What Are Web Services Worth?

Gio Wiederhold
Stanford University and MITRE Corp.
May 2005
www-db.stanford.edu/people/gio.html
A new type of Business

Services on the Semantic* Web

• Inspiration for academics
• A hot topic for funders
• A motivation for technologists
• An opportunity for system integrators
• A puzzle for individual customers
• A dead-end for accountants
• A mystery for business economists
• Of undetermined value to investors

* Primarily a technology issue?
Software needed for Services

- Software Components
- Many interfaces

from
Avron Barr & Shirley Tessler:
Shared Semantics: A Briefing on the Emerging Market for Distributed Ontology Technology;
Aldo Ventures, Aptos CA, August 2002.
Based on ESWC 2001 workshop
Product Worth: cost or income?

• Software producers traditionally care about
 – Cost of writing software
 – Time to complete products
 – Capabilities

• When the value is a concern, others play
 – Business people
 – Economists
 – Lawyers
 – Promoters

inconsistent
Why a concern for SW folk

• Making decisions about creative tradeoffs
 – Elegance versus functionality
 – Rapid generation versus maintainability
 – Careful specification versus flexibility

• Dealing with customers
 Dijkstra model: *for self-satisfaction*
 Engineering model: *formal process driven*
 Startup model: *see if it sticks to the wall*

• Gain respect: *know what you are doing*
Why am I valuing SW now?

- Much software is being exported as part of **offshoring** (offshore outsourcing)
- It is typically property – i.e., *protected*
- If it is not valued correctly – i.e., *too low*
 1. Loss of income to the creators *in the USA*
 2. And loss of taxes *to the US treasury*
 3. Excessive profits *kept external to the USA*
 4. Increased motivation for external investment
SW is an Intangible

- Product of knowledge by
- Cost of original >> cost of copies
 1. Books authors
 2. Software programmers
 3. Inventions engineers
 4. Trademarks advertisers
 5. Knowhow managers
 6. Customer Loyalty long-term quality
Valuation of intangibles

- **Principle**
 The sum of all future income discounted to today (NPV)
 Implicitly estimated by shareholders

- **Example: Value of a company (SAP)**
 - Largely intangible – like many modern enterprises
 1. Market value = share price × no. of shares €31.5B 100%
 2. Bookvalue – sum of all tangible assets €6.3B 20%
 Equipment, buildings, cash
 3. **Intangible** value per stock market €25.2B 80%

 - How much of it is software?
Value of software today ...

- You have a great Web Service today.
- It is based on wonderful software.
- You are getting great customers.

Next Year, in 5 years, in 10 years
- Will your Web service be the same?
- Will your software be the same?
- Will your customers be happy?
Software is slithery!

Continuously updated

1. Corrective maintenance
 bugfixing, reduces for good SW
2. Adaptive maintenance
 externally mandated, steady
3. Perfective maintenance
 satisfy customers' growing expectations, grows

Ratios differ in various settings, unknown for web services
IP sources

- **Corrective maintenance**
 - Feedback through error reporting mechanisms
 - Taking care of missed cases

- **Adaptive maintenance**
 - Staff to monitor externally imposed changes
 - Compliance with new communication standards
 - Compatibility with related services

- **Perfective maintenance**
 - Feedback through sales & marketing staff
 - Needed to keep and gain customers
Maintenance costs

• are substantial
 – About 20% of the initial cost per year
• cause the software to grow
 – Larger software is more costly to maintain
• prolong life of successful applications
 – 8 to 18 years, *but unknown for web services*
• dominate over the lifetime of a product
 – Maintenance cost is about 80%
• in time kill products
 – Innovation replaces them with more effective products and services
To value: quantify it all

Rules:
1. \(S_{n+1} = 2 \text{ to } 1.5 \times S_n \) per year [HennesseyP:90]
2. \(V_{n+1} \leq 1.30\% \times V_n \) [Bernstein:03]
3. \(V_{n+1} = V_n + V_1 \) [Roux:97]
4. Deletion of prior code = 5% per year [W:04]

![Diagram showing growth per rule HP @1.5 and growth per rule A at 1.5 year / version.](image)
Observations

- **Software cannot grow exponentially**
 - no Moore's Law

Because

1. Cost of maintaining software grows exponentially
 [Brooks:95]
2. Can't afford to hire staff at exponential 2
3. Cannot have large fraction of changes in a version
4. Cannot impose version changes on users $> 1 / year$
5. Deleting code is risky and of little benefit
 except in game / embedded code
Price \(\text{remember IP} = f(\text{income}) \)

- **Price stays \(\approx \) fixed over time**
 - not like hardware

 € $ £ ¥ € $ £ ¥ € $ £ ¥ € $ £ ¥ € $ £ ¥ €

 Because
 1. Customers expect to pay same for same functionality
 2. Keep new competitors out
 3. Enterprise contracts are set at 15\% of base price/annum

- **Effect**

 The income per unit of original code reduces by \(1/\text{size} \)
Growth diminishes IP

Assumptions:
IP \approx \text{codesize}
deletion \approx \text{codesize}

Note:
less steep if start with V > 1, if V > 2 obeys rule B
Total income

Total income = price × volume (year of life)
• Hence must estimate volume, lifetime
Best predictors are previous comparables
 ➢ Erlang curve fitting (m=6 to 20, 12 is typical)
and apply common sense limit = Penetration
 ➢ estimate total possible sales F × #customers
 ➢ above F= 50% monopolistic aberration
Sales curves

For 50,000 units over 9 years

Erlang m = 12

Erlang m = 6

^ 50,000 when

end of time horizon

9 years
Web services companies

1. Develop software *
 • Generates IP, but no income yet, no value yet

2. Use that software to provide services
 • Basis of IP: income from service sales

3. Lease that software to other service providers
 • Basis of IP: income from software sales

4. Purchase & license software for their use
 • Generates income based on IP obtained

5. Have software for their own internal use
 • No income, just cost benefits, have IP value

... and combinations
Income in a software company is used for

- **Cost of capital**
 - Dividends and interest \(\approx 10\%\)
 - Typical

- **Routine operations** -- not requiring IP
 - Distribution, administration, management \(\approx 40\%\)

- **IP Generating Expenses (IGE)**
 - Research and development, i.e., SW \(\approx 25\%\)
 - Advertising and marketing \(\approx 25\%\)

These numbers are available in annual reports or 10Ks.
Discounting to NPV

Standard business procedure

- Net present Value (NPV) of getting funds 1 year later = \(F \times (1 - \text{discount} \%) \)

Standard values are available for many businesses based on risk (\(\beta \)) of business, typical 15%

Discounting strongly reduces effect of the far future

- \(\text{NPV of } \$1.\text{- in 9 years at 15\% is } \$0.28 \)
- \(\text{NPV of } \$1.\text{- in 9 years at 20\% is } \$0.19 \)

Also means that bad long-term assumptions have less effect
Combining it all

<table>
<thead>
<tr>
<th>factor</th>
<th>today</th>
<th>y1</th>
<th>y2</th>
<th>y3</th>
<th>y4</th>
<th>y5</th>
<th>y6</th>
<th>y7</th>
<th>y8</th>
<th>y9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Pr</td>
<td>$0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Rel.size</td>
<td>1.00</td>
<td>1.67</td>
<td>2.33</td>
<td>3.00</td>
<td>3.67</td>
<td>4.33</td>
<td>5.00</td>
<td>5.67</td>
<td>6.33</td>
<td>7.00</td>
</tr>
<tr>
<td>Service Volume</td>
<td>K</td>
<td>1911</td>
<td>7569</td>
<td>11306</td>
<td>11395</td>
<td>8644</td>
<td>2646</td>
<td>1370</td>
<td>1241</td>
<td>503</td>
</tr>
<tr>
<td>Revenue</td>
<td>$K</td>
<td>955</td>
<td>3785</td>
<td>5653</td>
<td>5698</td>
<td>4322</td>
<td>2646</td>
<td>1370</td>
<td>621</td>
<td>252</td>
</tr>
<tr>
<td>Part for SW 25%</td>
<td></td>
<td>239</td>
<td>946</td>
<td>1413</td>
<td>1425</td>
<td>1081</td>
<td>662</td>
<td>342</td>
<td>155</td>
<td>63</td>
</tr>
<tr>
<td>Maintenance @ 20%</td>
<td></td>
<td>200</td>
<td>333</td>
<td>467</td>
<td>600</td>
<td>733</td>
<td>867</td>
<td>750</td>
<td>450</td>
<td>225</td>
</tr>
<tr>
<td>Gross income $K</td>
<td></td>
<td>755</td>
<td>3451</td>
<td>5186</td>
<td>5097</td>
<td>3589</td>
<td>1779</td>
<td>620</td>
<td>170</td>
<td>27</td>
</tr>
<tr>
<td>Maint./Av.SW Ratio</td>
<td></td>
<td>0.84</td>
<td>0.35</td>
<td>0.33</td>
<td>0.42</td>
<td>0.68</td>
<td>1.31</td>
<td>2.19</td>
<td>2.90</td>
<td>3.58</td>
</tr>
<tr>
<td>Disct 20%</td>
<td>1.00</td>
<td>0.83</td>
<td>0.70</td>
<td>0.58</td>
<td>0.48</td>
<td>0.40</td>
<td>0.34</td>
<td>0.28</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>SW cost</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ratio maintenance/total = 83%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Inc.</td>
<td>12,641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>after discounting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≈ $1.7 million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oct 2004 Gio: WebWorth
Result of Example

- Selling 50M service units @ $0.50 ≈ $ 1.7M
 not $ 25.0M

Once its in a spreadsheet, the effect of the many assumptions made can be checked. When assumptions later prove unwarranted then management can make corrections.

To be wise, don't spend more than ≈ $500 000 to develop the services software.
Business assumptions here

1. Original cost $1 000 000 (used to estimate 2.)
2. Maintenance cost 20%/year of aggregate cost
3. Maintenance fee 15%/year of original price
4. Cost to income lag 1 year
5. Stop maintenance when cost > income
6. Moderately risky business: discount rate 20%
 Average for SW industry is 15%, for startups 60%

Profits can be fed to founders & investors or reinvested in new business ventures
Software is an ongoing effort

Analysis shows importance of maintenance
Even poor numbers can help convince others.

• To achieve success in a service business
 1. Management must value maintenance
 2. Related standards, services must be monitored
 3. Marketing and sales must provide feedback
 4. Education and training must recognize the value of maintenance and maintainability
Software is poorly understood

1. Academics don't teach it
 It's barely in textbooks: 3/850 pages [Pressman:01]

2. Accountants ignore it
 1. It's classified as R&D, and hence looks optional
 2. It should be considered as Cost-of-Goods-Sold
 3. Leads to ridiculous margins: 99.9% for web services,
 Is 91-97% for much of the software industry

3. Companies assign maintenance to novices
 Experienced programmers should maintain their work
 and learn from it.
Knowing what software is worth

• Allows rational design decisions, as
 • Limiting development efforts
 • Programming investment for maintenance

• Allows rational business decisions, as
 • Choice of business model
 • Where and when to invest
 • How to assign programming talent

• Improve focus of education in software
 • Consider quality, not just quantity in assignments
 • Effectiveness of curriculum