologies.
is not important (or is obvious) to the topic of discussion, we will simply use the concept name without mentioning the fully qualified name (that is, drop the ontology name tagged in front of it). Let the articulation rules among ontologies O1 and O2 be given by:
R = {(O2.Car SubClassOf O1.Vehicle), (O2.HouseBoat SubClassOf O1.Vehicle)}
then Nodes(R) = {O2.Car, O1.Vehicle, O2.HouseBoat}.

Edges(E, n), where E is a set of edges and n is a node in an ontology graph, represents all edges in E incident upon or incident from the node n. Formally, Edges(E, n) = {s  E, (n1 | s = (n1 r n) or s = (n r n1)}. Edges(E, N), where N and E are a set of nodes and edges respectively in an ontology graph, represents a set of edges S (E. Both nodes (the node from which an edge is incident from and the node to which it is incident upon) of each edge in the set S must belong to the set of nodes N. Formally, Edges(E, N) ={ s E,(n1,n2  N,(r | s = (n1 , r, n2)  E}.

Similarly, Rules(R,N) where R is a set of rules and N is a set of nodes, represents the set of rules R’ (R, such that all nodes used in any rule in R’ is in N. Formally, Rules(E, N) ={ r R | Nodes(r) (N}.
4.2.3. Articulation Rules and Articulation generating functions

As we have seen before, to resolve heterogeneity among ontologies, we need a procedure to generate articulation rules. We refer to procedures that generate articulation rules between ontologies as articulation generating functions. An articulation generating function f takes is two ontologies (domain: O x O, where O is the set of ontologies in a particular semantic domain) and outputs a subset of the set of all possible rules (range: the set of all possible rules R among the domain ontologies) between them (f : OxO (2R) . We expect the articulation generation to be a complete. That is, for any two ontologies in the domain, the function always terminates and outputs a set of articulation rules that link them. An articulation rule r articulating two ontologies O1 and O2 is such that ((n O1, (n’  O2 | n,n’ Nodes(R)).

Example 2: In our running example, we show a few of the articulation rules generated by an articulation generating function. For lack of space, all articulation rules are not shown in Figure 3, but we show two rules graphically, and two textually at the lower part of the figure. The two graphical rules are shown by dotted arrows spanning different ontologies in contrast to the edges in an ontology indicated by solid arrows. Specifically, we see that O2.Car is related via the relationship SubClassOf to O1.Vehicle. Similarly O3.Boat is related via the relationship SubClassOf to O1.Vehicle. We show the rule expressing the first relationship both graphically and textually, and the second only graphically. The second articulation rule indicated textually at the bottom of the figure gives a Horn Clause that indicates the relationship between O2.Car and O3.LuxuryCar. Any instance of O2.Car that has a O2.MSRP that, in turn, has a O2.Value that is greater than 40,000 is a O3.LuxuryCar. Of course, such a rule should also consider the O2.Denomination of the O2.MSRP but for the sake of simplicity we have omitted the denomination from the rule. Note that we use the notation On.Concept to refer to Concept as defined in ontology On. We assume that in the names of concepts are unique within an ontology.

In this work, we do not consider articulation rules that might introduce new nodes. For example, while articulating between PoundSterling and Guilders, an articulation generating function might generate an intermediate node called Euro and then give the relation between PoundSterling and the Euro and that between the Guilder and the Euro.

However, the presence of such an intermediate node influences the properties of the algebraic operators. For example, if an articulation generating function generates intermediate nodes, the intersection operation between ontologies can not be guaranteed to be associative. Thus, we do not consider such articulation generating functions in this work but it is an interesting problem to handle in future.

4.2.4. The Algebraic Operators
We propose an algebra for the composition of ontologies. The algebra has one unary operator: Select, and three binary operations: Intersection, Union, and Difference.

Unary Operator

Select: Using the Select operator, an ontology composer, can select portions of an ontology that might be of interest. For example, a car-dealer is interested about cars does not care about houseboats. The car-dealer will select only portions of ontology O2 that contain terminology about cars and delete the portions that are not related to cars.

Binary Operators

Each binary operator takes as operands two ontologies that we want to articulate, and generates an ontology as a result, using the articulation rules. The articulation rules have been generated by an articulation generating function.

Intersection: is the most important and interesting binary operation.

The intersection of two ontologies O1 = ((V1, E1), R1), and O2 = ((V2, E2), R2) with respect to the set of articulation rule generating function f is:

OI1,2 = O1 (f O2 = ((VI , EI) , RI), where

 VI = Nodes(f(O1, O2)),

 EI = Edges(E1, VI (V1) (Edges(E2, VI (V2) (Edges(f(O1, O2)) ,

and RI = Rules(O1, VI (V1) (Rules(O2,VI (V2) (f(O1, O2))).

The nodes in the intersection ontology are those nodes that appear in the articulation rules. An edge in the intersection ontology is an edge among the nodes in the intersection ontology that were either present in the source ontologies or have been output by the articulation generating function as an articulation rule. The rules in the intersection ontology are the articulation rules that are present in the source ontology that use only concepts that occur in the intersection ontology.

Note that since we consider each node as an object instead of the subtree rooted at the node, we will get only the node in the intersection by virtue of its appearing in an articulation rule and not automatically include its attributes or subclasses. Again, a minimal linkage keeps the intersection ontologies small and avoids the inclusion of possibly irrelevant concepts.

Each node in the intersection has a label that contains the URI of the source in which it appears. If the attributes of the object that it represents are required, the application’s query processor has to get that information from the original source. Defining the intersection with a minimal outlook reduces the complexity of the composition task, and the maintenance costs, which all depend upon the size of the articulation.

Union: The union of two ontologies O1 = ((V1, E1), R1) and O2 = ((V2, E2), R2) with respect to an articulation generating function f is:

OU1,2 = O1 (f O2 = ((VU, EU),RU) where

 VU = V1 (V2 (VI,

 EU = E1 (E2 (EI,

and RU = R1 (R2 (RI,

and where OI1,2 = O1 (f O2 = ((VI, EI), RI) is the intersection of the two ontologies with respect to f.

The set VI adds nodes that are neither in V1 nor V2 to VU only if the articulation rules introduce nodes that are neither in V1 nor V2. The articulation rules indicate relationships between nodes in the two source ontologies and thus introduce new edges (the set EI) that were not there in the source ontologies.

Difference: The difference between two ontologies O1 = ((V1, E1), R1) and O2 = ((V2, E2), R2) with respect to an articulating function f is:

OD = O1 –f O2 = ((VD, ED), RD), where

 VD = V1 - VI,

 ED = Edges(E1, VD),
and RD = Rules(R1, VD),

and where OI1,2 = O1 (f O2 = ((VI, EI), RI) is the intersection of the two ontologies with respect to f.

That is, the difference ontology includes portions of the first ontology that are not common to the second ontology. The nodes, edges and rules that are not in the intersection ontology but are present in the first ontology comprise the difference ontology.

5. Results
The research leading to the Ontology algebra was primarily performed during a DARPA funded effort: Scalable Knowledge composition (SKC). The SKC project started in 1996, and continued for about 6 years, but remained throughout at a fairly modest research level, trying to provide the conceptual foundations needed for full-scale work, likely outside the academic computer science context. There were several demonstrations however.

Use of integration of base sources versus use of integrated data.

We addressed the original HPKB challenge problems, as set out by DARPA in 1997. SKC demonstrated that our answers were factually correct, complete, and avoided errors, because we could access and combine source information. For instance, to obtain answers about OPEC and security council membership we accessed www.OPEC.com and www.UN.org in addition to the CIA Factbook and generated correct answers, whereas the projects that relied only in the CIA Factbook provided answers that were wrong relative to the real-world status, since the Factbook did not provide the needed temporal information to recognize the Lack of overlap among these two conditions for several countries. It is obvious that going to the sources is always more reliable than relying on a secondary compilation, and SKC enables that strategy [4].

Our system is based on an interoperation system proposed by Karp [6]. We extended it to not only work using databases, but also using knowledge bases and other information sources. In Karp's system, each database comes with a schema which is saved in a Knowledge Base of Databases(KoD). Correspondingly, we assume that associated with each information source is an ontology. However, we do not require all ontologies to be saved in a central repository like the KoD [7, 10].

 Term Matching using semantic structures
In order to match terms based on their meanings we processed two dictionaries, Webster's (public) and Oxford English (licensed), to enable matching based on a semantic network created from the links implicit in the words listed and their definitions, a nexus. These networks exceed by an order of magnitude those that have been manually created, as Wordnet [11]. Using the Nexus repository we can, for instance, match `buyer' from a car-sales site with `owner' from a car registration site, even though there is no hint in the spelling of these words that they refer to the same set of people. We have applied this technique to information available about NATO-countries governmental structures. The terms here vary greatly, as prime-minister vs. president, parliament vs. congress, and the like. We achieved an automatic match of 70% of the terms that had been linked manually. This capability will be crucial in many business and military situations, for instance when ordering materiel, supplies, and services from multiple autonomous suppliers and internal warehouses [5].

Generation of match -ontologies
We created and enhanced an articulation generator that matches terms in ontologies to include other heuristics based on word similarity and ontology graph structure. A word-relator, using a corpus of documents related to the topics of discourse, generates a similarity measure based on the context in which words appear. Words appearing in similar contexts get a higher score. A structural similarity generator compares two ontology graphs and tries to match terms that appear in similar "neighborhoods" in two ontologies. A weighted average of the scores generated by the several articulation generation heuristic routines gives us a score on the basis of which terms in ontologies are matched.

Experiments done on two catalogues obtained from different sources in the construction industry show that we achieved an automatic match of 70-80% with very few false positives.

No automatic method can reliably generate precise and minimal articulations. We expect that in practice the articulation generator will be operated by an articulation expert, i.e., someone who is familiar with the applications that require an interaction of multiple domain ontologies. We have built a simple GUI prototype that displays the two ontologies, their articulation and enables the expert to ratify the articulation. The expert's response is logged and used in future articulation generation. such a mixed mode of operation will allow an extremely high precision at modest cost

Our articulations are small intersections of the base terminologies and ontologies and hence easy to maintain, even as our knowledge improves, base capabilities change, and applications become more demanding. We expect that these ontologies will be combined in many important applications. To serve that requirement we have developed an algebra over ontologies, which allows reliable and arbitrary combinations of base and derived ontologies, providing scalability without massiveness. The algebra is the formal basis for enabling query optimizations. We have identified the properties of the algebraic operators. Query optimization algorithms depend heavily on algebraic properties and enables us to scalably compose information without compromising reliability [MW01].
6. Conclusions
The Semantic Web without the technologies like those developed within SKC is unthinkable. Many interest groups are coming together, and we argued that a unified ontology for them is not effective. To be able to still interconnect all these different ontologies requires articulation of thousands between interoperation needs between different interest groups, which is what SKC addresses. We have built a toolkit that resolves the semantic heterogeneity among information sources by identifying similar concepts across ontologies associated with the information sources. We have also proposed an ontology composition algebra that provides a declarative framework for specifying how ontologies are composed from source ontologies. Ontology articulation tasks can now be readily replayed automatically when the ontologies change and the composition has to be repeated. This formal basis for the composition of ontologies allows us to perform large tasks that require composing information systematically, and scalably and thereby enables efficient interoperation. Since our model allows the sources to be autonomous, we achieve greater precision by virtue of having fresher information than other methods where information is integrated.

References:

[1] W. Stephen, J. F. Fries, G. Wiederhold, and F. Germano: "A Modular Self-describing Clinical Database System"; Computers in Biomedical Research, June 1975, Vol. 8, pages 279-293.

[2] O. Etzioni: Moving Up the Information Food Chain: Deploying Softbots on the World Wide Web, AI Magazine, 18(2): Spring 1997, 11-18.

[3] M. Sintek, S. Decker: TRIPLE - A Query, Inference, and Transformation Language for the Semantic Web. International Semantic Web Conference 2002: 364-378

[4] J. Jannink, P. Srinivasan, D. Verheijen, and G. Wiederhold: "Encapsulation and Composition of Ontologies"; Proc. AAAI Summer Conference, Madison WI, AAAI, July 1998.

[5] J. Jannink: A Word Nexus for Systematic Interoperation of Semantically Heterogenous Data Sources; Ph.D. Thesis, Department of Computer Science, Stanford University, Stanford, CA, 2000.

[6] P. Karp: "A Strategy for Database Interoperation"; Journal of Computational Biology, Vol. 2, No. 4, pp 573-583, 1996.

[7] P. Mitra, Kersten M. and Wiederhold G. (2000) Graph-Oriented Model for Articulation of Ontology Interdependencies. Proc. 7th Extending Database Technology, EDBT.

[8] Gruber, T.R., (1993) A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition, Vol.5 No. 2, pp.199-220.

[9] Gruber, T. R. (1993) Toward principles for the design of ontologies used for knowledge sharing. Talk Padua workshop on Formal Ontology, March . Ed. Nicola Guarino.

[10] P.Mitra, Wiederhold G., and Decker S. (2001) A Scalable Framework for Interoperation of Information Sources. 1st Int. Semantic Web Working Symp. (SWWS `01).

[11] C. Fellbaum (ed): Wordnet: An Electronic Lexical Database; MIT Press, 1998, ISBN 0-262-06197-X, available on the web as http://www.cogsci.princeton.edu/\~wn, 1998.

[12] P. Mitra and G. Wiederhold: "An Algebra for Semantic Interoperability of Information Sources"; In Proc. 2nd. IEEE Symp. on BioInformatics and Bioengineering, BIBE 2001, Bethesda, MD, Nov. 2001.

[13] Mitra P., Wiederhold G., and Jannink J. (1999) Semi-automatic Integration of Knowledge Sources. In Proceedings of Fusion '99, Sunnyvale, USA, July.

[14] M. Gysenns, J. Paredaens, J. Van den Bussche, and D. van Gucht, (1994) A graph-oriented object database model. In IEEE Trans. on KDE, Vol. 6, No. 4, pp. 572-586.

[15] P. Mitra, G. Wiederhold, J. Jannink, Semi-automatic Integration of Knowledge Sources, Proceedings of Fusion '99, Sunnyvale, USA, July 1999, Pages:5
follow the guidelines listed here. Note that all manuscripts must be in English.

6.1. Acceptable format

Your paper must be submitted electronically. The only acceptable format for your final paper is PDF.

6.2. Margins and page numbering

All printed material, including text, illustrations, and charts, must be kept within a print area 6-7/8 inches (17.5 cm) wide by 8-7/8 inches (22.54 cm) high. Page numbers starting at 101 are centered at the bottom of each page including the first.

6.3. Formatting your paper.
All text must be in a two-column format. The total allowable width of the text area is 6-7/8 inches (17.46 cm) wide by 8-7/8 inches (22.54 cm) high. Columns are to be 3-1/4 inches (8.25 cm) wide, with a 3/8 inch (0.95 cm) space between them. The main title (on the first page) should begin 1-3/8 inches (3.49 cm) from the top edge of the page. The second and following pages should begin 1.0 inch (2.54 cm) from the top edge. On all pages, the bottom margin should be 1-1/8 inches (2.86 cm) from the bottom edge of the page for 8.5 x 11-inch paper; for A4 paper, approximately 1-5/8 inches (4.13 cm) from the bottom edge of the page.

6.4. Type-style and fonts

Whenever Times is specified, Times Roman may also be used. If neither is available on your word processor, please use the font closest in appearance to Times that you have access to. If possible, use only Times, Helvetica, Courier, Symbol, and Dingbats fonts in your paper.

6.5. Main title

Center the title 1-3/8 inches (3.49 cm) from the top edge of the first page. The title should be in Times 14-point, boldface type. Capitalize the first letter of nouns, pronouns, verbs, adjectives, and adverbs; do not capitalize articles, coordinate conjunctions, or prepositions (unless the title begins with such a word). Leave two blank lines after the title.

6.6. Author names and affiliations

Author names are to be centered beneath the title and printed in Times 12-point, non-boldface type. Affiliations and email addresses are to be below each author’s name, and set in Times 12-point italic type. If all authors have the same affiliation, the affiliation can appear centered below all authors’ names. This information is to be followed by two blank lines.

6.7. Paper body

The body of the paper (including the abstract) must be in a two-column format.

The main text should be set in 10-point Times, single-spaced. All paragraphs should be indented 1 pica (approximately 1/6 inch or 0.422 cm). Make sure your text is fully justified – that is flush left and flush right. Please do not place any additional blank lines between paragraphs.

6.8. Figures and tables

Figure and table captions should be 10-point Helvetica boldface type as shown in Figure 1. Short captions (single line) should be centered as in Figure 1. Long captions should be aligned on both sides and indented 1 pica on both left and right. Figure captions should be below their figures, while table captions should be above the table, as shown in Table 1.

Figure 1. [image: image4.wmf]Example of short caption.

Table 1. Sample Table
	Level
	Size
	Style
	Before
	After

	1
	12 point
	Bold
	1 line
	1 line

Figures and tables must be centered, and should be placed in a single column if possible; however, large figures and tables may span the entire page if necessary. Page spanning figures and tables should be at the top or bottom of the page. Figures and table must be included as part of the PDF document – no cut and paste.

We will print the proceedings in black and white. However, color in your document is acceptable as long as the black and white version is still readable and comprehensible; the CD-ROM will allow readers to see color figures.

7. First order headings

First-order headings should be Times 12-point boldface, flush left, with one blank line before, and one blank line after. Only the first word of first-, second-, and third-order headings should be capitalized. All numbers in the section number should be followed by periods.

7.1. Second order heading

Second order heading should be Times 11-point boldface, flush left, with one blank line before, and one after.

7.1.1. Third Order headings. If you require a third-order heading (we discourage it), use 10-point Times, boldface, flush left, preceded by one blank line, followed by a period and your text on the same line.

7.2. Footnotes

Please use footnotes sparingly
; instead, include necessary peripheral observations in the text (within parentheses, if you prefer)

References

List and number all bibliographical references in 9-point Times, single-spaced, at the end of your paper. When referenced in the text, enclose the citation number in square brackets, for example [1]. Multiple citations [1, 2] should be in a single set of square brackets.

7.3. Copyright forms

You must include your signed IEEE copyright release form when you submit your finished paper. We must have this form before your paper can be published in the proceedings.

7.4. Conclusions

Please direct any questions to Reagan W. Moore moore@sdsc.edu.

References

[16] R. P. Feynman, Feynman Lectures on Physics. (Reading MA: Addison Wesley, 1996)

[17] R. S. Mulliken, "Benzene Molecule," J Chem Phys, 22 (1945) 345-355.

� EMBED Word.Picture.8 ���

* This research was partially sponsored by DARPA DAML program and AFOSR New World Vistas program. Views and conclusions contained in this report are the authors’ and should not be interpreted as representing the official opinion or policies, either expressed or implied, of the Government, or any person or agency connected with them.

� http://www.oasis-open.org

� http://www.w3.org/sw

� http://www.w3.org/RDF/

� http://www-db.stanford.edu/SKC

� http://www.foaf-project.org/

� Or better still, try to avoid footnotes altogether. If you do use footnotes, place them at the bottom of the column on the page on which they are referenced using 8-point single-spaced Times.

�What are the stages? Did we use his results in SKC?

PAGE
101

[image: image5.png]03\@..bc1m0r

hasA §ubC1 58

LauryCar

Articulation Rules:
irue => (02.Car SubClassOf O1.Vehicle)

(X InstanceOf 01.Car),(X hasA XMSRP)(Y InstanceOf X MSRP),

(V hasA ¥.Value), (Z InstanceO! Y- Value), (Y. Value > 40,000)
=> (X InslanceO! 02 LuxuryCar)

_1043421760.doc
[image: image1.wmf]

