

Reflections on Object-Relational Applications September 1, 1995 1

Reflections on Object-Relational
Applications

Paul Turner,

1

 Arthur M. Keller

2

1.0 Abstract

This paper presents several of the issues, problems, and solutions encountered by develop-
ers when creating object-relational applications with C++ and RDBMS using Persistence.
Architectural, modeling, and RDBMS issues are the primary areas covered. The intent is
provide some practical insights, hints, and guidelines for building such applications.

2.0 Introduction

For the past several years, many large companies have been building object-relational sys-
tems utilizing C++, various relational databases and Persistence. Along the way, the devel-
opment groups constructing these (largely) business applications have encountered many
issues, problems, and solutions. We have had the opportunity to listen to and sometimes
work with these developers during this time. The intention of this paper is to present, in a
practical manner, some of the insights and lessons learned by these developers.

By way of background, the vast majority of the companies involved have been telecom-
munications companies. Other industries include transportation and finance. At the com-
panies’ request, we will not reveal their identities. The types of applications covered
include network management, provisioning, various order entry and other front-end cus-
tomer service applications, logistics, and scheduling.

The remainder of this paper is organized as follows. First, we will briefly review the gen-
eral nature of object-relational applications using Persistence to integrate C++ with an
RDBMS and how they operate. Then we will discuss some non-technical issues that are
common and/or critical for object-relational systems. Following that, we discuss several
technical issues roughly broken down into the categories of general architecture, model-
ling and mapping issues and database issues. Within each of these sections, there are sev-
eral aspects about object-relational systems we want to touch on, namely: the development
process, reliability and integrity, performance and portability. Again, we are attempting to
present some practical insights; neither completeness nor objectivity are claimed.

1. Author’s address: Persistence Software, 1700 South Amphlett Blvd., Suite 250, San Mateo, CA 94402,
turner@persistence.com.

2. Author’s address: Stanford University, Computer Science Dept., Stanford, CA 94305,
ark@cs.stanford.edu

Reflections on Object-Relational Applications September 1, 1995 2

3.0 Persistence Applications

Object-relational applications use Persistence to provide an object-oriented interface to
relational data. In such applications, the application object model is mapped to a relational
schema for the underlying database. Typically such applications are “two-tiered” or
“three-tiered” as shown in Figure 1. Persistence provides domain specific classes which
the developer code (“logic”) directly utilizes. Tuples in a relational database are presented
as instances of a class and any updates on those instances are translated into updates of the
corresponding tuples in the database. The two-tier case is generally straightforward with
database vendor supplied network communications software. The three-tiered case is often
more complicated. Issues here include object location and the communications mecha-
nism between object server and client.

Persistence applications run on many platforms and environments, including Sun, HP, GIS
and several different C++ compilers and databases can be used (Oracle, Sybase, Informix,
Ingres).

4.0 Non-technical Issues

We have observed several non-technical issues that surface with some frequency on
object-relational development projects. Despite a general awareness of some of these
issues, it is surprising how often they are ignored or inadequately addressed. One broad

OO Application

GUI Logic

Surrogate

Proxy
Stub/

Object

Persistence

Relational
Database

Figure 1: Common object/relational architectures with Persistence

SQL

Rows

Server/

OO Application

GUI Logic

(if any)

Persistence
Relational
Database

SQL

Rows

Three-tiered architecture with Persistence

Two-tiered architecture with Persistence

Reflections on Object-Relational Applications September 1, 1995 3

category of issues has to do with scoping the development project and then adequately
providing resources for the project. Generally speaking, customers tend to be smart about
taking on a small OO piece first in order to ease into the technology. Typically, either a
small self-contained project is attempted or a component of a larger system. In either case,
one needs to put in some forethought about the degree (amount) of object-orientation. For
example, should the project use a purely OO language? A purely OO design? Implementa-
tion? A lack of planning on this issue often results in “OO creep.” Developers, enamored
with the technology, find more and more areas within the project where it can be applied.

Another key management issue is factioning. Often, any given developer will have either a
strong OO bias or strong RDBMS bias. While one may argue in theory these are orthogo-
nal positions, in practice they are not. For example, OO practitioners will press for a pure
object model with no concern for how it will impact the RDBMS being used. RDBMS
folk may push a data-centric design and even a more “structured and procedural” applica-
tion design. It is critical that at least some developers have a firm grounding in both the
OO and RDBMS camps.

Prototyping, testing, and measuring have been highly correlated with success in our expe-
riences. Often, object-relational applications are new to both management and developers.
The technical newness and uncertainties fuel management worries. Having a working
benchmark that quantitatively demonstrates adequate functionality and performance is
both reassuring and motivating. A particular problem we have noticed in this area is the
failure to allocate adequate time and resources for prototypes and review.

Finally, adequate resources and training are essential. Do not hesitate to bring in outside
help and ask for specialized training.

5.0 Technical Issues

We will discuss technical issues and observations roughly categorized into architecture,
modeling and mapping, and database issues. Within each of these categories, we will try to
touch on the development process, reliability and integrity, performance and portability.

5.1 Architecture

It is becoming more and more commonplace that OO developers desire some form of a
three-tiered architecture. Perhaps the most important issue here is clarity of purpose and
design. We observe that the two most common answers to the question “why are you using
a three-tiered architecture?” are because it’s fashionable or because my management said
we should. (We suspect the latter is merely a transitive case of the former.) An unfortunate
(but common) result of the above is a system where the middle tier is little more than a
data gateway. To be sure, sometimes this is the desired outcome. However, many times
customers end up with fat clients and a missed opportunity. On the other hand, we have
seen some three-tiered designs that seemed forced. In some situations, heretical though it
may be, it was clear to us that a simple two-tiered approach would have sufficed and per-
formed much better.

Reflections on Object-Relational Applications September 1, 1995 4

Let’s consider some actual cases of three-tiered Persistence applications. One approach
has been to use inflation/deflation techniques (e.g., “saveguts/restoreguts”) to stream an
object to another process (usually on another machine). This technique worked well when
the situation called for a self-contained detached object that might be passed indefinitely
from server to server. Very often, such an object would carry a timestamp with it for con-
sistency purposes. Another situation where object shipment is desirable is when perfor-
mance is crucial and the object interaction grain-size is small (e.g., many small and
frequent operations on an object) or when server reliability and/or availability were not
guaranteed. Problems with this approach include the expense of shipping an object versus
remote invocation (what is the service grain-size? what are the object sizes?), maintenance
of redundant execution code and environments and similarity of execution environments.
Care must be taken to ensure that any given object will behave the same in all potential
server environments. For example, are floating point operations the same? What about the
current time or the way dates are treated in general? In general, we see that the issue of
object transmission versus remote invocation as still open and complicated. A hybrid
approach where instance state is transmitted but method invocation takes place remotely
has been considered by some Persistence customers (see below).

Amongst customers creating three-tiered systems, another basic debate forms around the
presentation to object server communication mechanism. We have seen a lot of in-house
development in this area with little justification. Many tools are available, ranging from
simple messaging packages to full-fledged distributed object frameworks. The argument
that commercial packages are too new and risky (yet new in-house development is not?)
seems a little dubious. Furthermore, many products are trying to address the object ship-
ment and remote invocation issue. For example, so-called “smart proxies” promise to pro-
vide (and manage) local state caching and remote invocation (at the time of this writing,
however, we are not aware of any such implementation using Persistence).

Many of our customers believe they have realized many benefits from a three-tiered archi-
tecture, including scalability, integrity, reliability, reduced maintenance, and increased
portability. Object servers can act as multiplexors to the database(s) and, by migrating
much of the application logic to a few (perhaps homogenous) servers, more clients can be
maintained at a reduced cost. Object servers are the keepers of the business rules and the
existence of multiple servers helps with availability. Persistence customers have built or
are building applications that utilize such products as DCE, DOE, XShell and Orbix.

5.2 Modeling and Mapping

The issue of how much to model and how to organize has been a big issue for a few of our
customers. There is a lot of literature that discusses this problem, so we will only add a
few comments here. Some customers have wrestled with the scope and responsibility for
their object model(s). What should be included? Who should own it? Invariably the term
“enterprise models” is thrown into the fray. In general, we have seen models increase in
scope and shared access and ownership. Different applications require more and more
access to classes in others’ models and start placing demands on class design. In one case
a “vertical” structuring was used; each application group maintained its own model. Not
surprisingly, the communication overhead in this situation quickly approached N^2,

Reflections on Object-Relational Applications September 1, 1995 5

redundant classes emerged and modifications became common and ad hoc. Another
related issue is class groupings and dependencies. Here, developers want to organize their
classes into groups with clear dependencies between groups. For example, there may be a
common set of core classes shared by three applications, but each application also has its
own group of classes. Presently, only ad hoc solutions exist for our customers; Persistence
is working on mechanisms to enable this sort of development arrangement.

Many issues about the intended use of a class’s instances can be leveraged. For example, if
it can be determined that a class is “read-only” (instances modified only under specific
controlled circumstances), one can usually relax database locking issues and utilize client-
side caching more effectively. For high performance applications, the ability to cache
read-only instances must be stressed; this can result in literally several orders of magni-
tude performance improvement. Many methodologies support capturing such notions as
access, visibility, concurrency, and so forth.

There has been a lot of discussion about how to represent inheritance trees in a relational
database. Rather than rehash what has already been said, we would like to add a few minor
points to the discussion. First of all, in our experiences, the decision does not warrant the
amount labor it often receives. Our suspicion is that because mapping inheritance trees to
RDBMSes is an obvious activity, it receives much attention. Using a horizontal scheme is
probably the most extensible (at least as far as managing database changes). One problem
with a union scheme that is often overlooked is the “nullable mandatory” issue. The devel-
oper must provide a mechanism or policy for attributes that are mandatory within their
(sub)class but must (technically) be nullable in the database (as not all sub-classes contain
the attribute). Another potential benefit of horizontal schemes is that they split up large
tables into several smaller ones. This approach can help with table maintenance, improve
performance and concurrency.

Something odd we have seen a few times is the (attempted) use of inheritance to support
object views. Essentially, developers are trying to provide the equivalent of an external
view (in relational terms) of their objects. For example, there is no reason for the sales
department to be concerned with the “engineering” aspects of a class. Because there are no
well-defined view mechanisms for objects, developers have tried various approaches.
Although we can sympathize with the motivation, we don’t think that deriving subclasses
to support the notion of different interfaces is the right way to go.

5.3 Database

A general theme that has emerged clearly is: know your database, both its limitations and
special capabilities. Though this seems obvious, many developers treat their database as
little more than a black-box repository, failing to investigate and tune the database. We
suspect that an OO focus and lack of RDBMS awareness are to blame for this phenome-
non.

For example, consider locking issues. One customer encountered significant lock waits
and deadlocks and the issue was not thoroughly investigated until it became intolerable.
The problem turned out to be a combination of page-level locking, application access pat-

Reflections on Object-Relational Applications September 1, 1995 6

terns and surrogate keys. Specifically, several tables with poorly distributed surrogate keys
were being used as queues. Because several applications were creating new instances
simultaneously, this resulted in a “growing tip” hot-spot. In addition to many of the tech-
niques from the RDBMS world (randomizing keys, padding pages, etc.), one may want to
consider access patterns due to traversals. For example, suppose there is a one to many
association between two classes (which is realized as two tables with the appropriate for-
eign key arrangement). Locking problems may arise because some transactions go top-
down and others bottom-up when traversing instances. In one customer situation, where
deadlock avoidance was preferred over maximal concurrency, it was proposed that tra-
versal access start from the “one” side (effectively creating a tree locking mechanism).

Another locking issue is isolation level. While most major RDBMS products support the
ANSI isolation levels, they often have different default levels. Along these lines, Persis-
tence supports a form of optimistic locking, which many developers use to support their
particular transaction mix or work around vendor limitations. An example of the latter is
supplementing a database which does not support shared locks. In general, we strongly
recommend investigating your database’s locking defaults and carefully choosing locking
policies consistent with your application needs. In one case, a project was extensively
using optimistic concurrency unaware that optimistic concurrency control is not serializ-
able if reads are not verified. Fortunately, they realized this fact and the fact that they
needed certain transactions to be serializable early in their development cycle.

Whenever one tries to leverage the capabilities of an RDBMS, the dilemma of exploiting
features versus portability arises. There are numerous extensions often supplied by ven-
dors that enhance both functionality and performance, including array/vector interfaces,
special querying constructs, and so forth. The problem is how to cleanly exploit such
extensions and maintain portability (and avoid vendor “lock-in”) at the same time. With
object-relational systems, we have seen two basic approaches: encapsulate vendor exten-
sions in methods or utilize stored procedures. The method approach is fairly straightfor-
ward. Isolate vendor-specific semantics and/or SQL syntax in a few specific classes. Many
applications which use Persistence provide a specific example. Persistence includes an
interface which accepts (nearly) arbitrary restrictions (SQL “where” clauses). Rather than
sprinkling “where” clauses throughout their programs, developers often provide some spe-
cific parameterized querying methods (often application specific). This, of course,
increases portability significantly. In addition to hiding SQL and RDBMS specifics, these
querying methods also promote a strong domain-specific interface.

The other approach, stored procedures, allows for further leveraging of RDBMS exten-
sions. Another motivating factor is performance; we know of one case where the use of
stored procedures increased DML operations by a factor of four. In some cases, use of
stored procedures was necessary for security and integrity reasons. Even though the Per-
sistence applications would only modify data through a well-specified interface, there was
nothing to prevent other forms of access from directly modifying data. The appropriate use
of grants and stored procedures solved this problem nicely. Of course, there are costs asso-
ciated with the use of stored procedures, notably re-writing the procedures when porting.
(Although the calling interface to stored procedures is similar across different RDBMSes.)

Reflections on Object-Relational Applications September 1, 1995 7

While planning, analysis and design are crucial; there is no substitute for observing and
testing your running applications. By watching the SQL traffic to the server and then sepa-
rately testing suspect statements, one customer was able to identify and correct serious
performance and semantic errors. One example involved an incorrectly implemented “in-
subselect” construct by an RDBMS vendor that caused a query to increase from 23 milli-
seconds to 67 seconds! Through careful analysis and testing, the customer was able to
identify the exact problem and get the vendors involved.

6.0 Conclusions

We have presented several issues, problems, and solutions that Persistence customers have
had to face while developing object-relational applications. While many of these issues are
still open and many solutions not obvious, we feel that many of the lessons learned can
provide valuable guidance to those considering developing object-relational applications
in general, and particularly those using Persistence with C++ and an RDBMS.

We have seen many successful applications completed and many more are currently under
construction. Though there are outstanding issues and problems, we believe strongly that
object-relational approaches are practical and produce good applications. We expect to
continue working closely with customers in the future, learning and sharing experiences
along the way.

