668

Database Design Chapter 15
This file is (©1977 and 1983 by McGraw-Hill and (©)1986, 2001 by Gio Wiederhold.

This page is intentionally left blank.

(page 669) ’— _|

Chapter 15

Database Operation
and Management

Donagon wiped his damp hands, opened the journal and began .

We decided not to abandon the attempt after all; to try once more to store a man dlgltally
The last obstacle had been removed, i.e., storage. Previously we had estimated that many
thousands of miles of magnetic tape would be required, with complex retrieval problems.
The multiple storage paired redundancy tapes, developed by Miiller-Fokker in Vienna. ..

Every datum will be recorded many times, to reduce error. At present surgeons are
removing tissue samples from the subject and determining cell structure data. We have
already encoded a DNA map, photographs, holographs, x-rays, resin casts, EKG’s and so
on. There remains but one step, the mapping of all electrical and chemical activity of the
subject’s brain. The press will be invited to this session

From The Miiller-Fokker Effect, a science fiction story
By John Sladek

The benefits of database systems are obtained only after the design and the imple-
mentation are completed, and after sufficient data has been collected so that the
user of the database can receive usable information. A large commitment of effort
is required to attain that stage. The remainder of the database cycle will involve
continuing assurance of reliability and quality, periodic adaptation to changing re-
quirements, and eventually termination of the operation with transfer of valuable
data and procedures to a new system.

This final chapter will consider these issues and in the process summarize some
of the observations from earlier chapters.

669

670 Database Operation and Management

15-1 DEVELOPMENT OF THE DATABASE

The development of a substantial database operation is invariably a task which
requires the cooperation of a number of diverse individuals. The collection will
include a large number of potential users, data-analysis specialists, information
scientists, experts in various aspects of computing, communication specialists, the
future database administrator, and representatives from management, who will be
investing resources of the enterprise in the effort.

It is not unusual for potential vendors to be included in the initial discussions.
They can bring considerable experience to bear on problems, but their opinions
have to be validated at sites of prior implementations. A good deal of knowledge
but relatively little experience is currently available in the academic world. Exper-
imental research on large databases is difficult because of the large cost and long
time scales associated with database system development.

Objective Setting The determining components of a database operation are the
users and the data. The users determine the objectives of their applications and
the semantics of the data determines how the objectives can be satisfied. The
type, activity, and quantity of users and data have to be quantified before any
specific system design can be done. The determination of these parameters is a
management responsibility. A group associated with a specific system is apt to
view users and data needs according to its capabilities, rather than according to the
underlying user objectives. Documented feedback to management is required when
imposed service demands are excessively costly. A constantly recurring problem is
that programming staff venture opinions about cost and effectiveness of alternatives
without analysis, often using a peremptory approach, sometimes basing opinions on
personal interest.

In order to get a development group composed of diverse individuals moving
in the same direction, a definition of the goal objectives is required. Both lower
and upper levels of the operational parameters to be achieved have to be specified.
Some quantified limits of system performance objectives for an application may be:

Response Time: 90% of single-element queries are to take less than 1 s be-

tween query entry-completion and begin of response.

Backup: Backup is to be available for all source data which have been entered

more than 3 h ago. Backup is to be retained for all data which were deleted
less than 3 months ago.

Deadlock: Less than one deadlock per year should occur.

Cost: A single element query should cost less than $1.00. Successive data

elements to be obtained at less than $0.05 each.
Size: Capability to access 100000 to 2000 000 records of size as defined.

Objectives defined and understood at this level form the basis for mutual decision
making and have to precede the exploration of the system alternatives. Objectives
stated without restraint, as instantaneous response, absolute reliability, perfect pro-
tection of privacy, can lead to an unbalanced effort in system implementation.

Sec. 15-1 Development of the Database 671

Binding A decision criterion which appears throughout this book is the concept
of binding. Binding measures the extent to which flexibility has been traded for
efficiency. We have identified binding choices in file structures, in database models,
in schema management, in information retrieval, and in the maintenance of data
and integrity protection.

If much flexibility is required, the system will be loosely bound at many levels:
the record structure will be variable, the access paths will be easily augmented or
deleted, the schema will be able to accept changes, and the query-processing system
will be able to interpret changes made at any time. If performance is important,
constraints will be imposed on some of the levels, but at some other levels flexibility
should be retained.

The concept of binding can promote a common understanding among the peo-
ple involved in the system development process. A general problem in database
design is that it involves the bringing together of people from many disciplines,
both as users and as implementers.

Documentation In a database the most important documentation is the database
model. The database model will determine the processes required for file creation,
file maintenance, and information retrieval. The schema, expanded with notes about
real-world relationships, connection constraints, and the definitions of the variable
domains and their representation becomes the formal repository for the database
model documentation as the design is refined.

The technical aspects of the design process were described in Chap. 5. When
the basic system choices have been formulated, more detailed specifications have
to be developed. There will be many interfaces among the system components
(see, for instance, the ANSI SPARC model of Fig. 8-16) which all require careful
documentation. Human interfaces are difficult to visualize by documentation alone,
and examples or pilot operations may be desirable. Particular care is required for
interfaces using visual display units or graphics if their full power is to be exploited.

The extent and detail of program documentation required will vary according to
scope and complexity of the system. If higher-level languages are used, an external
description of the function of a program module, and detailed documentation of
all variables used, is often adequate. Flowcharts have been of value where multiple
processes interact.

A common vocabulary is important. In the beginning of a project, especially
if multiple outside vendors are involved, terms will have a variety of meanings.
People who recognize the problems will begin to talk in noun pairs: CODASYL-
sets, LEAP-relationships, etc.; those who have read less will be confused. As the
specific system design stabilizes, so does the vocabulary. During the development
of this book much effort has been made to assure that definitions are consistent
throughout, and most of the terms have been acceptable to the readers of the first
edition; some definitions have been revised. Vocabularies adapted to a particular
system will continue to be used, but a table of definitions, which may cross reference
other work, such as CODASYL, will be helpful to outsiders.

The design of a generalized database management system is made much more
complicated because of the absence of user objectives and specific database mod-

672 Database Operation and Management

els. In practice certain types of users are postulated and artificial models are con-
structed. As was discussed in Chap. 10, there are some underlying concepts of an
information methodology which can be applied when a new system is being con-
sidered. Since no system can be everything to all users an explicit boundary of
the problem area to be addressed is required if conflicts during the design and the
complexity of implementation of a generalized DBMS are to be kept tolerably low.

Programming Techniques of structured programming promise to aid in the con-
struction of large programs. It is interesting to note that seminal work in this
area was applied to information systems: the chief-programmer approach at the
New York Times Information System [Baker”?] and formal modularization for a
KeyWord-In-Context generator [Parnas™].

The management of a critical section of code requires tools to manage locking
mechanisms. The fact that locks transcend structural levels (Sec. 13-2-2) makes
locks error-prone. A large amount of programming effort can be wasted if these
issues are not addressed prior to implementation. The trade-offs among integrity
control, performance, and flexibility in the applications are not well understood by
most programmers. Papers that promise that these problems have been solved have
misled many uncritical readers.

The separation of data structures from programs is another tool which is impor-
tant in the development and maintenance of systems. The use of schemas provides
this facility for the database, but similar facilities are also useful for access to other
shared system resources.

The use of a top-down approach to program design is feasible when there are
reasonable expectations about capabilities at lower levels. This book presented the
material of the database world in a bottom-up fashion, so that at each step up it
was possible to verify that the ground below was solid. Abstraction of alternatives
at the lower level are the building blocks of the higher levels; these abstraction have
to be based on realizable constructs.

15-2 MAINTENANCE OF A DATABASE

When a system is completed, adequately debugged, and populated with data, the
real work begins. We stress again that the value of a database to the user is not in
the database system but the data content and particularily, the results from queries
entered by users and users’ programs. Of course, a bad system can frustrate all
other positive aspects.

There will be the need for modifications due to changes which came along while
the system was being implemented. To avoid without serious disturbances changes
are best not considered during the latter part of a development effort. Changes will
be tested on a copy of the database so that ongoing use will not be affected until
the changes are well checked out.

Then there will be the need for additional facilities or data, as users find that
they cannot quite do everything they had expected. The gap between expectations
and delivered product can be especially great for users that did not participate in
the development effort. If participation in development is not possible, it is wise

Sec. 15-2 Maintenance of a Database 673

to warn the user that the installation of a database system will not provide all the
possible benefits. The delays which a user can expect will depend on the divergence
of the needs with the architecture of the sytem.

Stages, seen once a database system has been developed, include:

Operational shakedown of the database system The hardware and software is tested
using pilot data.

Functional shakedown of data entry procedures It is difficult to have reliable data entry
while the system is not perceived to be itself reliable, but at that point we have to assure
ourselves that the input flows smoothly and error free into the database.

Verification of data content The benefits of integration of data can be proved only if
the quality of the data stored is perceived by the users to be as good as their local data
collections.

Report generation Use of the database to generate reports suitable for the environment
provides initial operational experience and feedback of data.

Statistical analysis of data content Where data represents observations, descriptive
statistics and graphs can present the contents in a form which leads to questioning and
further inquiry.

Model building As the contents of the database matures, it becomes finally the in-
tended resource. Hypotheses can be tested and projections made which are based on past
data. This is the stage where the system actually generates information data useful to
decision making and planning.

The time required to achieve the final operational stage can be many years. The var-
ious stages require increasingly sophisticated personnel and tools. The investment
in these resources will be made only if earlier stages have provided the confidence
that the effort is worthwhile. Disappointment due to expectations of rapid or mas-
sive benefits can cause a loss of confidence, and may make a system, which works
technically reasonably well, a failure.

15-2-1 Tuning and Monitoring

An adequate performance-to-cost ratio will be of constant concern to the system
administrator. An administrator will be developing continuously tools to measure
system productivity. It may be difficult for users to formulate reasons for dissatis-
faction with aspects of the systems performance, so that lack of use can be a signal
to look for a problem. Sensitivity to the needs of the users is important.

Nearly all performance improvements increase the redundancy and the binding
of the system. Access paths are generally easier to manipulate than replication
of actual data. A system which allows the creation of new access paths can be
tuned quickly to improve fetch behavior. Improving transactions which access many
elements tends to be more difficult and may require considerable data redundancy.
Increased redundancy, of course, decreases update performance. Increased duration
and complexity of updates increases the probability of deadlock.

It is clear that the solutions which seem expedient are not always desirable.
A good understanding of which system resources are heavily used and which are
lightly used is necessary to make the correct decision.

674 Database Operation and Management

Among the most difficult decisions to make is the unbinding of a previously
bound relationship. This can involve the splitting of a collection of tuples into two
separate relations, either by attribute or by ruling part. In Sec. 7-5-2 we combined a
highschool_record and a college_record into a single relation education. This
may have made the model simpler and more consistent. Unfortunately, as a file
gets bigger, the time to process the file increases more than linearly. If we take
that processing time as generally proportional to n(logn), we find that processing
the same file split in two requires less time, namely, 2(%nlog %n) This example of
a case where bigger is not better can be demonstrated in other facets of database
systems. In general, database fragments that appear not strongly related to each
other can be beneficially separated. Such a divorce, if it takes place after the data
have been living together for a long time, is apt to be traumatic, since it may reveal
the existence of relationships which were not documented.

Distribution of databases is best based on a partitioning into fragments that
are not strongly bound, since this will minimize autonomy and integrity problems.
There are cases where a single relation in a model may be split into horizontal
fragments, namely tuples that are used mainly at different nodes. An example is
where the employees work at at different locations and their data are kept on the
local node. Vertical fragments are created when attribute usage differs among
nodes. The employees’ skill data may be kept on the Personnel computer, while
salary data are kept on the Payroll machine.

Monitoring Measures of system utilization that can be profitably monitored in-
clude:

Statistics of device utilization. The percentage activity times of processors, channels,
controllers, and disks. It is desirable to have both average values as well as values which
pertain to the busy periods of system operation.

Statistics of file utilization. A matrix of user process versus file activities is the basic
measure. The relative ratios of type of access such as fetch, get next, and update are
important for decisions about the file organization. File density (space used versus space
allocated) is another measure.

Statistics of record utilization. The frequency with which records are accessed for read
or update provides a measure which can be used to provide optimization in systems where
records are chained. The dates and times of last access and update are important for the
maintenance of integrity, as is the identification of the process which updated the records.

Statistics of attribute utilization. The frequency with which attribute values are re-

quested, updated, used as keys, or used as further search arguments provides the data for
optimal tuple membership selection.

The measures can be obtained by continuous monitoring or by selective sampling.
The best repository for data obtained from monitoring depends on the system de-
sign. It can be difficult to bring all the measurements together for automated
analysis. A regular logging tape provides the most obvious repository.

Data on device utilization may be provided by the operating system. File utilization
data can be saved in a file directory when a file is closed. Record activity logging was
essential for comprehensive backup, but many systems do not provide this service. Data
on record activity can be collected with the record when records are written or updated,

Sec. 15-2 Maintenance of a Database 675

but the cost of rewriting a record which has been read in order to collect access monitoring
data is excessive. Attribute activity can be recorded with the schema, and recorded when
the associated file is closed or when a process terminates.

The monitoring data listed above do not provide information regarding indi-
vidual data elements but do provide activity data for the record and the attribute,
which together describe the activity of any element in terms of averages.

The availability of monitoring information not only provides data for tuning.
A data administrator can now also justify expansion when needed, and can provide
data when there are service conflicts among user groups. The job of a database
administrator is already difficult. Without tools it is impossible. A person willing
to undertake database administration without tools will be self-selected on the basis
of political adroitness rather than on the basis of technical competence.

15-2-2 The Lifetime of Data and Database Systems

Both data and the systems lose value with age. It is hard to predict what becomes
obsolete first, so that both effects have to be considered.

Data Archiving As data ages it becomes of less value. Eventually its value will
not warrant continued on-line storage. The low cost of dense off-line tape storage
makes it possible to retain old data as long as there is any probability that the data
will be of eventual interest. Optical disks promise new alternatives for archiving
old versions.

The procedures used during transaction logging have produced extensive back-
up capability, but the contents of the logs and checkpoints is closely related to the
status of the system when the backup was generated, so that these files may be
difficult to utilize. For long-term archival storage, it is best to generate tapes in
an output format, which can be read by input procedures when needed. If the
schema entries for the attributes saved on the files are also written on the archival
tapes, much of the file documentation will be retained with the files. In large and
very dynamic systems, i.e., very large databases, it may not be possible to generate
adequate archival tapes from the database, since the database as a whole is never
consistent. Then the archival tapes can be generated from the logging files.

If preservation of auditability is important, archive files can be generated con-
tinuously in a database system. A database_procedure, specified in the schema,
can state

ON DELETE, UPDATE CALL archival_recording

so that archiving responsibility is assumed by the manager of the schema.

It is important to read archival files, first immediately after creation, and later
at least on a random sample basis. This avoids the embarrassment of finding that
one’s archives are useless, either due to an error when they were generated or due
to incompatibilities introduced as the system was further developed.

System Life Cycle It is very hard for a developer to visualize the point where
the operation of a particular system will be terminated. Even where the database

676 Database Operation and Management

remains of value, there will be a time when it is better to transfer the data and
programs than to continue an operation which has become obsolete.

Obsolescence is often associated with hardware which is no longer up to date,
but more serious is inadequate software. The maintenance cost of hardware and
software tends to decrease initially as the bugs are shaken out, but eventually begins
to increase again if an effort is made to keep old hardware and software facilities
compatible with new developments.

External developments which require adaptation may be technical or organiza-
tional; for instance, changes in communication facilities or a company reorganization
can force a database change. While a number of adaptations can be made, espe-
cially in systems which are not rigorously bound, eventually a required adaptation
will cost more than a reimplementation, which also can take advantage of improved
technology.

We can hence speak of a system life cycle, beginning from design, develop-
ment, implemenation, loading with data, operation and enhancement, operation
and maintenance only, terminating with a transfer of services to new a new system.
Once the expected life cycle of a system is determined, other decisions can be made
objectively. Investments in system improvements which will not realize adequate
benefits over the remaining lifetime can be rejected.

15-3 THE DATABASE ADMINISTRATOR

The final word in this book belongs, quite properly, to the database administrator.
The role of a database administrator (DBA) is not yet well defined, and the exact
definition varies from one operation to the other. A possible role for the database
administrator is the position sketched in Fig. 15-1.

The position of database administrator may be taken by several individuals or
may be considered a part-time duty. The choice depends on the number of functions
which are assigned to the DBA.

Function of the Database Administrator The DBA acts formally as the control
mechanism of a system which manages information loops of the users. The inputs
to the control function are the results of the monitoring activity and requests by un-
satisfied users. In order to carry out the control function, the DBA can restructure
the database or obtain additional facilities for analysis, processing, or communica-
tion. The inertia in the various control activities can differ considerably. Additional
resources require allocation of investment capital which the DBA has to obtain from
management.

The database administrator controls a resource which is important to a variety
of users. The users will look toward the DBA whenever they wish to obtain more
services from this resource. In order to provide the services, two components of the
database operation have to be considered:

1 The database system
2 The database content

Sec. 15-3 The Database Administrator 677

Given technical resources and time, it should be possible to satisfy all reasonable
technical requests. If the DBA cannot satisfy a user, the user may go to management
to request that allocations be increased so that the needs may be satisfied.

If the data contents of the database is inadequate, the DBA has to find the
potential source of good data. Source data are often in the domain of other users.
The DBA may be able to obtain the data freely or may have to provide a reimburse-
ment for data-collection costs. There will be users who feel that they are already
providing more than their share of data. A DBA may have to go to management
to present the need if the data is not easily obtained. Management may itself be a
major contributor and user of the database system.

Management
of the
enterprise
Receives _
allocations \, Make
*—? requests for
Database J/ resources

: administrator
Requests services l_l
from: T 5 -]—— User A
AR PR ata entry
dOEQQ\ [Data .
Programming Database | Database User B
] manitoring

facilities
System

Computing ™ restructuring
facilities

Data Processing

Communication ¥ |[Information
facilities

Figure 1B5-1 A place for the database administrator.

Content

User C =+—]

l—— User D

The principal tool that the DBA has available to allocate resources is the schema.
The internal schema provides control over the efficiency and responsiveness of pro-
cesses and the associated protection matrix controls access. The selection of the
external schema determines the operational view that a user has of the database
model. The conceptual schema, the description of the database model, is con-
strained by reality and not easily modifiable because of specific needs.

In addition the DBA will have monitoring tools and means to restructure the
database. Automatic restructuring is an attractive concept which has up to now
been applied only in limited and experimental situations.

Qualifications for a DBA The role of the DBA presented here requires primarily
an understanding of the user’s needs and a capability to deal with these needs.
A DBA who cannot effectively deal with the majority of user requests does not
fulfill the responsibility of the position since too much detail will require attention
of management. The DBA needs sufficient authority to deal with the majority

678 Database Operation and Management

of user’s needs. This implies a capability to obtain or allocate data collection,
programming, computing, and communication resources. This capability implies
the presence of two conditions: the command over adequate resources and the
competence to manage and balance the use of these resources.

The fact that there are only a small number of true database administrators
in industry today may be traced to the fact that people who have an adequate
background are not easy to find. The technical competence of people engaged in
database administration has to be at a level which enables them to judge the efforts
of programmers. They may not be directly managing any programming projects but
will depend on programming talent for system maintenance and tool development.

The persons who take on the functions of a DBA have to educate themselves
continuously so that they will remain organizationally and technically competent.
The material in this book may comprise a level of technical knowledge appropriate to
the database administrator’s role. Technical specialists in the database organization
will have a deeper knowledge in their subject areas but will share the level of
knowledge presented here to allow effective communication in a group effort.

BACKGROUND AND REFERENCES

Gruenberger®® has an early evaluation of the role of data systems in data management;
Sanders™ includes some case studies. Jefferson® provides an inventory example. The
objectives and data requirements for decision making in management applications are
defined by SpraguesQ. Scientific applications are presented in Streeter” 2.

The place of the database in the organization is presented in Davis74; the book con-
tains many references. Spevvauk80 considers the users; Sterling75 provides some guidelines.
The papers in Murdick”® also stress the applicability of systems.

Brooks™ presents an unusual degree of insight into the process of system develop-
ment and should be read by anyone contemplating a project involving more than one
programmer. Dolotta’™ and Freilich®” present many management issues. A study by the
General Accounting Office (GAO79) shows the need for proper planning. Lucas®! de-
fines the planning process for management-oriented systems. Case studies are included in
Riley81.

Donovan’® gives an example of the dynamics of database usage. Archiving experi-
ments are described by Smith®! and Lawrie®?. Data are given by Satyanarayanan®!.

Jardine™® contains a discussion about the role of the database administrator, and an
attempt to define the role is made in Steel™. Some theoretic approaches (Sundgren75)
assign a very powerful role to the administrator, included is the design of the database
system. Experience with the concept (DeBlasis in Lowenthal78) gives cause to consider a
more limited function. Formal design techniques and system improvements (as Arditi78)
will also affect the role of the DBA. Many other articles in the trade literature reflect
on the function of the database administrator and the background required to manage
database operations. A self-assessment procedure of the acMm in the area was developed
by Scheuermann”® .

