
Ranking Mechanisms in Twitter-like Forums

Anish Das Sarma∗
Yahoo Research

Santa Clara, CA, USA
anishdas@yahoo-

inc.com

Atish Das Sarma
Georgia Institute of

Technology
Atlanta, GA, USA

atish@cc.gatech.edu

Sreenivas Gollapudi
Microsoft Research

Mountain View, CA, USA
sreenig@microsoft.com

Rina Panigrahy
Microsoft Research

Mountain View, CA, USA
rina@microsoft.com

ABSTRACT
We study the problem of designing a mechanism to rank
items in forums by making use of the user reviews such as
thumb and star ratings. We compare mechanisms where fo-
rum users rate individual posts and also mechanisms where
the user is asked to perform a pairwise comparison and state
which one is better. The main metric used to evaluate a
mechanism is the ranking accuracy vs the cost of reviews,
where the cost is measured as the average number of reviews
used per post. We show that for many reasonable prob-
ability models, there is no thumb (or star) based ranking
mechanism that can produce approximately accurate rank-
ings with bounded number of reviews per item. On the
other hand we provide a review mechanism based on pair-
wise comparisons which achieves approximate rankings with
bounded cost. We have implemented a system, shoutveloc-
ity [5], which is a twitter-like forum but items (i.e., tweets
in Twitter) are rated by using comparisons. For each new
item the user who posts the item is required to compare
two previous entries. This ensures that over a sequence of
n posts, we get at least n comparisons requiring one review
per item on average. Our mechanism uses this sequence of
comparisons to obtain a ranking estimate. It ensures that
every item is reviewed at least once and winning entries are
reviewed more often to obtain better estimates of top items.

Categories and Subject Descriptors
H.3.3 Information Search and Retrieval [Ranking]

General Terms
Algorithms, Design, Experimentation, Human Factors

∗Work done while a student at Stanford University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

Keywords
Ranking mechanisms, comparisons, thumb-based ranking

1. INTRODUCTION
Ranking has become an important issue not just in web

search but also in forums, blogs and social networks such
as twitter. While there has been a large body of research
on ranking for web search, there is little systematic study of
ranking in the aforementioned forums. This paper presents
a study of mechanisms for ranking in twitter-like forums.
We use item as a generic term for posts (in forums), tweets
(on twitter), and messages (in social networks).

The popular methods for rankings in forums include “star
ratings”,“thumbs up-down ratings”, and“reputation points”.
These ranking methods suffer from a few drawbacks. (1)
Generally, they aid in the “rich gets richer phenomena” –
the items that get rated a few times often end up being
displayed on top thereby receiving more impressions and
ratings; because of the large volume in most sites, other
potentially good items often never recieve any ratings. (2)
Giving an item a score (thumbs up or down), independent
of other items results in unnormalized scores; We shall show
that such an independent scoring usually needs a lot of feed-
back before converging to accurate rankings; and finally, (3)
In the absence of any incentives, it is impractical to expect
all users to participate in the feedback process; At the same
time, absence of any feedback results in user dissatisfaction,
as items largely go without any rating. Therefore, appropri-
ate incentive/reward systems coupled with user feedback are
key to the efficiency and effectiveness of a rating mechanism.

In this paper, we advocate a comparison-based ranking
scheme, where feedback from users are sought in the form
of comparisons. Users are shown a pair of items, and they
express their opinion of which item they prefer. We theo-
retically show that such a comparison-based ranking scheme
converges to accurate rankings faster than independent rank-
ing schemes described above. Moreover, we show that by us-
ing comparison-based ranking, each item needs on average
a bounded (constant) feedback bandwidth for our ranking
to get very close to the accurate ranking. We have built a
system, shoutvelocity1 (http://shoutvelocity.com) [5], that
fully implements the comparison-based ranking scheme on

1Our system is called shoutvelocity where users can “shout”
anything they want. When a user ‘shouts’ she is required
to compare two previous shouts giving n comparisons over

top of a Web-based forum. Both theoretical and empiri-
cal results show that such a system achieves good rankings
with very little feedback from users, i.e., for each submitted
item, on average we need a constant amount of feedback to
ensure a good ranking. We note that, as a consequence, a
comparison-based ranking mechanism mitigates drawbacks
(1) and (2) mentioned above.

To handle drawback (3), what is really required is a self
correcting method that automatically estimates the score of
each item. In our system, we align the incentive mecha-
nism with user satisfaction, i.e., user’s providing feedback
are more likely to see the rank of their items faster than
other users. Thus, we are able to make optimal use of the
“feedback bandwidth” from the users who are inclined to
themselves make use of the feedback mechanisms, without
burdening other viewers.

The core techniques presented in this paper, and adopted
by shoutvelocity, are useful in a number of applications. Ob-
viously, as described above, our techniques are ideally suited
for ranking posts in public forums such as digg, twitter,
jokes sites, and ranking messages on social networks such
as status messages on Facebook. Comparison-based ranking
could also be used for ranking blog posts, providing scores
and ranking items on online shopping sites such as Amazon
and eBay, as well as providing generic or personalized movie
recommendations from sites like IMDb. Our algorithm is
also appropriate for ranking multimedia such as photos on
Flickr2, and videos on YouTube (with the caveat that user
feedback in the case of videos may take long and be burden-
some). Finally, a far-fetched idea is to use comparisons for
academic peer reviewing of papers, instead of independent
feedback on each paper.

Contributions and Outline
The main contributions of this paper are:

1. Review popular approaches for ranking items through
a generic taxonomy (Section 2), and present the con-
siderations that must be taken into account while choos-
ing a particular ranking mechanism (Section 3).

2. In Section 5, we propose a comparison-based rank-
ing mechanism. We analytically study and compare
thumbs-based and comparison-based ranking mecha-
nisms, and theoretically show that comparison-based
ranking is generally superior.

Preliminaries for our ranking mechanism appear in
Section 4, and rigorous proofs for our results from Sec-
tion 5 appear in Section 7.

3. In Section 6, we present shoutvelocity, a full-fledged
forum that implements the comparison-based ranking
method. shoutvelocity has been deployed on the Web
for over a year, and we provide general statistics and
screen shots from our system.

4. In Section 8, we present a detailed experimental eval-
uation of thumb-based and comparison-based rank-
ing mechanisms based on synthetically generated data
with various distributions of item scores as well as real

n shouts. All shouts converge to their merited score/rank
very quickly.
2Such ranking has been implemented in practice, as we de-
scribe in Section 9

Figure 1: Generic Architecture for Item Ranking
System.

data from the shoutvelocity system. We show that
comparison-based ranking converges to the right rank-
ing with much less feedback.

Related work is presented in Section 9, and we conclude in
Section 10.

2. A TAXONOMY OF APPROACHES
In this section we provide a generic architecture of a sys-

tem for ranking items and survey possible alternatives for
its review module. Suppose we have n items. Our goal is to
obtain the best possible ranking of the n items with as little
effort as possible. Intuitively, the amount of effort is cap-
tured by the total work done by the reviewers who provide
rating feedback.

We assume that any system for ranking items maintains
a running score estimate for each item. These scores are
refined based on user feedback, and the final ranking is given
by ordering items in descending order of scores.

Figure 1 presents a generic framework for systems that
score items. Items are added to (and maintained in) a
database when users submit them. At any time, the Re-
view Module picks a set of one or more items, and seeks
feedback about them from the user. Based on the feedback
provided, the items’ scores are revised and the database is
updated. The choice of which items are shown for review-
ing may be either implicit or explicit; we say it is explicit
if there is a separate ‘rate’ link that when a reader clicks is
shown one or more specific item to rate. An implicit system
is one where the reader rates as she is browsing through the
entries. This is essentially like an explicit system where the
reader is asked to rate a specific item that is picked with a
probability distribution that depends on the order in which
the item entries are displayed; clearly lower items are exam-
ined with lower probability.

Obviously, the main challenges here are in determining
how the review module works, and how scores are updated
based on user feedback.

Broadly, there are two approaches to reviewing items:

1. Independent Scoring: Each item is independently

shown to a user, and s/he scores the item based on how
much they like the item. The most common such re-
viewing mechanism is the thumb-based scheme, where
each user merely gives a thumbs-up or thumbs-down to
any item based on whether they like it or not respec-
tively. Thumb-based ranking schemes are widely used
on the Web, such as in Digg [1], Twitter [8] and Face-
book status message ranking [2], and movie streaming
websites such as tv-links [7], and sidereel [6].

A natural generalization of the thumb-based approach
is a star-rating scheme where each user gives a score
(typically between 0 and 5 stars), based on the extent
to which they like the item. Star-rating schemes are
also popular on the Web such as in movie rating sites
like IMDb [3] and NetFlix [4].

In this paper, we primarily consider the thumb-based
independent scoring mechanism.

2. Comparison-based Scoring: A pair of items is shown
to a user, and s/he responds by only telling the system
which item they find better (irrespective of whether
they like/dislike any or both items). While a comparison-
based ranking scheme is not as popular as a thumb-
based scheme, similar approaches have been used in
various different contexts such as ranking photos [13],
Elo chess ratings [12], and ranking sports teams. Our
system adopts the comparison-based scoring mecha-
nism; in the following we shall exhibit various benefits
of it over independent scoring. In the rest of the paper,
we study various technical challenges involved with ap-
plying comparison-based ranking in a fair and efficient
manner.

A further generalization of a comparison-based rank-
ing scheme consists of presenting a user with a set of k
items (k > 2), and asking the user to provide a ranking
among these k items in terms of a partial/total order-
ing. We do not consider this generalization for most
of the paper.

Pairwise comparisons have benefits over thumb-based schemes.
First, consider a case where we have n items, a bandwidth
of n feedbacks from users. If a user gives a thumbs-up or
down on each of the n items, we do not get much information
about the relative ranking of the items. On the other hand,
by comparing pairs of items, as in any knockout tournament,
we are able to get better rankings of the items. Second, to
ensure fairness, an item needs to receive comparisons as long
as it wins (or as long as there are other items to compare
against). However, such a continued thumb-based reviewing
may not be practical from the bandwidth point of view. A
more rigorous theoretical comparison of the two approaches
appears in Section 5.

3. DESIRABLE PROPERTIES
In general, we would like the review module to satisfy

certain desirable properties.

1. Ranking Accuracy: The system should be able to
rank the items as accurately as possible within the re-
view budget. While it may not be critical (or even
feasible) to obtain the exact ranking, getting it ap-
proximately is desirable. A reasonable goal is to ap-
proximate the rank r of an item within a multiplicative

error r(1±ε) with high confidence, for some parameter
ε. This will ensure that we get the top item right and
allows more tolerance for the lower ranked ones.

2. Review Feedback Bandwidth: The ranking should
converge to the correct one within the desired level
of accuracy quickly with a small amount of feedback
per item. An important measure here is the average
amount of feedback µf used per item as the number
of items n goes to ∞ in the steady state. µf must be
bounded as n → ∞ as otherwise the system is unsta-
ble.

3. Low Latency: Users should not have to wait long
before receiving an estimate on their score/rank. This
is distinct from feedback bandwidth as a system can
need low bandwidth but have high latency. A spe-
cific latency measure that is important is the amount
of time the user has to wait after posting an item till
s/he receives the first review from the system say in
the form of a thumb rating or a result of a pair wise
comparison. The latter is important to retain the in-
terest and enthusiasm of the forum writers.

4. Fairness: Items should be treated equally with re-
spect to ranking and allocation of review bandwidth.
Items that perform equally (thinking of the review sys-
tem as a game) should be treated equally. Thus, if say
in the thumb based rating scheme, two items receive
identical ratings in a sequence of reviews, it should not
be the case that one is scheduled for more reviews and
another is not. Further, preferably, an item should be
reviewed till it ‘loses’ at least once; as long as an item
is winning it should not be removed from the review
system. However, achieving this depends on the avail-
able review bandwidth.

We show in Section 5 that for reasonable score distribu-
tions, there is no thumb-based algorithm that approximates
the rank within a multiplicative error using bounded feed-
back bandwidth. However, we give a comparison-based algo-
rithm that can achieve a multiplicative error with bounded
feedback.

4. PRELIMINARIES
Next we present background necessary for the rest of the

paper. Section 4.1 states our assumptions on how scores of
items are distributed, and presents a model of how users
rate items. Section 4.2 describes how thumb-based and
comparison-based algorithms update scores of items that re-
ceived feedback from users.

4.1 Probability Models
The feedback bandwidth and the ranking accuracy of an

algorithm depends on two factors: (1) The distribution of
scores of the items; (2) Probability model of how items are
rated by the algorithm. Next we describe the models used
for these factors.

Score Distribution: We will assume that each item has a
score that is given by a real number and the scores come from
a certain distribution (say the normal distribution). Let g(x)
denote the probability density function of the scores, and
gc(x) denote the cumulative distribution function.

Rating Items: When an item with score x is rated using
thumb-based algorithm, it gets a thumbs up with probability
f(x) and gets a thumbs down with probability 1 − f(x).
A typical distribution that has been used for f(x) is the
erf(αx) function [12], which is the probability that a normal
random variable with mean 0 and variance α/

√
2 exceeds x.

Another popular choice is the logistic function 1
(1+e−αx)

[10,

15].
The function f(x) for modeling results of thumb ratings

can be generalized to results of pairwise comparisons as fol-
lows. We may assume that the probability distribution of
the outcome of comparing two items with scores x and y
respectively depends on the difference of their scores. We
say that the item with score x wins against the one with
score y with probability f(x − y). Thus, the thumbs rat-
ing probability is given by f(x− 0), which is essentially like
comparing an item with score x to an item which score 0
which can be interpreted as a median item.

This is consistent with one of the earliest models for two
player games suggested by Arpad Elo [12] for chess. Elo’s
central assumption was that the performance of each player
is a normally distributed random variable with mean equal
to the true score of the player. In any one game the players
performance is given by a random number that is normally
distributed around his true score. He also made the assump-
tion that all players have the same variance. Observe that
the difference between two normally distributed variables
with the same variance and means x and y is also a nor-
mally distributed variable with mean x − y. So this gives
that the probability that player with true score x loses to
another with true score y is equal to the probability that this
variable exceeds x−y which is given by f(x−y) = erf(αx),
where α depends on the variance.

4.2 Estimating scores from reviews
Any ranking algorithm makes use of the reviews to pro-

duce score estimates for each item. These score estimates
are then used to rank the items. The algorithm’s goal is
to obtain score estimates such that ranking based on the
score estimates is close to the ranking based on the inherent
scores of the items. Since the goal of the algorithm is get a
near-accurate ranking, the accuracy of the actual score esti-
mates to the actual score is less important than the ranking
induced by them.

Thumbs: For thumb-based algorithms, a natural way of
estimating the score x of an item is the fraction of reviews
in which the item received a thumbs-up rating.

Comparisons: For algorithms based on pairwise-comparisons,
a popular choice for revising score estimates is the Elo rating
system [12], which was originally invented by Arpad Elo for
Chess but is now widely used for many other games.

Consider an item A with score estimate x. Under a given
probability model, suppose A was expected to receive EA
points in a comparison, but actually received SA points.
Then, A’s score is revised to x′ based on the following for-
mula: x′ = x+K(SA −EA). K is a parameter that decays
with the number of times the item has been reviewed. In-
tuitively, K is high initially so as to get close to an items
actual score quickly. Based on our probability model, when
item A is compared with item B having score estimate y,

the expected points A receives is EA = f(x−y). The actual
points received by A is SA = 1 if A wins the comparison
against B and SA = 0 if A loses the comparison. Originally
the Elo system assumed that f(x) is given by the erf(x)
function. Later, it was simplified to the logistic function be-
cause the resulting update formulae are simpler. Therefore,
the final update formula becomes: x′ = x+K(SA− 1

1+ey−x)

(assuming α = 1). Intuitively, if an item wins against an-
other item with a high score estimate, it’s score gets a more
significant boost than it would by defeating an item with
low score estimate.

5. SCHEDULING ITEMS FOR REVIEW
Clearly the main component in any (thumb-based or

comparison-based) ranking algorithm is the module that
picks the item(s) for review. Even in systems such as Digg
and twitter, if the reader rates items while browsing through
the site, the reviewing algorithm can be modeled as picking
an item for review with a probability depending on its rank
in the display order. We will therefore consider explicit sys-
tems in our work.

In this section we analyze thumb-based and comparison-
based algorithms based on the desirable properties from Sec-
tion 3. We will look at the ratings bandwidth required
by both the thumbs based and the comparison based algo-
rithms. If there are n items with different qualities, we can
order them by decreasing quality which results in a rank-
ing of the items. We will compute the number of compar-
isons/thumbs required to estimate the rank of an item. We
are interested in estimating the rank r within a multiplica-
tive error r(1± ε); thus we are interested in identifying the
top ranked items with small error in their rank and allow
more error as the rank increases. We will compute the aver-
age number of ratings required per item with both methods.
We will assume that the qualities of the n items are normally
distributed.

First, Section 5.1 shows a negative result for thumb-based
algorithms, showing that no thumb-based reviewing module
can achieve a good ranking with bounded feedback band-
width. We will show that a comparison-based algorithm can
indeed achieve such an approximation with bounded feed-
back bandwidth.

Fundamentally, comparison-based algorithms allow you to
distinguish between items of similar score by directly com-
paring them against each other, whereas a thumb-based al-
gorithm intuitively compares an item with a median item.
Section 5.2 theoretically crystallizes the advantage of being
able to compare items with similar score.

Therefore, we focus on comparison-based algorithms for
most of the paper. Section 5.3 studies in detail review mech-
anisms based on pairwise comparisons, which is the model
adopted by our system.

5.1 Thumb-based algorithm
We ask the following question: Is there any algorithm for

scheduling items for review that can approximate the ranks
of items within some multiplicative error with bounded feed-
back? It turns out that under typical probability models,
for thumb-based systems, it can be shown theoretically that
there is no such reviewing mechanism. The following the-
orem formalizes this result. To maintain the flow of the
paper, the proof of this theorem and all other results in the
paper are deferred to Section 7.

Figure 2: Static tournament to obtain a score esti-
mate for each item.

Theorem 5.1. With thumbs rating, if f = erf(
√

2αx)
and g is the normal distribution with variance 1 and α > 1
it is impossible to estimate the ranks r within r(1 ± ε)
with a bounded review bandwidth per item. More generally,
if

R 1

0
1

1−f(g−1
c (x))

dx diverges and tends to ∞ then there is

no such review system based on thumbs, where gc is the
cumulative distribution function corresponding to g, i.e.,
gc(x) =

R x
−∞ g(s)ds . 2

In the proof, we show that with thumbs rating if an item
is to be rated till it gets a thumbs-down at least once, the
average number of ratings µf tends to infinity as n tends
to infinity when α > 1. This means that, for α > 1, it is
impossible to estimate the ranks r within r(1± ε).

5.2 Comparing items with similar rank
Intuitively, the main advantage of the pairwise comparison

over thumbs is that it allows an item to be compared to
other items that may be closer in score rather than always
comparing it to an average item (assuming thumb rating is
like comparing to an average item). This finer comparison
allows more accurate estimates of the score. The following
theorem, proved in Section 7, confirms the fact that under
general conditions, comparing an item with another item of
similar score is better than comparing it to an average item.

Theorem 5.2. If f is chosen to be the logistic or the erf
function, the number of comparisons required to estimate the
score of an item decreases as the difference from the score of
the item to which it is compared decreases. More generally

this is true as long as f(x)(1−f(x))

f ′(x)2
is a decreasing function

in x (which holds for the logistic and erf functions). 2

5.3 Comparison-based ranking algorithm

5.3.1 Reviewing Mechanism
Tournament (static case): For simplicity, consider a static

collection of n items. In this case it is possible to produce
a score estimate and output a unique top candidate in n
pairwise comparisons. Each item is compared at most logn

Figure 3: Dynamic tournament using a queue.

times. Each item is compared till it loses, as shown in Fig-
ure 2; the height at which it loses gives an estimated score
and approximate rank. The average number of comparisons
per item is 1.

Simulating Tournament using a queue (dynamic case): In
the dynamic case we can simulate the tournament using a
queue, as illustrated in Figure 3. An item is enqueued at the
tail when it is created. In each comparison we pick an item
at the head of the queue and send it to be compared with
another item in the queue with the closest score estimate.
The losing item is deleted from the queue and the winning
item is inserted back into the tail. Thus an item is compared
till it loses once. In every review the queue size decreases by
one. Thus if the number of reviews is equal or more than the
number of items, the queue size is always bounded. Thus
average bandwidth used by the system is 1. If the queue size
is too small, there will be few items in it which means we
will be comparing items with very different score estimates;
in this case we may compare the item at the head with
another item with similar score outside the queue from the
item database. Whenever the queue size exceeds a certain
threshold we revert back to comparing only with items from
the queue.

The above mechanism utilizes a feedback bandwidth of 1
per item. If more bandwidth is available then there will be
times when there is at most one item in the queue. Then
we can use it to improve the ranking among the top can-
didate items. Again one can pick an item randomly biased
by the current (possibly time discounted) score estimates,
and send it for comparison with another item with near by
score. For instance, we may rank all items by the time dis-
counted score and pick an item with rank r with probability
proportional to 1/rγ , where γ is a parameter, and compare
it with the next item in the ranking. If γ = 0, we are sam-
pling uniformly; if γ > 0 we are sampling biased towards
the items with higher score. Thus γ should be chosen in the
range [0, 1] and for γ > 1 the bias is large and most of the
probability is concentrated in the top few ranks. Later in
the simulations we will see how the convergence of the score
estimates depends on γ for the standard f and g functions.

Recall, when we get feedback on a pair of items, the up-

Figure 4: Architecture for Shoutvelocity’s Ranking
System based on Pairwise Comparisons.

date process lowers the score of the losing item, and increases
the score of the winning item based on Section 4.2.

5.3.2 Theoretical Guarantee
We are unable to analyze the above tournament algo-

rithms theoretically. But we prove that a simplified version
of the algorithm is able to estimate rank r within error εr
with bounded number of comparisons per item for the spe-
cific distributions we study. The formal proof the following
theorem appears in Section 7.

Theorem 5.3. With pairwise comparisons, if f =
erf(αx) and g is the normal distribution there is an algo-
rithm to estimate the rank within multiplicative error 1 ± ε
with bounded feedback bandwidth per item. 2

The algorithm that achieves the result above compares
items with other items with successively increasing scores
till it consistently loses: Consider items with geometrically
decreasing percentile ranks 1/2, ρ/2, ρ2/2..., 1/n. We com-
pare a particular item to these items successively till we
find two consecutive ranks between which the item lies. The
number of comparisons with each of the above items is large
enough to conclude whether we should proceed to the next
item with high confidence. We clearly approximate the rank
within a factor of 1 + ε if ρ = 1

(1+ε)
.

6. SHOUTVELOCITY SYSTEM

6.1 System Architecture
We elaborate on the comparison-based reviewing module

adopted by our shoutvelocity system. Figure 4 shows the
various components of our system, essentially obtained by
expanding the reviewing module from Figure 1. In our sys-
tem, when a user submits an item, he gets shown a pair of
items for review. Therefore, for every item he submits, we
get feedback on two items. Obviously, even without submit-
ting an item, the user is given the option of reviewing any
number of pairs of items.

In general, if we wish to obtain better rank estimates for
the top items, items with higher score estimates should be

Figure 5: Screenshot of top shouts from shoutveloc-
ity.com.

given more number of reviews. One method is to pick items
randomly biased by the current score or rank estimates of
the items. From a practical standpoint, another factor that
needs to be taken into account is the age of the item. Clearly
newer items should be preferred over older items. A simple
way to achieve this is to time discount the score estimates.

6.2 Screenshots and Statistics
The shoutvelocity website was launched in June 2008. In

the interest of confined testing of various UI and ranking
approaches, we only made a limited release of the site. While
the website remains open to public, we explicitly invited only
a small number of people, and we’ve attracted 196 users
since our release. Our website has seen around 1245 distinct
shouts posted, and together these shouts have received 4853
reviews in all.

We give screenshots to illustrate two of the core features
of shoutvelocity. Figure 5 shows the shouts that were rated
among the best by users. We give a score for each shout, as
well as links to see the“shouter”, comments left by users, and
history of other shouts against which it won/lost. On top
of Figure 5 we see the various ranking options supported by
shoutvelocity, which include ranking purely based on score,
filtered by recency, or weighted based on score decay with
age.

Figure 6 shows an example of a review screen, where two
shouts are shown. The user is asked to pick which shout she
prefers, and may additionally leave comments/emoticons on
either shout.

We reiterate that the above figures only show a small
sampling of the various features supported by shoutveloc-
ity. Since the screenshots, and even this paper covers only
the core technical issues with shoutvelocity, we encourage
the readers to visit http://shoutvelocity.com to enjoy the
capabilities of our complete system.

7. PROOFS
Proof of Theorem 5.1: In order to ensure that every
item is rated till it loses, we show that the average number
of ratings µf required tends to infinity as n→∞, for α > 1.

Figure 6: Screenshot of review screen from shoutve-
locity.com.

If a mechanism does not rate an item till it loses at least
once, then this item cannote be distinguished from better
items. Therefore, it is impossible to estimate the ranks r
within r(1± ε).

Let gc(x) denote 1 − gc(x), and let f(x) = 1 − f(x). For
normally distributed qualities gc(x) = erfc(x). Let us es-
timate the score of the item with rank r; at that point
the cdf must have value 1 − r

n
. So the quality vr is con-

centrated around g−1
c (r/n). For large n we may simply

write vr = g−1
c (r/n). Let s = r/n; then we can think of

vs = g−1
c (s) as a function of s.

Let x = vs. Number of thumb ratings required for an item
with score x till it loses at least once is 1

f(x)
, as in each rating

it loses with probability f(x). Now gc(x) = s. For large x,
g(x) = erfc(x) can be approximated as g′(x)/x. Now

1

f(x)
≈ x

f
′
(x)

=
x

(xs)α2 ≥
1

xα2

1

(s)α2 ≥
1

(logn)α2/2

1

(s)α2

So total number of thumbs required is at least:P
r∈1..n

1

(logn)α
2/2

1

(r/n)α
2 .

So the average number of thumbs per item is:

1

(logn)α2/2

X
r∈1..n

1
r
n
α2

1

n

≈ 1

(logn)
α2
2

Z 1

s= 1
n

1

sα2 ds

=
1

(logn)
α2
2

O(nα
2−1)

.
For α > 1, clearly this quantity diverges to ∞. More gener-
ally we get

µf =
1

n

X
r∈1..n

1/f(g−1
c (r/n) ≈

Z 1

0

1

f(g−1
c (s)

ds

=

Z 1

0

1

1− f(g−1
c (1− s))

ds =

Z 1

0

1

1− f(g−1
c (s)

ds

2

Proof of Theorem 5.2: Let p = f(x) denote the prob-
ability of winning in one comparison; the variance of the
indicator variable for one comparison is p(1− p).

By central limit theorem (or by similar concentration in-
equalities such as Hoeffding bounds), for a large number of
comparisons k, the fraction of wins is expected to be around

p with variance p(1−p)
k

. The probability that the estimate

for p has additive error more than ε is e
−Θ(kε

p(1−p))
. For

confidence δ this gives:

k = Θ(f(x)(1−f(x))

ε2
) log(1/δ)

However, we need to estimate x within error x ± εx, which
means we need to estimate p = f(x) within error |f(x ±
εx) − f(x)| ≈ |εf ′(x)|. Replacing ε by εf ′(x) gives us the

desired expression: f(x)(1−f(x))

ε2f ′(x)2
log(1/δ).

Observe that for f(x) equal to the erf or the logistic func-

tion the quantity f(x)(1−f(x))

f ′(x)2
is decreasing in x. This means

that the number of comparisons required is fewer when com-
pared to an item with similar quality. 2

Proof of Theorem 5.3: We show that successively com-
paring the given item with geometrically decreasing per-
centile ranks 1/2, ρ/2, ρ2/2..., 1/n achieves the result. We
compare the item to these items successively till we find
two consecutive ranks between which the item lies. Choos-
ing ρ = 1/(1 + ε) ensures that the algorithm approximates
the rank within a factor of 1 + ε. Next we bound the total
number of comparisons required.

An item with percentile rank s = r
n

gets compared with

items with percentile ranks s(1 + ε), s(1 + ε)2, s(1 + ε)3..1/2.
Thus it gets compared with log(1/s)/ log(1 + ε) items.

To get a good estimate the number of comparisons re-
quired is minimized when it is compared to an item with
closest quality which is s(1 + ε).

To estimate the rank within error rε, we need to es-
timate its quality vr within error ∆ = |vr±εr − vr| =
|vs±εs−vs| ≈ v′(s)εs. Let x = vs. Then v′(s) = (g−1

c)′(s) =
1/g′c(g

−1
c (s)) = 1/g′c(x). Thus error in quality estimate is

∆ = εs/g′(x). Since ∆ is also the difference in the qual-
ities of the two items, number of comparisons required is
f(∆)(1−f(∆))

(ε∆f ′(∆))2
.

Now ∆ = εs/g′c(x) = εs/(xgc(x)) = ε/x =

Θ(ε/
p

log(1/s)). Since ∆ is small f(∆), 1 − f(∆) and
f ′(∆) are constant, so number of comparisons is O(1/∆2) =
O(log(1/s)). This is multiplied by at most log(1/s)/ log(1+
ε). Now total number of comparisons is at most O ofP
x:1..n log2(n/x)/ log(1 + ε) = O(n/ log(1 + ε)).
Thus, the average number of comparisons required is

O(1/ log(1 + ε)) which is a constant. 2

8. EXPERIMENTAL RESULTS

8.1 Simulations over Synthetic Data
We perform experiments to compare the ranking schemes

of the thumbs algorithm and the comparison based shoutve-
locity algorithm. Experiments are done by considering n
players (set to 1000) and choosing their true scores based
on g(x) being the normal distribution with variance 1. We

perform m pairwise-comparisons or 2m thumb evaluations,
where m is varied from 1 to kn.

Thumb-based Approach: In each iteration, in case of the
thumbs algorithm, we pick a random item biased towards
those with higher score estimates. Specifically, we rank all
items with score estimates, and we pick the rth item with
probability proportional to 1

rγ
. In each thumb review, the

item with score x wins with probability f(x) = erf(
√

2αx).

Comparison-based Approach: In each iteration, we first
pick one item, based on rank estimates above: The rth item
is picked with probability proportional to 1

rγ
. Suppose the

rth item is picked, the second item is the r + 1th ranked
one. Let the scores of these items be x and y respectively. In
each comparison, the item with score x wins with probability
f(x− y).

The algorithm for updating scores also keeps track of the
number of times every item has been selected for compari-
son. This is a discounting factor to capture the intuition that
after a lot of comparisons, the scores start to stabilize, and
so one comparison can alter the score only marginally. Sup-
pose the items i1 and i2 have been evaluated k1 and k2 times
respectively. The discounting is done based on ci = 2

(1+ki)0.5

where i = 1, 2. Further, let their current score estimates be
s1 and s2. If i1 gets voted in the comparison, then s1 is
incremented by c1 ∗ (1− 1

1+es2−s1
) and s2 is decremented by

c2 ∗ 1
1+es1−s2

. Similarly, the update is done in case i2 wins.

Evaluation Metric: We compute the MRR (mean recip-
rocal rank) for the item with highest score in the rank pro-
duced by the two approaches above. The MRR is the mean
of the quantity 1

R
, where R is the rank of the actual top item

in the ranking produced by the approach above. Clearly,
MRR is at most 1 and an MRR of 1 means the top item
was always correctly identified as the best item. Our exper-
iments are performed over several runs by varying α, γ, and
m.

Comparison based ranking algorithm consistently outper-
forms the thumbs based algorithm for α = 1.0, 1.5. Further,
the rate at which the comparison based algorithms improve
as the number of evaluations is increased is also higher. A
similar behavior is observed with increasing number of play-
ers; the comparison based algorithm seems more resistant
to a large number of players even when the evaluation is
done on just the top few in the produced rankings. See Fig-
ures 7, 8, and 9 for the results for α = 1.5, α = 1.0, and
α = 0.5 respectively.

8.2 Shoutvelocity system
Our system has the history of all 4853 pairwise compar-

isons performed by users, over a set of 1245 items. We study
the convergence of MRR for as the number of reviews in-
creases. Since we do not have the “true” scores of each item,
we take many random orderings of the collection of 4853
reviews, replay in that order using the ELO rating system.
The score for each item, averaged over these random order-
ings, is taken to be the true score of the item.

As in the simulations above, we measure how MRR in-
creases with the number of reviews. Figure 10 shows how
MRR increases with the number of comparisons.

Next we provide latency of reviewing from the shoutveloc-
ity system. Figure 11 plots for each latency x, what fraction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176

M
R

R

Number of Comparisons (x50)

α = 1.5

Pairs (ϒ=0.75)
Thumbs (ϒ=0.75)
Pairs (ϒ=0.5)
Thumbs (ϒ=0.5)
Pairs (ϒ=0.25)
Thumbs (ϒ=0.25)
Pairs (ϒ=0)
Thumbs (ϒ=0)

Figure 7: MRRs for thumb-based and comparison-
based ranking for α = 1.5. At m = 1000, for the best
γ, MRR is 0.244 for comparison-based approach and
0.019 for thumbs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176

M
R

R

Number of Comparisons (x50)

α = 1.0
Pairs (ϒ=0.75)
Thumbs (ϒ=0.75)
Pairs (ϒ=0.5)
Thumbs (ϒ=0.5)
Pairs (ϒ=0.25)
Thumbs (ϒ=0.25)
Pairs (ϒ=0)
Thumbs (ϒ=0)

Figure 8: MRRs for thumb-based and comparison-
based ranking for α = 1.0. At m = 1000, for the best
γ, MRR is 0.149 for comparison-based approach and
0.0186 for thumbs.

of items waited for x reviews to get their first feedback. We
can see that all items got their first feedback in 20 reviews,
and most had to wait for less than 5 reviews.

Finally, in Figure 12 we show the cumulative distribu-
tion of scores for shouts from the shoutvelocity system. (In
our system, for displaying scores, we’ve added a score of 5
to every shout, so that they are nonnegative.) The scores
roughly display a normal distribution, confirming Elo’s as-
sumption of shouts’ performance being based on a normal
distribution.

9. RELATED WORK
Ranking performs two central roles in today’s social net-

works - a) surface the most relevant result to the user query,
and b) align the incentives with the goal of seeking rele-
vant user generated content. There has been considerable
amount of work in analyzing simple voting schemes like
thumbs-up/down to comparison based voting schemes [13].
In the former, the user gets to see one result and gets to
vote up or down as a choice suggesting her preference while
in the latter, the user is compares more than one result (usu-
ally two) and ranks them according to her preferences. The
Bradley-Terry-Luce (BTL) model (Bradley & Terry [10] and
Luce [15]) is often applied to pairwise comparison data to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176

M
R

R

Number of Comparisons (x50)

α = 0.5

Pairs (ϒ=0.75)

Thumbs (ϒ=0.75)

Pairs (ϒ=0.5)

Thumbs (ϒ=0.5)

Pairs (ϒ=0.25)

Thumbs (ϒ=0.25)

Pairs (ϒ=0)

Thumbs (ϒ=0)

Figure 9: MRRs for thumb-based and comparison-
based ranking for α = 0.5. At m = 1000, for the best
γ, MRR is 0.17 for comparison-based approach and
0.06 for thumbs.

0

0.05

0.1

0.15

0.2

0.25

1 501 1001 1501 2001 2501 3001 3501 4001 4501

M
R

R

Number of Comparisons

Figure 10: Convergence of MRR on real data from
shoutvelocity.

scale preferences. For an excellent exposition on pairwise
comparisons, the reader is referred to [11]. Thomas Saaty
motivates the need for pairwise comparison in order to rank
entities that have no tangible properties with known scales
of measurement [16].

Hacker and Von Ahn [13] propose a 2-person online game,
where users express preferences on photos, and these prefer-
ences are used for ranking. They compare the performance
of their scoring function with other well-known functions
such as ELO [12] and TrueSkill [14]. The Elo rating sys-
tem [12] is used to compute the relative skill of players in
two-player games such as chess. Unlike [13], our focus is to
design a comparison-based mechanism taking into account
feedback bandwidth consideration, where each person sub-
mitting an item reviews only one more pair of items. We
borrow the score update function from the Elo system.

Ajtai et al [9] study the problems of selection and ranking
with imprecise comparisons. Again, the idea behind their
work is similar in spirit to what we suggest in this work:
for every user there exists a value δ > 0 which differentiates
between a just noticeable difference and otherwise, i.e., if the
values of the two elements being compared is less than δ, the
the result of the comparison could go either way. When the
value of the difference is more then δ, then the comparison
is correct.

Figure 11: Latency of shouts plotted against fraction
of shouts.

Figure 12: Cumulative distribution of scores from
shoutvelocity.

10. CONCLUSIONS
This paper addressed the problem of designing ranking

mechanisms for forums. Broadly, we studied independent
thumb-based and comparison-based reviewing of items in
the forum. We theoretically showed the benefits of compari-
son based ranking mechanisms based on desirable properties
including accuracy and rapid convergence with minimal user
feedback. We presented shoutvelocity, an online forum that
fully implements the comparison-based ranking mechanism
from this paper. We experimented with synthetically gener-
ated data as well as real data from shoutvelocity, and showed
that shoutvelocity’s comparison-based ranking significantly
outperforms thumb-based ranking on the desired properties.

Star-ratings are a clear generalization of thumb-based rat-
ings, and our theoretical analysis can be easily extended to
star-ratings: Intuitively, a rating of 3 stars out of 5 is roughly
like getting 3 thumbs-ups and 2 thumbs-downs. Analo-
gously, pairwise comparisons can be generalized to n-way
comparisons, but the theory doesn’t directly carry over. Al-
though the practicality of n-way comparisons is questionable
as they may impose a more significant reviewing burden on
users, their theoretical study would be interesting.

11. REFERENCES
[1] Digg. http://digg.com.

[2] Facebook. http://www.facebook.com.

[3] IMDb: The Internet Movie Database.
http://www.imdb.com.

[4] Netflix. http://www.netflix.com.

[5] Shoutvelocity. http://shoutvelocity.com.

[6] Sidereel. http://www.sidereel.com.

[7] TV Links. http://tvlinks.cc.

[8] twitter. http://twitter.com.

[9] Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim,
and Jelani Nelson. Sorting and selection with
imprecise comparisons. In Proc. of ICALP, 2009.

[10] R. Bradley and M. Terry. The rank analysis of
incomplete block designs: I. the method of paired
comparisons. In Biometrics, 1952.

[11] H. . David. The Method of Paired Comparisons. New
York: Oxford University Press, 1988.

[12] Arpad Elo. The Rating of Chessplayers, Past and
Present. Arco Publications, 1978.

[13] Severin Hacker and Luis von Ahn. Matchin: eliciting
user preferences with an online game. In Proc. of CHI,
2009.

[14] R. Herbrich, T. Minka, and T. Graepel. Trueskilltm:
A bayesian skill rating system.

[15] R. D. Luce. Individual Choice Behavior: A Theoretical
Analysis. New York: Wiley, 1959.

[16] T. L. Saaty. Rank from comparisons and from ratings
in the analytic hierarchy/network processes. European
Journal of Operational Research, 168(2), 2006.

