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Abstract. CQL, a Continuous Query Language, is
supported by the STREAM prototype Data Stream Manage-
ment System at Stanford. CQL is an expressive SQL-based
declarative language for registering continuous queries against
streams and stored relations. We begin by presenting an ab-
stract semantics that relies only on “black box” mappings
among streams and relations. From these mappings we define
a precise and general interpretation for continuous queries.
CQL is an instantiation of our abstract semantics using SQL
to map from relations to relations, window specifications de-
rived from SQL-99 to map from streams to relations, and
three new operators to map from relations to streams. Most
of the CQL language is operational in the STREAM system.
We present the structure of CQL’s query execution plans as
well as details of the most important components: operators,
inter-operator queues, synopses, and sharing of components
among multiple operators and queries.

Examples throughout the paper are drawn from the Linear
Road benchmark recently proposed for Data Stream Man-
agement Systems. We also curate a public repository of data
stream applications that includes a wide variety of queries
expressed in CQL. The relative ease of capturing these appli-
cations in CQL is one indicator that the language contains an
appropriate set of constructs for data stream processing.

Keywords: Data Streams, Continuous Queries, Query Lan-
guage, Query processing

1 Introduction

There has been a considerable surge of research in many as-
pects of processing continuous queries over unbounded data
streams [24, 25]. Many papers include example continuous
queries expressed in some declarative language, e.g., [2, 19,
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20, 23, 28, 32]. However, these queries tend to be simple and
primarily for illustration—a precise language semantics, par-
ticularly for more complex queries, often is left unclear. Fur-
thermore, very little has been published to date covering ex-
ecution details of general-purpose continuous queries. In this
paper we present the CQL language and execution engine for
general-purpose continuous queries over streams and stored
relations. CQL (for Continuous Query Language) is an in-
stantiation of a precise abstract continuous semantics also
presented in this paper, and CQL is implemented in the
STREAM prototype Data Stream Management System
(DSMS) at Stanford [40].

It may appear initially that defining a continuous query
language over (relational) streams is not difficult: Take a re-
lational query language, replace references to relations with
references to streams, register the query with the stream pro-
cessor, and wait for answers to arrive. For simple monotonic
queries over complete stream histories indeed this approach
is nearly sufficient. However, as queries get more complex—
when we add aggregation, subqueries, windowing constructs,
relations mixed with streams, etc.—the situation becomes
much murkier. Consider the following simple query:

Select P.price
From Items[Rows 5] as I, PriceTable as P
Where I.itemID = P.itemID

Items is a stream of purchased items, PriceTable is a
stored relation containing the price of items, and [Rows 5]
specifies a 5-element sliding window. Even this simple query
has no single obvious interpretation that we know of. For
example, is the result of the query a stream or a relation?
What happens to the query result when the price of a recently-
purchased item—i.e., an item still within the 5-element
window—changes?

In this paper, we initially define a precise abstract seman-
tics for continuous queries. Our abstract semantics is based
on two data types—streams and relations—and three classes
of operators over these types: operators that produce a re-
lation from a stream (stream-to-relation), operators that pro-
duce a relation from other relations (relation-to-relation), and
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operators that produce a stream from a relation (stream-to-
relation). The three classes of operators are “black box” com-
ponents of our abstract semantics: the abstract semantics does
not depend on the actual behavior of the operators in these
classes, but only on their input and output types.

CQL instantiates the black boxes in our abstract seman-
tics: It uses SQL to express its relation-to-relation operators,
a window specification language derived from SQL-99 to ex-
press its stream-to-relation operators, and a set of three op-
erators for its relation-to-stream operators. Most of CQL is
fully operational in our prototype DSMS [40]. CQL has been
used to specify the Linear Road benchmark proposed for data
stream systems [4], and to specify a variety of other stream
applications in a public repository we are curating [37].

In defining our abstract semantics and concrete language
we had certain goals in mind:

1. We wanted to exploit well-understood relational seman-
tics (and by extension relational rewrites and execution
strategies) to the extent possible.

2. We wanted queries performing simple tasks to be easy
and compact to write. Conversely, we wanted
simple-appearing queries to do what one expects.

3. We wanted the language to have sufficient constructs to
capture a wide variety of stream applications, without al-
lowing the “feature creep” that can result in an esoteric,
difficult to understand, or difficult to implement language.
That is, we wanted to keep the language as simple as pos-
sible without sacrificing too much expressiveness.

We believe these goals have been achieved to a large extent.
The STREAM query processing engine is based on phys-

ical query plans generated from CQL textual queries. Often
query plan merging occurs, so a single query plan may com-
pute multiple continuous queries. In this paper we focus on
the structure and details of the execution plans themselves,
not on how initial plans are selected or how plans adapt over
time (which is the subject of other papers [10, 11, 13]).

In developing the structure of our query execution plans
we had certain goals in mind:

4. We wanted plans built from modular and pluggable com-
ponents based on generic interfaces, especially for opera-
tors and synopsis structures.

5. We wanted an execution model that efficiently captures
the combination of streams and relations that forms the
basis of our language.

6. We wanted an architecture permitting easy experimen-
tation with different strategies for operator scheduling,
overflowing state to disk, sharing state and computation
among multiple continuous queries, and other crucial is-
sues affecting performance.

Here too we believe these goals have been achieved to a large
extent.

To summarize the contributions of this paper:

– We formalize streams and relations that are updated over
time (Section 4), and we define an abstract semantics for

continuous queries based on three black-box classes of
operators: stream-to-relation, relation-to-relation, and
relation-to-stream (Section 5).

– We define our concrete language, CQL, which instanti-
ates the black boxes in the abstract semantics as discussed
earlier (Section 6). We define syntactic shortcuts and de-
faults in CQL for convenient and intuitive query formula-
tion, and we point out a few equivalences in the language
(Section 10).

– We illustrate CQL using a hypothetical road traffic man-
agement application proposed as a benchmark for data
stream systems [4] (Sections 3 and 7). We also com-
pare the expressiveness of CQL against related query lan-
guages (Section 11).

– We describe the query execution plans and strategies used
in the STREAM system for CQL queries. We focus specif-
ically on operators, inter-operator queues, synopses, and
sharing of components among multiple operators and
queries (Section 12).

2 Related Work

A preliminary description of our abstract semantics and the
CQL language appeared as an invited paper in [3]. That pa-
per did not include query transformations, the Linear Road
benchmark, or any of the material on query execution in-
cluded in this paper.

A comprehensive description of work related to data
streams and continuous queries is given in [8]. Here we focus
on work related to languages and semantics for continuous
queries.

Continuous queries have been used either explicitly or
implicitly for quite some time. Materialized views [26] are
a form of continuous query, since a view is continuously up-
dated to reflect changes to its base relations. Reference [29]
extends materialized views to include chronicles, which es-
sentially are continuous data streams. Operators are defined
over chronicles and relations to produce other chronicles, and
also to transform chronicles to materialized views. The oper-
ators are constrained to ensure that the resulting materialized
views can be maintained incrementally without referencing
entire chronicle histories.

Continuous queries were introduced explicitly for the first
time in Tapestry [43] with a SQL-based language called TQL.
(A similar language is considered in [14].) Conceptually, a
TQL query is executed once every time instant as a one-time
SQL query over the snapshot of the database at that instant,
and the results of all the one-time queries are merged using
set union. Several systems use continuous queries for infor-
mation dissemination, e.g., [20,31,34]. The semantics of con-
tinuous queries in these systems is also based on periodic ex-
ecution of one-time queries as in Tapestry. In Section 11, we
show how Tapestry queries and materialized views over rela-
tions and chronicles can be expressed in CQL.

The abstract semantics and concrete language proposed in
this paper are more general than any of the languages above,
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incorporating window specifications, constructs for freely
mixing and mapping streams and relations, and the full power
of any relational query language. Recent work in the Tele-
graphCQ system [18] proposes a declarative language for
continuous queries with a particular focus on expressive win-
dowing constructs. The TelegraphCQ language is discussed
again briefly in Section 11.6. ATLas [30,47,48] proposes sim-
ple extensions to SQL-99 user-defined aggregates (UDAs)
that make the resulting language Turing complete, suitable
for various data-mining and data streams applications. Intu-
itively, the extensions let users express initialize, iterate, and
terminate parts of a SQL-99 UDA specification using SQL
update constructs rather than using procedural code.
GSQL [21] is a SQL-like language developed for Gigascope,
a DSMS for network monitoring applications. GSQL is com-
pared against CQL in Section 11.

Several systems support procedural continuous queries,
as opposed to the declarative approach in this paper. The Au-
rora system [16] is based on users directly creating a network
of stream operators. A large number of operator types are
available, from simple stream filters to complex windowing
and aggregation operators. The Tribeca stream-processing
system for network traffic analysis [41] supports windows, a
set of operators adapted from relational algebra, and a simple
language for composing query plans from them. Tribeca does
not support joins across streams. Both Aurora and Tribeca are
compared against CQL in more detail in Section 11.

Temporal query languages [35] are based on a rich model
of history, and with their many special-purpose language con-
structs they dramatically subsume CQL in terms of expres-
siveness. Based on the several different applications we stud-
ied [37], the full expressive power of temporal query lan-
guages seems unnecessary for most stream applications. As
mentioned in goal #3 earlier, our intention is to keep CQL
much simpler than temporal languages, for ease of implemen-
tation and ease of understanding. While sequence query lan-
guages [36] are not as complex as temporal query languages,
they still largely subsume CQL in terms of expressiveness,
and they include many special-purpose operators specifically
for manipulating sequences. Finally, event-processing
languages are geared largely toward matching single events
or specific event patterns against queries, usually in a publish-
subscribe setting [49]. The fine-grained event-matching con-
structs of these languages also were not needed for the stream
applications we studied.

Note that our abstract semantics and even our concrete
language permit temporal, sequence, or event-processing ca-
pabilities to be “plugged in” as black box operators. How-
ever, if we discovered that such capabilities were needed fre-
quently in future stream applications, it would be better to
fully incorporate them as a feature of the language.

3 Introduction to Running Example

We introduce a running example based on a hypothetical road
traffic management application introduced in the Linear Road

benchmark for data stream management systems [4]. We use
a simplified version of the Linear Road application to illus-
trate various aspects of our language, semantics, and execu-
tion plans; full details can be found in the original specifica-
tion [4].

The Linear Road application implements variable tolling
—adaptive, real-time computation of vehicle tolls based on
traffic conditions—to regulate vehicular traffic on a highway.
To enable variable tolling each vehicle is equipped with a sen-
sor that continuously relays its position and speed to a central
server. The server aggregates the information received from
all vehicles on the highway system, computes tolls in real-
time, and transmits tolls back to vehicles using the sensor
network.

Figure 1 shows the highway system used by our simpli-
fied Linear Road. There is a single highway 100 miles long,
which is divided into 100 1-mile segments. The highway has
entrance and exit ramps at segment boundaries. Traffic flows
in a single direction from left to right. When a vehicle is
on the highway, it reports its current speed (miles per hour)
and position (number of feet from the left end) to the server
once every 30 seconds. (In the complete Linear Road applica-
tion [4] there are 10 highways with multiple lanes, and traffic
flows in both directions.)

Vehicles pay a toll whenever they drive in a congested
segment, while no toll is charged for uncongested segments.
A segment is congested if the average speed of all vehicles
in the segment over the last 5 minutes is less than 40 miles
per hour (MPH). The toll for a congested segment is given by
the formula 2×(numvehicles − 50)2, where numvehicles is
the number of vehicles currently in the segment. Note that the
toll for a congested segment changes dynamically as vehicles
enter and leave the segment. When the server detects that a
vehicle has entered a congested segment, the server outputs
the current toll for the segment which is conveyed back to the
vehicle.

In stream terminology, the simplified Linear Road appli-
cation in this paper has:

– A single input stream—the stream of positions and speeds
of vehicles.

– A single continuous query computing the tolls.
– A single output stream containing the tolls for vehicles.

As the paper progresses we will illustrate how we model, ex-
press, and execute this application using our language, se-
mantics, and query execution strategies.

4 Streams and Relations

In this section we define a formal model of streams and re-
lations. As in the standard relational model, each stream and
relation has a fixed schema consisting of a set of named at-
tributes. For stream element arrivals and relation updates we
assume a discrete, ordered time domain T . A time instant (or
simply instant) is any value from T . For concreteness, we
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Fig. 1 The Linear Road highway system

represent T as the nonnegative integers {0, 1, . . .}; in par-
ticular note that 0 stands for the earliest time instant. Time
domain T models an application’s notion of time, not par-
ticularly system or wall-clock time. Thus, although T may
often be of type Datetime, our semantics only requires any
discrete, ordered domain. (A thorough discussion of time is-
sues in Data Stream Management Systems appears in [38].)

Definition 1 (Stream) A stream S is a (possibly infinite) bag
(multiset) of elements 〈s, τ〉, where s is a tuple belonging to
the schema of S and τ ∈ T is the timestamp of the element.

Note that the timestamp is not part of the schema of a stream,
and there could be zero, one, or multiple elements with the
same timestamp in a stream. We only require that there be
a finite (but unbounded) number of elements with a given
timestamp.

There are two classes of streams: base streams, which are
the source data streams that arrive at the DSMS, and derived
streams, which are intermediate streams produced by opera-
tors in a query. We use the term tuple of a stream to denote
the data (non-timestamp) portion of a stream element.

Example 1 In the Linear Road application there is just one
base stream containing vehicle speed-position measurements,
with schema:

PosSpeedStr (vehicleId, speed, xPos)

Attribute vehicleId identifies the vehicle, speed denotes
its current speed in MPH, and xPos denotes its current po-
sition within the highway in feet as described in Section 3.
The time domain is of type Datetime, and for this application
the timestamp of a stream element denotes the physical time
when the position and speed measurements were taken. �

Definition 2 (Relation) A relation R is a mapping from each
time instant in T to a finite but unbounded bag of tuples be-
longing to the schema of R.

A relation R defines an unordered bag of tuples at any time
instant τ ∈ T , denoted R(τ). Note the difference between
this definition for relation and the standard one: in the stan-
dard relational model a relation is simply a set (or bag) of
tuples, with no notion of time as far as the semantics of rela-
tional query languages are concerned.

We use the term instantaneous relation to denote the bag
of tuples in a relation at a given point in time. Thus, if R
denotes a relation according to Definition 2, R(τ) denotes an

instantaneous relation. Often when there is no ambiguity we
omit the term instantaneous. We use the term base relation
for input relations and derived relation for relations produced
by query operators.

Example 2 The Linear Road application contains no base re-
lations, but several derived relations are useful in toll compu-
tation. For example, the toll for a congested segment depends
on the current number of vehicles in the segment. We can rep-
resent the current number of vehicles in a segment using the
derived relation:

SegVolRel (segNo, numVehicles)

Attribute segNo denotes the segment (0-99) and
numVehicles the number of vehicles in the segment. At
time τ , SegVolRel(τ) contains the count of vehicles in
each highway segment as of time τ . Section 7 shows how
SegVolRel can be computed from the base stream
PosSpeedStr, and how it can be used to compute tolls.
�

As this example suggests, the concept of a relation is
useful even in applications whose inputs and outputs are all
streams. It seems more natural to model “the current number
of vehicles in a segment” as a time-varying relation, rather
than as a stream of the latest values. From an expressiveness
point of view, it is not necessary to have both streams and
relations: we could have picked just one of streams and re-
lations and designed our language around it without loss of
expressiveness; this issue is discussed further in Section 11.6.
In our implementation we encode both streams and relations
uniformly as “plus-minus streams,” as discussed in Section 12.

5 Abstract Semantics

This section presents our abstract semantics for continuous
queries. Recall from Section 1 that our semantics is based on
three classes of operators over streams and relations:

– stream-to-relation operators that produce a relation from
a stream

– relation-to-relation operators that produce a relation from
one or more other relations

– relation-to-stream operators that produce a stream from a
relation
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Fig. 2 Operator classes and mappings used in abstract semantics

Recall that by “relation” we are referring to our formal notion
of a time-varying relation, as defined in Section 4.

Stream-to-stream operators are absent—they have to be
composed from operators of the three classes above. As we
will discuss in detail in Section 6, the rationale for this de-
cision is based primarily on our goal #1 from Section 1: ex-
ploiting well-understood relational semantics (and by exten-
sion relational rewrites and execution strategies) to the extent
possible.

First some terminology: S up to τ denotes the bag of el-
ements in stream S with timestamps ≤ τ , i.e., {〈s, τ ′〉 ∈
S : τ ′ ≤ τ}. S at τ denotes the bag of elements of S
with timestamp τ , i.e., {〈s, τ ′〉 ∈ S : τ ′ = τ}. Similarly,
R up to τ denotes the collection of instantaneous relations
R(0), . . . , R(τ), and R at τ denotes the instantaneous rela-
tion R(τ).

1. A stream-to-relation operator takes a stream S as input
and produces a relation R as output with the same schema
as S. At any instant τ , R(τ) should be computable from
S up to τ .

2. A relation-to-relation operator takes one or more rela-
tions R1, . . . , Rn as input and produces a relation R as
output. At any instant τ , R(τ) should be computable from
R1(τ), . . . , Rn(τ).

3. A relation-to-stream operator takes a relation R as input
and produces a stream S as output with the same schema
as R. At any instant τ , S at τ should be computable from
R up to τ .

Now we define our abstract semantics.

Definition 3 (Continuous Semantics) Consider a query Q
that is any type-consistent composition of operators from the
above three classes. Suppose the set of all inputs to the inner-
most (leaf) operators of Q are streams S1, . . . , Sn (n ≥ 0)
and relations R1, . . . , Rm (m ≥ 0). We define the result of
continuous query Q at a time τ , which denotes the result of
Q once all inputs up to τ are “available” (a notion discussed
below). There are two cases:

– Case 1: The outermost (topmost) operator in Q is relation-
to-stream, producing a stream S (say). The result of Q at
time τ is S up to τ , produced by recursively applying the
operators comprising Q to streams S1, . . . , Sn up to τ
and relations R1, . . . , Rm up to τ .

– Case 2: The outermost (topmost) operator in Q is stream-
to-relation or relation-to-relation, producing a relation R

(say). The result of Q at time τ is R(τ), produced by re-
cursively applying the operators comprising Q to streams
S1, . . . , Sn up to τ and relations R1, . . . , Rm up to τ .

Based on this definition, informally we can think of con-
tinuous queries operationally as follows. Let time “advance”
within domain T , further discussed below. First consider a
query producing a stream. At time τ ∈ T , all inputs up to τ
are processed and the continuous query emits any new stream
result elements with timestamp τ . Because of our assump-
tions on operators, no new stream elements with timestamp
< τ can be produced from inputs with timestamp ≥ τ . A
query producing a relation is similar: At time τ , all inputs
up to τ are processed and the continuous query updates the
output relation to state R(τ).

Now let us understand what it means for time to advance
within domain T . The relationship between application time,
wall-clock time, and system time is a complex issue discussed
in depth in a separate paper [38]. However, for precise query
semantics we need make no additional assumptions beyond
those already made in this paper. Time “advances” to τ from
τ − 1 when all inputs up to τ − 1 have been processed. It ap-
pears we are tacitly assuming that streams arrive in timestamp
order, relations are updated in timestamp order, and there is
no timestamp “skew” across streams or relations. In practice,
to implement our semantics correctly, systems cope with out
of order and skewed inputs. This issue is revisited in Section 8
and thoroughly covered by [38].

Example 3 Consider the query Istream(Filter
(LastRow(S))) constructed from three operators and op-
erating on stream S.1 Let stream S have a single attribute and
consist of the elements {〈(a0), 0〉, 〈(a1), 1〉, 〈(a2), 2〉, . . .}.
LastRow is a stream-to-relation operator; at any point in
time the relation output by LastRow contains the last tuple
that arrived on S. Filter is a relation-to-relation operator
that produces its output relation by applying a filter condition
on its input. Suppose that tuples (a0), (a2), (a4), . . . satisfy
the filter condition while tuples (a1), (a3), (a5), . . . do not.
Finally, Istream is a relation-to-stream operator (defined
formally in Section 6.3) that “streams” every new tuple in-
serted into its input relation. Figure 3 shows the outputs pro-
duced by each of the three operators as time progresses. �

1 In CQL, this query is expressed as “Select Istream(*)
From S [Rows 1] Where <filter>.”
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Time S LastRow Filter Istream
0 〈(a0), 0〉 (a0) (a0) 〈(a0), 0〉

1
〈(a0), 0〉
〈(a1), 1〉

(a1) φ 〈(a0), 0〉

2
〈(a0), 0〉
〈(a1), 1〉
〈(a2), 2〉

(a2) (a2)
〈(a0), 0〉
〈(a2), 2〉

3

〈(a0), 0〉
〈(a1), 1〉
〈(a2), 2〉
〈(a3), 3〉

(a3) φ
〈(a0), 0〉
〈(a2), 2〉

4

〈(a0), 0〉
〈(a1), 1〉
〈(a2), 2〉
〈(a3), 3〉
〈(a4), 4〉

(a4) (a4)
〈(a0), 0〉
〈(a2), 2〉
〈(a4), 4〉

...
...

...
...

...

Fig. 3 Output produced by operators of Example 3 as time pro-
gresses.

Example 4 In the Linear Road application the sequence of
operators producing derived relation SegVolRel of Exam-
ple 2 conceptually produces, at every time instant τ , the in-
stantaneous relation SegVolRel(τ) containing the current
number of vehicles in each segment. In a DSMS implement-
ing our semantics, SegVolRel(τ) cannot be produced until
it is known that all elements on input stream
PosSpeedStr(vehicleId,speed,xPos)with times-
tamp ≤ τ have been received. Furthermore, once they have,
there may be additional lag before the relation is actually
updated due to query processing time. Our semantics does
not dictate “liveness” of continuous query output—that is-
sue is relegated to latency management in the query proces-
sor [7, 17]. �

A formal specification of the abstract semantics using de-
notational semantics can be found in [5].

6 Continuous Query Language

This section presents our concrete language, CQL, which is
defined by instantiating the operators of our abstract seman-
tics. We also specify a few syntactic shortcuts and defaults to
simplify expression of some common operations.

Broadly, our approach to designing operators in CQL is
as follows: Support a large class of relation-to-relation oper-
ators, which perform the bulk of data manipulation in a typ-
ical CQL query, along with a small set of stream-to-relation
and relation-to-stream operators that convert streams to re-
lations and back. The primary advantage of this approach is
the ability to reuse the formal foundations and huge body of
implementation techniques for relation-to-relation languages
such as relational algebra and SQL, instead of starting from
scratch with a heavily stream-based language. Furthermore,
as we will see, queries in CQL are quite natural to express.

Technically, we cannot directly import existing conven-
tional relation-to-relation operators into our concrete
language, since they operate on instantaneous relations while
we operate on time-varying relations, but the mapping is ob-
vious: Let Or denote a traditional relational operator or query
over instantaneous input relations R1, . . . , Rn. The
corresponding relation-to-relation operator Oc in CQL pro-
duces the time-varying relation R such that at each time τ ,
R(τ) = Or(R1(τ), . . . , Rn(τ)).

An apparent drawback of our approach is that even a sim-
ple filter on a stream requires three operators: one to turn the
stream into a relation, one to perform a relational filter, and
one to turn the relation back into a stream. However, CQL’s
defaults and syntactic shortcuts make filters and other simple
queries easy to express (Section 6.4).

Although we do not specify them explicitly as part of
our language, incorporating user-defined procedures, aggre-
gates, and windows, as may be required for more complex,
application-specific stream processing, is straightforward in
CQL, at least from the semantics perspective.

Next in Sections 6.1–6.3 we cover the three classes of
operators in CQL.

6.1 Stream-to-Relation Operators

Currently all stream-to-relation operators in CQL are based
on the concept of a sliding window over a stream: a window
that at any point of time contains a historical snapshot of a
finite portion of the stream. We have three classes of sliding-
window operators in CQL: time-based, tuple-based, and par-
titioned, defined below. Syntactically, the sliding-window op-
erators are specified using a window specification language
derived from SQL-99. Other types of sliding windows such
as fixed windows [41], tumbling windows [16], value-based
windows [36], or any other windowing construct can be in-
corporated into CQL easily—new syntax must be added, but
the semantics of incorporating a new window type relies
solely on the semantics of the window operator itself, thanks
to the development of our abstract semantics.

6.1.1 Time-based sliding windows A time-based sliding
window on a stream S takes a time-interval T as a param-
eter and is specified by following the reference to S with
[Range T].2 We do not specify a syntax or restrictions for
time-interval T at this point, but we assume it specifies a com-
putable period of application time. Intuitively, a time-based
window defines its output relation over time by sliding an in-
terval of size T time units capturing the latest portion of an
ordered stream. More formally, the output relation R of “S
[Range T]” is defined as:

2 In all three of our window types we dropped the keyword
Preceding appearing in the SQL-99 syntax and in our earlier
specification [33]—we only have “preceding” windows for now so
the keyword is superfluous.
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R(τ) = {s | 〈s, τ ′〉 ∈ S ∧ (τ ′ ≤ τ) ∧

(τ ′ ≥ max{τ − T, 0})}

Two important special cases are T = 0 and T = ∞. When
T = 0, R(τ) consists of tuples obtained from elements of
S with timestamp τ . In CQL we introduce the syntax “S
[Now]” for this special case. When T = ∞, R(τ) con-
sists of tuples obtained from all elements of S up to τ and
uses the SQL-99 syntax “S [Range Unbounded].” We
use the terms Now window and Unbounded window to refer
to these two special windows.

Example 5 “PosSpeedStr [Range 30 Seconds]”
denotes a time-based sliding window of 30 seconds over in-
put stream PosSpeedStr. At any time instant, the output
relation of the sliding window contains the bag of position-
speed measurements from the previous 30 seconds. Similarly,
at any instant “PosSpeedStr [Now]” contains the (possi-
bly empty) bag of position-speed measurements from that in-
stant, and “PosSpeedStr [Range Unbounded]” con-
tains the bag of all position-speed measurements so far. �

6.1.2 Tuple-based windows A tuple-based sliding window
on a stream S takes a positive integer N as a parameter and
is specified by following the reference to S in the query with
[Rows N]. Intuitively, a tuple-based window defines its out-
put relation over time by sliding a window of the last N tuples
of an ordered stream. More formally, for the output relation
R of “S [Rows N],” R(τ) consists of the N tuples of S
with the largest timestamps ≤ τ (or all tuples if the length
of S up to τ is ≤ N ). Suppose we specify a sliding window
of N tuples and at some point there are several tuples with
the N th most recent timestamp (while for clarity let us as-
sume the other N − 1 more recent timestamps are unique).
Then we must “break the tie” in some fashion to generate
exactly N tuples in the window. We assume such ties are bro-
ken arbitrarily. Thus, tuple-based sliding windows may be
nondeterministic—and therefore may not be appropriate—
when timestamps are not unique. The special case of N = ∞
is specified by [Rows Unbounded], and is equivalent to
[Range Unbounded].

Example 6 A tuple-based sliding window does not make much
sense over stream PosSpeedStr (except the case of N =
∞) since stream element timestamps are not unique. For ex-
ample, at any instant sliding window PosSpeedStr[Rows
1] denotes the “latest” position-speed measurement, which is
ambiguous whenever multiple measurements carry the same
timestamp—a common occurrence in the Linear Road appli-
cation. �

6.1.3 Partitioned windows A partitioned sliding window on
a stream S takes a positive integer N and a subset
{A1, . . . , Ak} of S’s attributes as parameters. It is specified
by following the reference to S in the query with
[Partition By A1,...,Ak Rows N]. Intuitively, this

window logically partitions S into different substreams based
on equality of attributes A1, . . . , Ak (similar to SQL Group
By), computes a tuple-based sliding window of size N inde-
pendently on each substream, then takes the union of these
windows to produce the output relation. More formally, a tu-
ple s with values a1, . . . , ak for attributes A1, . . . , Ak occurs
in output instantaneous relation R(τ) iff there exists an ele-
ment 〈s, τ ′〉 ∈ S, τ ′ ≤ τ such that τ ′ is among the N largest
timestamps of elements whose tuples have values a1, . . . , ak

for attributes A1, . . . , Ak. Note that analogous time-based par-
titioned windows would provide no additional expressiveness
over nonpartitioned time-based windows.

Example 7 The partitioned window “PosSpeedStr
[Partition By vehicleId Rows 1]” partitions
stream PosSpeedStr into substreams based on
vehicleId and picks the latest element in each substream.
(Note that there is no ambiguity in picking the latest ele-
ment in each substream, since position-speed reports for a
particular vehicle are made only once in 30 seconds and the
granularity of Datetime is one second.) At any time instant,
the relation defined by the window contains the latest speed-
position measurement for each vehicle that has ever transmit-
ted a measurement. �

6.1.4 Windows with a “slide” parameter Windows can op-
tionally contain a slide parameter, indicating the granularity
at which the window slides. The slide parameter is a time-
interval for time-based windows and a positive integer for
row-based and partitioned windows.

A time-based window over stream S with window size T
and slide parameter L is denoted as “S [Range T Slide
L]”. Its output relation is:

R(τ) =







φ if τ < L − 1
{s | 〈s, τ ′〉 ∈ S ∧ (τ ′ ≥ τend )

∧ (τ ′ ≤ τstart )} otherwise

where

τstart = bτ/Lc · L

τend = max{τstart − T, 0}

(The expression (bτ/Lc ·L) computes the largest multiple of
L smaller than τ .) Intuitively, “S [Range T Slide L]”
defines its output relation by sliding an interval of width T
time units over S, but the interval slides once only every
L time units, by an amount L. Note that we can treat “S
[Range T]” as an abbreviation for S [Range T Slide
1], where 1 is the granularity of the time domain. The follow-
ing example illustrates the use of the slide parameter.

Example 8 “PosSpeedStr [Range 1 Minute Slide
1 Minute]” denotes a one-minute window over
PosSpeedStr that slides at a one-minute granularity. At
any point in time the window contains the speed-position re-
ports from the last clock minute. For example, at time instant
60-sec, the window contains the first minute (1-60) of speed-
position reports, and continues to contain the same bag of
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tuples until the time instant 120-sec, when it shifts to the next
minute (61-120), and so on. This type of window in which
L = T has been referred to as a tumbling window in previous
work [16, 18]. �

Tuple-based and partitioned windows with a slide param-
eter are defined analogously.

6.2 Relation-to-Relation Operators

The relation-to-relation operators in CQL are derived from
traditional relational queries expressed in SQL, with the
straightforward semantic mapping to time-varying relations
specified at the beginning of this section. Anywhere a tradi-
tional relation is referenced in a SQL query, a (base or de-
rived) relation can be referenced in CQL.

Example 9 Consider the following CQL query for the Linear
Road application:

Select Distinct vehicleId
From PosSpeedStr [Range 30 Seconds]

This query is composed from a stream-to-relation sliding-
window operator, followed by a relation-to-relation operator
that performs projection and duplicate-elimination. The out-
put relation of this query contains, at any time instant, the
set of “active vehicles”—those vehicles having transmitted a
position-speed measurement within the last 30 seconds. �

6.3 Relation-to-Stream Operators

CQL has three relation-to-stream operators: Istream, Dstream,
and Rstream. In the following formal definitions, operators∪,
×, and − are assumed to be the bag versions.

1. Istream (for “insert stream”) applied to relation R con-
tains a stream element 〈s, τ〉 whenever tuple s is in R(τ)−
R(τ − 1). Assuming R(−1) = φ for notational simplic-
ity, we have:

Istream(R) =
⋃

τ≥0

((R(τ) − R(τ − 1)) × {τ})

2. Analogously, Dstream (for “delete stream”) applied to
relation R contains a stream element 〈s, τ〉 whenever tu-
ple s is in R(τ − 1) − R(τ). Formally:

Dstream(R) =
⋃

τ>0

((R(τ − 1) − R(τ)) × {τ})

3. Rstream (for “relation stream”) applied to relation R
contains a stream element 〈s, τ〉 whenever tuple s is in R
at time τ . Formally:

Rstream(R) =
⋃

τ≥0

(R(τ) × {τ})

A careful reader may observe that Istream and Dstream
are expressible using Rstream along with time-based slid-
ing windows and some relational operators. However, we re-
tain all three operators in CQL in keeping with goal #2 from
Section 1: easy queries should be easy to write.

Example 10 Consider the following CQL query for stream
filtering:

Select Istream(*)
From PosSpeedStr [Range Unbounded]
Where speed > 65

(Note the syntax of the relation-to-stream operator in the
Select clause.) This query is composed from three oper-
ators: an Unbounded window producing a relation that at
time τ contains all speed-position measurements up to τ , a re-
lational filter operator that restricts the relation to those mea-
surements with speed greater than 65 MPH, and an Istream
operator that streams new values in the (filtered) relation as
the result of the query. The effect is a simple filter over
PosSpeedStr that outputs all input elements with speed
greater than 65 MPH. The same filter query can be written
using the Rstream operator and a Now window:

Select Rstream(*)
From PosSpeedStr [Now]
Where speed > 65

As we will see shortly, our defaults also permit this query to
be written in its most intuitive form:

Select *
From PosSpeedStr
Where speed > 65

�

Example 11 The following query illustrates the use of
Dstream:

Select Dstream(VehicleId)
From PosSpeedStr [Range 30 Seconds]

This query is composed from three operators. The time-based
window operator produces the relation containing the speed-
position reports in the previous 30 seconds. The relation-to-
relation operator (Select-From clause) projects the
vehicleId attribute from this relation. Finally, the
Dstream operator produces a vehicleId in the output
whenever a vehicle is deleted from the above relation. In other
words, the element 〈v, τ〉 appears in the output stream when-
ever vehicle v reported its position and speed at time τ − 30,
but did not do so at time τ . This query thus detects when ve-
hicles exit from the highway. (Recall from Section 3 that a
vehicle on a highway reports its speed and position every 30
seconds.) �

The Istream operator is used most commonly with
Unbounded windows to express filter conditions as shown
above, or to stream the results of sliding-window join queries.
The Rstream operator is used most commonly with Now
windows to express filter conditions as shown above, or to
stream the results of joins between streams and relations, as
we will see in Query 6 of Section 7. The Dstream operator
is used less frequently than Istream or Rstream; see [37]
for examples of its use.
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6.4 Syntactic Shortcuts and Defaults

In keeping with goal #2 in Section 1, we permit some syntac-
tic “shortcuts” in CQL that result in the application of certain
defaults. Of course there may be cases where the default be-
havior is not what the author intended, so we assume that
when queries are registered the system informs the author of
the defaults applied and offers the opportunity to edit the ex-
panded query. There are two classes of shortcuts: omitting
window specifications and omitting relation-to-stream opera-
tors.

Default Windows When a stream is referenced in a CQL
query where a relation is expected (most commonly in the
From clause), an Unbounded window is applied to the
stream by default. While the default Unbounded window
usually produces appropriate behavior, there are cases where
a Now window is more appropriate, e.g., when a stream is
joined with a relation; see Query 6 in Section 7.

Default Relation-to-Stream Operators There are two cases
in which it seems natural for authors to omit an intended
Istream operator from a CQL query:

1. On the outermost query, even when streamed results rather
than stored results are desired [33].

2. On an inner subquery, even though a window is specified
on the subquery result.

For the first case we add an Istream operator by default
whenever the query produces a relation that is monotonic. A
relation R is monotonic iff R(τ1) ⊆ R(τ2) whenever τ1 ≤ τ2.
Since we cannot test monotonicity in the general case, we
use a conservative static monotonicity test. For example, a
base relation is monotonic if it is known to be append-only,
“S [Range Unbounded]” is monotonic for any stream
S, and the join of two monotonic relations also is monotonic.
If the result of a CQL query is a monotonic relation then it
makes intuitive sense to convert the relation into a stream us-
ing Istream. If it is not monotonic, the author might in-
tend Istream, Dstream, or Rstream, so we do not add
a relation-to-stream operator by default.

For the second case we add an Istream operator by de-
fault whenever the subquery is monotonic. If it is not, then the
intended meaning of a window specification on the subquery
result is somewhat ambiguous, so a semantic (type) error is
generated, and the author must add an explicit relation-to-
stream operator.

Example 12 Now we see why the filter query of Example 10
can written in its most intuitive form:

Select *
From PosSpeedStr
Where speed > 65

Since PosSpeedStr is referenced without a window spec-
ification, an Unbounded window is applied by default. Fur-
ther, since the output relation of the window and filter opera-
tors is monotonic, we add a default Istream operator to the
result. �

PosSpeedStr

SegSpeedStr

ActiveVehicleSegRel

VehicleSegEntryStr SegVolRel

TollStr

CongestedSegRel 

Fig. 4 Derived relations and streams for Linear Road queries

7 Linear Road in CQL

Recall that the Linear Road application has one base input
stream, PosSpeedStr, containing speed-position measure-
ments of vehicles using the highway. The output is a single
stream TollStr(vehicleId,toll) specifying tolls for
vehicles. Whenever a vehicle with vehicleId v enters a
congested segment at time τ , TollStr contains the element
〈(v,l), τ〉 where l denotes the toll for the congested seg-
ment at time τ .

We incorporate two assumptions suggested in the original
Linear Road specification [4] for computing tolls:

1. A vehicle is considered to have entered a segment when
the first speed-position measurement for the vehicle is
transmitted from that segment. The vehicle is considered
to remain in the segment until it exits (see Assumption 2
next) or enters another segment (i.e., a speed-position mea-
surement is transmitted from a different segment).

2. A vehicle is considered to have exited the highway when
no speed-position report for that vehicle is transmitted for
30 seconds.

These assumptions are necessary given that each vehicle trans-
mits its speed-position measurement only once each 30 sec-
onds.

Since the continuous query producing TollStr is fairly
complex, we express it using several named derived relations
and streams. Figure 4 shows the derived relations and streams
that we use, and their interdependencies. For example,
TollStr is produced from derived stream
VehicleSegEntryStr and derived relations
CongestedSegRel and SegVolRel. Our one base input
stream PosSpeedStr naturally appears as the source. We
present specifications for the derived streams and relations
in topological order according to Figure 4. For each derived
stream and relation, we first describe its meaning, followed
by the CQL (sub)query that produces it.

Query 1 SegSpeedStr(vehicleId,speed,segNo):
This stream is obtained from PosSpeedStr by replacing
the xPos attribute of each element with the corresponding
segment number. Since segments are exactly 1 mile long, the
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segment number is computed by (integer-)dividing xPos by
5280, the number of feet in a mile.

Select vehicleId, speed,
xPos/5280 as segNo

From PosSpeedStr

Note the use of a default Unbounded window and a default
Istream operator in this query. �

Query 2 ActiveVehicleSegRel(vehicleId,seg-
No): At any instant τ , this relation contains the current
segments of “active” vehicles, i.e., vehicles currently using
the highway system.

Select vehicleId, segNo
From SegSpeedStr [Range 30 Seconds]

Informally, the query uses a time-based window to identify
currently active vehicles based on Assumption 2 above.3 �

Query 3 VehicleSegEntryStr(vehicleId,seg-
No): A vehicle v entering a segment s at time τ produces
an element 〈(v,s), τ〉 on this stream.

Select Istream(*)
From ActiveVehicleSegRel

VehicleSegEntryStr is produced by applying the
Istream operator to ActiveVehicleSegRel. A vehi-
cle v entering a segment s at time τ causes a new tuple
to appear in ActiveVehicleSegRel at τ , which causes
the Istream operator to produce an element 〈(v,s), τ〉 in
VehicleSegEntryStr. �

Query 4 CongestedSegRel(segNo): At any instant τ ,
this relation contains the current set of congested segments.
Recall from Section 3 that a segment is considered congested
if the average speed of vehicles in the segment in the previous
5 minutes is less than 40 MPH.

Select segNo
From SegSpeedStr [Range 5 Minutes]
Group By segNo
Having Avg(speed) < 40

�

Query 5 SegVolRel(segNo,numVehicles): This re-
lation was introduced in Example 2. At any instant τ , this re-
lation contains the current count of vehicles in each segment.

Select segNo,
count(vehicleId) as numVehicles

From ActiveVehicleSegRel
Group By segNo

�

Query 6 TollStr(vehicleId,toll): This is the fi-
nal output toll stream.

3 In this query, we assume that a vehicle does not exit the highway
and re-enter within 30 seconds. We could handle this case by using
an additional Partition By window.

Select Rstream(E.vehicleId,
2 * (V.numVehicles-50)

* (V.numVehicles-50)
as toll)

From VehicleSegEntryStr [Now] as E,
CongestedSegRel as C,
SegVolRel as V

Where E.segNo = C.segNo and
C.segNo = V.segNo

At any instant τ , the Now window on the stream
VehicleSegEntryStr identifies the set of vehicles that
have entered new segments at τ . This set of vehicles is joined
with CongestedSegRel and SegVolRel to determine
which vehicles have entered congested segments, and to com-
pute tolls for such vehicles. Recall from Section 3 that the
toll for a congested segment is given by the formula 2 ×
(numvehicles − 50)

2, where numvehicles is the number of
vehicles currently in the segment.

This query provides an example where the default
Unbounded window would not yield the intended behav-
ior if a window specification were omitted. In general, if a
stream is joined with a relation in order to add attributes to
and/or filter the stream, then a Now window on the stream
coupled with an Rstream operator usually provides the de-
sired behavior. �

Recall that the Linear Road specification in this paper is
a simplified version of the original [4]. A CQL specification
of the complete Linear Road benchmark as well as a number
of other stream applications, such as network monitoring and
online auctions [44], is available at [37].

8 Time Management

Recall from Sections 4 and 5 that our abstract semantics as-
sumes a discrete, ordered time domain T . Specifically, our
continuous semantics is based on time logically advancing
within domain T . Conceptually, at time τ ∈ T all inputs up
to τ are processed and the output corresponding to τ (stream
elements with timestamp τ or instantaneous relation at τ ) is
produced. In this section we briefly discuss how a DSMS
might implement this semantics under realistic conditions.
The topic is covered in much more depth in [38].

For exposition in the remainder of this section let us as-
sume that relations are updated via timestamped relational
update requests that arrive on a stream. Thus, without loss of
generality we can focus on streams only. For a DSMS to pro-
duce output corresponding to a time τ ∈ T , it must have pro-
cessed all input stream elements at least through τ . In other
words, it must know at some “real” (wall-clock) time t that
no new input stream elements with timestamp ≤ τ will arrive
after t. Making this determination is straightforward when all
of the input streams are “alive” and their elements arrive in
timestamp order. However, in many stream applications (in-
cluding the Linear Road) input streams may be generated by
remote sources, the network conveying the stream elements
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to the DSMS may not guarantee in-order transmission, par-
ticularly across sources, and streams may pause and restart.

In the STREAM prototype our approach is to assume an
additional “meta-input” to the system called heartbeats. A
heartbeat consists simply of a timestamp τ ∈ T , and has the
semantics that after arrival of the heartbeat the system will
receive no future stream elements with timestamp ≤ τ . There
are various ways by which heartbeats may be generated. Here
are three examples:

1. In the easiest and a fairly common case, timestamps are
assigned using the DSMS clock when stream tuples arrive
at the system. Therefore stream elements are ordered, and
the clock itself provides the heartbeats.

2. The source of an input stream might generate source heart-
beats, which indicate that no future elements in that stream
will have timestamp less than or equal to that specified by
the heartbeat. If all the sources of input streams gener-
ate source heartbeats, an application-level or query-level
heartbeat can be generated by taking the minimum of all
the source heartbeats. Note that this approach is feasible
only if the heartbeats and the stream elements within a
single input stream reach the DSMS in timestamp order.

3. Properties of stream sources and the system or network-
ing environment may be used to generate heartbeats. For
example, if we know that all sources of input streams
use a global clock for timestamping and there is an up-
per bound D in delay of stream elements reaching the
DSMS, at every global time t we can generate a heartbeat
with timestamp t − D.

Heartbeats are also important internally within the STREAM
implementation of CQL, in order to communicate time-related
information among different operators in a query plan. These
and other details related to heartbeat generation can be found
in [38].

8.1 Operations over Timestamps

Recall from Section 4 that the presence of timestamps is im-
plicit, not part of the schema of a stream. Thus CQL does not
permit direct references to timestamps in queries. We decided
to make timestamps implicit for the following reasons:

1. Timestamps have certain properties (e.g., monotonicity)
that we rely on in our semantics (and implementation).
Therefore, we cannot permit queries to perform arbitrary
transformations on timestamps, and we decided against
making them explicit and monitoring the operations for
violation of these properties.

2. Making timestamps implicit limits the operations
performed on them, simplifying query plan generation
and optimization.

If an application wishes to pose queries referring to times-
tamps explicitly, it can do so by simply mirroring the times-
tamp attribute in its stream schemas. The following example
illustrates this point.

Example 13 We can add an explicit timestamp attribute to
PosSpeedStr, resulting in the schema
PosSpeedStr(vehicleId,Speed,xPos,tstamp).
When a vehicle v reports its position x and speed s at times-
tamp τ , the element 〈(v, s, x, τ), τ〉 arrives on
PosSpeedStr. The following query computes the delay
between the last two speed-position reports received from any
vehicle:

Select Max(tstamp) - Min(tstamp)
From PosSpeedStr [Rows 2]

This query cannot be expressed through implicit timestamps
only. �

9 Common Constructs

In this section, we illustrate a few constructs we found to ap-
pear frequently in CQL queries, primarily based on our expe-
rience with the Stream Query Repository [37].

9.1 Stream Filters:

A filter over a stream can be expressed in two ways: us-
ing an Istream-Unbounded window combination or an
Rstream-Now window combination. Both of these were il-
lustrated in Example 10. Note the Istream-Unbounded
window combination is the default for streams whose win-
dow specification is omitted (recall Section 6.4).

9.2 Stream-Relation Joins:

When a stream is joined with a relation, it is usually most
meaningful to apply a Now window over the stream, and an
Rstream operator over the join result. Consider a stream
Item of purchased items and a relation PriceTable of
current item prices. The query:

Select Rstream(Item.id,
PriceTable.price)

From Item [Now], PriceTable
Where Item.id = PriceTable.itemId

produces the streamed items with their current price appended.
Using other types of windows or other relation-to-stream op-
erators usually does not produce “correct” results. For exam-
ple, the query:

Select Istream(Item.id,
PriceTable.price)

From Item [Range Unbounded],
PriceTable

Where Item.id = PriceTable.itemId

produces, along with new items, the (new) price for all previ-
ously purchased items whenever the price for an item changes.
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9.3 Sliding-Window Joins:

Sliding-window joins of two streams is an operation that has
received great deal of attention, e.g., [10, 22, 39]. If both
streams in the join have keys (i.e., there are no duplicate
tuples), this type of join can be expressed in CQL using an
Istream operator. For example:

Select Istream(*)
From S1 [Rows 5], S2 [Rows 10]
Where S1.A = S2.A

is a sliding-window natural-join of S1 and S2 with a 5-tuple
window on S1 and a 10-tuple window on S2. A new tuple
of S1 produces an output join tuple if it joins with one of the
last 10 tuples of S2; a new tuple of S2 produces an output
join tuple in a similar manner.

If either stream can have duplicates, the above query may
not have the expected semantics of a sliding-window join.
Suppose a new tuple of S2 is identical to the tuple 10 po-
sitions earlier. Then the new S2 tuple does not produce any
join result tuples, even if it joins with one of the last 5 tuples
of S1. The more general sliding-window join operation han-
dling duplicates can be expressed in CQL, but it is somewhat
more involved.

9.4 Streaming Aggregations:

Aggregation produces relations, not streams, in CQL since
aggregations are relation-to-relation operators. We describe
two commonly used ways of streaming an aggregated value:

1. Stream the value of the aggregation whenever it changes:
This can be expressed using the Istream operator over
the aggregation. For example:

Select Istream(Count(*))
From PosSpeedStr [Range 1 Minute]

counts the speed-position reports over the previous minute,
and streams the count whenever it changes.

2. Stream the value of the aggregation periodically: This can
be expressed using windows with a slide parameter and
Istream. For example:

Select Istream(Count(*))
From PosSpeedStr [Range 1 Minute

Slide 1 Minute]

streams the number of speed-position reports over the last
minute once every minute. A small subtlety with this query
is that it will not stream the aggregation value if it re-
mains unchanged from one minute to the next. Ensuring
the value is streamed even when unchanged requires a
more complex query.

10 Equivalences in CQL

In this section we briefly consider syntactic equivalences in
the CQL language. As in any declarative language, equiva-
lences can enable important query-rewrite optimizations, how-
ever the optimization process itself is not a central topic of
this paper.

All equivalences that hold in SQL with standard relational
semantics carry over to the relational portion of CQL, in-
cluding join reordering, predicate pushdown, subquery flat-
tening, etc. Furthermore, since any CQL query or subquery
producing a relation can be thought of as a materialized view
that is updated over time, all equivalences from materialized
view maintenance [26] can be applied to CQL. For example,
a materialized view joining two relations generally is main-
tained incrementally rather than by recomputation, and the
same approach can be used to join two relations (or win-
dowed streams) in CQL. In fact, this equivalence is incorpo-
rated into our binary-join physical query plan operator
(Section 12).

Here we consider two equivalences based on streams: win-
dow reduction and filter-window commutativity. The identifi-
cation of other useful stream-based syntactic equivalences is
a topic of future work.

10.1 Window Reduction

The following equivalence can be used to rewrite any CQL
query or subquery with an Unbounded window and an
Istream operator into an equivalent (sub)query with a Now
window and an Rstream operator. Here, L is any select-list,
S is any stream (including a subquery producing a stream),
and C is any condition.

Select Istream(L)
From S [Range Unbounded]
Where C

≡

Select Rstream(L)
From S [Now]
Where C

Furthermore, if stream S has a key (no duplicates), then we
need not replace the Istream operator with Rstream, al-
though once a Nowwindow is applied there is little difference
in efficiency between Istream and Rstream.4

Transforming Unbounded to Now obviously suggests a
much more efficient implementation—logically,Unbounded
windows require buffering the entire history of a stream, while
Now windows allow a stream tuple to be discarded as soon
as it is processed. In separate work we have developed tech-
niques for transforming Unbounded windows into [Rows
N] windows, but those transformations rely on many-one
joins and constraints over the streams [12].

4 More generally, Istream and Rstream are equivalent over
any relation R for which R(τ ) ∩ R(τ − 1) = ∅ for all τ .
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We may find other cases or more general criteria whereby
Unbounded windows can be replaced by Now windows; a
detailed exploration is left as future work.

10.2 Filter-Window Commutativity

Another equivalence that can be useful for query-rewrite op-
timization is the commutativity of selection conditions and
time-based windows. Here, L is any select-list, S is any stream
(including a subquery producing a stream), C is any condi-
tion, and T is any time interval.

(Select L From S Where C) [Range T]

≡

Select L From S [Range T] Where C

If the system uses a query evaluation strategy based on mate-
rializing the windows specified in a query, then filtering be-
fore applying the window instead of after is preferable since
it reduces steady-state memory overhead [33]. Note that the
converse transformation might also be applied: We might pre-
fer to move the filtering condition out of the window in order
to allow the window to be shared by multiple queries with dif-
ferent selection conditions [33]. Finally note that filters and
tuple-based windows generally do not commute.

11 Comparison with Other Languages

Now that we have presented our language we can provide
a more detailed comparison against some of the related lan-
guages for continuous queries over streams and relations that
were discussed briefly in Section 2. Specifically, we show
that basic CQL (without user-defined functions, aggregates,
or window operators) is strictly more expressive than Tapestry
[43], Tribeca [41], GSQL [21], and materialized views over
relations with or without chronicles [29]. We also discuss Au-
rora [16], although it is difficult to compare CQL against Au-
rora because of Aurora’s graphical, procedural nature.

At the end of this section we discuss our choice to define
a language based on both relations and streams, instead of
taking a stream-only approach. Included is a discussion of
the stream-only query language of TelegraphCQ [18].

11.1 Views and Chronicles

Any conventional materialized view defined using a SQL
query Q can be expressed in CQL using the same query Q
with CQL semantics.

The Chronicle Data Model (CDM) [29] defines chroni-
cles, relations, and persistent views, which are equivalent to
streams, base relations, and derived relations in our terminol-
ogy. For consistency we use our terminology instead of theirs.
CDM supports two classes of operators based on relational al-
gebra, both of which can be expressed in CQL. The first class
takes streams and (optionally) base relations as input and and

produces streams as output. Each operator in this class can be
expressed equivalently in CQL by applying a Now window
on the input streams, translating the relational algebra opera-
tor to SQL, and applying an Rstream operator to produce a
streamed result. For example, join query S1 ./S1.A=S2.B S2

in CDM is equivalent to the CQL query:

Select Rstream(*)
From S1 [Now], S2 [Now]
Where S1.A = S2.B

The second class of operators takes a stream as input and pro-
duces a derived relation as output. These operators can be ex-
pressed in CQL by applying an Unbounded window on the
input stream and translating the relational algebra operator to
SQL.

The operators in CDM are strictly less expressive than
CQL. CDM does not support sliding windows over streams,
although it has implicit Now and Unbounded windows as
described above. Furthermore, CDM distinguishes between
base relations, which can be joined with streams, and derived
relations (persistent views), which cannot. These restrictions
ensure that derived relations in CDM can be maintained in-
crementally in time logarithmic in the size of the derived re-
lation.

11.2 Tapestry

Tapestry queries [43] are expressed using SQL syntax. At
time τ , the result of a Tapestry query Q contains the set of
tuples logically obtained by executing Q as a relational SQL
query at every instant τ ′ ≤ τ and taking the set-union of the
results. This semantics for Q is equivalent to the CQL query:

Select Istream(Distinct *)
From (Istream(Q)) [Range Unbounded]

Tapestry does not support sliding windows over streams or
any relation-to-stream operators.

11.3 Tribeca

Tribeca is based on a set of stream-to-stream operators and
we have shown that all of the Tribeca operators specified
in [41] can be expressed in CQL; details are omitted. Two
of the more interesting operators are demux (demultiplex)
and mux (multiplex). In a Tribeca query the demux oper-
ator is used to split a single stream into an arbitrary num-
ber of substreams, the substreams are processed separately
using other (stream-to-stream) operators, then the resulting
substreams are merged into a single result stream using the
mux operator. This type of query is expressed in CQL using
a combination of partitioned window and Group By.

Like chronicles and Tapestry, Tribeca is strictly less ex-
pressive than CQL. Tribeca queries take a single stream as
input and produce a single stream as output, with no notion
of relation. CQL queries can have multiple input streams and
can freely mix streams and relations.
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11.4 Gigascope

GSQL is a SQL-like query language developed for Gigas-
cope, a DSMS designed specifically for network monitoring
applications [21]. GSQL is a stream-only language, but rela-
tions can be created and manipulated using user-defined func-
tions. Over streams GSQL’s primary operators are selection,
join, aggregation, and merge. Constraints on join and aggre-
gation ensure that they are nonblocking: a join operator must
contain a predicate involving an “ordered” attribute from each
of the joining streams, and an aggregation operator must have
at least one grouping attribute that is ordered. (Ordered at-
tributes are generalizations of CQL timestamps.)

The four primary operations in GSQL can be expressed in
CQL: Selection is straightforward. The GSQL Merge oper-
ator can be expressed using Union in CQL. The GSQL join
operator translates to a sliding-window join with an
Istream operator in CQL. Finally, although it is nontriv-
ial to express GSQL aggregation in CQL (requiring grouping
and aggregation, projection, and join), it always is express-
ible; details are omitted.

11.5 Aurora

Aurora queries are built from a set of eleven operator
types [16]. Operators are composed by users into a global
query execution plan via a “boxes-and-arrows” graphical in-
terface. It is somewhat difficult to compare the procedural
query interface of Aurora against a declarative language like
CQL, but we can draw some distinctions.

The aggregation operators of Aurora (Tumble, Slide,
and XSection) are each defined from three user-defined
functions, yielding nearly unlimited expressive power. The
aggregation operators also have optional parameters set by
the user. For example, these parameters can direct the opera-
tor to take certain action if no stream elements have arrived
for T wall-clock seconds, making the semantics dependent
on stream arrival and processing rates.

All operators in Aurora are stream-to-stream, and Aurora
does not explicitly support relations. In order to express CQL
queries involving derived relations and relation-to-relation op-
erators, Aurora procedurally manipulates state corresponding
to a derived relation.

11.6 Stream-Only Query Language

Our abstract semantics and therefore CQL distinguish two
fundamental data types, relations and streams. At the end of
this section we outline several motivations for choosing our
dual approach over a purely stream-based approach. Never-
theless, it is worth noting that we can always derive a stream-
only language Ls from our language L (either CQL or an-
other instantiation of our abstract semantics) as follows.

1. Corresponding to each n-ary relation-to-relation operator
O in L, there is an n-ary stream-to-stream operator Os in

Ls. The semantics of Os(S1, . . . , Sn) when expressed in
L is Rstream(O(S1 [Now], . . . , Sn [Now])).

2. Corresponding to each stream-to-relation operator W in
L, there is a unary stream-to-stream operator Ws in Ls.
The semantics of S[Ws] when expressed in L is
Rstream(S[W ]).

3. There are no operators in Ls corresponding to relation-
to-stream operators of L.

L and Ls have essentially the same expressive power.
Clearly any query in Ls can be rewritten in L. Given a query
Q in L, we obtain a query Qs in Ls by performing the fol-
lowing three steps. First, transform Q to an equivalent query
Q′ that has Rstream as its only relation-to-stream operator
(this step is always possible as indicated in Section 6.3). Sec-
ond, replace every input relation Ri in Q′ with Rstream(Ri).
Finally, replace every relation-to-relation and
stream-to-relation operator in Q with its Ls equivalent ac-
cording to the definitions above. As it turns out, the language
Ls derived from CQL is quite similar to the stream-to-stream
approach being taken in TelegraphCQ [18].

We chose our dual approach over the stream-only ap-
proach for at least three reasons:

1. Reiterating goal #1 from Section 1, we wanted to exploit
the wide body of understanding and work on the existing
relational model to the extent possible.

2. Our experience with a large number of queries [37] sug-
gests that the dual approach results in more intuitive
queries than the stream-only approach. As illustrated in
our Linear Road examples (Section 7), even applications
with purely stream-based input and output specifications
may include fundamentally relational components.

3. Having both relations and streams cleanly generalizes ma-
terialized views, as discussed in detail in Section 11.1.

Note that the Chronicle Data Model [29] discussed in
Section 11.1 also takes an approach similar to ours—it sup-
ports both chronicles (closely related to streams) and materi-
alized views (relations).

12 CQL Implementation in STREAM

In this section we describe the query plans and execution
strategies we use in our implementation of CQL as the declar-
ative query language in the STREAM prototype Data Stream
Management System [1]. Section 12.1 describes the physical
representation of streams and relations within query plans,
Section 12.2 describes query plan structure, Section 12.5 enu-
merates the operators used in query plans, and Section 12.6
briefly discusses query plan generation. (Details of
STREAM’s adaptive approach to query optimization appear
in other papers [10, 11, 13].) Finally, Section 12.7 presents
STREAM’s graphical user interface for viewing, monitoring,
and altering query plans.

Overall, STREAM’s query execution strategy is based
heavily on incremental processing: stream-to-relation opera-
tors transform new elements on their input streams to changes
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in their output relations; relation-to-relation operators trans-
form changes in their input relations to changes in their out-
put relations; relation-to-stream operators transform changes
in their input relations to new elements in their output streams.
All the components of STREAM’s architecture—the opera-
tors, operator state, and internal representations of relations
and streams—are designed to facilitate incremental process-
ing. Our execution strategy is somewhat related to work on
incremental view maintenance [26, 27], but there are impor-
tant differences: In STREAM timestamps play an important
role in the generation and processing of increments, and there
are several new operators in STREAM that are not part of tra-
ditional view maintenance.

12.1 Internal Representation of Streams and Relations

Recall the formal definitions of streams and relations from
Section 4. A stream is a bag of tuple-timestamp pairs, which
can be represented as a sequence of timestamped tuple “in-
sertions.” A relation, which is a time-varying bag of tuples,
can also be represented as a sequence of timestamped tuples,
except now we have both insertion tuples and deletion tuples
to capture the changing state of the relation.

STREAM exploits this similarity between streams and re-
lations and uses a common physical representation for both
of them: sequences of tagged tuples. The tuple part contains
a value for each attribute in the schema of the stream or rela-
tion; the tag contains a timestamp and indicates whether the
tuple is an insertion or a deletion. The tagged-tuple sequences
are append-only and are always in nondecreasing order by
timestamp. (Base streams and relation updates that arrive out
of timestamp order can be converted into sorted sequences
as described in Section 8, and operators always emit sorted
sequences.)

12.2 STREAM Query Plans

When a continuous query specified in CQL is registered with
the STREAM system it is compiled into a query plan. The
query plan is merged with existing query plans whenever pos-
sible, in order to share computation and state. Plan generation
itself is not a focus of this paper, although we discuss it again
briefly in Section 12.6. Each query plan runs continuously
and is composed of three different types of components: op-
erators, queues, and synopses.

12.2.1 Operators Each query plan operator reads from one
or more input queues, processes the input based on its seman-
tics, and writes its output to an output queue. Section 12.5
describes the current set of operators supported in STREAM.
Since queues (described next) encode both streams and rela-
tions, query plan operators can implement all three operator
types in our abstract semantics and CQL: stream-to-relation,
relation-to-relation, and relation-to-stream.

It is important to distinguish between the logical oper-
ators of the previous sections, which are used primarily to

specify precise query semantics, from the physical operators
that occur in query plans. As is typical in all DBMS’s, phys-
ical operators are related to logical operators, but there exists
no one-one correspondence between them. In the rest of this
section, operators refer to physical operators.

12.2.2 Queues A queue connects its input operator OI to
its output operator OO . At any time a queue contains a (pos-
sibly empty) sequence representing a portion of a stream or
relation in our physical representation as described in Sec-
tion 12.1. The contents that pass through the queue over time
correspond to the stream or relation produced by OI . The
queue buffers the insertions and deletions in the output of OI

until they are processed by OO .

12.2.3 Synopses Synopses store the intermediate state
needed by continuous query plans. In our query plans a syn-
opsis is always “owned” by a single operator O, and the state
the synopsis contains is that needed for future evaluation of
O. For example, to perform a windowed join of two streams,
the join operator must have access to all tuples in the current
window on each input stream. Thus, a join operator maintains
one synopsis (e.g., a hash table) for each of the joined inputs.
On the other hand, operators such as selection and duplicate-
preserving union do not require a synopsis since they do not
require saved state.

The most common use of a synopsis in our system is to
materialize the current bag of tuples of a relation, such as the
contents of a sliding window, or of a relation derived by a
subquery. Synopses also may be used to store a summary of
the tuples in a stream or a relation for approximate query an-
swering. Example synopsis types for this purpose are reser-
voir samples [46] over streams, and Bloom filters [15].

12.2.4 Memory management Currently queues and
synopses are stored entirely in memory, although we are in
the process of implementing the capability for them to spill
to disk. A common pool of memory is allocated to queues
and synopses on demand at the page granularity. To min-
imize copying and proliferation of tuples, all tuple data is
stored in synopses and is not replicated. Queues contain refer-
ences to tuple data within synopses, along with tags contain-
ing a timestamp and an insertion/deletion indicator. In addi-
tion, some synopses are simply “stubs” that point to data in
other synopses, as discussed in Section 12.4.

12.3 Example Query Plans

Figure 5 illustrates a merged STREAM query plan for two
continuous queries, Q1 and Q2, over input streams S1 and
S2. Query Q1 is a windowed-aggregate query: it maintains
the maximum value of S1.A for each distinct value of S1.B
over a 50,000-tuple sliding window on stream S1. In CQL:

Q1: Select B, max(A)
From S1 [Rows 50,000]
Group By B
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Fig. 5 STREAM continuous query plan for two queries

Query Q2 streams the result of a sliding-window join over
streams S1 and S2. The window on S1 is a tuple-based win-
dow containing the last 40,000 tuples, while the window on
S2 is a 10-minutes time-based window. In CQL:

Q2: Select Istream(*)
From S1 [Rows 40,000],

S2 [Range 600 Seconds]
Where S1.A = S2.A

The plan contains five operators, seq-windowS1, seq-
windowS2, aggregate,binary-join, and i-stream,
seven synopses Syn1–Syn7, and eight queues q1–q8. Oper-
ators seq-windowS1 and seq-windowS2 are stream-to-
relation, aggregate and binary-join are relation-to-
relation, and i-stream is relation-to-stream. We explain in
some detail how each of the five operators behave.

– Operator seq-windowS1 is a sliding-window operator
that reads input stream S1’s tuples from input queue q1,5

updates the sliding-window synopsis Syn1, and outputs
the insertions and deletions to this window (which is a
relation) on both queues q3 and q4. Syn1 always contains
the 50,000 most recent tuples in stream S1 that seq-
windowS1 has processed, which is the larger of the two
windows applied to S1.

– Sliding-window operator seq-windowS2 processes in-
put stream S2’s tuples from queue q2. seq-windowS2

maintains synopsis Syn2, which contains all tuples from
S2 whose timestamps are within the last 600 seconds.
seq-windowS2 outputs insertions and deletions to this
window (which is a relation) on queue q5. Specifically,
for an S2 tuple s with timestamp τ , seq-windowS2 will

5 In reality, a special operator stream-shepherd handles in-
coming streams, placing the elements onto corresponding stream in-
put queues; see Section 12.5.4.

produce an insertion of s into this window with timestamp
τ , and a deletion of s from this window with timestamp
τ + 601 seconds. Recall from Section 12.1 that all inser-
tions and deletions are emitted by the operator in nonde-
creasing timestamp order.

– Operator aggregate maintains the maximum value of
S1.A for each distinct value of S1.B in its input rela-
tion, which is the 50,000-tuple sliding window on stream
S1. The aggregate values change based on insertions and
deletions to the window, which recall are provided by op-
erator seq-windowS1 on queue q3. Operator
aggregate maintains the current aggregation result in
synopsis Syn6, and it outputs insertions and deletions to
this result on queue q6. Because max is not incrementally
maintainable—when the current maximum S1.A for an
S1.B value leaves the window we may need to inspect
the entire window to find the new maximum—operator
aggregate maintains a second synopsis Syn3 with suf-
ficient information to maintain the maximums. It turns out
that Syn3 is simply a time-shifted version of Syn1: Syn3

contains the same 50,000 tuple window except it is “be-
hind” by the tuples in q3. Instead of duplicating informa-
tion, the plan shares tuple data between Syn1 and Syn3, as
indicated by the dotted arrow between them in Figure 5.

– Operatorbinary-join joins two input relations, which
are sliding windows on streams S1 and S2. binary-
join computes the join incrementally using the inser-
tions and deletions to these windows provided on queues
q4 and q5 respectively. binary-join processes tuples
in nondecreasing timestamp order across both of its in-
puts. That is, each time it is ready to process an input
tuple, it selects the tuple from queue q4 or q5 with the
lowest timestamp. Logically, binary-join maintains
a synopsis for each input: Syn4 and Syn5 for q4 and q5. An
insertion (deletion) on q4 is joined with Syn5 to compute
the corresponding insertions (deletions) to the join result
which are output on queue q7; similarly for q5. These
joins can be nested-loop or index joins depending whether
we choose to build indexes on the join attributes in Syn4

and Syn5. Logically Syn4 contains the 40,000 most recent
tuples in stream S1 that binary-join has processed.
In our implementation, actual tuple data is shared rather
than duplicated between synopses Syn4 and Syn1 as indi-
cated by the dotted arrow between them in Figure 5. Sim-
ilarly, the plan shares tuple data between Syn5 and Syn2.
Furthermore, the subplan rooted at seq-windowS1 is
shared by aggregate and binary-join, thus shar-
ing the window computation on S1 between queries Q1

and Q2. Our query plans always perform window sharing
on a stream, with a single physically-stored synopsis au-
tomatically containing all stream elements needed by any
window on that stream; see Section 12.5.1.

– Operator i-stream converts the relation produced by
the join into a stream of relation insertions using the se-
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mantics of the Istream operator from Section 6.3. Since
i-stream receives the insertions and deletions to the
join result in queue q7, it might appear that i-stream
can simply pass along all insertions and drop all dele-
tions. However, if a tuple happens to be both inserted and
deleted from the join result with the same timestamp, then
for correct semantics i-stream must detect this case
and not pass along the insertion. (This case can occur,
for example, when the window on S1 slides and the tuple
values that enter and leave the window happen to be iden-
tical.) To handle this case correctly, i-stream buffers
input insertions for a timestamp τ in synopsis S7 until it
knows that it will see no further tuples with that times-
tamp (recall Section 8).

It is important for timestamps on the tuples output by a
query operator to properly reflect our semantics as specified
earlier in this paper. In most operators, one or more output
tuples are produced as the result of an input tuple being con-
sumed, and it turns out our semantics is maintained correctly
by copying the input tuple’s timestamp to the output tuple.
For example, when an input tuple with timestamp τ causes
a tuple-based window to slide, both the insert and the delete
generated by the slide are timestamped τ . When join results
are produced from a new input tuple with timestamp τ , the
new join results have timestamp τ , which always is the later
of the timestamps on the two joining tuples since we pro-
cess join inputs in nondecreasing timestamp order across in-
puts. Aggregation is similar: a new input tuple with times-
tamp τ produces one or more insertions and deletions to the
aggregate result also timestamped τ . Time-based windows
are trickier, as illustrated above. For a time-based window
of size T , a stream tuple s with timestamp τ generates an in-
serted tuple with timestamp τ and generates a deleted tuple
with timestamp τ + T + 1, where the timestamp arithmetic,
and particularly the meaning of “+1” depends on the time
domain to which the timestamps belong. Recall from Sec-
tion 4 that our semantics assumes a discrete and ordered time
domain, so here “+1” denotes an increment in this domain,
e.g., one second in the Datetime domain.

The execution of query plans is controlled by a global
scheduler, which currently runs in the same thread as all of
the query operators in the system. Each time the scheduler
is invoked, it selects an operator to execute and calls a spe-
cific procedure defined for that operator, passing as a param-
eter the maximum number of input tuples that the operator
should process before returning control to the scheduler. We
currently use a simple round-robin scheduler, but we intend
to incorporate a more appropriate scheduling algorithm based
on recent research [7].

12.4 A Note on Synopses

From the example STREAM query plan of Figure 5 we see
that our query plans tend to be overloaded with synopses. For
example, the plan for the windowed-join query Q2 in Figure 5

uses five synopses—one each for the two seq-window op-
erators, two for the binary-join operator, and one for the
i-stream operator. Our technique of generating numerous
synopses made it much easier to implement a plan generation
algorithm that works for arbitrary CQL queries. We could add
a post-processing step that traverses query plans and physi-
cally merges some synopses. However, our approach so far
has been to leave all the synopses in place, but make many of
them logical “stubs” that primarily point into other synopses.
For example, the plan for query Q2 in Figure 5 materializes
only three synopses instead of five since the two synopses of
the binary-join operator are shared with the synopses of
the corresponding seq-window operators. Synopses Syn4

and Syn5 in Figure 5 are stubs pointing to synopses Syn1 and
Syn2 respectively.

Currently, we have implemented only simple strategies
for sharing synopsis state across different operators. As de-
scribed above, our most common strategy is to share state be-
tween an operator that produces a relation (e.g., a sliding win-
dow) and an operator that accesses the relation (e.g., a join
over the window). In related work [6], we present more so-
phisticated strategies for sharing state, specifically algorithms
for sharing state across different aggregations over sliding
windows. These algorithms could be incorporated into the
STREAM prototype although we have not yet done so.

12.5 STREAM Query Operators

In this section we specify all of the query operators currently
implemented in the STREAM prototype and used in query
plans. Every operator is either a data operator or a system
operator. Data operators are the main data processing units.
They can be categorized into three classes—stream-to-
relation, relation-to-relation, and relation-to-stream—just like
the logical operators of CQL. However, we note again that all
operators perform incremental processing, so effectively they
are all performing a type of stream-to-stream processing.

All five operators discussed in the previous section were
data operators. System operators isolate the data operators
from lower-level issues such as asynchronous and out-of-order
arrival of streams, load shedding [9, 42], and external stream
data formats. The operators are listed in Table 1.

12.5.1 Stream-to-Relation Operators The sliding-window
operator seq-window is the only stream-to-relation oper-
ator implemented in STREAM. It supports the tuple-based,
time-based, and partitioned window specifications introduced
in Section 6.1. (STREAM does not yet support windows with
a slide parameter, as described in Section 6.1.4.) As illus-
trated in Figure 5, STREAM instantiates one sliding-window
operator, denoted seq-windowS, for each stream S that has
at least one continuous query specifying a window over S.
Operator seq-windowS has one input queue providing the
tuples in S in nondecreasing timestamp order. For each slid-
ing window on S used in a query plan, seq-windowS main-
tains an output queue containing the insertions and deletions
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Name Operator Type Description

seq-window stream-to-relation Implements time-based, tuple-based,
and partitioned windows

select relation-to-relation Filters tuples based on predicate(s)
project relation-to-relation Duplicate-preserving projection
binary-join relation-to-relation Joins two input relations
mjoin relation-to-relation Multiway join from [45]
union relation-to-relation Bag union
except relation-to-relation Bag difference
intersect relation-to-relation Bag intersection
antisemijoin relation-to-relation Antisemijoin of two input relations
aggregate relation-to-relation Performs grouping and aggregation
duplicate-eliminate relation-to-relation Performs duplicate elimination

i-stream relation-to-stream Implements Istream semantics
d-stream relation-to-stream Implements Dstream semantics
r-stream relation-to-stream Implements Rstream semantics

stream-shepherd system operator Handles input streams arriving
over the network

stream-sample system operator Samples specified fraction of tuples
stream-glue system operator Adapter for merging a stream-

producing view into a plan
rel-glue system operator Adapter for merging a relation-

producing view into a plan
shared-rel-op system operator Materializes a relation for sharing
output system operator Sends results to remote clients

Table 1 Operators in STREAM query plans

to that window. By using a single window operator per stream
S, the system is able to share the computation and memory
required for window maintenance across all queries referenc-
ing S.

12.5.2 Relation-to-Relation Operators Each relation-to-
relation operator processes insertions and deletions in times-
tamp order from one or more input queues, computes its out-
put incrementally, and writes the output insertions and dele-
tions to an output queue in timestamp order. As listed in Ta-
ble 1, STREAM supports relation-to-relation operators cor-
responding to all standard relational operators. Notice that
STREAM supports two join operators: binary-join, a
binary join operator as illustrated in Figure 5, and mjoin,
the multiway join operator proposed in [45]. Consequently, a
multiway join can be processed in two ways—using mjoin
which does not materialize intermediate results [45], or us-
ing a tree of binary joins. Deciding which strategy to use is a
query optimization issue not covered in this paper.

12.5.3 Relation-to-Stream Operators STREAM supports
three relation-to-stream operators—i-stream,d-stream,
and r-stream—corresponding to the Istream,
Dstream, and Rstream operators defined in Section 6.3.
Each operator processes insertions and deletions in times-
tamp order from its single input queue, and writes the output
stream insertions to an output queue in timestamp order. The

i-stream operator was described in Section 12.3, and the
d-stream operator is very similar. The r-stream oper-
ator maintains the entire current state of its input relation in
a synopsis and outputs all of the tuples as insertions at each
time step. While this may appear expensive, recall from Sec-
tion 6.3 that the Rstream operator is used most commonly
with Now windows, so the “current state of the relation” is
generally very small.

12.5.4 System Operators The primary purpose of the sys-
tem operators in STREAM is to isolate the data operators
from dealing with various lower-level issues. For complete-
ness and for understanding the STREAM query plans in Sec-
tion 12.7, we briefly discuss some of these operators. The
stream-shepherd operator for a stream S serves as the
source of S to all query plans accessing S: primarily it re-
ceives tuples arriving asynchronously over the network, trans-
forms them to STREAM’s internal representation, and writes
them to the appropriate input queues. In the future, this op-
erator also will be responsible for buffering input tuples for
proper ordering, generating heartbeats when source applica-
tions don’t provide them [38], and performing load shedding
under overload [9].

The stream-sample operator currently is used only
for system-managed load shedding [9], although we also in-
tend to implement a sample clause in our query language [8].
stream-sample drops a specified fraction of stream tu-
ples from its input queue based on a uniform random sample
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(“coin toss”). Other implemented system operators serve as
materialization points for relations
(shared-rel-op), enable plans for views to be merged
into new query plans (rel-glue and stream-glue), and
send query results to remote clients (output).

12.6 Query Plan Generation

Most of the CQL language is operational in the STREAM
system. Our query plan generator is fairly simple, using hard-
coded heuristics to generate initial query plans. Our current
approach is to generate simple plans, which are then moni-
tored and possibly restructured automatically
using STREAM’s adaptivity component, StreaMon
[10,11,13]. Given the promise of this approach, currently we
do not expect to build a complex query optimizer for plan
generation. However, we do apply heuristics to generate our
initial simple plan, including:

1. Push selections below joins.
2. Maintain and use indexes for synopses on

binary-join, mjoin, and aggregate operators.
3. Share synopses and operators within query plans when-

ever possible.6

We are actively moving toward one-time and dynamic
cost-based optimization of CQL queries. Since CQL uses SQL
as its relational query language, we can also leverage many of
the one-time optimization techniques used in traditional rela-
tional systems. In addition, we are exploring adaptive query
optimization techniques that are coarser-grained than Eddies
(as used in the Telegraph project [18]). Our approach relies
on two interacting components: a monitor that captures prop-
erties of streams and system behavior, and an optimizer that
can reconfigure query plans and resource allocation as prop-
erties change over time.

12.7 Example STREAM Plans

Lastly, we present two snapshots of query plans taken from
STREAM’s graphical query plan visualizer. Through the vi-
sualization interface users can inspect the plan generated for a
continuous query as soon as the query is registered, can mon-
itor plan behavior during execution, and can even alter plan
structure and attributes of plans such as memory allocation,
for the purpose of experimentation.

Figure 6 shows the query plan for the following simple
illustrative CQL query over streams S1 and S2:

Select S2.name, max(S1.num)
From S1 [Rows 50,000],

S2 [Rows 50,000]

6 So far the sharing techniques implemented in our system are
simple, but this is an important area of future research. For example,
more sophisticated techniques such as [6, 20, 32] should be applica-
ble.

Where S1.name <= ’i’ and
S1.num = S2.num

Group By S2.name

This query is a windowed two-way join with a filter predi-
cate on S1, followed by an aggregation. The system operators
used in the query plan in Figure 6 are stream-shepherd
operators for streams S1 and S2 and an output operator
to send the query result continuously to the client that sub-
mitted the query. The data operators are seq-window for
S1 and S2, select, binary-join, aggregate, and
(duplicate-preserving) project. Notice that synopses are
shared between the window operators and the join, and the se-
lection has been pushed below the join. The selection cannot
be pushed below the window operator since in general tuple-
based windows and selection do not commute. The
binary-join operator materializes its output relation in a
synopsis that is shared with the aggregate operator, simi-
lar to our example in Section 12.3.

Figure 7 shows the complete query plan for the TollStr
Linear Road query from Section 7, which incorporates plans
for all subqueries that were used to write this query in CQL.
We do not expect readers to examine every detail of this com-
plex query plan.

13 Conclusions

This paper specified the CQL language for continuous queries
over data streams, including a formal abstract semantics on
which CQL is based. Most of the CQL language is opera-
tional in the STREAM prototype Data Stream Management
System, including the “linear road” benchmark used as ex-
amples throughout this paper. This paper also describes the
structure and implementation of query execution plans for
CQL in the STREAM system.

The STREAM system is available for experimentation
over the Internet: For each user, a dedicated server is started
on a machine at Stanford and a client is started on the user’s
machine. Through the graphical interface as depicted in Fig-
ures 6 and 7, users may register streams and continuous
queries, and view the streamed (or stored) results. Users may
also inspect and alter query plans, and may perform visual
system monitoring through “introspection”: Query compo-
nents write statistics (such as throughput, selectivity, etc.)
onto a special system stream. Graphical system monitors ob-
tain their plotted values by registering standard CQL queries
on the special system stream.

Please try out the system, available from
the STREAM home page at
http://www-db.stanford.edu/stream/.
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35. G. Özsoyoglu and R. T. Snodgrass. Temporal and real-time
databases: A survey. IEEE Trans. on Knowledge and Data
Engg., 7(4):513–532, Aug. 1995.

36. P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A model
for sequence databases. In Proc. of the 11th Intl. Conf. on Data
Engineering, pages 232–239, Mar. 1995.

37. SQR – A Stream Query Repository. http://www-db.
stanford.edu/stream/sqr/.

38. U. Srivastava and J. Widom. Flexible time management in data
stream systems. In Proc. of the 23rd ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems, pages 263–
274, June 2004.

39. U. Srivastava and J. Widom. Memory-limited execution of win-
dowed stream joins. In Proc. of the 30th Intl. Conf. on Very
Large Data Bases, pages 324–335, Sept. 2004.

40. Stanford Stream Data Management Project. http://
www-db.stanford.edu/stream.

41. M. Sullivan. Tribeca: A stream database manager for network
traffic analysis. In Proc. of the 22nd Intl. Conf. on Very Large
Data Bases, page 594, Sept. 1996.

42. N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager. In
Proc. of the 2003 Intl. Conf. on Very Large Data Bases, pages
309–320, Sept. 2003.

43. D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Contin-
uous queries over append-only databases. In Proc. of the 1992
ACM SIGMOD Intl. Conf. on Management of Data, pages 321–
330, June 1992.

44. P. A. Tucker, K. Tufte, V. Papadimos, and D. Maier.
NEXMark – a benchmark for querying data streams,
2002. Manuscript available at http://www.cse.ogi.
edu/dot/niagara/NEXMark/.

45. S. Viglas, J. F. Naughton, and J. Burger. Maximizing the out-
put rate of multi-way join queries over streaming information
sources. In Proc. of the 29th Intl. Conf. on Very Large Data
Bases, pages 285–296, Sept. 2003.

46. J. Vitter. Random sampling with a reservoir. ACM Trans. on
Mathematical Software, 11(1):37–57, Mar. 1985.

47. H. Wang and C. Zaniolo. ATLaS: A native extension of sql
for data mining. In Proc. of the 3rd SIAM Intl. Conf. on Data
Mining, May 2003.

48. H. Wang, C. Zaniolo, and C. Luo. ATLaS: A small but complete
sql extension for data mining and data streams. In Proc. of the
29th Intl. Conf. on Very Large Data Bases, pages 1113–1116,
Sept. 2003. Demonstration description.

49. J. Widom and S. Ceri, editors. Active database systems: triggers
and rules for advanced database processing. Morgan Kauf-
mann, San Francisco, CA, 1996.


