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ABSTRACT

Massive-scale self-administered networks like Peer-to-Peer
and Sensor Networks have data distributed across thou-
sands of participant hosts. These networks are highly dy-
namic with short-lived hosts being the norm rather than
an exception. In recent years, researchers have investigated
best-effort algorithms to efficiently process aggregate queries
(e.g., sum, count, average, minimum and maximum) [6, 13,
21, 34, 35, 37] on these networks. Unfortunately, query se-
mantics for best-effort algorithms are ill-defined, making it
hard to reason about guarantees associated with the result
returned. In this paper, we specify a correctness condition,
single-site validity, with respect to which the above algo-
rithms are best-effort. We present a class of algorithms that
guarantee validity in dynamic networks. Experiments on
real-life and synthetic network topologies validate perfor-
mance of our algorithms, revealing the hitherto unknown
price of validity.

1. INTRODUCTION

Consider an aggregate query that has to be computed
over data hosted in a network of n hosts. A simple ap-
proach is to ship data from the n hosts and store it in a
central database where query processing can take place (the
warehousing approach [5]). The database can take steps
(e.g., concurrency control) to ensure valid semantics for the
query: the aggregate reflects data for some snapshot of the
network. Although simple, such data shipping from all hosts
in the network incurs a high communication cost both in the
network and at the central database host.

The alternative approach is to leverage the computational
capabilities of hosts in the network by shipping the query
and processing it using a distributed query plan (the in-
network processing approach [5]). An efficient query plan
enables only relevant data to be shipped thereby reducing
communication cost.

The emergence of large-scale self-administered networks
over the last decade has forced us to think about scenarios
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Figure 1: Ill-Defined Semantics (a) Sensor Network
with 16 sensors, (b) Broadcast, and (c) Converge-
cast. Failure of sensors A and B after Broadcast
leads to counts of 15 and 6 respectively. Which of
these is correct and why?

where n is of the order of thousands or millions of short-
lived hosts. Peer-to-Peer (P2P) and Sensor Networks are
prime examples of such massively distributed data-centric
networks. P2P Networks like Gnutella, KaZaa and Freenet
have been used for file-sharing by millions of hosts that
have short lifetimes." A sensor network [11, 17, 29] con-
sists of thousands of sensors that monitor their environment
in real-time, communicate over a wireless network and have
lifetimes dictated by their internal battery unit.

In-network processing has been the approach of choice for
large-scale networks in several projects [6, 13, 21, 34, 35,
37]. A distributed query plan however requires us to deal
with dynamism in the network, and the semantics of the
final answer returned. In traditional distributed database
systems, a host failure leads to an abort of the query. How-
ever, in large-scale networks, we want query processing to
continue even if a “few” hosts fail. Unfortunately, the al-
gorithms proposed have been best-effort and the semantics
of the aggregate thus computed are rather ill-defined in the
presence of host failures.

EXAMPLE 1.1. Consider the Sensor Network shown in
Figure 1-a on which a user wishes to count the number of
active sensors. Proposed algorithms [21, 35, 37] process
such aggregate queries in two phases. In the first (Broad-
cast) phase, the query floods the network and a spanning
tree is built on the sensors (Figure 1-b). In the second (Con-
vergecast) phase, sub-tree counts are propagated up from the
leaves to the root (Figure 1-c). Each interior host adds to-
gether its sub-tree counts with a 1 for itself, and propagates
the result to its parent.

A failure-free execution of Convergecast returns count=16
as the answer. However, even if there is a single failure in

!The median session duration for a Gnutella host was mea-
sured as 60 minutes in 2001 [32].



the network, the answer returned could vary from count=16
to count=6 depending on which sensor failed and when. The
user s thus unable to associate a meaning to the count value
returned: What is the correct answer and how does it relate
to the value returned? n

In large-scale self-administered networks, host failures are
the norm rather than being an exception, and it is necessary
to give a meaning to possible interleaving of host failures
with query processing. We propose defining query semantics
for dynamic networks, and by extension revisiting the query
processing algorithm itself. In this paper we present moti-
vation, methodology and performance results on designing
algorithms that ensure valid semantics.

EXAMPLE 1.2. What is the meaning of the answer to a
query? The desire to associate semantics with a query result
is certainly not new and this question has been answered in
a variety of domains by researchers.

For instance, Hellerstein et. al. [14] suggest performing
aggregation online to allow users to observe the progress of
their queries. A running aggregate is displayed to the user
as an estimate of the final result based on the tuples retrieved
so far. By itself, the running aggregate is meaningless to the
user. The semantics of the running aggregate are fized by as-
sociating properties of “Confidence” and “Interval Bounds”.
The twin properties together give a probabilistic estimate of
the running aggregate’s prozimity to the final result. n

Our Contribution (Validity Semantics): In this pa-
per, we develop a simple and intuitively appealing correct-
ness condition for queries on dynamic networks. We say
that a query result is single-site valid if it is “equivalent”, in
a sense formally defined in Section 4, to a legal failure-free
computation as observed from the querying host. We extend
this definition to the continuous and approximate query do-
mains. We propose an in-network processing scheme, WILD-
FIRE, that computes single-site valid results for aggregate
(min, max, count, sum and avg) queries (Section 5). We
compare its performance against efficient best-effort algo-
rithms on real-life and synthetic networks (Section 6).

Our results show that while existing best-effort algorithms
perform poorly, WILDFIRE returns valid answers even under
high dynamism. WILDFIRE incurs similar costs as best-effort
algorithms for min and max queries, but has to pay 5x
communication cost for count and sum queries. Single-site
validity and WILDFIRE represent a first step in a larger effort
to understand query processing in dynamic networks. In
this paper we focus on developing and achieving validity
semantics; we leave fine tuning to a future exercise.

2. RELATED WORK

Aggregate queries have been a topic of much research in
recent years as aggregates are a useful means of summa-
rizing state for large-scale networks. For example, aggre-
gate queries can be used to deduce usage trends in P2P
networks [34, 36] (e.g., average load on hosts in the net-
work, average lifetime of hosts) and are of primary interest
in sensor networks [11] (e.g., average temperature readings
recorded in an area). Moreover, dynamic networks have
been associated with environments where communication is
a premium (e.g., low bandwidth hosts in P2P Networks, high
cost of transmitting wireless messages in Sensor Networks)
and aggregation schemes have been proposed as a means of
reducing communication costs [16, 21, 35].

The issues explored in this paper are akin to the ques-
tions raised by Imielinski and Badrinath [15] on querying
transient data in mobile distributed networks: “Information
changes so fast in our application that it may change during
query evaluation. This creates an interesting research prob-
lem on the very basic, semantic level. What is the meaning
of the answer to the query? How to compute it and how to
augment it?” We briefly review such work as has been done
in the context of dynamic P2P and Sensor Networks.

Append-only Continuous Query Semantics: Bon-
net et. al. [5] propose a data model and continuous query
semantics for sensor networks that mixes stored relational
data at a central host with data extracted from Sensor Net-
works represented as time series. Each continuous query
defines a persistent view which is maintained during a given
time interval. The model allows append-only inserts to the
sensor data sequence and does not specify how to incorpo-
rate changes in data sequence due to host failures. It also
does not consider effects of failures of hosts that are partic-
ipating in the query plan for view maintenance.

Eventual Consistency: Gossip-based or epidemic al-
gorithms [1, 8] are known to be tolerant of random failures
of hosts in a network. Epidemic algorithms for aggregate
computation [13, 18, 34] operate over multiple rounds. In
each round, each host exchanges information with one or a
few hosts chosen at random. The guarantees of the final re-
sult obtained from such “gossiping” are usually probabilistic
in nature and afford weak semantics of eventual consistency.
In the presence of updates and host failures, epidemic algo-
rithms can only guarantee that a correct answer reflecting
the changes will be returned eventually (e.g., when updates
or host failures cease and the network becomes stable).

Best-Effort Semantics: Best-effort algorithms [6, 13,
21, 35, 37] opt for a “lossy” query processing and declare
answers that can be arbitrarily bad in the presence of host
failures. The algorithms use a combination of Broadcast and
Convergecast as a mechanism for query processing. One or
more spanning trees are built on the relevant hosts using
Broadcast; data is aggregated along the trees using Con-
vergecast. As we discuss in Section 4.4, the final results can
be arbitrarily bad if hosts fail during Convergecast.

Validity Metrics:  Completeness [13] or Relative Er-
ror [6, 37] have been used to measure the validity of query
results. Completeness is the percentage of hosts in the net-
work whose data contributed to the final query result. Rel-
ative Error is |2 — 1| where 7 is the reported result and = is
the “true” result. These are essentially validity metrics that
can only be computed by an Oracle (with a perfect view of
the dynamic network) post processing, and not properties
that can be associated with the query processing algorithm.

The aggregation operators proposed in Section 5 use the
probabilistic counting schemes of Flajolet and Martin [12].
Similar techniques were used by Palmer et. al. [25] for ap-
proximating the neighbor function of a disk-based graph,
and in a concurrent work, by Considine et. al. [6] for use in
aggregation with multiple spanning trees.

3. PROBLEM SETTING

In this section, we define the problem of computing an
aggregate query over data distributed across hosts in a net-
work.  The input to the problem is a set of hosts H =
{h1,h2,...,h,} and a querying host h, that issues an aggre-
gate query. Each host is said to possess attribute-value pairs



which are appropriately named and typed. The desired out-
put is a value v := ¢(H) which is the aggregate computed
over all attribute values shared by hosts in the network.?

Definition

Network G with hosts H and edges E

hq Host that initiates query processing

) Maximum time delay between (h,h’) € E
H; Hosts in G at time ¢
Dy

D

Symbol
G:=(H,E)

Diameter of G at time ¢

Overestimate of D, over interval [0, T']

Table 1: Notation

Network Model

The hosts communicate over a network that can be repre-
sented as an undirected graph G := (H, E), where H is the
set of hosts and E is a set of pairs (h, h') that describe sym-
metric neighbor relations between hosts h, h’ € H. Messages
can only be sent in G from a host to its neighbor.

We work with a relazed asynchronous model of distributed
systems, i.e., there are known upper bounds on process exe-
cution speeds, message transmission delays, and clock drift
rates. All of the above bounds can be integrated in a known
universal maximum delay & between (h,h’) € E. Thus a
message generated at time ¢ at a source h will be received
by a live destination ' € N(h) by time t + 4.

In this setting, hosts can monitor a neighboring host for
failures using heartbeats sent periodically at intervals of
time Thp. If a host h does not receive a heartbeat from
its neighbor A’ within Ty, + & time of the last heartbeat,
then A can deduce that there must have been a failure at A’.

EXAMPLE 3.1. A P2P Network is an overlay on the In-
ternet. Each host in the P2P network maintains a list of its
neighbor hosts’ IP-addresses. Neighbors have a symmetric
TCP connection established between them over which mes-
sages can be exchanged. Hosts in a P2P Network are on the
Internet and usually synchronize their clocks using NTP [24]
attaining accuracies within a few milliseconds.

Each sensor in a Sensor Network has a unique medium
access control (MAC) address [29]. Each sensor is equipped
with a wireless radio which s used to transmit and receive
messages. The messages are transmitted short-range to re-
duce power consumption. Each message specifies the recip-
ient sensor’s MAC address; all other sensors within range
drop messages not intended for them. Asymmetric links,
where sensor h can receive messages from its neighbor b’
but not vice-versa are detected and ignored by common rout-
ing protocols [27]. Hosts in a Sensor Network have their
clocks locally synchronized with their neighbors [10]. n

Dynamism Model

In a dynamic network, hosts can join or leave the network
at will. A host that leaves the network is called a failed host
and does not participate in the network protocol anymore.
The graph G is updated on join or leave of a host, and the
neighborhood sets are updated dynamically. We use H; to

2For ease of exposition, we will use h to refer to both the
unique identifier of the host and the attribute wvalue being
aggregated that is possessed by the host. The particular use
will be clear from context.

denote the set of hosts, and D; the diameter of G at time
t. We will assume that it is possible to “guess” a constant
D > mazi_o{D,} over a small interval of time [0, T)].

We assume that a message sent from a host to a live neigh-
bor is reliably delivered. However, we will be concerned
about overlay network partitions, where the network G be-
comes disconnected due to host failures, making it impos-
sible for some hosts to communicate with each other when
using multi-hop message routes in G.

EXAMPLE 3.2. Hosts in a P2P Network join the net-
work when the end-user activates the P2P application. Hosts
can leave the network when the end-user deactivates the ap-
plication, terminates network connectivity, or switches the
computer off. Hosts communicate using TCP/IP which en-
sures reliable in-order delivery of messages.

Hosts in a Sensor Network join the network when the in-
built timer sets on. Hosts can leave the network when they
“die” due to battery-failure, software exceptions, hardware
faults, etc [11]. Although link failures are much more com-
mon in Sensor Networks resulting in message losses [7], poor
quality links can be detected and ignored while routing multi-
hop messages [87].

Information networks have been shown to exhibit the small
world phenomenon [20] where D grows extremely slowly with
|H|. The social network had D = 6 in 1967 [23], World
Wide Web had D = 19 in 1999 [2] and Gnutella had D = 12

in 2001 [30]. A crude overestimate D is thus feasible. n

4. AGGREGATE QUERY SEMANTICS

An in-network query processing algorithm has to contend
with dynamism as hosts join and leave the network unpre-
dictably. In this section, we define a model for query pro-
cessing that associates semantics with query results even in
the event of changes in the host set H during processing.
We analyze its computability characteristics and extend it
to the continuous query and approximate query domains.

4.1 One-time Query Semantics

In the in-network query processing schemes, each host
manages its own attribute values, and participates in query
processing to send only relevant data over the network. A
user issues an aggregate query at one of the hosts hy. The
query is processed in two phases. In the first (Broadcast)
phase, h, floods the query in G as each host forwards the
query to its neighbors.® The hosts on receiving the query
initiate the second (Convergecast) phase, when the query is
processed and a result is returned to hg.

Suppose that a user issued an aggregate query from hg
at time 0 for which an in-network algorithm declared
the result to be a value v at time T. What semantics
would be desirable on such a value v?

We will start our discussion by requiring the strictest se-
mantics. We will analyze such a requirement to understand
the reasons for its infeasibility. We will then chip away at
the requirement until we arrive at one that is indeed com-
putable. We will see that dynamism and distribution com-
bine to cause fundamental uncertainty in both the time and
operands over which a query is performed.

3The query may first be routed to a relevant sub-network
and then flood to only hosts in the sub-network.



Snapshot Validity: An algorithm that computes an
aggregate query must guarantee that v = g(H;) for some
time ¢ in [0, 7).

The strictest semantics that we can require is to have v
correspond to an evaluation of the query for some snapshot
of the network. Formally, we desire that the result returned
be the ezact value of the aggregate query at some time in-
stant ¢ in the interval [0,7T]. The following theorem shows
that it is émpossible to devise an algorithm that can guar-
antee such semantics.

THEOREM 4.1. There is no algorithm in the relazed asyn-
chronous model with reliable ordered communication that
satisfies Snapshot Validity. n

PROOF. Assume for contradiction that there is an al-
gorithm A* that achieves Snapshot Validity for some ¢ in
[0, T]. Consider a run of the algorithm A* on G constructed
as follows. Arrange k + 1 hosts labeled ho,h1,...,h; in
a chain. Host ho initiates A* at time 0 by flooding the
query in G. For any such ¢, a chain of new hosts labeled

5 h%,...,h}, can join G at h; at instant ¢ — 1. Then,
H; = {ho,h1,...,hx,ho, h3,..., h;}. However, hj, becomes
aware of the query only by ¢ + k£ — 1 by when the value at
h}, may have changed. Thus, k), is unable to contribute its
value of time ¢ to A*, resulting in a contradiction. [

The negative result for Snapshot Validity forces us to
think about properties that can be associated with state
of the network {Ho, Hi, ..., Hr} over the interval in which
query was being processed. Let Hy = Ni_oH; (Intersect)
denote the set of hosts that were alive at all instants and
Hy = UL, H; (Union) denote the set of hosts that were
alive at some instant during the query processing interval.

Interval Validity: An algorithm that computes an ag-
gregate query must guarantee that v = q(H) for some set
H such that Hf C H C Hy.

Interval Validity requires that v reflect data values that
were in the network during query processing. The set H;
consists of all hosts that were in G during the entire query
processing interval, while Hy additionally includes hosts
that may have joined or left G while the query was being
processed. We now require that the result be v = q(H) for
some Hy C H C Hy. The following theorem shows that,
once again, no algorithm can guarantee such semantics.

THEOREM 4.2. There is no algorithm in the relazed asyn-
chronous model with reliable ordered communication that
satisfies Interval Validity. n

ProOF. Consider a network G with a host h which is 1-
connected to h, implying that there exists a host i’ whose
failure disconnects h from h,. Notice that h, cannot com-
municate with h along G if A’ fails. If A’ fails at instant 1 in
the Broadcast phase before g has reached h’, the alive host
h will never receive the query, and hence will be unable to
contribute its attribute value to the final query result v.

Assume for contradiction that there is an algorithm A*
that achieves Interval Validity. Consider a network G’ that
has all hosts and edges in G except h and its edges. Notice
that H; = Hr — {h} and Hy = Hy — {h} where H; and Hy,
are defined for G'. Let A* be executed on both networks G

PrOTOCOL ALLREPORT (g, D)

> On issue of query ¢ at host hg

Send Broadcast message [hq, g] to all neighbors

M := {hq} R

Set Timer to expire after 2D¢

while (Timer not expired) {
> On receipt of attribute value a from h
M :=MU {a}

}

Output v = g(M)

Terminate

> On receipt of query g at host h # hy

Send Broadcast message [hq, q] to all neighbors
Send attribute value to hq

Terminate

Figure 2: ALLREPORT achieves Single-Site Validity

and G’ and in both cases b’ fails as discussed earlier. It is
easy to see that A* will return the same answer v = q(H)
for both G and G'. However, H = Hj; C H; implying
H C H; C Hy, a contradiction. [

The contradiction for Interval Validity motivates us to
think about network connectivity. The Broadcast phase
starts from the host h, and disseminates the query across
the network. The Convergecast phase collects attribute val-
ues in the network and returns an answer to h,. We want v
to reflect the data values possessed by hosts that were reach-
able from h, during both phases. As before, we can define
a lower bounding host set Hc and an upper bounding set
Hy and require that v = q(H) where Hoc C H C Hy. Let
Hy = UL H;, while H consist of hosts such that for each
host h € H¢, there is at least one path in G from hg to h
that is stable during [0, T'].

Single-Site Validity: An algorithm that computes an
aggregate query must guarantee that v = q(H) for some
set H such that Hc C H C Hy.

The following theorem assures us that an algorithm that
guarantees Single-Site Validity can be devised. In fact, the
proof of the theorem is constructive and presents a simple,
though inefficient, algorithm to achieve the above semantics.

THEOREM 4.3. There is an algorithm in the relazed asyn-
chronous model with reliable ordered communication that
satisfies Single-Site Validity. n

PRrOOF. Consider the ALLREPORT algorithm presented in
Figure 2 which is initiated by h, flooding the query in G.
Each host that receives the query sends its attribute value
to hg. Host hg collects value reports into a set M until
T = 2D6 time, when it declares the result to be v = g(M).

To prove the upper bound on M, we note that a host sends
its value to hq only upon receiving the Broadcast message.
Such a host must clearly have been alive in [0, 7] implying
the upper bound. To prove the lower bound on M, we need
to show that all hosts in Hc must have sent their values to
hq by time T'. By definition, each host h € H¢ has a path
Py, in G from h, that exists during the query processing



interval. Note that length(P) < maa?_o{D;} < D. Thus,
h will receive the Broadcast message and its value will be
received at hq by time T. [

The ALLREPORT algorithm explores the network starting
from hg. The querying host progressively builds its own
“view” of the network G over time using which the query
result is computed. As observed from hg, all joins and leaves
of hosts can be viewed as occurring before query processing
started or after query processing ended, with H being alive
in G during the entire query processing interval. Since the
result is based on the view from a single host, we name such
a guarantee Single-Site Validity.

4.2 Continuous Query Semantics

Until now, we have assumed that the aggregate query is
a one-time query. However, aggregate queries are also a
key component of online monitoring applications. Queries
in such applications are long-running and periodic, allowing
users to receive results at hq continuously [5].

A user registers a continuous query by contacting one of
the hosts h, at time 0, requesting its processing until time
T. In this setting, what semantics would be desirable on
the result v; received at hq at time ¢ in [0, T]7 It is easy to
see that the impossibility results of Snapshot and Interval
Validity that hold for one-time query evaluation carry over
to the continuous domain. Single-Site Validity is still fea-
sible but, as we discuss next, a naive adaptation results in
extremely weak semantics. The long-running characteristic
of the query allows for 0 « ¢ < T. The resulting Hc con-
sidered over a long interval [0, ] could easily become empty
in a dynamic network. In such a case, Single-Site Validity
degenerates to a trivial requirement: the answer received at
t must be v, = q(H) for some set H such that ¢ C H C Hy.

Keeping the computability results derived for one-time
queries in mind, we require that v reflects the attribute
values possessed by hosts reachable from h, during a re-
cent interval of width W. For the interval [t — W,t], let
Hy = U'_,_y H; denote the set of hosts that were ac-
tive at some instant during this interval. Let Hc be com-
prised of hosts that have at least one path to hq stable dur-
ing the above interval. We now insist that v = ¢q(H) for
He C H C Hy. It is easy to see that no such algorithm
can be devised for W < maxi_, ,{D;6}. Then, for a suf-
ficiently large and explicitly stated W, an algorithm must
satisfy the following requirement.

Continuous Single-Site Validity: An algorithm that
computes a continuous aggregate query must guarantee
that v; = q(H) for some set H where Hoc C H C Hy
defined over the interval [t — W, ¢].

4.3 Approximate Query Semantics

The previous subsections have considered precise seman-
tics for query results. There can be scenarios where a “dirty
but quick” answer is acceptable for which efficient approzi-
mate algorithms can be designed. Nevertheless, we believe
that the semantics should be fixed and the approximation
quantified and conveyed to the user. Conversely, the user
may insist on specifying the level of imprecision that can be
tolerated. The following requirement can then be imposed
on such approximate algorithms.

Approximate Single-Site Validity: An algorithm
that computes an aggregate query must guarantee that
the answer returned v satisfies (1 — &)g(H) < v <
(1 + €)g(H) with probability at least 1 — ¢ for some
Hoc CHCHypy,0<e<land0< (<1

A simple modification of ALLREPORT demonstrates that
Approximate Single-Site Validity can be achieved in spe-
cific scenarios. Consider the problem of estimating the size
|H| of network G. In the modified algorithm (RANDOM-
IZEDREPORT), given parameters ¢ and ¢, hq floods a mes-
sage containing an additional parameter p > ;ﬁ;ln% during
Broadcast. Each host that receives the message sends a 1
to hy with probability p. Host hq collects reports into a set
M until time T' = 2135, and then declares the result to be
v = |M|/p. The result can be shown to satisfy Approximate
Single-Site Validity, and was obtained using (1 —p)|H| fewer
messages than ALLREPORT.

4.4 Analysis of Current Solutions

ALLREPORT can be used to achieve one-time and con-
tinuous, and RANDOMIZEDREPORT to achieve approximate,
Single-Site Validity. However, the two algorithms perform
the “least” in-network processing possible. ALLREPORT was
studied as a naive solution (Direct Delivery) for query pro-
cessing on Sensor Networks by Yao and Gehrke [35]. Exper-
imental results showed that the number of messages needed
to route attribute values to h, across G and the bandwidth
requirements imposed on hosts in the neighborhood of hq
are quite large. Direct Delivery thus pays a high price in
terms of communication costs.

Can we do better than ALLREPORT while achieving Single-
Site Validity? Previous work suggests several algorithms
that increase the “degree” of in-network processing to re-
duce communication costs. In such works, hosts are orga-
nized into an edge-subset network during Broadcast. The
two most popular examples are SPANNINGTREE [13, 21, 35,
36, 37] and DIRECTEDACYCLICGRAPH [6, 21]. In a SPAN-
NINGTREE protocol, hosts are organized into a spanning tree
rooted at hy during Broadcast. In the Convergecast phase,
relevant attribute values are selected at hosts, and partial
aggregates are propagated up from the leaf hosts to h, along
the tree. Researchers observed that SPANNINGTREE is sen-
sitive to failures as there is a unique path along which the
attribute value from each host is propagated to hy. A Di-
RECTEDACYCLICGRAPH protocol remedies this by providing
each host with upto k parents, thus organizing the hosts into
a directed acyclic graph.

Let us consider the communication costs of the above
best-effort algorithms. Communication between hosts in
both protocols requires small fixed-size messages only. The
Broadcast phase requires |E| messages to flood the query
in G. The Convergecast phase requires O(|H|) messages
in SPANNINGTREE Protocol and O(k|H|) messages in DI-
RECTEDACYCLICGRAPH Protocol.

It is easy to see that both these protocols forsake query
semantics for communication efficiency. Example 1.1 pre-
sented an instance where SPANNINGTREE fails to satisfy
Single-Site Validity in the presence of host failures. A similar
example can be constructed for DIRECTEDACYCLICGRAPH
as well. In fact, the following theorem shows that both pro-
tocols may return results that are arbitrarily bad.



THEOREM 4.4. There exist instances of G, hq and e > 2
when a run of SPANNINGTREE or DIRECTEDACYCLICGRAPH
returns v = q(H) where H C Hc and |H| < 1|Hg|. n

ProoF. We will prove the above for SPANNINGTREE on
an instance of G and hy with error e = 2. The reader may
verify that similar instances can be generated for e > 2
and runs of DIRECTEDACYCLICGRAPH. Consider a network
G constructed as follows. Arrange 2n + 2 hosts labeled
ho,hi,...,h2n+1 in a cycle, with a host han42 connected
to the cycle at hn41 by a solitary edge. Host ho initiates
SPANNINGTREE which creates 2 chains rooted at ho. With-
out loss of generality, let h; be the neighbor of ho in the
longer chain. If h; fails after Broadcast, Convergecast will
return v = q(H) where H is the set of hosts in the smaller
chain. For this run, |H¢| = |Hy — {h1}| = 2n + 2 and
|H| < n+1yieldinge=2. O

5. ACHIEVING SINGLE-SITE VALIDITY

We now present a simple in-network algorithm, WILD-

FIRE, that achieves Single-Site Validity for aggregation queries

(minimum, mazimum, count, sum and average). The pro-
tocol requires us to define new “duplicate-insensitive” count
and sum operators which are proposed and analyzed in Sec-
tion 5.2. Efficiency of the protocol is discussed in Section 5.3.
Continuous Approximate Single-Site Validity for a class of
count queries is considered in Section 5.4.

5.1 wuwpFmre Protocol

As before, our protocol can be separated into two phases:
Broadcast and Convergecast. We say that a host is inactive
at time ¢ if it is not participating in the protocol at that
time; otherwise it is active. At the start of the protocol,
hq is active, while all other hosts are inactive. Each active
host h maintains a partial aggregate Aj which is initiated
on transition to the active state. The initial value of A
is set to be the relevant attribute value at the host h for
minimum and mazimum queries. We defer the discussion of
initializing Ay, for count and sum queries to Section 5.2.

ProrocoL WILDFIRE-PHASE I
> On receipt of Broadcast message [g, 0, ﬁ]
> at h # hg from b’ at time ¢
if (h is inactive & t < 2D5) {
Change state to active
Initialize Ap,
Send Broadcast message [g, 0, 5] to neighbors

Figure 3: Broadcast phase in WILDFIRE Protocol

Host hg initiates Broadcast by sending a message contain-
ing the query, the initiating time 0 and an overestimate of
network diameter D to all its neighbors. A host which re-
ceives the Broadcast message checks if it is inactive. If so,
the host changes state to active, initializes A, and sends
the message to all its neighbors. Otherwise, the host merely
drops the message. The Broadcast phase completes when
all hosts have received the query and the two parameters.
Notice that unlike previous works, Broadcast does not con-
struct any edge-subset network.

ProTocorL WILDFIRE-PHASE II
> On receipt of Convergecast message [q, An’]
> at h from A’ at time ¢
if (t < 2D6) {
AR®Y .= Combine(q, An, Apr)
> Propagate A" in the network
i (A7 # Ap) {
Ap = ApeY
Send Convergecast message [g, Ap] to neighbors
} else if (Ap # Apr) {

Send Convergecast message [g, Ap] to b’

} else Terminate

Figure 4: Convergecast phase in WILDFIRE Protocol

A host transitions into Convergecast when it becomes ac-
tive. An active host sends its partial aggregate to all its
neighbors.* An active host h that receives a partial aggre-
gate Ay from its neighbor A’ recomputes its own partial
aggregate Ay using a query-dependent “combine” function.
The combine function for minimum and mazimum queries
is the query itself; the discussion for count and sum queries
is deferred to Section 5.2. If the host detects a change in
its partial aggregate, it sends the new Aj to all its neigh-
bors. Each host continues to participate in Convergecast
until 2D6 time. At the end of Convergecast, hq declares its
partial aggregate to be the query result.

@ w:5 (b) w:5 () w:15
x:15 y:1|x:15 y:5 x:15 y:5

7:25 z.25 z.25

Figure 5: P2P Network with 4 hosts on which w
initiates WILDFIRE to compute maximum value pos-
sessed. The messages sent at time instants (a) t =0,
(b) t =1 and (c) ¢t =2 are shown.

EXAMPLE 5.1. Consider the P2P Network with attribute
values as shown in Figure 5(a). At time 0, host w initiates
WILDFIRE to compute the mazimum value possessed by hosts
in the network. Host w becomes active, sets its partial ag-
gregate Ay, = 5 and sends a Broadcast message containing
the query (maximum), initialization time 0, and an over-
estimate of the diameter D =3tox and y, piggybacking
Ay =5 on the message.

At time 1, x and y receive the message, become active and
set their partial aggregates A =15 and Ay = 1. Host x now
computes its new partial aggregate A, = maz(Ay, Ay) = 15.
Host x forwards to z the Broadcast message with A, = 15.
Host x sends its Az value to w as well. Similarly, host y
forwards the Broadcast message to z with Ay = 5. Host y
received its new A, value from w, so it skips sending the
value back to w.

“The first Convergecast message sent by a host to its neigh-
bors can be piggybacked on the Broadcast message it sent.




At time 2, host z becomes active and sets A, = 25. It
computes its new A, = max(5,15,25), and sends A, = 25 to
x andy. Host w, meanwhile, computes its A, = max(15,5),
detects a change and sends Ay =15 to y.

At time 3, host x computes its new A, = 25 and sends
it to w. Hosty computes its new Ay = maz(15,25,5) and
sends it to w as well.

At time 4, host w computes its new A, = max(15,25). No
messages are sent anymore, and at time T = 2D =2x3 = 6,
w declares v = Ay = 25 as the query result. n

The reader may have noticed that w receives z’s value
twice. The end result is unaffected as mazimum is duplicate
insensitive. We also note that if either z or y had failed, w
would still obtain 2’s value. If both x and y had failed, w
would output v = 5, but this is acceptable as Hc = {w}.
In fact, we can show that WILDFIRE guarantees Single-Site
Validity for duplicate-insensitive aggregate operators.

THEOREM 5.1. WILDFIRE guarantees Single-Site Valid-
ity for minimum and maximum queries. n

PRrROOF. Consider a host h that possesses the answer (max-
imum or minimum attribute value) for the query (maximum
or minimum query respectively). Let h be connected to h,
through a stable path P of length at most L. The Broadcast
message takes time at most Lé to reach h, and the attribute
value at h takes time at most Lé to reach hy. Every host
h' € P will transmit the Broadcast message since there are
no failures on P. Similarly, every host A’ on path P will
transmit the value from h back to hy. If host h € Hc, then
by definition, h has a path P to hg with L < D. Further,
only hosts h € Hy participate in query processing implying
v =q(H) for some Ho C HC Hy. [

5.2 Duplicate-Insensitive Acerecate Operators

The hurdle in using WILDFIRE to compute count and sum
aggregates is that the conventional combine function (+)
for both is duplicate sensitive. We now propose duplicate-
insensitive combine functions for count and sum adapted
from an algorithm by Flajolet and Martin [12]. We begin
with a description of the original algorithm (FM).

The FM algorithm takes as input a set M of values drawn
from a domain V, and outputs an estimate of the num-
ber of distinct elements in M. Before counting, ¢ vectors
By, Bs,...,B. of size O(log|V|) bits each are initialized
to 0. The algorithm also generates ¢ random functions
map1, maps, . .
Each function map; has an exponential distribution: half the
elements in V are mapped to 0, a quarter to 1, an eighth
to 2, and so on. The algorithm then makes a single pass
over M and for each element v € M and each B;,1 <i<e¢,
the corresponding b, = map;(v) bit is set to 1. At the end
of the pass, the lowest-order bit z; in each B; that is still 0
is identified. The average value Z =) ;_, zi/c is computed
and 27/0.78 is returned as the answer.

LEMMA 5.1. (Alon et. al. [3]) For every ¢ > 2, given a
set M of elements drawn from a set V' of size n, the FM
algorithm outputs an estimate m of the number of distinct
elements m in M such that Pr(: < % <c¢)>1-2, n

Observe that FM sets one specific bit for each element
v € M in each of the ¢ vectors Bi, Bs,..., B.. An equiva-
lent process is to create ¢ vectors BY, B3, ..., By (each with

., map, such that each map; : V + [0, 21log | V]

a specific bit set to 1) for each element v € M, and then log-
ically OR the |M| vectors to obtain the final B1, Bs,..., B..

The above observation forms the basis of our adaptation
of FM for distributed count. The input to this distributed
procedure consists of a set M of values distributed across
| M| hosts. Host h, initiates Broadcast and includes param-
eter ¢ in its message. On receipt of the Broadcast message,
each host creates ¢ vectors B}, B}, ..., B*. Each host now
pretends to have an element distinct from other hosts by
simulating map1, maps, ..., map. as follows. A total of ¢
fair coin (Pr[Head] = Pr[Tasl] = 0.5) toss sequences are
generated, each of which ends when the first Head in the
sequence is observed. Host h sets b; bit in Bl to 1 where
b; is the index of the last Tail in the 7t" sequence. Note
that the lengths of coin toss sequences have an exponential
distribution as required by FM: half the hosts have b; = 0,
a quarter have b; = 1, an eighth have b; = 2, and so on.

The final vectors B1, Ba, ..., B. are to be obtained by per-
forming a logical OR of the corresponding vectors across the
M hosts. Since OR is a duplicate-insensitive operator, we
can use WILDFIRE to assure Single-Site Validity of the fi-
nal vectors. Each active host initializes its partial aggregate
Ap = (B}, BE,...,B"). On transition into the Converge-
cast phase, each host sends its A to its neighbors. On
receiving a partial aggregate from its neighbor, a host re-
computes its new Aj using logical OR of the vectors as the
combine function. The reader may note that by the end
of Convergecast, the partial aggregate at h, will be the fi-
nal (Biy,Bs,...,B.) vectors. At the end of Convergecast,
hg identifies the lowest-order bits z; in B; that are still 0.
The average value Z = 3¢, z;/c is computed and 27/0.78
is returned as the count.

Our distributed sum procedure is similar to our count
adaptation of FM. The sum takes as input a set M of val-
ues drawn from [0, V] distributed across | M| hosts, with one
value h at each host. The final output is an estimate of the
sum of elements in M. Host h, initiates Broadcast and in-
cludes parameters ¢ and log M in its message. On receipt
of the message, a host creates ¢ vectors B, B}, ..., B of
size O(log |M||V]) each. Each host now pretends to have h
elements distinct from other hosts and runs the count proce-
dure h times. Let the count procedure for the i*" (1 < < h)
element generate vectors B{L’i, Bg’i, ..., B™" The host then
sets its vectors BY, BE .. .,Bg' to be a logical OR of the
count vectors: BJ’-‘ = VLIB;-” where 1 < j < ¢. Once
the vectors are initialized, hosts participate in Converge-
cast as before. At the end of Convergecast, hy computes
Z=32¢_, zi/c as before and reports 27/0.78 as the sum.

The sum procedure requires hy to include an estimate las
of log | M| in its Broadcast message. This parameter is used
by hosts merely to fix the size of their bit-vectors, and has
no bearing on the accuracy of the final answer as long as
Im > log|M|. Host hq can thus overestimate Iy (e.g., 32).
Since log |M| grows slowly with M, and M C H, Iy = 32
will not be adequate only if the size of network |H| > 2°2,

THEOREM 5.2. For every c > 2, given a set H, our count
and sum procedures output an estimate v of the actual value
v such that Pr[t <2 < >1-2. "

PrOOF. The proof for the count procedure follows from
Lemma 5.1 when we observe that the procedure counts the
number of distinct elements in M. The count procedure can
be used to obtain sum if we view value m at a host as con-



tributing m distinct elements to the input set M. A direct
application of count would require each host to communicate
m bit-vectors. Instead, each host h can perform a logical OR
of its local m bit-vectors to produce a single set of vectors
B! B, ... B! that represent m elements as indicated. [

THEOREM 5.3. The WILDFIRE(q, 13) algorithm guaran-
tees Approzimate Single-Site Validity within a factor ¢ with
probability at least 1 — f for the class of count, sum or av-
erage queries. n

5.3 Discussion

The WILDFIRE protocol discussed in Section 5.1 provides
a framework for processing aggregate queries in dynamic
networks. The ingenuity lies in selecting appropriate com-

bine operators to ensure small messages and duplicate-insensitive

processing. We presented such operators for count and sum
queries. Can such operators be designed for other interesting
classes of queries? In a recent work, Kempe et. al. [18] ex-
plored such operators for estimating join sizes, L, norms and
histograms while designing novel gossip-based algorithms.
We believe that investigating the applicability and perfor-
mance of such work in our framework will be an interesting
direction of future research.

The concern, at first glance, is in the inefficiency of WiLD-
FIRE protocol. In the worst case, every host will observe an
update to its partial aggregate at every time instant during
the query processing interval. Each update causes a host to
propagate its new partial aggregates to its neighbors caus-
ing a worst-case traffic of 2D|E| messages as opposed to
|E| + |H| in SPANNINGTREE.

Experiments on real-life networks (Section 6), however,
demonstrate that such worst-case behavior is rarely observed
as early aggregation reduces updates at hosts. In addition,
WILDFIRE can be engineered to improve efficiency: a host
at distance [ from h, can continue in the Convergecast phase
until (213 —1+1)d time instead of the 2D6 time indicated in
Figure 4. WILDFIRE can also leverage domain capabilities:
the broadcast ability of wireless medium in Sensor Networks
allows a host to send its partial aggregate to its I}\eighbors
by a single message, reducing worst-case cost to 2D|H]|.

5.4 Continuous Approximate Count Queries

We now turn our attention to scenarios where a “quick
and dirty” answer is acceptable. We consider the problem of
estimating the size of network. An accurate estimate of |H|
can be computed using count with WILDFIRE which requires
O(|E|) messages. Are there valid schemes that return a
coarser answer albeit at a lesser price?

We can design schemes specific to a protocol to produce
such estimates efficiently. For example, some P2P proto-
cols [22, 31, 33] assign random identifiers to hosts and place
them along a ring. Each host manages a segment on the ring
between its own identifier and that of its immediate clock-
wise predecessor. A network size estimate on these networks
can be deduced using the following insight [22]. Let X, de-
note the sum of segment lengths managed by a sample set
of s hosts. Then - is an unbiased estimator for |H|. It
can be shown that such an estimate satisfies Approximate
Single-Site Validity under the following assumptions:

1 Sampling is “instantaneous” with respect to host life-
times.

2 Every host in the network has the same probability of
leaving the network at each instant.

Are there schemes for processing size estimate queries in
dynamic networks that are not protocol-specific? We now
present one that enables Continuous Approximate Single-
Site Validity for estimates of |H| and makes minimal as-
sumptions on the network protocol. The key insight behind
the scheme is to view dynamic networks as an “evolving
ecology”. Ecologists have long studied models for animal
abundance and its dynamics. The Jolly-Seber model for
interpreting Capture-Recapture experiments in open ecolo-
gies has occupied a central place in such studies. We outline
an interpretation of the model in our context, directing the
interested reader to an excellent monograph by Pollock et.
al. [28] for an exact analysis and experimental studies.

The scheme assumes that the network protocol provides
a “black-box” operation, which when invoked from hg, re-
turns s random hosts from H D H¢. For example, some
P2P networks have expander graph topologies [19, 26]. On
such graphs, the operation would perform s random walks of
length O(log |H|) each to reach s random hosts. Specifically,
the scheme makes the following assumptions:

1 Every host in the network has the same probability of
occurring in a sample.

2 Sampling is “instantaneous” with respect to host life-
times.

3 Every host in the network has the same probability of
leaving the network at each instant.

The scheme samples hosts at periodic intervals. Let the
sample sets of hosts be N1, Ns,..., where N; is the sample
set taken at the end of the ¢!* interval. Let M; denote the
set of hosts in Ny that also occur in N; for ¢ < t. Using this
dataset, the scheme estimates |f-f |¢ which is the size of the
network at the beginning of the ¢** interval (or after the end
of the (t — 1)!" interval) on obtaining sample N;y1. Thus,
it estimates network size in the window [t — 1,¢ + 1].

Consider the set N> that was sampled at the end of sec-
ond interval. Intuitively, we can use the uniform sampling
assumption to derive a network size estimator based on the
notion that the ratio {number of hosts in the current sample
that had also been sampled earlier} : {size of the current
sample} should reflect the same ratio in the network. Thus,

|Ma| _ [N1| \f]s = | Na | V1]
IN2| | H, | My

Similarly, at the ¢** sampling,

M) U N e INALUZE N
= =1 =

|Vt |H|: | M|

All of the above estimates can be worked out if we knew
| UIZ1 N;|. This quantity would be precisely known if there
were no host leaves during the ¢ intervals. In a dynamic net-
work, the above ratios are actually defined by the number of
previously sampled hosts that are still alive (|U:Z] N¢|). To
estimate this quantity, consider the set of hosts that were
sampled earlier but not at ¢t (UZ} N* — M;). By construc-
tion, this set is disjoint from the set of hosts that were sam-
pled at t (V). Now, we use the intuition that the future
sampling rates of these two distinct groups of sampled hosts
must be the same. Let Y; and Z; refer to the set of hosts
that are sampled in the future from the first and second
groups respectively. Then,

V2| |Z4| t=1 rra | Ve ||Ye|
(U N g I O T M= M




6. EMPIRICAL EVALUATION

In this section, we compare WILDFIRE, SPANNINGTREE
and DIRECTEDACYCLICGRAPH protocols on real-life and syn-
thetic networks. We also evaluate the accuracy of duplicate-
insensitive count and sum (Section 5.2) and the Capture-
Recapture scheme (Section 5.4). Our implementation of D1-
RECTEDACYCLICGRAPH uses the distributed count and sum
operators; WILDFIRE uses the two optimizations discussed
in Section 5.3. Our simulations show the following results.

e The sum and count operators show high accuracy with
a few repetitions (small ¢ values).
e WILDFIRE satisfies Single-Site Validity across different

degrees of dynamism while SPANNINGTREE and DIRECTEDA -

CYCLICGRAPH deteriorate rapidly.

o WILDFIRE pays a 5x higher price for its semantics as
compared to the efficient best-effort SPANNINGTREE.

e WILDFIRE pays most of the price early in Convergecast.
This observation leads to fine tuning heuristics.

e The Capture-Recapture scheme satisfies Continuous Ap-
proximate Single-Site Validity.

Network Topology

Each host h in G possesses an attribute value that is drawn
from a Zipfian distribution in the range [10,500]. The net-
work G was set to be one of the following.

A Gnutellais a real-life network topology with |H| = 39, 046
obtained from a crawl of Gnutella [9].

B Random is a synthetic network topology with |H| = 40K
constructed by placing an edge between pairs of hosts
with uniform probability such that average degree is 5.

C Power-law is a synthetic network topology with |H| =
40K constructed to have a power-law distribution (y =
2.9) in host degrees [4].

D Gridis a Sensor Network synthetic topology constructed
by placing |H| = 10K hosts in a 100x 100 grid. Each host
has hosts in the enclosing 2-unit square as its neighbors.

Dynamism Model

Single-site validity requires that v = g(H) for some Hc C
H C Hy. Of the two bounds, H¢ is the more interesting,
as hosts that join G after hg initiated Broadcast may or
may not contribute to v. Hence we do not model host joins
in our simulations. We model host failures by removing a
total of R randomly selected hosts from G at a uniform rate
during [to,t,]. The value of R is varied from 256 to 4,096
to characterize different degrees of dynamism.

As a frame of reference, an ORACLE was devised that ob-
serves all events in G. The ORACLE detects reachability of
each host from h, using which it computes Hc and Hy as
the lower and upper bounds of Single-Site Validity. Clearly,
such an ORACLE is not feasible in practice.

Efficiency Measures

We consider the following measures of performance while

evaluating the efficiency of a protocol.

A Communication cost of a protocol is the number of mes-
sages sent between any host pairs (h,h’) in E. We note
that all the protocols considered here involve fixed size
messages. The communication cost is thus proportional
to the actual byte traffic generated by the protocol.

B Computation cost at a host h is the number of messages
processed at h. The computation cost of a protocol is
the mazimum computation cost among all hosts in G.

C Time cost of a protocol is the length of the longest chain
of messages that occurs before the protocol terminates.
The chain starts at h, with the initiation of Broadcast.
Each subsequent message in the chain is generated on
the receipt of the preceding one.
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Figure 6: Accuracy of Count and Sum operators

Accuracy of Sum and Count Operators

We start with an evaluation of the accuracy of count and
sum operators. We generated a set M of Zipf-distributed
elements in the range [10,500] with |M| as 2'° 2'? and 2'*
to simulate different orders of magnitude of operands. On
this set M, we used count to estimate the number, and sum
to estimate the total sum of elements. The ratio of estimate
returned m to the actual answer m represents the accuracy
of the operators. Values of m/m < 1 depict an underes-
timate, m/m > 1 depict an overestimate, while m/m = 1
represents perfect accuracy. Figure 6 shows the accuracy ra-
tios of operators (Y-axis) against the number of repetitions
¢ performed (X-axis). We observe that the ratio quickly
converges to 1 as c increases, indicating that count and sum
produce accurate estimates. Moreover, the number of rep-
etitions required are small (= 8), implying that WILDFIRE
can be used for count and sum queries with small values of
¢. A small ¢ value leads to a correspondingly small cost in
computing the ¢ bit-vectors at each host, and small sized
messages (containing the ¢ B; values each of size 32b) sent
during Convergecast.

Achieving Single-Site Validity

‘We next study the behavior of SPANNINGTREE, DIRECTEDA -
CcYCLICGRAPH and WILDFIRE protocols under different de-
grees of dynamism in the network. Figures 7 and 8 show
the query result returned v (Y-axis) against number R of
host leaves (X-axis) for count and sum queries respectively
on the Gnutella topology. The average answers returned by
the protocols over 10 trials are plotted with a 95% confi-
dence interval. The DIRECTEDACYCLICGRAPH points are
drawn for £k = 2 and k = 3 parents per host.

The curves labeled ORACLE show the upper and lower
bounds for Single-Site Validity. Protocols that guarantee
Single-Site Validity will return values within the two bounds.
A value v = g(H) less than the lower bound indicates H C
Hg, i.e., there are hosts (Hc — H) that were not included
in v even though they were in G during query processing.

We observe that all protocols return similar counts for low
dynamism (small R) in Figure 7. As dynamism increases,

both SPANNINGTREE and DIRECTEDACYCLICGRAPH fall rapidly

off the lower bound for Single-Site Validity. WILDFIRE con-
tinues to return values within the Single-Site Validity bounds



40000 -

35000

30000

count(H)

Oracle
Tree -
DlrectedAcyclchraphiK 2} o

\

25000 - Sp o

=~
|re A
9

D|rectedAcycIchraw1
20000
27

L L
ZB 510 o1l 212

Host Ieaves during aggregation (R)

Figure 7: Count query on the Gnutella topology

922

g 21 (‘5" i
3 ? bt
! |

Spa
DlrectedAcycllgGraph K=2) -
DlrectedAcyclchraw -

A
220 Fire - I I

o7 510 211 212

Host Ieaves during aggregation (R)

Oracle
?Tree -6~

Figure 8: Sum query on the Gnutella topology

even for high dynamism rates (with nearly 10% of hosts leav-
ing the network). DIRECTEDACYCLICGRAPH does improve
over SPANNINGTREE but is unable to return valid answers
as dynamism increases. The protocols behave similarly for
v = sum(H) queries as seen in Figure 8. Notice that the
Y-axis here has a logarithmic scale which causes the points
for SPANNINGTREE and DIRECTEDACYCLICGRAPH to ap-
pear closer to the lower bound.
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We found that WILDFIRE continues to satisfy Single-Site

Validity, while SPANNINGTREE and DIRECTEDACYCLICGRAPH

struggle to keep up with increasing dynamism on all of our
synthetic topologies (Random, Power-Law and Grid). For
example, Figure 9 plots results for count queries on Grid.
We observe that SPANNING TREE performs extremely poorly
which can be explained as follows. A spanning tree built on
Grid has a large depth, with most of the hosts occupying
interior positions in the tree. A removal of any of these in-
terior hosts causes the non-inclusion of the entire sub-tree
rooted at that host. As R increases, query results deterio-
rate rapidly.

Price of Single-Site Validity

Recall that SPANNINGTREE and DIRECTEDACYCLICGRAPH
are best-effort protocols designed to optimize communication
costs. WILDFIRE, on the other hand, guarantees Single-Site
Validity. What price does WILDFIRE have to pay for such
valid semantics? We compared the relative performance of
protocols on synthetic topologies for various network sizes;
the communication costs are shown in Figures 10 and 11.
The Y-axis here plots the number of messages sent against
the size |H| of network on the X-axis.
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Figure 10 shows results for a count query on Random
topologles The reader may remember that WILDFIRE re-
quires D asan input _parameter, and executes for 2D§ time.
We varied the input D>Dto study the effects of an overes-
timate on communication costs. Hozvever, we observe that
the WILDFIRE curves for different D (top curves) overlap,
indicating that communication costs are independent of D.
The DIRECTEDACYCLICGRAPH curve almost overlaps SPAN-
NINGTREE (bottom curves) as the cost of Broadcast (|E|)
dominates that of Convergecast (k|H|). We observe that
WILDFIRE, on the other hand, incurs a 4X communication
cost over the efficient SPANNINGTREE.

Figure 10 also shows communication costs incurred by
SPANNINGTREE and WILDFIRE on the lone Gnutella topol-
ogy we had access to. WILDFIRE incurs 4Xx the costs for
SPANNINGTREE. A similar scaling was also observed on
Power-Law topologies, suggesting that the protocols might
have analogous ratios on real-life networks.
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Figure 11 shows the results for queries on Grid topologies.
Hosts here were simulated to have broadcast capabilities, al-
lowing a host h to send a message to all its neighbors via
a single message. Hence we observe that the DIRECTEDA-
CYCLICGRAPH curve overlaps SPANNINGTREE as the cost of
sending messages to k > 1 parents is the same. WILDFIRE
here incurs 5x the SPANNINGTREE costs for count queries.



Figure 11 also shows that the cost for mazimum query on
WILDFIRE is smaller than that for count. In fact, the costs
for minimum are smaller than those for SPANNINGTREE!
This interesting result can be attributed to the early ag-
gregation performed by WILDFIRE. The reader may have
deduced that the SPANNINGTREE and DIRECTEDACYCLIC-
GRAPH will send the same number of messages irrespective
of the query type (e.g., a sum query will incur the same
communication cost as a minimum query). Communication
costs for WILDFIRE, however, depend both on the data dis-
tribution as well as the query type. Convergecast in WILD-
FIRE starts as soon as a host becomes active, before Broad-
cast has completed. The Broadcast carries with it the min-
imum value possessed by active hosts. A host that receives
a smaller value than its own attribute value during Broad-
cast does not send its own attribute value. In contrast, each
host must send a message during Convergecast for SPAN-
NINGTREE, leading to a higher observed cost.
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Figure 12: Computation cost on Power-Law and
Grid

Computation Cost: Figure 12 plots the number of hosts
(Y-axis) for each value of computation cost of a host (X-axis)
observed during an evaluation of a count query. For exam-
ple, the number of hosts that processed X = 2 messages
is given by the corresponding Y value on the curves. The
maximum number of messages processed by a host (maxi-
mum non-zero X value) represents the computation cost of
a protocol. We observe that on Power-Law, WILDFIRE pays
a computation cost 2x that of SPANNINGTREE; on Random
(not shown in the figure) the cost was observed to be 4x. On
both these topologies, WILDFIRE had a similar shaped (dis-
tribution) curve as SPANNING TREE, except that the curve is
shifted right to account for the larger number of messages
sent.

The worst performance is observed on Grid, where the
computation cost for WILDFIRE is 44X, i.e, there are hosts
in Grid which process 44 x more messages during WILDFIRE.
We observed earlier (Figure 11) that communication costs
in WILDFIRE are 5x that of SPANNINGTREE. The difference
in numbers can be explained as follows. In SPANNINGTREE,
a message sent by a host during Convergecast is computed
only by a single parent. In WILDFIRE, a message sent by
a host has to be received and computed by each neighbor.
Thus an increase in communication cost results in a larger
increase in computation costs.

Time Cost: Figure 13(a) shows the time cost of protocols
(Y-axis) against network size (X-axis) on Random topolo-
gies. SPANNINGTREE provides the least latency. WILDFIRE
returns a result at to + 2D3 time, which is a constant for
a given D. We observe that increasing D increases time
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Figure 13: (a) Time cost on Random, (b) Number
of messages sent by WILDFIRE at each time instant.

cost proportionally. Recall that an overestimate of D was
observed to have no effects on the communication costs for
WILDFIRE. The two observations can be explained using
Figure 13(b) which plots the number of messages sent (Y-
axis) per time instant (X-axis) by WILDFIRE for a count
query on the synthetic topologies. In each topology, the
number of messages peaks close to D¢ (indicated by arrows),
and decreases to 0 by 2D4 time. This means that during the
overestimate period [2Dd, 2136], no messages are sent in G
and hence the partial aggregate at hg remains unchanged.
Yet, h, cannot declare a result until 2D¢ time has elapsed.
Thus, time costs suffer while commu/l}ication costs remain
unaffected due to an overestimate of D. N

A user may decrease query latency by making D closer
to D. How can such a good D be deduced? A heuristic is
to initially use WILDFIRE itself with a large D to find the
mazimum D among hosts in G, and then use the result to
construct D for subsequent queries.
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Figure 14: Network size estimate query using the
Capture-Recapture scheme

Continuous Approximate Single-Site Validity

We next study the behavior of the Capture-Recapture scheme
for estimating the size of the network. Recall that the
scheme assumes “instantaneous” uniform-random sampling
of hosts to estimate |H|:, the number of hosts in the window
[t —1,t + 1]. We simulated runs of the scheme for various
actual sizes of the network in which 10% of the hosts left
the network in each interval. Figure 14 plots the estimates
returned by the scheme at the end of (t + 1) interval on
the Y-axis against the actual size of the network at start of
the t** interval on the X-axis. The curves labeled ORACLE
show the upper and lower bounds of network size in the win-
dow. The estimates returned by Capture-Recapture scheme
are plotted with 95% confidence intervals and are seen to lie
close to the Single-Site Validity bounds.



In a separate set of experiments, we also observed that
the variance of estimates returned by Capture-Recapture
can be decreased by increasing the sample size. A linear
sized sample (s = f|H[;0 < f < 1) was found to return
good results; Figure 14 uses f = 0.1. The cost of the
scheme is thus O(|H|) instead of O(|E|) incurred by WILD-
FIRE. We also note that the variance of estimates returned
by Capture-Recapture is larger than that of WILDFIRE. The
two schemes thus provide a trade-off option between com-
munication efficiency and result accuracy.

A continuous query processing scheme must provide a
feedback mechanism to adjust sample sizes if the network
grows or shrinks substantially during the monitoring period.
How can we bootstrap a good sample size and adjust it while
processing? We could: (1) Start processing the query with
an initial sample size, and then iteratively increase (or de-
crease) the sample size after each interval until variance of
the answer decreases. (2) Use WILDFIRE at the start of the
continuous query and at periodic intervals to obtain an ac-
curate network size which is then used to set an appropriate
sample size.

7. SUMMARY AND FUTURE WORK

Massive-scale self-administered networks like Peer-to-Peer
and Sensor Networks have data distributed across thousands
of participant hosts. These networks are highly dynamic
with short-lived hosts being the norm rather than an ex-
ception. In such networks, we would like query processing
to continue even if a “few” hosts fail. Hence, it becomes
necessary to give a meaning to possible interleaving of host
failures with query processing.

We defined Single-Site Validity, a correctness requirement
imposed on in-network query processing algorithms, and dis-
cussed its extensions to the continuous and approximate do-
mains. We proposed the WILDFIRE protocol that achieves
Single-Site Validity for duplicate-insensitive queries. We
showed how common aggregate queries (mazimum, mini-
mum, count, sum and average) can be adapted to work
with WILDFIRE. The protocol pays a 5x price over the
most efficient best-effort SPANNINGTREE algorithm. We pre-
sented the Capture-Recapture scheme that achieves Contin-
uous Approximate Single-Site Validity at a lower cost.

We believe this work can be extended in several interest-
ing directions. We intend to investigate ways of improving
efficiency of WILDFIRE and its adaptation for achieving Con-
tinuous Single-Site Validity. Another promising direction of
future work is the design of duplicate-insensitive operators
for complex aggregation queries.
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