Abstract

To exploit existing and potential resources on the Web for effective engineering a number of services are needed.

We will indicate some of the opportunities and prerequisites for such services.

Collaboration, security, and payment schemes are some of the issues.

Many traditional relationships among consumers and vendors will change.

Reliable predictions are not possible, but exploring the range of choices is a challenge in itself.
Industry Needs Information

- Engineering and Manufacturing
 ✔ own capability ★ suppliers’ capabilities
 ✔ demand ★ global demand
- Distribution and Transportation
 ✔ costs for alternate means of shipping
- Finance
 ✔ project demand ★ project cost of funds
- Marketing and Service
 ★ taste and style ★ demographics

more from remote sources

Information Leverage

Tactical
- Customers
- Inventory
- Suppliers

Strategic
- Planning
- Capabilities
- Opportunities
Information overload

Data starvation

- More databases
 - public & corporate
- Faster communication
 - digital
 - packeting: TCP-IP, ATM
- World-wide connectivity
 - internet
 - world-wide web
- Disintermediation
 - ubiquitous publishing

Transforming Data to Information

Application Layer

Mediation Layer

Foundation Layer

users at workstations

value-added services

data and simulation resources

Gio Wiederhold 1995
Definition*

A mediator is a software module that exploits encoded knowledge about certain sets or subsets of data to create information for a higher layer of applications.

It should be small and simple, so that it can be maintained by one expert or, at most, a small and coherent group of experts.

* Wiederhold: IEEE Computer March 1992

Functional Layer

Diagram showing the layers of a mediator, including:
- User interface
- Service interface
- Resource access interface
- Human-computer Interaction
- Application-specific code
- Domain-specific code
- Source-specific code
- Real-world interface

Diagram labeled "MEDIATION"
Function of Mediation

Apply *Domain-specific* Specialist Knowledge to add value
- to locate data sources
- to describe data for use
- to convert for consistency
- to abstract for insight / models
- to extrapolate to new situations
- to integrate from diverse sources
- to re-abstract for presentation

⇒ *INFORMATION*

Mediation exploits *Knowledge*

- Discover sources
- Search *likely files*
- Obtain *descriptions*
- Scan texts
- Select *relevant data*
- Abstract to right level
- Integrate from all
- Validate *consistency*
- Apply to problem *model*
- Test *stability* of extrapolations
Making data relevant

- Data reduction
- Data abstraction
 - Summarization
 - Exception search
 - Level change to integrate with other data sources
- Follow Customer Model: hierarchical, divide-and-conquer, a common paradigm

Mediator Design Principle

Transform Data into Information
Match
Costumer Model
 Hierarchical
 to
Resource Model
 General network

(and maintain models)
Access Maintenance Tasks

- Selection of relevant source material
 - using Yahoo, Knowbots, Harvest, federated schemas, GLOSS
 - evaluate descriptions, meta-data

- Focused access to the variety of resources
 - using SQL, wrappers, CORBA, ...

- Caching
 - to resolve asynchrony in sources
 - create consistent histories

- Tracking Resources, their cost, and response

Mediation on the WWW

- Resources on the World-Wide-Web
 - are plentiful
 - autonomous
 - incoherent

- Opportunity for value-added services
 - select best source
 - improve coverage
 - minimize overlap
 - resolve inconsistencies
 - summarize results
Abstraction / Summarization

- Abstraction to match levels of granularity
- Seeking exceptions from expected values or trends
- Assessment of quality of diverse sources
- Omission of replicated or known information

Integration

- Resolution of scope mismatches
- Ranking of material from diverse sources
- Integration of material from diverse domains

transistors
semiconductors

1. 45
2. 43
3. 33
4. 28
.. ..
Result modes for ranking

Databases:
- Completeness
- All the answers

Prolog
- Correctness
- The first answer

Optimization
- The best one
- Assumes all factors are known, no human decision

Customer:
- wants choices
- explanation
- background

Ranking

Qualitative Significant Differences: in terms of the customer model

Plan 1. UA59 dep.Wash.Dulles 17:10, arr. LAX 19:49
Plan 2. AA75 dep.Wash.Dulles 18:00, arr. LAX 20:10
Plan 3. UA119 dep.Wash.Dulles 9:25, arr. LAX 12:00

Busy Joe: P1= P2, P3

Speedy Mike: P2, P1=P3

Greedy Pete: P1=P3, P2
Opportunities in Engineering

- On-line presentation services, appropriate for audience
- Integration of documents and figures for WWW access
- Abstraction services: summaries of papers, reports (with references to base mat.)
- Review services over suppliers, technologies, services
- Alternative ranking of suppliers, parts, materials, . . .
- Active documents with function evaluation, plotting
- Test generators and checkers (people, equipment)

From Andrew Arnold: Civ. Eng. Qualification Exam

Control Valve Sizing, Future

- Interpretation – Programmatic
- Analysis – Integrated
- Evaluation – Integrated
- Transformation – Automated
F-22 IWSDB Phase 6

User Interfaces

Integration Services

Wrappers

Databases

Evolution of mediation

applications

integrators

mediators

wrappers

datasources
Central Solutions do not Scale

What works with 7 modules and one person in charge fails when there are 100 modules and a committee is needed.

Any changes in resources affect the central module.

Domain-specific Mediation

- User application – Workstations
- Mediator – Expert-owned nodes
- Data sources – Remote primary and byproduct services
Integration at two levels

Application
- Informal, pragmatic
- User-control

Mediation
- Formal service
- Domain-Expert control

Allocation Flexibility

Mediators are only code

Copy- if high intensity of interaction with
1. Application (M2)
2. Resources (N1,2)
3. Processing (M1)
Getting there: Available Technology/Science

Current Technologies

- SQL
 - One Verb - SELECT with primitive aggregation
 - One Database at a time
 - One Datatype: Tables

- Object-orientation
 - Group data into objects = predefined aggregation
 - Program snippets -- methods -- with the data

- Middleware (ex.: CORBA)
 - Fetch objects from server
 - Assume coherent domains
Middleware

CORBA (Common Object Request Broker)
- IBM SOM, DSOM
- DOE (Distributed Objects Everywhere)
 - SunSoft
- DOME
- EZ-bridge
 - System Strategies inc.
- ILU (InterLanguage Unification) Xerox
- ISIS
- KQML (Knowledge Query & Manipulation Lang.)
- MQM (Message Queing Middleware)
 - IBM (for mainframe connections)
- OLE (Microsoft: Object embedding and Linking)
- OpenDOC (Apple)
- PDES (Product Data Interchange using STEP)
- TIB (Teknekron Information Bus)

Status of Mediation Technology

Today
- Handcrafted
- Expert consults with programmer
- Programmer codes the knowledge needed
- Resource changes require advise, program update

Future
- Generated from models
- Domain Expert maintains models
- Specification determines functions
- Resource changes trigger regeneration
Coverage of Current DARPA I3 Efforts

- Good progress / active research / related work / poor coverage

Databases / Web / Text / Simulation

- Mediators for multiple domains
 - Discovery (web, schema searching)
 - Facilitation (auto linking)
 - Security for cooperation
 - Wrapping (syntactical heterogeneity)
 - Maintenance (rule technology?)
 - Abstraction for relevance to customer
 - Caching / History
 - Integration over sources

A mediator is not just static software: Knowledge ages

- Application Interface
- Changes of user needs
- Resource Interfaces
- Resource changes

- Owner / Creator
- Maintainer
- Lessor - Seller
- Advertisor

Gio Wiederhold 1995 31

Gio Wiederhold 1995 32
Maintenance is good for you

Relative annual maintenance cost

\[
\text{depreciation} = \frac{1}{\text{lifetime}}
\]

<table>
<thead>
<tr>
<th></th>
<th>automobile</th>
<th>hardware</th>
<th>software</th>
</tr>
</thead>
<tbody>
<tr>
<td>lifetime</td>
<td>100%</td>
<td>100%</td>
<td>40%</td>
</tr>
<tr>
<td>years</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>service</td>
<td>100%</td>
<td>100%</td>
<td>40%</td>
</tr>
<tr>
<td>scope</td>
<td>100%</td>
<td>100%</td>
<td>40%</td>
</tr>
<tr>
<td>domain</td>
<td>100%</td>
<td>100%</td>
<td>40%</td>
</tr>
<tr>
<td>scope</td>
<td>100%</td>
<td>100%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Fat versus thin mediators

- too thin: insufficient added value
- Too fat: hard to compose
- Too narrow: few costumers
- too broad: hard to maintain, needs a committee

Gio Wiederhold 1995
Mediation as a Service

Service Paradigm
- Customer views understood within server domain
- Processes use stored and maintained knowledge
- Processing adds value to data objects accessed
- Payment received for services and results

E-money

Services must be paid for
- Incentive for creation and improvement
- Price proportional to value added
- Profit f (cost, market, price, overhead)
- Price low per item, so overhead must be low

Simple payment (no credit accounts, checks)

Enabled through secure signatures

Gio Wiederhold 1995 35

Gio Wiederhold 1995 36

Page 18
CommerceNet Vision

Purchase components
- initially electronics and electro-mecanical
Rapid, economical building of equipment
Get good choice
- competent supplier
- resolve variety of term & classifications
Use e-mail, e-money

Simulation services

1. Continously executing: weather prediction
 - SimQL result reports best match samples
2. Execution specific to query: what-if assessment, spreadsheets
 - may require HPC power for adequate response
3. Complement base data: materials data, assembly
 - performs inter- or extra-polations to match query parameters
4. Combinations of 2. and 3.: top layer simulation using stored partial lower level results: weapon performance in setting
5. Human-in-the-loop (mediated by an agent program): SAFs

Note
- A simulation service program can be written in any language
- A simulation service must be compliant to the interface
Domain Specialization

- Knowledge Acquisition &
- Knowledge Maintenance require
- Domain specialists
- Professional organizations

Empowerment

New Role for Consultants

Old
- Used at Design Time and
- To Explain Failures

Future
- Available as a Service
- Responsible for Knowledge Maintenance
Industrial Needs Served

NEEDS
- Access to relevant Information
- Rapid response to changing situations
- Remain current with global conditions
- External services can be shared effectively

FEATURES
- Linkages to networks and resources
- Incremental update of information systems avoids legacy problem
- Equal access to local and remote sources
- Value-added services live in the network

Integration Science

Databases
- access
- storage
- algebras

Systems Engineering
- analysis
- documentation
- costing

Artificial Intelligence
- knowledge management
- models
- uncertainty

Integration Science