
Measuring Software Changes with
CLOC

About Bob Zeidman
 President of Software

Analysis & Forensic
Engineering Corp.

 President of Zeidman
Consulting

 Author of Designing with
FPGAs and CPLDs,
Verilog Designer’s
Library, Introduction to
Verilog, and articles on
engineering and
business

 Degrees from Cornell
and Stanford

2 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Agenda
 The evolution of software projects
 Traditional methods of measuring

software evolution
 Lines of code
 Complexity

 CLOC definition
 Open source results

 Linux
 Apache
 Firefox

3 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Importance

 Measuring progress of long-term
projects

 Improved maintenance of code
 Measuring work done under contract
 Performing due diligence before

acquiring software or software
companies

 Valuation of intellectual property
 Transfer pricing

4 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Traditional Methods

 Source Lines of Code (SLOC)
 Physical SLOC (LOC)
 Logical SLOC (LLOC)

 Halstead Measure
 Volume
 Mental Effort

 Cyclomatic Complexity (McCabe)
 Function Point Analysis

CS 207: The Economics
of Software

5 of 43Measuring Software Changes with CLOC

Source Lines of Code (“SLOC”)

 Count the number of lines of code
 Simple
 More source code = more effort
 General measure

6 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Physical SLOC (“LOC”)
 Count all lines
 Count blank lines?
 Programming language independent
 Very simple to implement
 Influenced by formatting
 Counts comments equally with

functional statements
 Cannot measure changes
 Refactoring = deterioration

7 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Logical SLOC (“LLOC”)

 Count all functional statements
 Programming language dependent
 Complex to implement
 Does not count comments at all
 Cannot measure changes
 Refactoring = deterioration

8 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

SLOC Issues

9 of 43

for(i = 0; i < 100; i += 1) printf("hello");

 LOC: 1
 LLOC: 2 ?

 for (i=0; i < 100; i += 1)
 printf("hello");

 LLOC: 4 ?
 i=0;
 while i < 100;
 i += 1;
 printf("hello");

CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Halstead Measure

 Maurice Halstead, 1977
 n1 = number of unique operators
 n2 = number of unique operands
 N1 = number of operator occurrences
 N2 = number of operand occurrences

10 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Halstead Measure
 Program length

 N = N1 + N2
 Program vocabulary

 n = n1 + n2
 Volume

 V = N ∙ log2n
 Difficulty

 D = (n1 ∙ N2)/(2 ∙ n2)
 Effort

 E = D ∙ V
 Time

 E / 18

11 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Halstead Measure
 Programming language dependent
 Simple to implement
 Modern languages

 i = i + 1;
 i += 1;
 a = sqrt(i);
 int i;
 *ptr = &abc;
 public class MyClass

 Comments not counted
 Usefulness?

12 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Cyclomatic Complexity
 Thomas McCabe, 1977
 Count the number of individual paths

through the code
 printf statement has one path
 if statement has two distinct paths

 one path for true
 one path for false

 case statement has multiple distinct paths
 Calculated by creating graphs and counting

execution paths
 Complex to implement
 Complexity ≠ source code evolution
 Refactoring = reduction of complexity

13 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Function Point Analysis
 Allan Albrecht, IBM 1979
 Categories
 Outputs
 Inquiries
 Inputs
 Internal files
 External interfaces

 Assessed for complexity
 Assigned a number
 Adjustments and weighting

CS 207: The Economics
of Software

14 of 43Measuring Software Changes with CLOC

Function Point Analysis

 Very labor intensive
 Very expensive
 Requires certified function point

consultants
 Requires a fairly complete set of

requirements

CS 207: The Economics
of Software

15 of 43Measuring Software Changes with CLOC

Function Point Analysis
 IFPUG function points
 Backfired function points
 COSMIC function points
 Finnish function points
 Engineering function points
 Feature points
 Netherlands function points
 Unadjusted function points
 Function points light

CS 207: The Economics
of Software

16 of 43Measuring Software Changes with CLOC

Source Code Differentiation

 The measure of the number of LOC
that match completely as a fraction of
the total LOC

 Value between 0 and 1
 Order of statements is not considered
 Lines of software source code can be

reordered
 Entire sections can be cut and pasted
 No change in functionality of program

17 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Calculate Similarity Score

 Count the number of lines in files A
and B, L(A) and L(B)

 Determine the number of matching
lines, m(A,B)

 Matching lines is one-to-one

18 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Source Code Differentiation

19 of 43

Symbol Definition
σ source code similarity between two files
F(n) file number n
D(n) location of file number n (e.g., directory path)
L(n) the number of lines in file n
M the number of lines that match between two files
m(i,j) match score for lines i and j
l(i) the length of (i.e., number of characters in) line i
w(c) a character weighting function for character c
w(i) the weighted length of line i
ck(i) character k of line i
LCS(i, j) longest common subsequence of lines i and j
LCCS(i, j) longest common contiguous subsequence (substring) of lines i

and j
WR(i) whitespace reduction of line i

CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Longest Common Subsequence

20 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Longest Common Substring

21 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Axioms
 Commutativity Property

 Not dependent on the order of comparison

σ(F(n), F(m)) = σ(F(m), F(n))

 Identity Property
 A file cannot be more similar to another file than it is to

itself

σ(F(n)) = σ(F(n), F(n)) = 1

 Location Property
 Independent of the location of the files

σ(F(n), F(m)) = σ(F(n), F(m)) for all D(n), D(m)

22 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Mutual Similarity

 Two times the total number of
matching lines in file n and file m,
divided by the total number of lines in
file n and file m

σ(F(n), F(m)) = 2M(F(n),F(m)) / (L(n)+L(m))

23 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Directional Similarity

 Total number of matching lines in two
files divided by the total number of
lines in one of the files

σn(F(n), F(m)) = M(F(n),F(m)) / L(n)

σm(F(n), F(m)) = M(F(n),F(m)) / L(m)

24 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Definition

25 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Changed Lines of Code (“CLOC”)

 Counts the number of lines of code
that have been
 Modified
 Added
 Remain constant

26 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC

27 of 43

Subsequent Version

Total Unchanged
LOC

Original Version

Original Files with
Original LOC

Removed
files

Removed
LOC

New Files
Modified Continuing FilesUnchanged Continuing Files

Total New LOC

Unchanged
LOC

Unchanged
LOC

New
LOC

Changed
LOC

New
LOC

CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Methodology

 CodeMeasure®

 Software Analysis & Forensic
Engineering Corporation (“S.A.F.E.”)
 Compare versions
 CLOC Spreadsheet

28 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Measures
 Growth: percentage of total new

LOC to the total LOC in the original
version

 LOC Decay: percentage of total
continuing LOC to the total LOC in
each subsequent version.

 File Decay: percentage of original
files that are still remaining to the
total number of files in each
subsequent version

29 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Definitions
 TF(n): Total Files

 Total number of files in version n of the program
 NF(n,m): New Files

 Number of new files in version n from previous
version m

 TL(n): Total LOC
 Total lines of code in version n

 TNL(n,m): Total New LOC
 Total new lines of code in version n from previous

version m
 TCF(n,m): Total Continuing Files

 Total files in version n that also existed in previous
version m

 TLCF(n,m): Total LOC in continuing files

30 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Definitions
 NLCF(n,m): New LOC in Continuing Files

 LOC in continuing files but that are in the file in
new version n but not in the file in previous
version m

 CL(n,m): Continuing LOC
 LOC present in the files in previous version m

and in the continuing files in version n
 MCF(n,m): Modified Continuing Files

 Number of files in version n that also existed in
previous version m but that have changed

 UCF(n,m): Unchanged Continuing Files
 Number of files in version n that also existed in

previous version m without changes

31 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Definitions
 CLOC Grow th(n,m)

 Ratio of new LOC in version n to LOC in previous version
m

 File Continuity(n,m)
 Ratio of continuing files in version n from version m to

total files in version n

 File Decay(n,m)
 Ratio of files in version n that are not continuing from

version m to total files in version n (1- File Continuity)

32 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Definitions
 Line Continuity(n,m)

 Ratio of continuing LOC in version n from version m to
total LOC in version n

 Line Decay(n,m)
 Ratio of LOC in version n that are not continuing from

version m to total LOC in version n (1 – Line Continuity)

 Unchanged File Continuity(n)
 Ratio of unchanged continuing files in version n to total

files in version n

33 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

CLOC Equations

 CLOC Growth(n) = TNL(n) / TL(0)
 File Continuity(n) = TCF(n) / TF(n)
 File Decay(n) = 1 – (TCF(n) / TF(n))
 Line Continuity(n) = CL(n) / TL(n)
 Line Decay(n) = 1 – (CL(n) / TL(n))
 Unchanged File Continuity(n) =

UCF(n)/ TF(n)

34 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Three Open-Source Projects

 Linux Kernel
 Apache HTTP Server
 Mozilla Firefox

35 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Mozilla Firefox Browser
Data from Firefox browser Version .1 Version 1.0 Version 2.0 Version 3.0

Total Files: TF(n) 10,302 10,320 11,042 9,429

New Files: NF(n) 0 175 1,455 2,399

Total LOC: TL(n) 3,169,530 3,180,268 3,570,712 3,288,983

Total New LOC: TNL(n) 0 40,922 843,683 1,530,918

Total Continuing Files: TCF(n) 10,302 10,145 9,587 7,030

Total LOC in Continuing Files: TLCF(n) 3,169,530 3,148,460 3,125,785 2,288,903

New LOC in Continuing Files: NLCF(n) 0 9,114 398,756 530,838

Continuing LOC: CL(n) 3,169,530 3,139,346 2,727,029 1,758,065

Modified Continuing Files: MCF(n) 0 281 8,577 6,543

Unchanged Continuing Files: UCF(n) 10,302 9,864 1,010 487

SLOC Growth(n) 0% 0% 13% 4%

CLOC Growth(n) 0% 1% 27% 48%

File Continuity(n) 100% 98% 87% 75%

Unchanged File Continuity(n) 100% 96% 9% 5%

LOC Continuity(n) 100% 99% 76% 53%

36 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Apache Growth

37 of 43

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

Version 1.3.0 Version 1.3.41 Version 2.0.35 Version 2.0.63 Version 2.2.9

CLOC (% TNL / TL(1.3.0)) SLOC (% New SLOC/ Total Original SLOC)

Removed
files

Removed
LOC

Changed
LOC

CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Apache LOC and File Decay

38 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

0%

20%

40%

60%

80%

100%

120%

Version 1.3.0 Version 1.3.41 Version 2.0.35 Version 2.0.63 Version 2.2.9

Apache Percent Continuing
% Continuing 1.3.0 LOC / Total LOC

% Continuing 1.3.0 Files / Total Files

% 1.3.0 SLOC/ Total SLOC

% 1.3.0 TCC/ TCC

Linux LOC and File Decay

39 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

0%

20%

40%

60%

80%

100%

120%

Version 1.0 Version 1.2.0 Version 2.0.1 Version 2.2.0 Version 2.4.0 Version 2.6.0

% Continuing 1.0 LOC / Total LOC % Continuing 1.0 Files / Total Files

% 1.0 SLOC/ Total SLOC % 1.0 TCC/ TCC

Firefox LOC and File Decay

40 of 43

0%

20%

40%

60%

80%

100%

120%

140%

Version 0.1 Version 0.8 Version 1.0 Version 1.5 Version 2.0 Version 3.0

% Continuing 0.1 LOC / Total LOC % Continuing 0.1 Files / Total Files

% 0.1 SLOC/ Total SLOC % 0.1 TCC/ TCC

CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Firefox Growth

41 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

Summary
 Traditional SLOC is static and imprecise
 Halstead - questionable
 Function points - complex, expensive,

not connected to code evolution
 Cyclomatic Complexity - complex, not

connected to code evolution
 CLOC shows evolution

 Quantitative
 Easy to implement
 Programming language independent
 Accounts for added, deleted, and changed

lines
42 of 43CS 207: The Economics

of Software
Measuring Software Changes with CLOC

Contact Information

Bob Zeidman
Software Analysis & Forensic

Engineering
Web: www.SAFE-corp.biz

www.CodeMeasure.com
Phone: +1-408-517-1194
Fax: +1-408-741-5231
Email: bob@SAFE-corp.biz

43 of 43CS 207: The Economics
of Software

Measuring Software Changes with CLOC

	Measuring Software Changes with CLOC
	About Bob Zeidman
	Agenda
	Importance
	Traditional Methods
	Source Lines of Code (“SLOC”)
	Physical SLOC (“LOC”)
	Logical SLOC (“LLOC”)
	SLOC Issues
	Halstead Measure
	Halstead Measure
	Halstead Measure
	Cyclomatic Complexity
	Function Point Analysis
	Function Point Analysis
	Function Point Analysis
	Source Code Differentiation
	Calculate Similarity Score
	Source Code Differentiation
	Longest Common Subsequence
	Longest Common Substring
	Axioms	
	Mutual Similarity
	Directional Similarity
	CLOC Definition
	Changed Lines of Code (“CLOC”)
	CLOC
	CLOC Methodology
	CLOC Measures
	CLOC Definitions
	CLOC Definitions
	CLOC Definitions
	CLOC Definitions
	CLOC Equations
	Three Open-Source Projects
	Mozilla Firefox Browser
	Apache Growth
	Apache LOC and File Decay
	Linux LOC and File Decay
	Firefox LOC and File Decay
	Firefox Growth
	Summary
	Contact Information

