
SOFTWARE ENGINEERING METHODOLOGY:

THE WATERSLUICE

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Ron Burback

December 1998

c© Copyright 1999 by Ron Burback

All Rights Reserved

ii

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold
(Principal Adviser)

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

David Luckham

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Eric Roberts

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Dorothea Beringer

Approved for the University Committee of Graduate
Studies:

iii

Preface

The body of methods, rules, postulates, procedures, and processes that are used to

manage a software engineering project are collectively referred to as a methodology.

There are two well-known software engineering methodologies commonly used

in practice today. The two methodologies, informally known as the waterfall and

spiral methodologies, are characterized by the grouping of tasks as either sequential

or cyclical. Both of these methodologies organize some tasks very well, but have a

narrow focus, so that crucial aspects of one methodology are missed by the other

methodology.

This thesis defines the WaterSluice methodology. The WaterSluice borrows the

iterative nature of the cyclical methodology along with the steady progression of the

sequential methodology. In addition, the tasks in the WaterSluice are prioritized such

that the most beneficial, non-conflicting tasks are accomplished first. A collection of

theorems is presented establishing the strengths and weaknesses of the WaterSluice as

compared to the sequential and cyclical methodologies. The WaterSluice methodology

represents a more accurate rendering of current software engineering practices. In this

sense, the WaterSluice is not new but merely represents a concise description of the

state of the art.

iv

This thesis builds a foundation for the study of software engineering method-

ologies and then categorizes the conditions under which one software engineering

methodology will be preferred over another software engineering methodology. Pre-

dicted performance characteristics for several major classes of software engineering

methodologies under a variety of conditions are presented.

Software engineering is a large and complex process of many interdependent pro-

cesses of which the methodology is only one part. This thesis concentrates on the

methodologies, but does not ignore many of the other key issues. In the appendices,

other key issues are covered including issues associated with requirement gathering

including an example of a requirement document, the software engineering system life-

cycle, the software engineering five-level engineering support environment, decision

support, and documentation development.

After the introductory Chapter 1, Chapter 2 introduces the foundation phases of

analysis, design, implementation, and testing. Chapter 3 builds from the foundation

phases, the sequential, cyclical, and WaterSluice software engineering methodologies.

Several established methodologies are reviewed in Chapter 4. Chapter 5, the formal

foundation chapter of the thesis, establishes the theoretical results which are then

compared to similar results from search theory in Chapter 6. This is followed by a

survey of large software engineering projects in Chapter 7. The final chapter of the

thesis, Chapter 8, introduces future work in distributed architectures, environments,

paradigms, and component engineering. The other topics as mentioned above are

then covered in the appendices.

v

Figure 1: The WaterSluice Icon

vi

Acknowledgments

I would like to acknowledge my principal thesis advisor, Gio Wiederhold, because

without his help this thesis would not have been possible. I would also like to thank my

reading committee members: David Luckham, Eric Roberts, and Dorothea Beringer.

A special thanks goes to Catherine Tornabene, Gary Payne, and Jie Wang for their

helpful suggestions.

I would also like to thank my wife, Sandy, for the loving and understanding support

given to me while I pursued my educational studies. I would also like to acknowledge

my powerful daughters, Jennifer, Christy, and Katy, who almost graduated from

college before their father.

vii

Contents

Preface iv

Acknowledgments vii

1 Introduction 1

2 Software Engineering Phases 5

2.1 Introduction . 5

2.2 The Analysis Phase . 6

2.2.1 Things . 9

2.2.2 Actions . 9

2.2.3 States . 10

2.2.4 Typical Scenarios . 10

2.2.5 Atypical Scenarios . 11

2.2.6 Incomplete and Non-Monotonic Requirements 11

2.3 The Design Phase . 12

2.3.1 Architecture . 14

2.3.2 Implementation Plan . 14

2.3.3 Critical Priority Analysis . 15

viii

2.3.4 Performance Analysis . 15

2.3.5 Test Plan . 16

2.4 The Implementation Phase . 18

2.4.1 Critical Error Removal . 18

2.5 The Testing Phase . 19

2.5.1 Regression Test . 21

2.5.2 Internal Testing . 22

2.5.3 Unit Testing . 22

2.5.4 Application Testing . 24

2.5.5 Stress Testing . 25

3 Methodologies 27

3.1 A Sequential Methodology . 28

3.1.1 Introduction . 28

3.1.2 Why It Works . 28

3.1.3 Why It Does Not Work . 30

3.2 A Cyclical Methodology . 31

3.2.1 Introduction . 31

3.2.2 Why It Works . 32

3.2.3 Why It Does Not Work . 33

3.3 The WaterSluice . 34

3.3.1 Introduction . 34

3.3.2 The Process . 36

3.3.3 Why It Works . 43

3.3.4 Why It Does Not Work . 44

3.4 Conclusion . 44

ix

4 Established Methodologies 46

4.1 The Boehm-Waterfall Methodology 46

4.2 The Boehm-Spiral Methodology . 48

4.3 Versions . 50

4.4 The Booch Methodology . 52

4.5 Object Modeling Technique (OMT) 53

4.6 Rational Objectory Methodology . 54

4.6.1 Phases . 56

4.6.2 Iterations . 57

4.6.3 Comparison to WaterSluice 58

4.7 WinWin Spiral Methodology . 59

4.8 Conclusion . 60

5 Formal Foundations 61

5.1 A Preview of the Main Theorem . 61

5.2 Definitions . 62

5.2.1 Towards the Definition of Environment 62

5.2.2 Towards the Definition of Methodology 77

5.2.3 Towards the Definition of Performance 82

5.3 Supporting Theorems . 83

5.3.1 Sequential Software Engineering Methodology 83

5.3.2 Cyclical Software Engineering Methodology 91

5.3.3 WaterSluice Software Engineering Methodology 98

5.4 Summary Results from the Main Theorem 111

6 An Analogy with Search 113

x

6.1 Search Background . 113

6.2 Analogy: Search and Methodologies 116

6.3 Conclusion . 116

7 Project Surveys 118

7.1 Introduction . 118

7.2 The Survey . 119

7.2.1 Software Engineering Methodology Phases 119

7.2.2 Software Engineering Methodology Composition 119

7.2.3 System Size Estimates . 120

7.2.4 Non-monotonic Characteristics 120

7.2.5 The Tabular Form . 120

7.3 Projects . 122

7.3.1 TDS Health Care System . 122

7.3.2 Digital’s Virtual Memory System (VMS) 126

7.3.3 Stanford University Infrastructure 130

7.3.4 Independent Technology Inc. (ITI) 133

7.3.5 Oceania . 135

7.3.6 CONMOD . 139

7.3.7 UNIX . 141

7.3.8 X . 143

7.3.9 Ada . 145

7.4 Software Engineering Methodologies 148

7.4.1 A Sequential Software Engineering Methodology 148

7.4.2 The Boehm-Waterfall Software Engineering Methodology . . . 149

7.4.3 A Cyclical Software Engineering Methodology 151

xi

7.4.4 The Boehm-Spiral Software Engineering Methodology 152

7.4.5 The WaterSluice Software Engineering Methodology 154

7.5 Summary . 155

8 Conclusion, Future, and Related Work 156

8.1 Methodologies . 156

8.2 Paradigms . 157

8.2.1 Abstract . 157

8.2.2 The Noemic Paradigm . 157

8.3 Distributed Architectures . 161

8.3.1 Abstract . 161

8.3.2 Introduction . 162

8.4 Component Engineering . 167

8.5 Distributed Environments . 167

A Software Life Cycle 169

A.1 Introduction . 169

A.2 Initial Development . 171

A.2.1 GUI Development . 171

A.3 Version Deployment . 172

A.4 Operations . 172

A.5 Maintenance . 173

A.6 Legacy . 173

A.7 Final Discontinuation . 174

B The Supporting Engineering Environment 175

B.1 Introduction . 175

xii

B.2 People . 176

B.3 Tools . 176

B.4 Strategies . 177

B.5 Measurements . 178

B.6 Feedback . 178

C Requirements Gathering 179

C.1 Introduction . 179

C.2 Models . 180

C.3 Quality Assurance . 180

C.4 Storyboard . 185

C.5 Some Fundamental Doctrines . 185

C.5.1 Abstraction . 186

C.5.2 Point of Views . 189

C.5.3 Scale . 192

C.5.4 Classification . 193

C.5.5 Generalization . 193

C.5.6 Clustering . 193

C.5.7 Boundaries . 194

C.5.8 Coupling . 194

C.5.9 Cohesion . 194

C.5.10 Observations . 194

C.6 Components in a Requirement Document 195

C.7 Techniques . 195

C.8 Summary . 196

xiii

D Decision Making 197

D.1 Alternative Tasks . 197

D.2 Objectives . 198

D.3 Outcomes . 198

D.4 Utility Function . 199

D.4.1 Temporal Utilities . 199

D.4.2 Uncertain Utilities . 200

D.5 Decision Rules . 200

D.5.1 Weighted Sums . 200

D.5.2 Weighted Products . 201

D.5.3 Deviation . 201

D.6 The Decision Process . 201

E Network Operating System 203

E.1 Introduction . 203

E.2 Goals . 205

E.2.1 Simple . 205

E.2.2 High Availability . 205

E.2.3 Support Change . 205

E.2.4 Support Longevity . 206

E.2.5 Legacy Support . 206

E.2.6 Local Machine Autonomy . 206

E.3 Components: Things and Actions . 206

E.3.1 Universal Unique Identity (UUID) 206

E.3.2 Principal . 206

E.3.3 Authentication . 207

xiv

E.3.4 Authorization . 207

E.3.5 Data Privacy . 208

E.3.6 Process Management . 208

E.3.7 Network Binary . 209

E.3.8 Distributed File System . 209

E.3.9 Disk Space Management . 209

E.3.10 NOS CPU Scheduling . 209

E.3.11 System Commands and Shell 210

E.3.12 Run Time Library Support . 210

E.3.13 Memory Management . 211

E.3.14 I/O and Peripheral Device Management 211

E.3.15 Networking . 211

E.3.16 Time . 211

E.3.17 Transaction . 212

E.3.18 Distributed Locks . 212

E.4 States . 212

E.5 Typical Scenarios . 212

E.5.1 Day-to-Day . 212

E.5.2 Machine Setup . 213

E.5.3 Customer Setup . 213

E.5.4 Service Setup . 213

E.5.5 NOS Setup . 214

E.5.6 Peripheral Device Setup . 214

E.5.7 NOS development . 214

E.6 Atypical Scenarios . 214

xv

E.6.1 Bring the NOS Down . 214

E.6.2 Remove a Machine or Service 215

F Documentation 216

G Glossary 217

H Acronym Key 222

Bibliography 224

xvi

List of Tables

2.1 The Analysis Phase: What does the system do? 6

2.2 The Design Phase: What are the plans? 12

2.3 The Implementation Phase: Now build it! 18

2.4 The Testing Phase: Improve Quality. 19

2.5 Categories of Quality . 22

4.1 Boehm-Spiral Methodology Stages . 49

5.1 Summary of Completeness . 111

5.2 Summary of Performance . 111

7.1 Survey Part 1: Basic Properties . 121

7.2 Survey Part 2: Change Control . 121

7.3 Survey Part 1: Basic Properties TDS 125

7.4 Survey Part 2: Change Control TDS 126

7.5 Survey Part 1: Basic Properties VMS 129

7.6 Survey Part 2: Change Control VMS 130

7.7 Survey Part 1: Basic Properties Stanford 132

7.8 Survey Part 2: Change Control Stanford 132

7.9 Survey Part 1: Basic Properties ITI 134

xvii

7.10 Survey Part 2: Change Control ITI 135

7.11 Survey Part 1: Basic Properties Oceania 138

7.12 Survey Part 2: Change Control Oceania 138

7.13 Survey Part 1: Basic Properties CONMOD 140

7.14 Survey Part 2: Change Control CONMOD 141

7.15 Survey Part 1: Basic Properties UNIX 142

7.16 Survey Part 2: Change Control UNIX 143

7.17 Survey Part 1: Basic Properties X . 144

7.18 Survey Part 2: Change Control X . 145

7.19 Survey Part 1: Basic Properties Ada 147

7.20 Survey Part 2: Change Control Ada 147

7.21 Survey: A Sequential Software Engineering Methodology: Part 1 . . . 148

7.22 Survey: A Sequential Software Engineering Methodology: Part 2 . . . 149

7.23 Survey: Boehm-Waterfall : Part 1 . 150

7.24 Survey: Boehm-Waterfall: Part 2 . 150

7.25 Survey: Cyclical : Part 1 . 151

7.26 Survey: Cyclical : Part 2 . 152

7.27 Survey: Boehm-Spiral: Part 1 . 153

7.28 Survey: Boehm-Spiral: Part 2 . 153

7.29 Survey: WaterSluice: Part 1 . 154

7.30 Survey: WaterSluice: Part 2 . 155

8.1 Example of a Traditional C Program with Header File. 163

B.1 Supporting Engineering Environment 176

F.1 The Customer Manual . 216

xviii

List of Figures

1 The WaterSluice Icon . vi

3.1 A Sequential Methodology . 29

3.2 A Cyclical Methodology . 32

3.3 A Gold Sluice Diagram . 35

3.4 The WaterSluice Methodology . 36

4.1 The Boehm-Waterfall Methodology 47

4.2 The Boehm-Spiral Methodology . 48

4.3 The Version Process . 51

4.4 The Rational Objectory Methodology. 55

5.1 A Compound Step . 66

5.2 A Complex Step . 68

5.3 Two Sibling Steps and their Overlapping Decomposition 69

5.4 Multi-layered Space . 71

5.5 The Environment . 75

5.6 The Taxonomy . 76

5.7 A Solution . 78

5.8 A Partial Solution . 79

xix

5.9 Sequential: Beginning . 85

5.10 Sequential: Intermediate . 86

5.11 Sequential: Final . 87

5.12 Cyclical: Final . 92

5.13 Priority Based Space . 99

5.14 WaterSluice: Proof of Principle . 100

5.15 WaterSluice: Prototype . 101

5.16 WaterSluice: Alpha . 102

5.17 WaterSluice: Beta . 103

5.18 WaterSluice: Product . 104

A.1 The Software Engineering Life Cycle 170

C.1 Three Basic Models . 181

C.2 Declarative and Imperative Knowledge 182

C.3 Quality Assurance as Validation . 183

C.4 Abstractions . 188

C.5 Point of Views . 190

xx

Chapter 1

Introduction

A software engineering project involves people guided by common goals and strate-

gies working with a collection of tools to produce documents and code. The tools

include compilers, debuggers, environments, change management, source control,

project management, document processors, and domain modeling tools. The doc-

uments produced include requirements that define the problem, customer manuals,

test plans, scenarios, a design that defines the architecture, and implementation plans.

The code may deal with objects, data structures, algorithms, methods, modules, pro-

tocols, and interface definitions. The strategies are materialized through the collection

of the architecture, methods, paradigms, risk analyses, conventions, and a mission

statement. These steps together define the cradle-to-grave life cycle of the software

project.

Just how should a software engineering project be managed? The answer is not

unique nor is it clearly defined. It is a combination of many ingredients. One of the

key ingredients in the management of an engineering project is the methodology.

1

CHAPTER 1. INTRODUCTION 2

Two well-known categories of software engineering methodologies are the sequen-

tial and the cyclical, informally known as the waterfall and spiral methodologies. A

third methodology is introduced here, called the WaterSluice methodology, which

combines the best aspects of the previous two methodologies. It takes the iterative

nature of the cyclical methodologies and the steady progression of the sequential

methodologies and then adds priority and conflicting requirement management.

All three methodologies deal with four simple phases of software engineering,

namely analysis, design, implementation, and testing. These concepts are first

introduced before the detailed discussion of methodologies.

The following is the main theorem of the thesis.

Theorem 1 Different software engineering methodologies have significant performance

variations depending on the given environment. A software engineering methodology

that is goal focused, manages conflicts, and differentiates between different priorities

is best suited for dynamic non-monotonic environments.

Though the statement of the theorem appears simple, the complexity is in the

details of the formal definitions of software engineering methodologies, performance,

and environment. The variations in performance of different software engineering

methodologies are sufficiently great as to make the choice of which software engineer-

ing methodology to use dependent on the surrounding environment.

First the environment will be defined. As discussed later, the environment defi-

nition is built from the definitions of the analysis, design, implementation, and testing

phases. Each phase defines a plane which is then defined in terms of atomic, com-

pound, and complex steps. One step may have a sibling relationship with other

steps. Together the four planes form a multi-layered space, either static or dy-

namic. In some cases, a dynamic space may exhibit the non-monotonic property.

CHAPTER 1. INTRODUCTION 3

There are two special steps: the problem statement and the system acceptance

test. The environment is the multi-layered space consisting of the analysis, design,

implementation, and testing planes with two special steps: the initial problem state-

ment and the system acceptance test.

Next we define the methodology, as discussed later, as an algorithm that finds a

solution in the given environment of the multi-layered space consisting of the anal-

ysis, design, implementation, and testing plane starting with the root represented by

the problem statement and ending with the goal represented by the system accep-

tance test. Three classes of methodologies are presented: sequential, cyclical, and the

WaterSluice.

Finally, we define performance, as discussed later, as the number of steps needed

by a methodology to find a solution. A family of theorems and corollaries are then

proven. In summary, the proceeding theorems and corollaries generate several key

results:

• All three categories of software engineering methodologies are complete for static

environments. See Theorems 2, 3, and 4.

• Only cyclical and WaterSluice are complete for dynamic environments. See

Corollaries 2.4, 3.4, and 4.1.

• Only WaterSluice is complete for non-monotonic environments. See Corollaries

2.5, 3.5, and 4.2.

• The best case performance of sequential software engineering methodology is

O(N). See Corollaries 2.1.

• The best case performance of cyclical and WaterSluice software engineering

methodologies is O(1). See Corollaries 3.1, and 4.3.

CHAPTER 1. INTRODUCTION 4

• The worst case performance of all three categories of methodologies are the

same. See Corollaries 2.2, 3.2, and 4.4.

• On average, the sequential methodology will find a solution in O(N). See Corol-

lary 2.3. On average, the cyclical methodology will find a solution in O(N). 1

See Corollary 3.3. On average, the WaterSluice will find a solution an order-of-

magnitude less than N. See Corollary 4.5.

• A software engineering methodology that is goal focused, manages conflicts,

and differentiates between different priorities is best suited for dynamic non-

monotonic environments.

As an analogy, the search section compares the three methodologies to algorithms

in a search space. It will be shown that the sequential methodologies is analogous

to a breadth-first search, the cyclical methodologies is analogous to a depth-first

search, and the WaterSluice methodology is analogous to a best-first search.

Some established methodologies are reviewed in Chapter 4 including Boehm-

Waterfall Methodology, Boehm-Spiral Methodology, Booch Methodology, Object Mod-

eling Technique (OMT), Rational Objectory Methodology, and WinWin Spiral Method-

ology.

Chapter 7 reviews several large projects while future work is outlined in Chapter

8.

1A more accurate average performance measurement for a cyclical software engineering method-
ology is N/2.

Chapter 2

Software Engineering Phases

2.1 Introduction

Before we descend into the definition of software engineering methodologies, we need

to define the meanings of some of the fundamental phases.

There are four fundamental phases in most, if not all, software engineering

methodologies. These phases are analysis, design, implementation, and testing. These

phases address what is to be built, how it will be built, building it, and making it

high quality. These phases will now be defined as they apply to the life cycle stage

of product delivery emphasized in this thesis.

Even though this thesis emphasizes the four phases of analysis, design, implemen-

tation, and testing in a software engineering methodology as it applies to the software

life cycle stage of product delivery, the results are also applicable to the other

software life cycle stages of deployment, operations, maintenance, legacy, and

finally discontinuation as the system transitions through many versions from cra-

dle to death. This is explored in more details in Appendix A. In many systems the

5

CHAPTER 2. SOFTWARE ENGINEERING PHASES 6

majority of the total system cost is in the later life cycle stages and only a minority

of the total system cost in the initial development.

2.2 The Analysis Phase

Phase Deliverable
Analysis • Requirements Document

• Domain Ontology
- Things
- Actions
- States

• Typical Scenarios
• Atypical Scenarios

Table 2.1: The Analysis Phase: What does the system do?

The analysis phase defines the requirements of the system, independent of

how these requirements will be accomplished. This phase defines the problem that

the customer is trying to solve. The deliverable result at the end of this phase is a

requirement document. Ideally, this document states in a clear and precise fashion

what is to be built. This analysis represents the “what” phase. The requirement

document tries to capture the requirements from the customer’s perspective by defin-

ing goals and interactions at a level removed from the implementation details. The

analysis phase is summarized in Table 2.1 on page 6.

The requirement document may be expressed in a formal language based on

mathematical logic. Traditionally, the requirement document is written in English or

another written language.

The requirement document does not specify the architectural or implementation

CHAPTER 2. SOFTWARE ENGINEERING PHASES 7

details, but specifies information at the higher level of description. The problem

statement, the customer’s expectations, and the criteria for success are examples

of high-level descriptions. There is a fuzzy line between high-level descriptions and

low-level details.

Sometimes, if an exact engineering detail needs to be specified, this detail will also

appear in the requirement document. This is the exception and should not be the rule.

These exceptions occur for many reasons including maintaining the consistency with

other established systems, availability of particular options, customer’s demands, and

to establish, at the requirement level, a particular architecture vision. An example

of a low-level detail that might appear in the requirement document is the usage of

a particular vendor’s product line, or the usage of some accepted computer industry

standard, or a constraint on the image size of the application.

There is a fundamental conflict between high levels and low levels of detail. The

requirement document states what the system should accomplish, independent of

many of the details. The discovery process used in establishing the requirements

during the analysis phase is best described as a refinement process than as a levels-

of-detail process [106].

Top-down and bottom-up approaches force a greater distinction between high

levels and low levels of detail. Interactive approaches lead to the refinement of those

details.

Traditionally, the requirement document describes the things in the system and

the actions that can be done on these things. Things might be expressed as objects in

an object-based technology where data and algorithms are hidden behind hierarchical-

polymorphic methods. 1 Alternatively, things might be expressed as services accessing

1In object-based systems a scheme forms an hierarchy used to establish inheritance of methods

CHAPTER 2. SOFTWARE ENGINEERING PHASES 8

databases in a functional approach where data is a fundamentally different concept

than functions. In general, the description of things in the system can be much more

general and not confined to a particular technology. In a more general sense, this

document describes the ontology, that is the noun phrases and the verb phrases,

that will become the guidelines for defining the application specific protocol.

The requirement descriptions of the things in the system and their actions does

not imply an architecture design rather a description of the artifacts of the system

and how they behave, from the customer’s perspective. Later, in the design phase,

these requirement descriptions are mapped into computer science based primitives,

such as lists, stacks, trees, graphs, algorithms, and data structures.

The description of the abstraction of the noun phrases and the verb phrases are

not bound to the use of a written human language. Most written human languages

are too vague to capture the precision necessary to build a system. Alternative

descriptive mechanisms based on mathematical logic are sometimes more suitable but

much more difficult to accomplish. Mathematical logic provides a scientific foundation

for precisely expressing information. However, frequently in the real world, a precise

description is not attainable.

Again the requirement document should state in a clear and precise fashion what

is to be built. The definitive mechanism to author such a document, either formally

or informally, has yet to be developed, although reasonable success has been achieved

with existing methods including CASE tools and tools based on mathematical logic.

See [41], [27], and [110].

and data structures. A child object class in the hierarchy inherits their patent’s methods and data
structures. Multiple polymorphic methods share the same name and similar, conceptual algorithms.
The method “plus” used for integer, real, and complex would be an example of a polymorphic
method.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 9

Later, in the design phase, the very important decomposition of the problem leads

to the development of data structures and algorithms. A functional decomposition

for a distributed environment leads to a natural split of the data structures and

algorithms. Examples include distributed client-server systems, where a database

holds the data in a server while the algorithms manipulating the data reside on the

client. An object-based decomposition leads to a natural joining of data structures

and algorithms forming objects with methods. The requirement documents should

be independent of the decomposition technique.

The analysis team develops the requirement document, which talks about things

and actions on things. This document should also include states, events, typical

scenarios of usage, and atypical scenarios of usage. The definitions of things, actions,

states, typical scenarios, and atypical scenarios follow this section. More detailed

examples of a requirement document can be found later in this thesis. See Appendix

E on page 203 for an example requirement document.

2.2.1 Things

The requirement document first of all defines the ontology of the system which is,

in the more general sense, the noun phrases. Here the pieces and parts, constants,

names, and their relationships to each other are specified.

2.2.2 Actions

The requirement document defines the actions that the system should perform. This

is expressed, in the more general sense, as verb phrases. Methods, functions, and

procedures are all examples of actions.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 10

2.2.3 States

States are defined as a sequence of settings and values which distinguishes one time-

space slice of a system from another slice. Every state-full system goes through a

series of state changes. Example states include the initial state, the final state, and

potentially many error states. Most of the states are domain specific.

States are associated with things in the system. An event triggers a potential

state transition which may then lead to an action taken by the system.

2.2.4 Typical Scenarios

A scenario is a sequence of steps taken to accomplish a given goal. When the

system is completed and the application is available, the customer should be able, in

an easy and clearly specified manner, to accomplish all typical usage scenarios for the

application.

The typical scenarios should represent the vast majority of uses for the system.

The exact coverage of the system by the typical scenarios vary, but a 90 percent

coverage is desirable. Obviously, a system with only one possible usage scenario will

be easy to cover while a system with thousands of possible usage scenarios will be

much harder to cover.

Frequently the 80/20 rule is invoked. Eighty percent of the functionality of a

typical system is accomplished by twenty percent of the work. To accomplish the

remaining minority functionality requires the vast majority of the work.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 11

2.2.5 Atypical Scenarios

An atypical scenario is something that needs to be accomplished within the system,

but only seldom. The actions have to be done correctly, but perhaps at lower effi-

ciency. The customer should hope that an unexpected error condition is an atypical

event. Nonetheless, the system should be able to deal with many categories of faults

by using several established techniques, such as exception handlers, replications, pro-

cess monitoring, and roll over. Atypical scenarios and typical scenarios share similar

coverage.

2.2.6 Incomplete and Non-Monotonic Requirements

An entire enumeration of all of the requirements is not possible for nearly all real-life

situations. Godel’s incompleteness theorem of arithmetic says that there is no finite

list of axioms that completely describe integer arithmetic. Expressed in our terminol-

ogy, there is no finite list of requirements that would completely describe arithmetic.

Since integer arithmetic is an underlying foundation of most computer hardware sys-

tems and software applications, and since we can’t even enumerate the requirements

for integer arithmetic, the task of completely enumerating a more complex system is

certainly intractable.

In traditional logic, a theory is defined by a finite set of axioms. Theorems within

the theory are valid sentences. If new axioms are added to the theory, the already

existing theorems remain valid and the theory is extended into a new theory with

new theorems added to the established theorems.

In non-monotonic logic, adding new axioms to the theory may invalidate ex-

isting theorems that were already proven. A new theory is created which is not a

simple extension of the old theory, but a collection of new theorems and some of the

CHAPTER 2. SOFTWARE ENGINEERING PHASES 12

established theorems.

The requirement gathering process is iterative in nature and more like non-monotonic

logic than monotonic logic. An initial collection of requirements, the axioms of the

system, define the capabilities, the theorems of the system. New requirements may

lead to a collection of capabilities different than the established capabilities. New

requirements may negate old solutions.

Early in the process, some requirements are established. As the process contin-

ues, other requirements are discovered which may be in conflict with earlier known

requirements, thus leading a different system. See [95].

Unfortunately, as a system increases in size and complexity, the requirement gath-

ering process becomes more and more intractable. This is especially true when the

requirement gathering process is distributed across many individuals from many dif-

ferent disciplines.

2.3 The Design Phase

Phase Deliverable
Design • Architecture Document

• Implementation Plan
• Critical Priority Analysis
• Performance Analysis
• Test Plan

Table 2.2: The Design Phase: What are the plans?

In the design phase the architecture is established. This phase starts with the

requirement document delivered by the requirement phase and maps the requirements

into an architecture. The architecture defines the components, their interfaces and

CHAPTER 2. SOFTWARE ENGINEERING PHASES 13

behaviors. The deliverable design document is the architecture. The design document

describes a plan to implement the requirements. This phase represents the “how”

phase. Details on computer programming languages and environments, machines,

packages, application architecture, distributed architecture layering, memory size,

platform, algorithms, data structures, global type definitions, interfaces, and many

other engineering details are established. The design may include the usage of existing

components. The design phase is summarized in Table 2.2 on page 12.

The architectural team can now expand upon the information established in the

requirement document. Using the typical and atypical scenarios provided from the

requirement document, performance trade-offs can be accomplished as well as com-

plexity of implementation trade-offs.

Obviously, if an action is done many times, it needs to be done correctly and

efficiently. A seldom used action needs to be implemented correctly, but it is not

obvious what level of performance is required. The requirement document must guide

this decision process. An example of a seldom used action which must be done with

high performance is the emergency shutdown of a nuclear reactor.

Analyzing the trade-offs of necessary complexity allows for many things to re-

main simple which, in turn, will eventually lead to a higher quality product. The

architecture team also converts the typical scenarios into a test plan.

In our approach, the team, given a complete requirement document, must also

indicate critical priorities for the implementation team. A critical implementation

priority leads to a task that has to be done right. If it fails, the product fails. If it

succeeds, the product might succeed. At the very least, the confidence level of the

team producing a successful product will increase. This will keep the implementation

team focused. Exactly how this information is conveyed is a skill based on experience

CHAPTER 2. SOFTWARE ENGINEERING PHASES 14

more than a science based on fundamental foundations.

The importance of priority setting will become evident in the theory chapter

presented later.

2.3.1 Architecture

The architecture defines the components, interfaces, and behaviors of the system.

The components are the building blocks for the system. These components may

be built from scratch or re-used from an existing component library. The components

refine and capture the meaning of details from the requirement document.

The components are composed with other components using their interfaces. An

interface forms a common boundary of two components. The interface is the architec-

tural surface where independent components meet and communicate with each other.

Over the interface, components interact and affect each other.

The interface defines a behavior where one component responds to the stimuli of

another component’s actions.

2.3.2 Implementation Plan

The implementation plan establishes the schedule and needed resources. It defines

implementation details including programming languages, platforms, programming

environments, debuggers, and many more.

The implementation plan could be considered as part of the design, which is the

position taken here, or it could be considered as the first accomplishment in the

implementation phase. One of the goals of the design phase is to establish a plan

to complete the system. Thus it is very natural to include the implementation plan.

Also, the trade-offs between alternative architectures can be influenced by differences

CHAPTER 2. SOFTWARE ENGINEERING PHASES 15

in their implementation plans.

2.3.3 Critical Priority Analysis

The critical priority analysis generates a list of critical tasks. It is absolutely

necessary to successfully accomplish a critical task. The project will succeed or fail

based on the outcome of these tasks. Some projects may have more than one critical

task.

There are two major categories of critical tasks. One category of tasks are associ-

ated with the building of the system. These are the critical tasks that the teams must

accomplish well. An example might be a high-quality implementation of a critical

section of code in the system.

The other category of critical tasks are associated with the system itself. These

are the critical tasks that the system, once built, must accomplish well. An example

might be the successful flying of an airplane under automatic pilot.

It is absolutely necessary to successfully accomplish both categories of critical

tasks.

Not all methodologies have critical priority analysis as a well defined task. Later

in the thesis it will be shown that the setting of priorities will play a significant role

in methodology’s performance characteristics. Critical priority analysis is one of the

key features of the WaterSluice software engineering methodology.

2.3.4 Performance Analysis

Once given the typical scenarios from the requirement document, the system can be

designed to meet performance objectives. Different system architectures will yield

different predicted performance characteristics for each typical scenario. Depending

CHAPTER 2. SOFTWARE ENGINEERING PHASES 16

on the usage frequency of the scenarios in the system, each architecture will have

benefits and drawbacks with advantages and disadvantages. The trade-offs are then

weighted to establish the system architecture. Frequently a system is designed to give

fast response to an action initiated by a human customer at the expense of having

to do more complex systems work such as including indexes, cache management, and

predictive pre-calculations.

2.3.5 Test Plan

The test plan defines the testing necessary to establish quality for the system. If

the system passes all tests in the test plan, then it is declared to be complete. If

the system does pass all test then it is considered to be of high quality. The more

complete the coverage of the system, the higher is the confidence in the system: hence

the system’s quality rises.

The test plan could be considered as part of the design, which is the position taken

here, or it could be considered as the first accomplishment in the testing phase. One

of the goals of the design phase, is to establish a plan to complete the system, thus

it is very natural to include the test plan. Also the trade-offs between alternative

architectures can be influenced by differences in their test plans.

One single test will exercise only a portion of the system. The coverage of the test

is the percentage of the system exercised by the test. The coverage of a suite of tests

is the union of the coverage of each individual test in the suite.

Ideally, 100 percent test coverage of the entire system would be nice, but this is

seldom achieved. Creating a test suite that covers 90 percent of the entire system is

usually simple. Getting the last 10 percent requires significant amount of development

time.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 17

For an example, consider the Basic Input/Output System (BIOS) built by IBM

in the early 1980s as the foundation of the Disk Operating System (DOS) built by

Microsoft. For performance reasons, the BIOS needed to be placed in a Read Only

Memory (ROM) chip. Because the BIOS would be placed on a ROM, error patches

would be nearly impossible. Thus 100% test coverage of the BIOS was dictated. The

BIOS code itself was small, only a few thousand lines. Because the BIOS is asyn-

chronous in nature, creating a test would first require an asynchronous environment

to bring the system to a desired state, and then an event would be needed to trigger a

single test. Quickly, the test suite grew much larger than the BIOS. This introduced

the problem of doing quality assurance on the test suite itself. Eventually, 100%

coverage was reached but at a high cost. A more cost effective approach would be to

place the BIOS on a Electronic Programmable ROM (EPROM) and ROM combina-

tion. Most of the BIOS would be on the ROM with error patches being placed on

the EPROM. This is the approach that Apple took on the Macintosh.

Usually, it is sufficient that the test suite includes all of the typical and atypical

scenarios and need not cover the entire system. This gives reasonable quality for the

investment of resources. All the typical and atypical scenarios need to be covered,

but in doing so, not all threads of execution within the system may be covered. The

system may contain internal branches, errors, or interrupts that will lead to untested

threads of execution. Tools exists to measure code coverage.

Systems are full of undiscovered bugs. The customer becomes a logical member

of the testing team and bug fixes are pushed off to the next release.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 18

2.4 The Implementation Phase

Phase Deliverable
Implementation • Code

• Critical Error Removal

Table 2.3: The Implementation Phase: Now build it!

In the implementation phase, the team builds the components either from

scratch or by composition. Given the architecture document from the design phase

and the requirement document from the analysis phase, the team should build exactly

what has been requested, though there is still room for innovation and flexibility. For

example, a component may be narrowly designed for this particular system, or the

component may be made more general to satisfy a reusability guideline. 2 The

architecture document should give guidance. Sometimes, this guidance is found in

the requirement document. The implementation phase is summarized in Table 2.3 on

page 18.

The implementation phase deals with issues of quality, performance, baselines,

libraries, and debugging. The end deliverable is the product itself.

There are already many established techniques associated with implementation.

This thesis does not depend on which technique is followed.

2.4.1 Critical Error Removal

There are three kinds of errors in a system, namely critical errors, non-critical errors,

and unknown errors.

2A reusability guideline defines a general purpose component that may have many uses across
many systems.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 19

A critical error prevents the system from fully satisfying the usage scenarios.

These errors have to be corrected before the system can be given to a customer or

even before future development can progress.

A non-critical error is known but the presence of the error does not significantly

affect the system’s perceived quality. There may indeed be many known errors in the

system. Usually these errors are listed in the release notes and have well established

work arounds.

In fact, the system is likely to have many, yet-to-be-discovered errors. The effects

of these errors are unknown. Some may turn out to be critical while some may be

simply fixed by patches or fixed in the next release of the system.

2.5 The Testing Phase

Phase Deliverable
Testing • Regression Test

• Internal Testing
• Unit Testing
• Application Testing
• Stress Testing

Table 2.4: The Testing Phase: Improve Quality.

Simply stated, quality is very important. Many companies have not learned that

quality is important and deliver more claimed functionality but at a lower quality

level. It is much easier to explain to a customer why there is a missing feature than

to explain to a customer why the product lacks quality. A customer satisfied with

the quality of a product will remain loyal and wait for new functionality in the next

CHAPTER 2. SOFTWARE ENGINEERING PHASES 20

version. Quality is a distinguishing attribute of a system indicating the degree of

excellence.

The testing phase is summarized in Table 2.4 on page 19. For more information

on testing see [10], [11], [66], [67], [78], [79], [72], [96], [102], [113], [8], [61], [62], [43],

[35], and [113].

In many software engineering methodologies, the testing phase is a separate

phase which is performed by a different team after the implementation is completed.

There is merit in this approach; it is hard to see one’s own mistakes, and a fresh eye

can discover obvious errors much faster than the person who has read and re-read

the material many times. Unfortunately, delegating testing to another team leads to

a slack attitude regarding quality by the implementation team.

Alternatively, another approach is to delegate testing to the the whole organiza-

tion. If the teams are to be known as craftsmen, then the teams should be responsible

for establishing high quality across all phases. Sometimes, an attitude change must

take place to guarantee quality. 3

Regardless if testing is done after-the-fact or continuously, testing is usually based

on a regression technique split into several major focuses, namely internal, unit,

application, and stress.

The testing technique is from the perspective of the system provider. Because it

is nearly impossible to duplicate every possible customer’s environment and because

systems are released with yet-to-be-discovered errors, the customer plays an impor-

tant, though reluctant, role in testing. As will be established later in the thesis, in

the WaterSluice methodology this is accomplished in the alpha and beta release of

3For some reason, many engineering organizations think that quality assurance is below their
dignity. The better attitude would be that every member of an engineering organization should
make quality an important aspect.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 21

the system.

2.5.1 Regression Test

Quality is usually appraised by a collection of regression tests forming a suite of

programs that test one or more features of the system.

A regression test is written and the results are generated. If the results are in

error, then the offending bug is corrected. A valid regression test generates verified

results. These verified results are called the “gold standard.” This term is borrowed

from financial markets where paper money issued by governments was backed by real

gold. 4

Ideally, the validity of a test result is driven by the requirement document; in

practice, the implementation team is responsible for validity interpretation.

The tests are collected, as well as their gold-standard results, into a regression test

suite. As development continues, more tests are added, while old tests may remain

valid. Because of new development, an old test may no longer be valid. If this is

the case, the old test results are altered in the “gold standard” to match the current

expectations. The test suite is run generating new results. These new results are then

compared with the gold-standard results. If they differ, then a potential new fault

has entered the system. The fault is corrected and the development continues. This

mechanism detects when new development invalidates existing development, and thus

prevents the system from regressing into a fault state.

There are four major focuses of regression testing used to assure quality. A sum-

mary is found in Table 2.5 on page 22. The discussion follows.

4The software engineering methodology WaterSluice will be used to discover the “gold” in a
system.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 22

Focus Note Team
Responsibility

Internal Make sure all internal,
non-customer-visible com-
ponents work well.

Implementation
Team

Unit Make sure all customer-
visible components work
well.

Implementation and
Design Teams

Application Make sure the application
can complete all scenarios.

Analysis Team

Stress Run the application in an
environment that is more
stressful than the target en-
vironment.

All Teams

Table 2.5: Categories of Quality

2.5.2 Internal Testing

Internal testing deals with low-level implementation. Here each function or compo-

nent is tested. This testing is accomplished by the implementation teams. This focus

is also called clear-box testing, or sometimes white-box testing, because all details are

visible to the test. Internal limits are tested here.

2.5.3 Unit Testing

Unit testing deals with testing a unit as a whole. This would test the interaction

of many functions but confine the test within one unit. The exact scope of a unit

is left to interpretation. Supporting test code, sometimes called scaffolding, may

be necessary to support an individual test. This type of testing is driven by the

architecture and implementation teams. This focus is also called black-box testing

because only the details of the interface are visible to the test. Limits that are global

CHAPTER 2. SOFTWARE ENGINEERING PHASES 23

to a unit are tested here.

In the construction industry, scaffolding is a temporary, easy to assemble and dis-

assemble, frame placed around a building to facilitate the construction of the building.

The construction workers first build the scaffolding and then the building. Later the

scaffolding is removed, exposing the completed building. Similarly, in software test-

ing, one particular test may need some supporting software. This software establishes

an environment around the test. Only when this environment is established can a

correct evaluation of the test take place. The scaffolding software may establish state

and values for data structures as well as providing dummy external functions for the

test. Different scaffolding software may be needed from one test to another test.

Scaffolding software rarely is considered part of the system.

Sometimes the scaffolding software becomes larger than the system software being

tested. Usually the scaffolding software is not of the same quality as the system

software and frequently is quite fragile. A small change in the test may lead to much

larger changes in the scaffolding.

Internal and unit testing can be automated with the help of coverage tools. A

coverage tool analyzes the source code and generates a test that will execute every

alternative thread of execution. It is still up to the programmer to combine these test

into meaningful cases to validate the result of each thread of execution. Typically,

the coverage tool is used in a slightly different way. First the coverage tool is used

to augment the source by placing informational prints after each line of code. Then

the testing suite is executed generating an audit trail. This audit trail is analyzed

and reports the percent of the total system code executed during the test suite. If

the coverage is high and the untested source lines are of low impact to the system’s

overall quality, then no more additional tests are required.

CHAPTER 2. SOFTWARE ENGINEERING PHASES 24

2.5.4 Application Testing

Application testing deals with tests for the entire application. This is driven by

the scenarios from the analysis team. Application limits and features are tested here.

The application must successfully execute all scenarios before it is ready for general

customer availability. After all, the scenarios are a part of the requirement document

and measure success. Application testing represents the bulk of the testing done by

industry.

Unlike the internal and unit testing, which are programmed, these test are usually

driven by scripts that run the system with a collection of parameters and collect

results. In the past, these scripts may have been written by hand but in many

modern systems this process can be automated.

Most current applications have graphical user interfaces (GUI). Testing a GUI to

assure quality becomes a bit of a problem. Most, if not all, GUI systems have event

loops. The GUI event loop contains signals for mouse, keyboard, window, and other

related events. Associated with each event are the coordinates on the screen of the

event. The screen coordinates can be related back to the GUI object and then the

event can be serviced. Unfortunately, if some GUI object is positioned at a different

location on the screen, then the coordinates change in the event loop. Logically the

events at the new coordinates should be associated with the same GUI object. This

logical association can be accomplished by giving unique names to all of the GUI

objects and providing the unique names as additional information in the events in

the event loop. The GUI application reads the next event off of the event loop, locates

the GUI object, and services the event.

The events on the event loop are usually generated by human actions such as typ-

ing characters, clicking mouse buttons, and moving the cursor. A simple modification

CHAPTER 2. SOFTWARE ENGINEERING PHASES 25

to the event loop can journal the events into a file. At a later time, this file could be

used to regenerate the events, as if the human was present, and place them on the

event loop. The GUI application will respond accordingly.

A tester, using the GUI, now executes a scenario. A journal of the GUI event loop

from the scenario is captured. At a later time the scenario can be repeated again and

again in an automated fashion. The ability to repeat a test is key to automation and

stress testing.

2.5.5 Stress Testing

Stress testing deals with the quality of the application in the environment. The idea

is to create an environment more demanding of the application than the application

would experience under normal work loads. This is the hardest and most complex

category of testing to accomplish and it requires a joint effort from all teams.

A test environment is established with many testing stations. At each station,

a script is exercising the system. These scripts are usually based on the regression

suite. More and more stations are added, all simultaneous hammering on the system,

until the system breaks. The system is repaired and the stress test is repeated until

a level of stress is reached that is higher than expected to be present at a customer

site.

Race conditions and memory leaks are often found under stress testing. A race

condition is a conflict between at least two tests. Each test works correctly when

done in isolation. When the two tests are run in parallel, one or both of the tests fail.

This is usually due to an incorrectly managed lock.

A memory leak happens when a test leaves allocated memory behind and does

not correctly return the memory to the memory allocation scheme. The test seems

CHAPTER 2. SOFTWARE ENGINEERING PHASES 26

to run correctly, but after being exercised several times, available memory is reduced

until the system fails.

Chapter 3

Methodologies

In this chapter, three major categories of methodologies are presented: sequential,

cyclical, and WaterSluice. The sequential and cyclical methodologies, informally

known as the waterfall and spiral methodologies, are generic in design and have

been simplified to emphasize a key aspect. In a sequential methodology, the four

phase of analysis, design, implementation, and testing follow each other sequentially.

In a cyclical methodology, the four phase of analysis, design, implementation, and

testing are cycled with each cycle generating an incremental contribution to the final

system. The WaterSluice is a hybrid borrowing the steady progress of the sequential

methodology along with the iterative increments of the cyclical methodology and adds

priority and governors to control change.

These three categories of methodologies form a basis for comparison. In the theory

chapter, the categories are analyzed in detail. In the survey of methodology chapter,

other more established methodologies, are categorized. Performance characteristics

of established methodologies can be analyzed based on this categorization.

The computer software industry has introduced a major confusion in terms of

27

CHAPTER 3. METHODOLOGIES 28

naming of methodologies. The Boehm-waterfall methodology, analyzed later in

this thesis, is most often quoted as a sequential methodology, but the original paper

presents it as a cyclical methodology. However, in the greater computer software

industry, the term waterfall has come to mean any sequential methodology. This

leads to major confusion and hence the introduction, in this thesis, of the sequential

classification. Likewise, the Boehm-spiral methodology, also analyzed later in this

thesis, is most quoted as a cyclical methodology but behaves more like a sequential

methodology with many stages. Yet the term spiral has come to mean any cyclical

methodology.

3.1 A Sequential Methodology

3.1.1 Introduction

In a sequential methodology, informally known as the waterfall, the analysis phase

comes first, then the design phase, followed by the implementation phase, and finally

by the testing phase. The team that does each phase may be different, and there may

be a management decision point at each phase transition. See Figure 3.1 on page 29.

3.1.2 Why It Works

A sequential methodology is successful when the complexity of the system is low and

requirements are static. A sequential methodology simply states that first one should

think about what is being built, then establish the plan for how it should be built, and

then build it with quality. It allows for a software engineering methodology which is

in alignment with hardware engineering methods and practices. It forces a discipline

process to avoid the pressures of writing code long before it is known what is going

CHAPTER 3. METHODOLOGIES 29

A Sequential Methodology

Testing

Analysis
Design

Implementation

ProductDA I T

Figure 3.1: A Sequential Methodology

CHAPTER 3. METHODOLOGIES 30

to be built.

Many times, an implementation team is under pressure to build some code before

the analysis is completed, only to later discover that the code is not needed or will

contribute little to the end product. Unfortunately, this early code becomes a costly

legacy: difficult to abandon and difficult to change. A sequential methodology forces

analysis and planning before implementation. This is good advice in many software

engineering situations.

The process forces the analysis team to precisely define their requirements. It is

much easier to build something if it is known what that something is.

Significant numbers of historical software systems have been built using a sequen-

tial methodology. Many past corporations owe their success to one of the many

sequential methodologies. These successes were in part due to the usage of a formal

sequential methodology at the time when pressures of change coming from external

sources were limited.

3.1.3 Why It Does Not Work

A sequential methodology might fail for many reasons. A sequential methodology

requires the analysis team to be nearly clairvoyant. They must define ALL details up

front. There is no room for mistakes and no process for correcting errors after the final

requirements are released. There is no feedback about the complexity of delivering

code corresponding to each one of the requirements. An easily stated requirement

may significantly increase the complexity of the implementation, and it may not even

be possible to be implemented with today’s technology. Had the requirement team

known that a particular requirement could not be implemented, they could have

substituted a slightly different requirement that met most of their needs and could

CHAPTER 3. METHODOLOGIES 31

have been easier to achieve.

Communication between teams becomes a gating item. Traditionally, the four

teams may be different and cross-team communication may be limited. The main

mode of communication are the documents that are completed by one team and then

passed to another team with little feedback. The requirement team has completed

the analysis and is disbanded when the implementation team starts. The requirement

documents can only capture a small fraction of the knowledge and typically do not

capture any information dealing with quality, performance, behavior, or motivation.

In a fast-moving technology, a sequential methodology builds products that, by

the time they are delivered, may be obsolete. A sequential methodology puts so

much emphasis on planning, that in a fast-moving target arena, it can not respond

fast enough to change. There is no early feedback from the customer and customers

may change their requirements. Frequently, once the customers see a prototype of

the system, the customers change their requirements.

3.2 A Cyclical Methodology

3.2.1 Introduction

A cyclical methodology, informally known as the spiral, fixes some of the problems

introduced by a sequential methodology. A cyclical methodology still has the four

phases. A little time is initially spent in each phase, followed by several iterations

over all four phases.

Simply, the methodology iterates over the processes of think a little, plan a little,

implement a little, then test a little. The document structures and deliverable types

from each phase incrementally change in structure and content with each cycle or

CHAPTER 3. METHODOLOGIES 32

iteration. More detail is generated as the methodology progresses. Finally, after sev-

eral iterations, the product is complete and ready to ship. The cyclical methodology

may continue shipping multiple versions of the product. Ideally, each phase is given

equal attention. See Figure 3.2 on page 32.

The Cyclical Methodology

Analysis
Design

Implementation

Testing

ProductDA I T

Figure 3.2: A Cyclical Methodology

3.2.2 Why It Works

A cyclical methodology is an incremental improvement on a sequential methodology.

It allows for feedback from each team about the complexity of each requirement.

CHAPTER 3. METHODOLOGIES 33

There are stages where mistakes in the requirements can be corrected. The customer

gets a peek at the results and can feed back information especially important before

final product release. The implementation team can feed performance and viability

information back to the requirement team and the design team. The product can

track technology better. As new advances are made, the design team can incorporate

them into the architecture.

3.2.3 Why It Does Not Work

A cyclical methodology has no governors to control oscillations from one cycle to

another cycle. Without governors, each cycle generates more work for the next cycle

leading to time schedule slips, missing features, or poor quality. More often than

not, the length or number of cycles may grow. There are no constraints on the

requirement team to “get things right the first time.” This leads to sloppy thinking

from the requirement team, which gives the implementation team many tasks that

eventually get thrown out.

The architecture team is never given a complete picture of the product and hence

may not complete a global architecture which scales to full size. There are no firm

deadlines. Cycles continue with no clear termination condition. The implementation

team may be chasing a continuously changing architecture and changing product

requirements.

CHAPTER 3. METHODOLOGIES 34

3.3 The WaterSluice

3.3.1 Introduction

A water sluice is a gold mining technique. Crushed ore and gravel are mixed with fast

moving water and then channeled over a long trough with a series of perpendicular-

to-the-flow slats. Each row of slats gets smaller as the water flows longer in the

channel. Since gold is heavier than the surrounding rock, the gold nuggets collect

at these slats. The larger nuggets collect at the bigger slats while the finer specks

collect at the smaller slats. The sluice separates the valuable gold from the gravel,

concentrating on the big nuggets first. The final product is a smelt of all the nuggets

into one gold bar.

See Figure 3.3 on page 35 for a technical diagram of a gold sluice. Picture courtesy

of RMS Ross Corporation [112].

Similarly, the WaterSluice software engineering methodology separates the im-

portant aspects from the less important and concentrates on solving them first. As

the process continues, finer and finer details are refined until the product is released.

The WaterSluice borrows the iterative nature of a cyclical methodology along with

the steady progression of a sequential methodology.

CHAPTER 3. METHODOLOGIES 35

Figure 3.3: A Gold Sluice Diagram

CHAPTER 3. METHODOLOGIES 36

3.3.2 The Process

See Figure 3.4 on page 36 for an overview of the WaterSluice methodology.

The WaterSluice Methodology

A: Analysis
D: Design
I: Implementation
T: Testing

P1: Proof of Principle
P2: Prototype
P3: Alpha and Beta
P4: Product

A
D
I
T

D
I
T

I
T T Product

P1 P2 P3 P4

Figure 3.4: The WaterSluice Methodology

Beginning the Process

At the beginning of the project, in an iterative process, the analysis, design, implemen-

tation, and test phases are broken into many potential tasks yet to be accomplished

by team members. Each potential task is assigned a priority by team members. This

priority reflects the benefit to the final goal of accomplishing the task based on what

CHAPTER 3. METHODOLOGIES 37

has already been accomplished. The highest priority task is accomplished next. De-

pending on the size of the team, multiple high priority tasks may be accomplished in

parallel. The remaining, lower priority tasks are held for later review. Exactly how

many tasks or the granularity of the tasks is dependent on the size of the project, the

size of the team building the project, and the scheduled delivery time for the project.

It is important that the decomposition of the problem is done well, regardless

of the methodology being used, but especially here in the WaterSluice methodology

because priority needs to be accessed. The better the decomposition and priority

setting, the more efficient this methodology will perform. More comments on this

topic are deferred to a later section. See section C.5 on enabling paradigms located

on page 185.

Iterating the Process

As a result of accomplishing these tasks, new analysis, design, implementation, or

testing tasks may be discovered. These newly discovered tasks are then added to the

known remaining open tasks and again prioritization is required. The next highest

priority task are then accomplished.

Completion of the Process

This process continues until the product is ready for release.

Priority Function

Defining the priority function is of high importance. This priority function is

domain-specific as well as institution-specific, representing trade-offs between quantity

and quality, between functionality and resource constraints, and between expectations

CHAPTER 3. METHODOLOGIES 38

and the reality of delivery. The priority function orders the different metrics and their

values. However, all priority functions should have the product delivery as a high

priority goal. See Appendix D for a discussion on decision making.

The priority function serves two goals. One goal is to establish priority. Important

tasks need to be accomplished first over lower priority tasks. This is the traditional

role of a priority function.

The second goal of the priority function is to manage conflicting and non-monotonic

tasks. The priority function needs to divide the tasks into consistent collections. The

priority function needs to guide the selection of the consistent collection and then

followed by the selection of the tasks within that consistent selection.

As more and more of the system is established, the priority function is weighted

to choose tasks that are consistent with the already established system. A non-

monotonic task is inconsistent with the established base requiring that some of the

already accomplished system to be thrown out. The non-monotonic task should not

be taken, unless the addition of the non-monotonic task is absolutely necessary to

the success of the entire system. The priority function guides this decision.

CHAPTER 3. METHODOLOGIES 39

The priority function manages non-monotonic conflicts in the small while, as will

be established soon, change order control manages non-monotonic conflicts in the

large.

Focus on the Goal

Once a component is completed to the satisfaction of the team, it is placed under

change-order control. When a component is placed under the change-order control

process, changes to the component are now frozen. If a change is absolutely neces-

sary, and the teams are willing to delay the project to enforce the consequences of

the change, then the change is fulfilled. Changes should be few, well justified, and

documented.

Obviously, early in the process, analysis tasks are naturally a high priority. Later

in the process, testing and quality become a higher priority. This is where the change-

order control process becomes important. At the beginning of the process all four

categories of analysis, design, implementation, and testing are available for prioritizing

and scheduling. At the P1-P2 transition point, see Figure 3.4 on page 36, in the

process, the analysis phase is subjected to change-order control process. Having the

analysis phase frozen focuses attention on the remaining three categories of tasks.

In a similar fashion, at the P2-P3 transition point, see Figure 3.4 on page 36, the

design phase is frozen and at the P3-P4 transition point the implementation phase is

frozen. At the final stage only changes that affect quality are allowed. This leads to

a definition of temporal stages in the methodology, specifying priorities.

Don’t confuse phases with stages. A phase is a grouping of similar activities. A

stage is a temporal grouping of tasks within phases at particular times. Stages follow

one another.

CHAPTER 3. METHODOLOGIES 40

Stages

The main stages are called proof-of-principle, prototype, alpha and beta release,

and product. With the exception of the proof-of-principle stage, these stages should

not be new concepts to software engineers. The proof-of-principle stage represents

the more traditional specification stage. Rapid prototyping offers a similar proof-of-

principle stage.

Proof-of-Principle Stage In the first stage, the teams work simultaneously on all

phases of the problem. The analysis team generates requirements. The design team

discusses requirements and feeds back complexity issues to the requirement team and

feeds critical implementation tasks to the implementation team. The testing team

prepares and develops the testing environment based on the requirements.

The implementation team has to be focused on the critical tasks which is usually

the hardest task. This contrasts the common practice of doing the simple things first

and waiting until late in the product implementation to tackle the harder tasks. Most

products that follow this practice end up failing. Once the critical task components

have been implemented, the system, still a child in the first period of life, is ready for

transition to the prototype stage.

One of the goals of this stage is for the teams to convince themselves that a

solution can be accomplished.

Prototype Stage In the second stage, the prototype stage, the requirements and

the requirement document are frozen and placed under change-order control. Changes

in requirements are still allowed but should be very rare. Any new requirements after

this point are very costly. Only if the requirement change is absolutely necessary to

the success of the product, despite the potential delays in the product delivery or cost

CHAPTER 3. METHODOLOGIES 41

over-runs, is the requirement change allowed. The main idea is to force control on any

new requirements. This forces the cycle to be completed and enables product delivery.

The architecture is still allowed to vary a little as technology pressures deliver new

options.

Once the critical tasks are done well, the implementations associated with the

critical tasks are expanded to cover more and more of the application.

One of the goals of this stage is for the team to convince non-team members that

the solution can be accomplished.

At the end of this stage, the process is ready for transition into the alpha and

beta release stages.

Alpha and Beta Release Stages In the third stage, the architecture is frozen and

placed under change-order control. This means that no more architectural changes

are allowed unless they are absolutely necessary. Emphasis is now placed on the

implementation and quality assurance.

The first version in field release is usually called an alpha release, while a second

release is called the beta. The product may be immature in the alpha release. Only

critical tasks have been implemented with high quality. Usually, only a limited num-

ber of customers are willing to accept an alpha version of the product and assume

the associated risk.

During the beta release, enough of the system should be working to convince the

customer that soon the beta application will be a real product. The beta release is

more mature and is given to a much larger customer base.

When enough of the system is built, the system is ready for a transition into the

next stage: releasing a high quality product.

CHAPTER 3. METHODOLOGIES 42

Product In the fourth stage, the implementation is frozen and focus is primarily

on quality. At the end of the stage, the product is delivered.

One of the goals of the last stage is to make the product sound and of high quality.

No known critical errors are allowed in the final product. Sometimes, there is a gray

area of definition between a product feature and a product error with the provider

of the product, most often then not, providing features, while the customers viewing

some features as errors.

The process is then repeated for the next version of the product.

The WaterSluice allows for phase interactions while at the same time setting firm

temporal deadlines. The WaterSluice forces all four phases to communicate up front

and to work together.

The WaterSluice software engineering methodology assumes the presence of five

levels in a supporting software engineering environment as described in the appendix.

Versioning is used to move the product from one version to another version by repeat-

ing the methodology for each version. Risk management is assumed throughout the

process. The major components of analysis, the details in the design phase, the four

main phases of implementation, and levels of testing proceed as previously described.

Change-Order Control

Change-order control is a software engineering process that manages change, or

lack there of. The process is weighted to prevent change. Tools help to manage this

process, while senior decision makers accept or decline change decisions. Frequently,

the senior decision makers are independent of the teams.

Once a component is completed to the satisfaction of the team, it is placed under

change-order control. When a component is placed under the change-order control

CHAPTER 3. METHODOLOGIES 43

process, changes to the component are now frozen. If a change is absolutely neces-

sary, and the senior decision makers are willing to delay the project to enforce the

consequences of the change, then the change is fulfilled. Changes should be few, well

justified, and documented.

Many change requests are postponed and incorporated into the next version of

the product. Some of these change requests contribute to the requirement document

for the next version, while some contribute to the architecture and implementation.

Still, others may improve the quality.

3.3.3 Why It Works

There are many things that work well in the WaterSluice methodology. The Wa-

terSluice methodology recognizes that people make mistakes and no decision can be

absolute. The teams are not locked into a requirement or an architecture decision

that turns out to be wrong or no longer appropriate. The methodology forces ex-

plicit freeze dates. This allows for the product to be built and shipped. It forces

accountability by having decision points where, for the most part, things need to

be completed. The first stage is iterative allowing for the correction of mistakes.

Even after a portion of the system goes under change-order control, a decision can

be changed if it is absolutely necessary.

The WaterSluice methodology forces the teams to think but does not require the

teams to be clairvoyant. Sufficient time is allowed for the first stage to establish the

confidence level needed for success. Communication is emphasized.

The WaterSluice methodology allows for fast interaction, up front, between all

phases of analysis, design, implementation, and testing. This feeds critical informa-

tion between all four phases. The implementation team doesn’t waste time working

CHAPTER 3. METHODOLOGIES 44

on throw-away code because requirements are validated early in the process for fea-

sibility of implementation.

The WaterSluice methodology can respond to market changes more quickly due

to the iterative nature in each stage allowing requirements to enter and exit at each

stage. The WaterSluice methodology tries to move all mistakes to the beginning of

the process, where a restart is not very costly.

3.3.4 Why It Does Not Work

The WaterSluice methodology forces accountability by having clearly defined stages

where activities are frozen and placed under change order control. Many people are

not willing to take that responsibility. For the WaterSluice methodology to work, it

is necessary to create an environment where taking responsibility and accountability

for a decision need not be detrimental to the individual if the decision later leads

to a failure. Otherwise, people will avoid accepting accountability, leading to missed

goals.

An attitude change towards testing is necessary by the teams since all teams are

involved in testing from the beginning. The WaterSluice methodology requires that

people communicate well up front, which is difficult since all four phases represent

different perspectives. The methodology trades off total flexibility with the reality of

product delivery.

3.4 Conclusion

In this chapter, three major categories of methodologies were presented: sequential,

cyclical, and WaterSluice. The sequential and cyclical methodologies, informally

CHAPTER 3. METHODOLOGIES 45

known as the waterfall and spiral methodologies, are generic in design and have

been simplified to emphasize a key aspect. In a sequential methodology, the four

phases of analysis, design, implementation, and testing follow each other sequentially.

In a cyclical methodology, the four phases of analysis, design, implementation, and

testing are cycled with each cycle generating an incremental contribution to the final

system. The WaterSluice is a hybrid borrowing the steady progress of the sequential

methodology along with the iterative increments of the cyclical methodology and adds

priority and governors to control change.

A sequential methodology is successful when the complexity of the system is low

and requirements are static. In a fast-moving technology, a sequential methodology

builds products that, by the time they are delivered, may be obsolete. A sequential

methodology puts so much emphasis on planning, that in a fast-moving target arena,

it can not respond fast enough to change.

A cyclical methodology is an incremental improvement on a sequential methodol-

ogy, allowing for incremental feedback between cycles. A cyclical methodology has no

governors to control oscillations from one cycle to another cycle. Without governors,

each cycle may generates more work for the next cycle.

The WaterSluice methodology introduced priority, goal-focus, and change-control

management. A system moves through the states of proof-of-principle, prototype,

alpha and beta release, and product. In a later chapter it will be shown that a software

engineering methodology that is goal focused, manages conflicts, and differentiates

between different priorities is best suited for dynamic non-monotonic environments.

Chapter 4

Established Methodologies

There are many established software engineering methodologies. This section con-

centrates on several established software engineering methodologies with emphasis on

the two most known, specifically the Boehm-Waterfall and the Boehm-Spiral method-

ology.

4.1 The Boehm-Waterfall Methodology

The Boehm-Waterfall software engineering methodology [20] is one of the best known

example of a software engineering methodology. The Boehm-Waterfall software en-

gineering methodology is composed into the stages of system requirements, software

requirements, preliminary and detailed design, implementation, testing, operations,

and maintenance. At each stage is a validation step. In the Boehm-Waterfall software

engineering methodology, as often quoted and viewed, the process flows from stage

to stage like water over a fall. However, in the original description of the Boehm-

Waterfall software engineering methodology, there is an interactive backstep between

each stage. Thus the Boehm-Waterfall is a combination of a sequential methodology

46

CHAPTER 4. ESTABLISHED METHODOLOGIES 47

with an interactive backstep. However, in engineering practice, the term waterfall is

used as a generic name to any sequential software engineering methodology.

See Figure 4.1 on page 47 from [20].

System Requirements and Validation

Software Requirements and Validation

Preliminary Design and Validation

Detailed Design and Validation

Code, Debug, Deployment, and Test

Test, Preoperations, Validation Test

Operations, Maintenance, Revalidation

Traditional Waterfall Methodology

Figure 4.1: The Boehm-Waterfall Methodology

CHAPTER 4. ESTABLISHED METHODOLOGIES 48

4.2 The Boehm-Spiral Methodology

The Boehm-Spiral software engineering methodology spiral [22] is a well another

known examples of a software engineering methodology. See Figure 4.2 on page 48

from [22].

1
2

3
4

5

6
7

8

9

10

11

12
13

14

15

16

17
18 19

20

21

Traditional
Spiral
Methodology

1 Objectives, Alternatives, and Constraints
2 Risk Analysis and Prototype
3 Concept of Operation
4 Requirement and Life-cycle Plan
5 Objectives, Alternatives, and Constraints
6 Risk Analysis and Prototype
7 Simulation, Models, and Benchmarks
8 Software Requirements and Validation
9 Development Plan
10 Objectives, Alternatives, and
Constraints
11 Risk Analysis and Prototype

12 Simulation, Models, and Benchmarks
13 Software Product Design, Validation,
and Verification
14 Integration and Test Plan
15 Objectives, Alternatives, and Constraints
16 Risk Analysis and Operational Prototype
17 Simulation, Models, and Benchmarks
18 Detailed Design
19 Code
20 Unit, Integration, and Acceptance Testing
21 Implementation (Deployment)

Figure 4.2: The Boehm-Spiral Methodology

The Boehm-Spiral software engineering methodology is composed into many stages.

See Table 4.1 on page 49.

The processes starts in the center of the spiral. Each completed cycle along

the spiral represents one stage of the process. As the spiral continues, the product

CHAPTER 4. ESTABLISHED METHODOLOGIES 49

Cycle Step
Cycle 1 - Early Analysis • Step 1: Objectives, Alternatives, and Constraints

• Step 2: Risk Analysis and Prototype
• Step 3: Concept of Operation
• Step 4: Requirement and Life cycle Plan
• Step 5: Objectives, Alternatives, and Constraints
• Step 6: Risk Analysis and Prototype

Cycle 2 - Final Analysis • Step 7: Simulation, Models, and Benchmarks
• Step 8: Software Requirements and Validation
• Step 9: Development Plan
• Step 10: Objectives, Alternatives, and Constraints
• Step 11: Risk Analysis and Prototype

Cycle 3 - Design • Step 12: Simulation, Models, and Benchmarks
• Step 13: Software Product Design, Validation, and

Verification
• Step 14: Integration and Test Plan
• Step 15: Objectives, Alternatives, and Constraints
• Step 16: Risk Analysis and Operational Prototype

Cycle 4 - Implementation
and Testing

• Step 17: Simulation, Models, and Benchmarks

• Step 18: Detailed Design
• Step 19: Code
• Step 20: Unit, Integration, and Acceptance Testing
• Step 21: Implementation (Deployment)

Table 4.1: Boehm-Spiral Methodology Stages

CHAPTER 4. ESTABLISHED METHODOLOGIES 50

matures.

In the Boehm-Spiral software engineering methodology, as often quoted and viewed,

the process spirals from stage to stage, with each spiral getting closer and closer to a

final solution. However, the Boehm-Spiral software engineering methodology also has

a steady progress from one stage into the next stage with an explicit review between

each stage. Thus the Boehm-Spiral is a hybrid of both a sequential and a cyclical

software engineering methodology. However, in engineering practice, the term spiral

is used as a generic name to any cyclical software engineering methodology, including

cycles leading to prototypes and multiple versions.

4.3 Versions

Another important software engineering methodology is versioning where the system

development is broken down into a series of smaller goals. The system is released in

a series of versions with each version potentially adding more functionality. Using

versions develops the system in a sequential manor while, if viewed from the software

engineering life cycle prospective, a more cyclical approach is taken. Thus, versioning

is a hybrid of both a sequential and a cyclical software engineering methodology. See

Figure 4.3 on page 51.

Each version replays the methodology. Frequently the previous version becomes

the starting point for the next version. Some features may be deferred to a later

version. Changes in the requirements that happen in the design or implementation

phase are usually deferred to a later version. The selection of features in any one

version is a complex process involving resource constraints, customer requirements,

availability of support environments, and availability of skilled people.

CHAPTER 4. ESTABLISHED METHODOLOGIES 51

Versions

Start Version 1 Version 2 Version 3

Figure 4.3: The Version Process

CHAPTER 4. ESTABLISHED METHODOLOGIES 52

Many times, one released version concentrates on quality improvements while the

following release version concentrates on added functionality. This alternating release

schedule is common and reflects the difficulty in reaching high product quality before

product visibility. First the required functionality is released in a version and then,

after the customers use the version, a new version is released with the newly discovered

errors fixed. The environments in which the customers use the product may be so

variable as to preclude exhaustive testing. Of course, exhaustive testing is seldom

accomplished in any one product.

4.4 The Booch Methodology

The Booch software engineering methodology [26] provides an object-oriented devel-

opment in the analysis and design phases. The analysis phase is split into steps. The

first step is to establish the requirements from the customer perspective. This analy-

sis step generates a high-level description of the system’s function and structure. The

second step is a domain analysis. The domain analysis is accomplished by defining

object classes; their attributes, inheritance, and methods. State diagrams for the

objects are then established. The analysis phase is completed with a validation step.

The analysis phase iterates between the customer’s requirements step, the domain

analysis step, and the validation step until consistency is reached.

Once the analysis phase is completed, the Booch software engineering methodology

develops the architecture in the design phase. The design phase is iterative. A logic

design is mapped to a physical design where details of execution threads, processes,

performance, location, data types, data structures, visibility, and distribution are

established. A prototype is created and tested. The process iterates between the

CHAPTER 4. ESTABLISHED METHODOLOGIES 53

logical design, physical design, prototypes, and testing.

The Booch software engineering methodology is sequential in the sense that the

analysis phase is completed and then the design phase is completed. The methodology

is cyclical in the sense that each phase is composed of smaller cyclical steps. There

is no explicit priority setting nor a non-monotonic control mechanism. The Booch

methodology concentrates on the analysis and design phase and does not consider the

implementation or the testing phase in much detail.

4.5 Object Modeling Technique (OMT)

The Object Modeling Technique (OMT) software engineering methodology [117] is

another well known example of a software engineering methodology. The OMT soft-

ware engineering methodology deals with object-oriented development in the analysis

and design phases.

The analysis phase starts with a problem statement which includes a list of goals

and a definitive enumeration of key concepts within a domain. This problem state-

ment is then expanded into three views, or models: an object model, a dynamic

model, and a functional model. The object model represents the artifacts of the

system. The dynamic model represents the interaction between these artifacts repre-

sented as events, states, and transitions. The functional model represents the methods

of the system from the perspective of data flow. The analysis phase generates object-

model diagrams, state diagrams, event-flow diagrams, and data-flow diagrams. The

analysis phase is now complete.

The system design phase follows the analysis phase. Here the overall architec-

ture is established. First the system is organized into subsystems which are then

CHAPTER 4. ESTABLISHED METHODOLOGIES 54

allocated to processes and tasks, taking into account concurrency and collaboration.

Then persistent data storage is established along with a strategy to manage shared-

global information. Next, boundary situations are examined to help guide trade-off

priorities.

The object design phase follows the system design phase. Here the implementa-

tion plan is established. Object classes are established along with their algorithms

with special attention to the optimization of the path to persistent data. Issues of

inheritance, associations, aggregation, and default values are examined.

The OMT software engineering methodology is sequential in the sense that first

comes analysis, followed by design. In each phase, a cyclical approach is taken among

the smaller steps. The OMT is very much like the Booch methodology where emphasis

is placed on the analysis and design phases for initial product delivery. Both the OMT

and Booch do not emphasize implementation, testing, or other life cycle stages.

4.6 Rational Objectory Methodology

The Rational Objectory [86], [73] is a full life cycle software engineering methodology.

Rational Objectory is an iterative process governed by requirements management.

Rational Objectory activities create and maintain models to aid the developer in

supporting the methodology.

The Rational Objectory software engineering methodology can be described in

two dimensions: time and process components. The time dimension represents the

dynamic aspect of the process and is expressed in terms of cycles, phases, iterations

and milestones. The process component dimension is described in terms of process

components, activities, workflows, artifacts, and workers. See Figure 4.4 on page 55

CHAPTER 4. ESTABLISHED METHODOLOGIES 55

Figure 4.4: The Rational Objectory Methodology.

CHAPTER 4. ESTABLISHED METHODOLOGIES 56

from [86].

4.6.1 Phases

The software life cycle is broken into cycles with each cycle working on a generation

of the system. The Rational Objectory software engineering methodology divides one

development cycle into four consecutive phases: inception phase, elaboration phase,

construction phase, and transition phase. 1

The Inception Phase

The inception phase establishes the business case for the system and define the sys-

tem’s scope. The business case includes success criteria, risk assessment, estimate of

the resources needed, and a phase plan showing dates of major milestones. At the

end of the inception phase, the life cycle objectives of the project are examined to

decide whether or not to proceed with the development.

Elaboration Phase

The goals of the elaboration phase are to analyze the problem domain, establish a

sound architectural foundation, develop the project plan and eliminate the highest

risk elements of the project. At the end of the elaboration phase, the detailed system

objectives, scope, choice of an architecture, and the resolution of major risks are

examined.

1The temporal ordering of the inception phase, the elaboration phase, the construction phase,
and the transition phase in the Rational Objectory corresponds to the proof-of-principle, prototype,
alpha, beta, and product release stages of the WaterSluice.

CHAPTER 4. ESTABLISHED METHODOLOGIES 57

The Construction Phase

During the construction phase, a complete system is iteratively and incrementally

developed and made ready for transition to the customer community. This includes

completing the implementation and testing of the software. At the end of the con-

struction phase, the operational decision is made.

The Transition Phase

During the transition phase, the software is shipped to the customer. This phase

typically starts with a “beta release” of the systems. At the end of the transition

phase, the life cycle objectives are reviewed and possibly another development cycle

begins.

4.6.2 Iterations

Each phase in the Rational Objectory software engineering methodology can be fur-

ther broken down into iterations. An iteration is a complete development loop result-

ing in a internal or external system release. Each iteration goes through all aspects

of software development: requirement capture, analysis and design, implementation

and testing. 2

The Requirements Capture

The requirements capture process describes what the system should do. Requirements

capture results in a use-case model. The use-case model consists of actors and use-

cases. Actors represent the customers or another software system. Use-cases represent

2The iteration of the fundamental phases of analysis, design, implementation, and testing are the
same as in the WaterSluice methodology though with slightly different emphasis.

CHAPTER 4. ESTABLISHED METHODOLOGIES 58

the behavior of the system. The use-case description shows how the system interacts

step-by-step with the actors. The use-cases function as a unifying thread throughout

the system’s development cycle. The same use-case model is used during requirements

capture, analysis and design, and test.

Analysis and Design

The analysis and design process describes an architecture that serves as an abstraction

of the source code and a “blueprint” of how the system is structured. The architecture

consists of design classes and views. These views capture the major structural design

decisions. In essence, architectural views are abstractions or simplifications of the

entire design.

Implementation

The system is built during implementation. This includes source-code files, header

files, make files, and binaries.

Testing

Testing verifies the entire system. Testing includes system level and scenario based

tests.

4.6.3 Comparison to WaterSluice

The Rational Objectory software engineering methodology is very similar to the Wa-

terSluice software engineering methodology. The temporal ordering of the inception,

elaboration, construction, and the transition phase in the Rational Objectory corre-

sponds to the proof-of-principle, prototype, alpha, beta, and product release stages

CHAPTER 4. ESTABLISHED METHODOLOGIES 59

of the WaterSluice. The fundamental phases of analysis, design, implementation, and

testing are the same in the two software engineering methodologies. The importance

of each phase in each stage is very similar in the two software engineering method-

ologies. Rational Objectory does not have an explicit priority function nor a process

to manage non-monotonic requirements like the WaterSluice.

4.7 WinWin Spiral Methodology

The WinWin spiral software engineering methodology [25] is a recent example of a

software engineering methodology. The WinWin spiral software engineering method-

ology expands the Boehm-Spiral methodology by adding a priority setting step, the

WinWin process, at the beginning of each spiral cycle and by introducing intermediate

goals, called anchor points.

The WinWin process identifies a decision point. For each decision point, the

objectives, constraints, and alternatives are established and a WinWin condition is

established. This may require a negotiation among the stakeholders and some recon-

ciliations.

The anchor points establish three intermediate goals. The first anchor point, called

the life cycle objective (LCO), establishes sound business cases for the entire system

by showing that there is at least one feasible architecture that satisfies the goals

of the system. The first intermediate goal is established when the top-level system

objectives and scope, the operational concepts, the top-level system requirements,

architecture, life cycle model, and system prototype are completed. This first anchor

point establishes the why, what, when, who, where, how, and cost of the system. At

the completion of this anchor point, a high level analysis of the system is available.

CHAPTER 4. ESTABLISHED METHODOLOGIES 60

The second anchor point, called the life cycle architecture (LCA), defines the life

cycle architecture. The third anchor point, called the initial operational capability

(IOC), defines the operational capability, including the software environment needed

for the first product release, operational hardware and site environment, and customer

manuals and training. These two anchor points expand the high level analysis into

other life cycle stages.

The WinWin spiral software engineering methodology is similar to the Water-

Sluice. The WinWin process could be considered a WaterSluice priority function,

while the anchor points could represent WaterSluice stages. The WinWin process

does not explicitly include non-monotonic effects. The anchor points are like the

major stages in the life cycle of a product: initial development, deployment, opera-

tions, maintenance, legacy, and final discontinuation. The first anchor point is close

to initial development. The second anchor point initiates deployment, while the third

anchor point starts operations and maintenance.

4.8 Conclusion

These methodologies reviewed in this chapter, are used in today’s software engineering

practice and appear to have a positive benefit. They are a considerable improvement

on not using any methodology at all [99]. The implementors in any case have much

freedom in terms of thoroughness and tool use. The scale of the issue is such that

outside of small experiments [105] reliable quantitative measurements of alternative

methodologies have not been possible.

Chapter 5

Formal Foundations

In this chapter, the formal foundations are presented including the main theorem of

the thesis. In support of the proof of the main theorem, a series of definitions are

presented followed by a series of secondary theorems and their corollaries with their

associated proofs. Results are then summarized.

5.1 A Preview of the Main Theorem

Theorem 1 Different software engineering methodologies have significant performance

variations depending on the given environment. A software engineering methodology

that is goal focused, manages conflicts, and differentiates between different priorities

is best suited for dynamic non-monotonic environments.

To prove this theorem, formal definitions of software engineering methodologies,

performance, and environment are now presented. The variations in performance

of different software engineering methodologies are sufficiently great as to make the

61

CHAPTER 5. FORMAL FOUNDATIONS 62

choice of which software engineering methodology to use dependent on the surround-

ing environment.

5.2 Definitions

5.2.1 Towards the Definition of Environment

First the environment will be defined. As soon discussed, the environment definition is

built from the definitions of the analysis, design, implementation, and testing phases.

Each phase defines a plane which is then defined in terms of atomic, compound,

and complex steps that may have a sibling relationship. Together the four planes

form a multi-layered space, either static or dynamic. In some cases, a dynamic space

may exhibit the non-monotonic property. There are two special steps: the problem

statement and the system acceptance test. The environment is the multi-layered finite

space consisting of the analysis, design, implementation, and testing planes with two

special steps: the initial problem statement and the system acceptance test.

Definition 1 (Analysis) The analysis phase defines the requirements of the system

in a declarative fashion, independent of how these requirements will be accomplished.

Section 2.2 defined the analysis phase. In summary, the analysis phase defines the

problem that the customer is trying to solve. The deliverable result at the end of the

analysis phase is a requirement document. Ideally, the requirement document states

in a clear and precise fashion what is to be built. The analysis phase represents the

“what” phase. The requirement document tries to capture the requirements from the

customer’s perspective by defining goals and interactions at a level removed from the

CHAPTER 5. FORMAL FOUNDATIONS 63

implementation details. The analysis phase was summarized in Table 2.1 on page 6.

The analysis phase builds a declarative model of the system.

Definition 2 (Design) The design phase establishes the architecture.

Section 2.3 defines the design phase. In summary, the design phase starts with the

requirement document delivered by the analysis phase and maps the requirements into

an architecture. The architecture defines the components of the software system, their

interfaces and behaviors. The deliverable design document is the architecture speci-

fication. The design document describes a plan to implement the requirements. This

phase represents the “how” phase. Details on computer programming languages and

environments, machines, packages, application architecture, distributed architecture

layering, memory size, platform, algorithms, data structures, global type definitions,

interfaces, and many other engineering details are established. The design may in-

clude the reuse of existing components. The design phase is summarized in Table 2.2

on page 12. The architecture is a high level mapping of the declarative model of the

system into the imperative model defined by the implementation.

Definition 3 (Implementation) In the implementation phase, the system is built.

Section 2.4 defines the implementation phase. In summary, in the implementation

phase the system is built, performance is enhanced, reusable libraries are established,

and errors are corrected. The end deliverable is the product itself. In the implemen-

tation phase the team builds the components either from scratch or by composition.

Given the architecture document from the design phase and the requirement docu-

ment from the analysis phase, the team should build what has been requested, though

there is still room for flexibility. The implementation phase represents an imperative

model of the system

CHAPTER 5. FORMAL FOUNDATIONS 64

Definition 4 (Testing) The testing phase improves quality.

Section 2.5 defines the testing phase. Testing is usually based on the regression

paradigm where current results from a test suite are compared to a gold standard. As

the testing suite grows the coverage of the system improves and enhances the quality.

Testing includes internal testing, unit testing, application testing, and stress testing.

The testing phase is summarized in Table 2.4 on page 19.

Definition 5 (Step) In each of the four phases of analysis, design, implementation,

and testing there are many steps.

Let a1, a2, a3, . . . , ana be the na requirement steps leading to a possible analysis A.

Let d1, d2, d3, . . . , dnd be the nd architecture steps leading to a possible design D. Let

i1, i2, i3, . . . , ini be the ni implementation steps leading to a possible implementation

I. Let t1, t2, t3, . . . , tnt be the nt testing steps leading to a possible testing T . A step

is recursively defined in terms of atomic, compound, and complex steps. A step may

have sibling relationships with other steps.

Definition 6 (Atomic Step) An atomic step represents the simplest step with no

further decomposition.

Let aj be an atomic analysis step then aj has no decomposition. Let dj be an

atomic design step then dj has no decomposition. Let ij be an atomic analysis

step then ij has no decomposition. Let tj be an atomic analysis step then tj has

no decomposition. Each individual step in the analysis, design, implementation, or

testing phases may be an atomic step.

Definition 7 (Compound Step) A compound step consists of several steps from

the same layer organized as a hierarchy, or in the most general case, a directed acyclic

graph (DAG).

CHAPTER 5. FORMAL FOUNDATIONS 65

Each individual step in the analysis, design, implementation, or testing phases may

be a compound step. A compound step can be decomposed into several steps using

refinement techniques. A compound step may itself be composed of multiple atomic,

compound, or complex steps. See Figure 5.1 on page 66 for a visual representation

of a compound step.

Let aj1 , aj2 , . . . , ajnaj be the naj compound requirement steps leading to a possible

analysis aj. Let dj1 , dj2 , . . . , djndj
be the ndj compound architecture steps leading to a

possible design element dj. Let ij1 , ij2 , . . . , ijnij
be the nij compound implementation

steps leading to a possible implementation component ij. Let tj1 , tj2 , . . . , tjntj
be the

ntj compound testing steps leading to a possible testing step tj.

CHAPTER 5. FORMAL FOUNDATIONS 66

A Compound Step

The gray ellipse represents a
compound step.
The black circles represent the
decomposition steps.
The solid lines define the
decomposition graph.
The dotted lines connect the
compounded step to other
compound steps.

Figure 5.1: A Compound Step

CHAPTER 5. FORMAL FOUNDATIONS 67

Definition 8 (Complex Step) A complex step consists of several steps from dif-

ferent layers organized as a hierarchy, or in the most general case, a directed acyclic

graph (DAG).

Steps in the analysis, design, or implementation phases may together form a com-

plex step. In the special case of a testing phase step, the step may be atomic or

compound but not complex. An analysis step expands into one or more design steps.

A design step expands into one or more implementation steps. While an implemen-

tation step expands into one or more testing steps. These expansions include steps

to define the parent step as well as sibling steps to support the expansion. The ex-

pansions may not be disjoint with other expansion and overlap forming a directed

acyclic graph. See Figure 5.2 on page 68 for a visual representation of an example

directed acyclic graph complex step consisting of analysis, design, implementation,

and testing steps.

Let dj1 , dj2 , . . . , djmdj
be the mdj design steps leading to a possible analysis step aj.

Let ij1 , ij2 , . . . , ijmij
be the mij implementation steps leading to a possible design step

dj. Let tj1 , tj2 , . . . , tjmij
be the mij testing steps leading to a possible implementation

step ij.

Definition 9 (Sibling Step Relationship) Two steps have a sibling relationship

if the two steps have overlapping decomposition and do share a common parent in

the same layer. Typically, the sibling step is introduced after the decomposition of an

existing step.

The presence of one step may require the inclusion of several sibling steps. A sib-

ling step supports the accomplishment of another sibling step but was not explicitly in

the decomposition of the parent compound step. For example, steps derived directly

CHAPTER 5. FORMAL FOUNDATIONS 68

Complex Step

Analysis

Design

Implementation

Testing

Figure 5.2: A Complex Step

CHAPTER 5. FORMAL FOUNDATIONS 69

from the problem statement fulfill functional requirements. A chosen architecture in

the design phase that supports the functional requirements introduces non-functional

requirements. A sibling step fulfills these non-functional requirements. See Figure

5.3 on page 69 for a visual representation of an example sibling relationship.

Sibling Relationship
two sibling steps

Analysis

Design

Implementation

Testing

Figure 5.3: Two Sibling Steps and their Overlapping Decomposition

Definition 10 (Multi-layered Space) The analysis, design, implementation, and

testing steps, either atomic, compound, or complex, form planes that define a multi-

layered finite space.

CHAPTER 5. FORMAL FOUNDATIONS 70

The na analysis steps a1, a2, a3, . . . , ana leading to a possible analysis A form an

analysis plane. The nd design steps d1, d2, d3, . . . , dnd leading to a possible design D

form a design plane. The ni implementation steps i1, i2, i3, . . . , ini leading to a possible

implementation I form an implementation plane. The nt testing steps t1, t2, t3, . . . , tnt

leading to a possible testing suite T form a testing plane.

Let the space S be represented as < A,D, I, T > where A is a possible analysis

of na steps, D is a possible analysis of nd steps, I is a possible analysis of ni steps,

and T is a possible analysis of nt steps. The total number of steps in space S is

na + nd + ni + nt. This space is finite and bounded because we are dealing with the

software engineering of only finite and bounded systems. See Figure 5.4 on page 71

for a visual representation of the multi-layered space.

Definition 11 (Static Space) A static space does not change over time.

In a static space, all steps are known before any analysis, design, implementation,

or testing begins. No new steps enter the space. No existing step leaves the space

and no step is in conflict with any other existing step.

CHAPTER 5. FORMAL FOUNDATIONS 71

Multi-layered Space

Analysis

Design

Implementation

Testing

Figure 5.4: Multi-layered Space

CHAPTER 5. FORMAL FOUNDATIONS 72

Let

St0 = < A,D, I, T >

be the initial space, then S is static if

(∀ time t) St = St0 .

Definition 12 (Dynamic Space) A dynamic space changes over time.

In a dynamic space, steps may enter or leave the space at any time. Let

St0 = < A,D, I, T >

be the initial space, S is dynamic if

(∃ time t) St 6= St0 .

Definition 13 (Monotonic Property) If in a dynamic space all newly introduced

steps are consistent with existing steps, then the dynamic space is said to have the

monotonic property.

If in a dynamic space when additional steps are discovered, more work may be

required to accomplish these steps but the newly discovered steps and their associated

work are consistent additions to the system as defined by the already accomplished

steps, then the space is monotonic. No part of the system has to be replaced or

thrown out to accommodate the newly discovered steps.

CHAPTER 5. FORMAL FOUNDATIONS 73

Definition 14 (Non-monotonic Property) If a dynamic space contains steps that

are in conflict with each other, then the space is said to be non-monotonic.

In a non-monotonic space, some steps may be in conflict with other steps. The

choice of one of these steps will negate the other step even if the negated step is already

considered part of the solution. The conflicts are primarily in the analysis plane

between different requirements. However, conflicts in the design, implementation,

and testing planes may also exist. Same plane conflicts may also occur.

Consider a non-monotonic conflict within the analysis plane. Let A1 be a collection

of analysis steps that are consistent with themselves. Let A2 be a collection of analysis

steps that are consistent with themselves but in conflict with the analysis steps found

in A1. To accomplish steps A2 one would first have to mitigate conflicting steps

A1 and visa versa. Let A3 be a collection of analysis steps that are consistent with

themselves and consistent with the analysis steps in A1 and the analysis step in A2.

There are then two consistent analysis options. Either analysis A is < A1, A3 > or A

is < A2, A3 > but not both. Similar definitions apply for conflict within the design,

implementation, and testing planes.

Consider a non-monotonic conflict that crosses many planes. LetD1 be a collection

of design steps, let I1 be a collection of implementation steps, and let T1 be a collection

of testing steps that are all consistent with A1. Let D2 be a collection of design steps,

let I2 be a collection of implementation steps, and let T2 be a collection of testing

steps that are all consistent with A2 but in conflict with A1, D1, I1, or T1. Let D3

be a collection of design steps, let I3 be a collection of implementation steps, and let

T3 be a collection of testing steps that are all consistent with A3 and consistent with

A1, D1, I1, and T1 but in conflict with A2, D2, I2, and T2. Then either one of the

following holds but not both.

CHAPTER 5. FORMAL FOUNDATIONS 74

S = < A1, A3, D1, D3, I1, I3, T1, T3 >

or

S = < A2, A3, D2, D3, I2, I3, T2, T3 >

Definition 15 (Problem Statement) The problem statement is the highest level

declarative goal of the system.

Above the space, defined by the analysis, design, implementation, and testing

planes, is the problem statement. The problem statement defines, at a very high

level and abstraction, the declarative goal of the system. The problem statement is

a requirement but because it is the parent step of all other steps, it is elevated above

the analysis plane to emphasize importance. The problem statement may represent

a compound step. In a dynamic space the problem statement may also change with

time.

For clarity, a1 will represent the problem statement in the remaining sections.

Definition 16 (System Acceptance Test) The system acceptance test indicates

the readiness of the system for product release.

The system acceptance test is the final step in the testing plane. If the outcome

of the system acceptance test is acceptable, then the system is ready for product

release and general customer availability. The system acceptance test verifies that

the requirements in the problem statement have been satisfied.

For clarity, tnt will represent the system acceptance test in the remaining sections.

CHAPTER 5. FORMAL FOUNDATIONS 75

Definition 17 (Environment) The environment is the multi-layered finite space

consisting of the analysis, design, implementation, and testing planes with two special

steps: the initial problem statement and the system acceptance test.

The environment is hierarchical with each node representing an atomic, com-

pound, or complex step. The environment may be static or dynamic. See Figure 5.5

on page 75 for a visual representation of the environment.

The Environment
a1

Analysis

Design

Implementation

Testingtn

Figure 5.5: The Environment

To summarize the taxonomy, an environment contains the four disjoint finite

planes of analysis, design, implementation, and testing. Each plane may contain

CHAPTER 5. FORMAL FOUNDATIONS 76

many steps. Each plane contains at least one step. Each step may be atomic, com-

pound, or complex. Steps may have sibling relationships. There is a special analysis

step called the problem statement and a special testing step called the system accep-

tance test. See Figure 5.6 on page 76 for a visual representation of the taxonomy.

Taxonomy
Environment

Analysis Plane Design Plane Implementation Plane

contains contains containscontains
111 1

Testing Plane

is a is a

is a is a is a

Requirement
Step

Architecture
Step

Implementation
Step

Testing
Step

Sibling Relationship

containscontainscontainscontains

is a is a is a is a

1..N 1..N0..N0..N

Step Problem Statement System Acceptance Test

Atomic Compound Complex

Figure 5.6: The Taxonomy

CHAPTER 5. FORMAL FOUNDATIONS 77

5.2.2 Towards the Definition of Methodology

Next we define the methodology, as soon discussed, as an algorithm that finds a

solution in the given environment of the multi-layered finite space consisting of the

analysis, design, implementation, and testing plane, starting with the root represented

by the problem statement and ending with the goal represented by the system accep-

tance test. Three classes of methodologies, or algorithms, are presented: sequential,

cyclical, and the WaterSluice.

Definition 18 (Solution) A solution is a tree, or in a more general case, a directed

acyclic graph, rooted at the problem statement and includes the system acceptance test

that satisfies all of the goals in the problem statement.

In a static environment, the solution may include all steps known in the environ-

ment. In a dynamic environment, the solution may be a subset. A solution does not

contain any conflicting steps. The solution represents the final system, complete with

analysis, design, implementation, and testing. A step visited but not used in the so-

lution represents wasted effort. See Figure 5.7 on page 78 for a visual representation

of a solution.

Definition 19 (Partial Solution) A partial solution satisfies a consistent collec-

tion of goals in the problem statement.

A partial solution does not satisfy all of the goals in the problem statement. If

some of the goals in the problem statement are in conflict with each other, then only

a partial solution exists. See Figure 5.8 on page 79 for a visual representation of a

partial solution.

CHAPTER 5. FORMAL FOUNDATIONS 78

Analysis

Design

Implementation

Testing

a1

tn

A Solution The solid lines represent
the graph of a solution.
The dotted lines represent
options investigated but not
included as part of the solution.

Figure 5.7: A Solution

CHAPTER 5. FORMAL FOUNDATIONS 79

A Partial Solution

Analysis

Design

Implementation

Testing

a1

tn

Figure 5.8: A Partial Solution

Definition 20 (Optimal Solution) An optimal solution satisfies all of the goals in

the problem statement in an optimal fashion.

If some of the goals in the problem statement are in conflict with each other, then

no optimal solution exists.

Definition 21 (Feasible Solution) A feasible solution satisfies all of the goals in

the problem statement but not necessarily in an optimal fashion.

There may be many feasible solutions to a given problem statement.

CHAPTER 5. FORMAL FOUNDATIONS 80

Assumption 1 The space is finite and of size N.

This thesis deals with software engineering of systems that can be built in a finite

amount of time with finite resources using finite computers. Thus the assumption of a

finite space is reasonable. Consider the alternative that the space is infinite. Software

engineering systems simply can’t be built that require an infinite number of steps.

This introduces the question of the size of this space. What is N?

Let N1 be the number of steps in an optimal solution. Recall that an optimal

solution satisfies all the goals in the problem statement.

A feasible solution satisfies all of the goals in the problem statement but not

necessarily in an optimal fashion. A feasible solution has the same starting problem

statement and the same ending system acceptance test as an optimal solution. Let

N2 be the upper bound on the number of steps over all feasible solution.

A partial solution satisfies some of the goals in the problem statement. A partial

solution has the same ending system acceptance test as an optimal solution but

satisfies only some of the goals of the problem statement. Let N3 be the upper bound

on the number of steps over all permutations and sub collections of the goals from

the problem statement over all partial solutions.

Define the size of the space to be the upper bound of N1, N2, and N3.

Definition 22 (Methodology) A methodology is an algorithm that finds a feasible

solution in the given environment of the multi-layered space consisting of the analysis,

design, implementation, and testing plane, starting with the root represented by the

problem statement and ending with the goal represented by the system acceptance test.

The three main categories of software engineering methodologies under investiga-

tion are sequential, cyclical, and the WaterSluice.

CHAPTER 5. FORMAL FOUNDATIONS 81

Definition 23 (Sequential Methodology) In a sequential software engineering method-

ology, all steps in the analysis plane are completed first, followed by all steps in the

design plane, followed by all steps in the implementation plane, and then followed by

all steps in the testing plane.

A more detailed description can be found in Section 3.1. Also see Figure 3.1 on

page 29 for a graphical representation of a sequential methodology.

Definition 24 (Cyclical Methodology) A cyclical software engineering method-

ology cycles through each phase a few steps at a time until a feasible solution is

established.

Simply, a cyclical software engineering methodology iterates over the processes of

think a little, plan a little, implement a little, then test a little. Finer and finer details

are generated as the cyclical software engineering methodology progresses. Finally,

after several iterations, the system is completed.

A more detailed description can be found in Section 3.2. Also see Figure 3.2 on

page 32 for a graphical representation of a cyclical methodology.

Definition 25 (WaterSluice) The WaterSluice combines the steady progression of

the sequential software engineering methodology with the iterative nature of the cyclical

software engineering methodology while adding priority. Non-monotonic conflicts are

handled by change order control.

The WaterSluice software engineering methodology separates the important as-

pects from the less important and concentrates on solving them first. As the process

continues, finer and finer details are refined until the product is released.

A more detailed description can be found in Section 3.3.1. Also see Figure 3.4 on

page 36 for a graphical representation of the WaterSluice methodology.

CHAPTER 5. FORMAL FOUNDATIONS 82

5.2.3 Towards the Definition of Performance

Finally, we define performance, as soon discussed, as the number of steps needed by

a methodology, an algorithm, to find a solution.

Definition 26 (Complete) If a solution exists, and the software engineering method-

ology can find a solution for every environment, then the software engineering method-

ology is said to be complete.

Definition 27 (Performance) If a solution exists, the performance of the software

engineering methodology is defined as the number of steps needed to find a feasible

solution.

A step may be atomic, compound, or complex and be in any of the analysis,

design, implementation, or testing planes. The performance measurement of counting

steps assumes that on the average each step the same amount of effort. Since the

performance is an order-of-magnitude measurement, knowledge of the detailed effort

of each step is not necessary. This assumption is similar to the assumption that all

instructions take equal time when doing algorithm performance analysis. Of course,

a more detailed performance measurement could be defined where different weights

can be used for different steps.

To achieve the best case performance, an environment is created that will allow

the methodology to find a solution in the least number of steps. In a worst case per-

formance, an environment is created that will prevent the methodology from finding

a solution until the entire environment is visited. In an average case performance,

environments are created for the methodology that requires a typical number of steps

to find a feasible solution.

CHAPTER 5. FORMAL FOUNDATIONS 83

5.3 Supporting Theorems

A family of theorems and corollaries are now proven. It will be soon shown that

all three categories of software engineering methodologies are complete for static

environments. Only cyclical and WaterSluice are complete for dynamic environments

while only WaterSluice is complete for non-monotonic environments. The best case

performance of the sequential methodology is O(N). The best case performance of

the cyclical and the WaterSluice methodology is O(1). The worst case performance

of all three categories of methodologies are the same. On average the sequential

methodology will find a solution in O(N), the cyclical methodology will find a solution

in O(N), 1 and the WaterSluice will find a solution in an order-of-magnitude less than

N.

5.3.1 Sequential Software Engineering Methodology

In this section, a family of theorems are presented that pertain to the sequential soft-

ware engineering methodology. The sequential software engineering methodology will

find solutions in static environments but not in dynamic environments. If a solution

exists, and the sequential software engineering methodology finds the solution, the

best case performance is O(N), the worst case performance is O(N), while the average

case performance is O(N) where N is the total number of steps in the environment.

Theorem 2 (Sequential: Static Complete) A sequential software engineering method-

ology is static complete.

1A more accurate average performance measurement for a cyclical software engineering method-
ology is N/2.

CHAPTER 5. FORMAL FOUNDATIONS 84

Let a1, a2, a3, . . . , ana be the na requirements leading to a possible analysis A

with a1 the initial problem statement. Let d1, d2, d3, . . . , dnd be the nd architecture

elements leading to a possible design D. Let i1, i2, i3, . . . , ini be the ni implementation

components leading to a possible implementation I. Let t1, t2, t3, . . . , tnt be the nt

testing suites leading to a possible testing T with tnt being the final system acceptance

test. Define a static environment that consists of the four planes of analysis, design,

implementation, and testing with each lower plane being a refinement of the higher

planes. Define the solution as the tree, or in a more general sense, the directed acyclic

graph, of all steps from all four planes used in the final system. This solution can be

represented as a sequence of steps < A,D, I, T >.

See Figure 5.5 on page 75 for a visual representation of the static environment.

See Figure 5.9, Figure 5.10, and Figure 5.11, on pages 85 through 87 for a visual guide

of the reasoning. The numbers associated with the steps represent the order visited

by the methodology.

Proof 2.1 A sequential software engineering methodology leads to a sequence of steps.

step 1:

S1 = < a1 >

step 2:

S2 = < a1, a2 >

...

step na:

Sna = < a1, a2, . . . , ana >

= < A >

CHAPTER 5. FORMAL FOUNDATIONS 85

Sequential: Beginning

Analysis

Design

Implementation

Testing

1

1potential step
completed step

included in the solution
visited but not included the solution

A numbered step represents
the order visited.

Figure 5.9: Sequential: Beginning

CHAPTER 5. FORMAL FOUNDATIONS 86

Sequential: Intermediate

Analysis

Design

Implementation

Testing

5432

1

potential step
completed step

included in the solution
visited but not included the solution

A numbered step represents
the order visited.

Figure 5.10: Sequential: Intermediate

CHAPTER 5. FORMAL FOUNDATIONS 87

Sequential: Final

Analysis

Design

Implementation

Testing

1

5432

11109876

1716
1513

12

22
21

14 20
1918

27

26

25

24

23 31

30

29

28 3332

potential step
completed step

included in the solution
visited but not included the solution

A numbered step represents
the order visited.

Figure 5.11: Sequential: Final

CHAPTER 5. FORMAL FOUNDATIONS 88

...

step na + nd:

Sna+nd = < A, d1, d2, . . . , dnd >

= < A,D >

...

step na + nd + ni:

Sna+nd+ni = < A,D, i1, i2, . . . , ini >

= < A,D, I >

...

step na + nd + ni + nt:

Sna+nd+ni+nt = < A,D, I, t1, t2, . . . , tnt
= < A,D, I, T >

The sequence represented by < A,D, I, T > is the solution.

These steps find a solution where steps at the higher levels are exhausted first before

going into lower levels. If the environment is static, then all steps in the environment

are known before the sequential methodology begins. The sequential methodology first

discovers all steps in the analysis plane, followed by all steps in the design plane,

followed by all steps in the implementation plane, and then followed by all steps in

the testing plane. This can be accomplished because the environment is static and

finite. Eventually in the static environment the solution is discovered. Thus, the

sequential software engineering methodology is static complete.

Corollary 2.1 (Sequential: Best Case) The best case performance of the sequen-

tial software engineering methodology is O(N).

CHAPTER 5. FORMAL FOUNDATIONS 89

Proof 2.1.1 Let the environment consist of na analysis steps, nd design steps, ni

implementation steps, and nt testing steps. Let the system acceptance test be the very

fist step in the testing plane t1. The number of steps to find a solution is na+nd+ni+1

which is O(N).

Corollary 2.2 (Sequential: Worst Case) The worst case performance of the se-

quential software engineering methodology is O(N) where N is the size of the space.

Proof 2.2.1 Let the environment consist of na analysis steps, nd design steps, ni

implementation steps, and nt testing steps. Let the system acceptance test be the very

last step tnt. The number of steps to find a solution is na + nd + ni + nt which is

O(N).

Corollary 2.3 (Sequential: Average Case) The average case performance of the

sequential software engineering methodology is O(N) where N is the size of the space.

Proof 2.3.1 Let the environment consist of na analysis steps, nd design steps, ni

implementation steps, and nt testing steps. Let the system acceptance test be the

(nt)/2 step in the testing plane t(nt)/2. The number of steps to find a solution is

na + nd + ni + (nt)/2 which is O(N).

Corollary 2.4 (Sequential: Dynamic Incomplete) The sequential software en-

gineering methodology may not find a solution in a dynamic environment.

CHAPTER 5. FORMAL FOUNDATIONS 90

In a sequential software engineering methodology, all of the high level steps are

exercised before proceeding to the next plane of the space. If a new step is introduced

once the sequential software engineering methodology has finished with this plane

of the environment, the new step will not be part of the solution. The sequential

methodology will no longer be able to find the solution.

Let the initial environment consist of na analysis steps, nd design steps, ni imple-

mentation steps, and nt testing steps.

Proof 2.4.1 At step na + 1 the sequential software engineering methodology has ac-

complished the steps < a1, a2, . . . , ana , d1 >. At this time introduce a new requirement

ana+1. The sequential software engineering methodology has already finished with the

analysis plane and will not discover this new requirement. Thus, a sequential software

engineering methodology is dynamic incomplete.

Corollary 2.5 (Sequential: Non-monotonic Incomplete) The sequential soft-

ware engineering methodology may not find a solution in a non-monotonic environ-

ment.

Proof 2.5.1 The sequential software engineering methodology is incomplete in dy-

namic environment and thus incomplete to dynamic environments with the non-

monotonic property.

CHAPTER 5. FORMAL FOUNDATIONS 91

5.3.2 Cyclical Software Engineering Methodology

In this section, a family of theorems are presented that pertain to the cyclical software

engineering methodology. The cyclical software engineering methodology will find

solutions in both static and dynamic environments but not in dynamic environments

that have the non-monotonic property. If a solution exists, and the cyclical software

engineering methodology finds the solution, the best case performance is O(1), the

worst case performance is O(N), while the average case performance is O(N) 2 where

N is the total number of steps in the environment.

Theorem 3 (Cyclical: Static Complete) A cyclical software engineering method-

ology is static complete.

Let a1, a2, a3, . . . , ana be the na steps leading to the possible analysis A with a1

being the initial problem statement. Let d1, d2, . . . , dnd be the nd steps leading to the

possible design D. Let i1, i2, . . . , ini be the ni steps leading to the possible implemen-

tation I. Let t1, t2, . . . , tnt be the nt steps leading to the possible testing T with tnt

being the final system acceptance test. Though this static environment includes the

same steps as in the other sections, these steps are not necessarily taken in the same

sequence as those established in the other sections but are the sequence taken by a

cyclical methodology. A cyclical methodology has a simple selection process which

defines this order. Define a static environment that consists of the four planes of

analysis, design, implementation, and testing with each lower plane being a refine-

ment of the higher planes. Define the solution as the tree, or in a more general sense,

the directed acyclic graph, of all steps from all four planes used in the final system.

This solution can be represented as a sequence of steps. See Figure 5.5 on page 75 for

2To be more precise, the exact performance is N/2.

CHAPTER 5. FORMAL FOUNDATIONS 92

a visual representation of the environment. See Figure 5.12 on page 92 for a visual

guide of the reasoning. The numbers associated with the steps represent the order

visited by the methodology.

Cyclical: Final

Analysis

Design

Implementation

Testing

1

2920152

3025211693

2217
127

4

6
5

10 34
3126

18

14

13

11

8 27

24

23

19 3332

potential step
completed step

included in the solution
visited but not included the solution

A numbered step represents
the order visited.

Figure 5.12: Cyclical: Final

Proof 3.1 A cyclic methodology leads to this sequence of steps.

step 1: Initial problem statement.

S1 = < a1 >

CHAPTER 5. FORMAL FOUNDATIONS 93

step 2:

S2 = < a1, a2 >

step 3:

S3 = < a1, a2, d1 >

step 4:

S4 = < a1, a2, d1, i1 >

step 5:

S5 = < a1, a2, d1, i1, t1 >

...

The last step:

Sna+nd+ni+nt = < a1, a2, d1, i1, t1, . . . , ana , dnd , ini , tnt >

= < A,D, I, T >

The last step is the system acceptance test. Thus a cyclical methodology is static

complete.

These steps are generated in an iterative fashion and eventually exhaust the static

environment.

If the environment is static, then all steps in the environment are known before the

cyclical methodology begins. The cyclical methodology discovers steps in an iterative

fashion in the analysis plane, the design plane, the implementation plane, and the

testing plane. This iterative discovery of steps from all four planes continues until

the environment was exhausted.

CHAPTER 5. FORMAL FOUNDATIONS 94

Corollary 3.1 (Cyclical: Best Case) The best case performance of the cyclical

software engineering methodology is O(1).

Proof 3.1.1 Let the environment consist of na analysis steps, nd design steps, ni

implementation steps, and nt testing steps. Let the correct analysis step be the very

first step a1. Let the correct design step be the very first step d1. Let the correct

implementation step be the very first step i1. Let the system acceptance test be the

very first step t1. To satisfy the problem statement would require one analysis, one

design, one implementation, and one testing step. In this environment, the cyclical

software engineering methodology will require only four steps. Thus the performance

is O(1).

Corollary 3.2 (Cyclical: Worst Case) The worst case performance of the cyclical

software engineering methodology is O(N) where N is the size of the environment.

Proof 3.2.1 Let the environment consist of na analysis steps, nd design steps, ni

implementation steps, and nt testing steps. Let the system acceptance test be the very

last step tnt. The number of steps to find a solution is na + nd + ni + nt which is

O(N).

Corollary 3.3 (Cyclical: Average Case) The average case performance of the

cyclical software engineering methodology is O(N) 3 where N is the size of the space.

Proof 3.3.1 Let the environment consist of na analysis steps, nd design steps, ni im-

plementation steps, and nt testing steps. On average, the system acceptance would be

in the middle of the testing plane tnt/2. On average, the cyclical software engineering

3To be more precise, the exact performance is N/2.

CHAPTER 5. FORMAL FOUNDATIONS 95

methodology would only have to discover half of the analysis, design, implementa-

tion, and testing steps. That is to say, half the time the cyclical software engineering

methodology discovers less than half of the space to find a solution and half the time the

cyclical software engineering methodology discovers more than half of the space to find

a solution. The number of steps to find a solution is (na)/2+(nd)/2+(ni)/2+(nt)/2

which is N/2 steps. Thus, the performance is O(N). 4

Corollary 3.4 (Cyclical: Dynamic Complete) A cyclical software engineering method-

ology is dynamic complete.

Proof 3.4.1 A cyclical methodology allows for the introduction of new information

at every cycle and the removal of information that is no longer needed. Thus, for

a dynamic environment, a cyclical software engineering methodology will eventually

find the solution.

Corollary 3.5 (Cyclical: Non-monotonic Incomplete) A cyclical software en-

gineering methodology is non-monotonic incomplete.

Proof 3.5.1 The cyclical software engineering methodology has no mechanism to

manage a non-monotonic step. Consider a dynamic environment with two highly con-

flicting requirements and their associated design, implementation, and testing steps.

The cyclical software engineering methodology would pick one requirement and build

the associated system. The cyclical software engineering methodology, because there

is no mechanism to manage a non-monotonic step, then picks the second conflict-

ing requirement. The first solution is negated in order to build a second system. The

4To be more precise, the exact performance is N/2.

CHAPTER 5. FORMAL FOUNDATIONS 96

cyclical software engineering methodology oscillates between these two systems with no

convergence to a common solution. The final system acceptance test fails because one

of the conflicting requirements can never be accomplished. Thus, the cyclical software

engineering methodology is incomplete for a non-monotonic environment.

An Example of Cyclical Non-feasible Solution

Many applications are partitioned into the three major components: user interface,

application logic, and a database. The visible component of the application to a

customer is the user interface. The other two components have no visibility to the

customer and are hidden. In many cases the customer’s mental model of the appli-

cation is totally user-interface centric. To the customer, the application is the user

interface.

Tools exist today to easily craft user interfaces. These tools ignore the building of

the application logic and databases. The application logic and databases are crafted

using more traditional techniques accomplished by trained individuals. An inexperi-

enced programmer is easily convinced that the application is totally done when only

the user interface is completed.

The problem comes when an inexperienced team is using one of these user interface

tools along with the customer. Both the inexperienced team and the customer have

highly slanted, user interface centric, mental models of the application. The team

and the customer could spend hours working on very minuscule details of the user

interface design by quickly iterating between different user interface designs. Yet

the application logic and the supporting database may get no attention. Both the

customer and the inexperienced team come to the false impression that they are near

completion of application when the user interface is completed. They are stuck on

CHAPTER 5. FORMAL FOUNDATIONS 97

user interface design details without getting a global picture of the entire application

that includes application logic and a database.

Much later in this process the discovery could be made that the application logic

and supporting database may be impossible to implement given the current user

interface. Hours of user interface design could have been avoided if a more global

view of the application had been introduced earlier.

A cyclical methodology refines some details early in the process without having a

global view of the entire search space. In this case, the user interface was explored in

detail without much attention to the application logic or the database design. This

gives a false impression of near completion and progress even though the solution is

stuck at a non-feasible position that excludes major components of the application.

The important requirements of application logic and the database were missed until

late in a cyclical methodology.

CHAPTER 5. FORMAL FOUNDATIONS 98

5.3.3 WaterSluice Software Engineering Methodology

In this section, a family of theorems are presented that pertain to the WaterSluice

software engineering methodology. The WaterSluice software engineering methodol-

ogy will find solutions in static environments and dynamic environments including

dynamic environments that have the non-monotonic property. If a solution exists

and the WaterSluice software engineering methodology finds the solution, the best

case performance is O(1), the worst case performance is O(N), while the average case

performance is an order-of-magnitude less than N where N is the total number of

steps in the environment.

Theorem 4 (WaterSluice: Static Complete) The WaterSluice software engineer-

ing methodology is static complete.

Let a1, a2, a3, . . . , ana be the na steps leading to the possible analysis A with a1

being the initial problem statement. Let d1, d2, . . . , dnd be the nd steps leading to the

possible design D. Let i1, i2, . . . , ini be the ni steps leading to the possible imple-

mentation I. Let t1, t2, . . . , tnt be the nt steps leading to the possible testing T with

tn4 being the final system acceptance test. Define an environment that consists of

the four planes of analysis, design, implementation, and testing with each lower plane

being a refinement of the higher planes. In this environment priorities are represented

as different in the size of a step. A larger circle represents a higher priority than a

smaller circle. Define the solution as the tree, or in a more general sense, the directed

acyclic graph, of all steps from all four planes used in the final system. Define a pri-

ority queue of possible next steps PQ. Initially the priority queue PQ contains the

initial step a1 represented by the sequence S1. Define a function, next, over all possi-

ble steps, which generates all possible next steps given the current solution sequence,

CHAPTER 5. FORMAL FOUNDATIONS 99

evaluates the total value, and pushes the ordered result onto the priority queue PQ.

Only high priority steps are keep in the queue PQ. See Figure 5.13 on page 99 for

a visual representation of the space. Here a larger circle represents a higher priority

step. See figures 5.13, 5.15, 5.16, 5.17, and 5.18 on pages 99 through 104 for a visual

guide of the reasoning. The numbers associated with the steps represent the order

visited by the methodology.

A Priority Based Space

Analysis

Design

Implementation

Testing

low priority

potential step completed step included in the solution

A numbered step represents the order visited.high priority

Figure 5.13: Priority Based Space

Proof 4.1 The WaterSluice methodology leads to this sequence of steps.

CHAPTER 5. FORMAL FOUNDATIONS 100

WaterSluice: Proof of Principle

Analysis

Design

Implementation

Testing

1

32

74

95

11
8

low priority

10
potential step completed step included in the solution

A numbered step represents the order visited.high priority

Figure 5.14: WaterSluice: Proof of Principle

CHAPTER 5. FORMAL FOUNDATIONS 101

WaterSluice: Prototype

Analysis

Design

Implementation

Testing

1

32

74

95

6

11

10

8

12

13

14
15

low priority

potential step completed step included in the solution

A numbered step represents the order visited.high priority

Figure 5.15: WaterSluice: Prototype

CHAPTER 5. FORMAL FOUNDATIONS 102

WaterSluice: Alpha

Analysis

Design

Implementation

Testing

1

32

74

95

6

11

10

8

12

13

14
15

16

17 18

19 20

21

22

23 24

28

low priority

potential step completed step included in the solution

A numbered step represents the order visited.high priority

Figure 5.16: WaterSluice: Alpha

CHAPTER 5. FORMAL FOUNDATIONS 103

WaterSluice: Beta

Analysis

Design

Implementation

Testing

1

32

74

95

6

11

10

8

12

13

14
15

16

17 18

19 20

21

22

23 24 25

26

27

28 29 30

31
32

high priority low priority

potential step completed step included in the solution

A numbered step represents the order visited.

Figure 5.17: WaterSluice: Beta

CHAPTER 5. FORMAL FOUNDATIONS 104

WaterSluice: Product

Analysis

Design

Implementation

Testing

1

32

74

95

6

11

10

8

12

13

14
15

16

17 18

19 20

21

22

23 24 25

26

27

28 29 30

31
32 33

high priority low priority

potential step completed step included in the solution

A numbered step represents the order visited.

Figure 5.18: WaterSluice: Product

CHAPTER 5. FORMAL FOUNDATIONS 105

step 1: Initial set up.

PQ = a1

step 2: Remove a1 from the priority queue PQ. Expand all alternative steps near

a1 using the function next and push them onto the priority queue PQ.

PQ = a2, a3

S1 = a1

At this stage there are two alternative next steps. Pick the next step with the

highest priority. For clarity, assume this step is a2.

step 3:

PQ = a3, a4

S2 = a1, a2

...

step 11: The methodology is now at the proof of principle stage.

PQ = a12

S11 = a1, a2, a3, d4, i5, t6, d7, t8, i9, t10, t11

...

CHAPTER 5. FORMAL FOUNDATIONS 106

step 15: The methodology is now at the prototype stage.

PQ = a16, a21

S15 = a1, a2, a3, d4, i5, t6, d7, t8,

i9, t10, t11, d12, i13, t14

...

step 24: The methodology is now at the alpha stage.

PQ = i26, i28, i29, i30

S15 = a1, a2, a3, d4, i5, t6, d7, t8,

i9, t10, t11, d12, i13, t14,

t15, a16, d17, d18, i19, i20,

a21, d22, t23, t24

...

step 32: The methodology is now at the beta stage.

PQ = t33

S15 = a1, a2, a3, d4, i5, t6, d7, t8,

i9, t10, t11, d12, i13, t14,

t15, a16, d17, d18, i19, i20,

a21, d22, t23, t24,

t25, i26, t27, i28,

CHAPTER 5. FORMAL FOUNDATIONS 107

i29, i30, t31, t32

...

step na + nd + ni + nt: The priority queue contains the last step of the final system

acceptance test.

Thus, the WaterSluice software engineering methodology is static complete.

The WaterSluice software engineering methodology uses priority to guide the pro-

cess combined with the iterative mechanism found in a cyclical methodology and gov-

erned by the steady progression found in a sequential methodology. If the environment

is static, then all steps in the environment are known before the WaterSluice software

engineering methodology begins. The WaterSluice software engineering methodology

first discovers high priority steps from the analysis plane, the design plane, the im-

plementation plane, and the testing plane. As higher priority steps are discovered

and visited, they are eventually exhausted. This allows the lower priority steps to be

visited. The WaterSluice software engineering methodology continues until the only

remaining step to visit is the lowest possible priority step.

Corollary 4.1 (WaterSluice: Dynamic Complete) The WaterSluice software en-

gineering methodology is dynamic complete.

Proof 4.1.1 The WaterSluice software engineering methodology allows for the intro-

duction of new information at every step and the removal of information that is no

longer needed. Recall the presence of the priority queue. When steps are placed on

the priority queue, the queue is rearranged. Low priority steps migrate to the end

of the queue while high priority steps migrate to the beginning of the queue. Regard-

less of when a high priority item is discovered, the methodology will be able to react.

CHAPTER 5. FORMAL FOUNDATIONS 108

For a dynamic environment, the WaterSluice software engineering methodology will

eventually find the solution.

Corollary 4.2 (WaterSluice: Non-monotonic Complete) The WaterSluice soft-

ware engineering methodology is non-monotonic complete.

Proof 4.2.1 The WaterSluice software engineering methodology allows for the in-

troduction of new information at every step and the removal of information that is

no longer needed. Define a priority function that takes into account non-monotonic

steps. Consistent steps are assigned similar high priority. Non-consistent steps are

assigned lower priority. When steps are placed on the priority queue, the queue is

rearranged. Low priority steps migrate to the end of the queue while high priority

steps migrate to the beginning of the queue. Regardless of when a high priority item

is discovered, the methodology will be able to react. For a non-monotonic space, the

WaterSluice software engineering methodology will eventually find the solution leaving

behind the conflicting steps.

Corollary 4.3 (WaterSluice: Best Case) The best case performance of the Wa-

terSluice software engineering methodology is O(1).

Proof 4.3.1 Let the environment consist of na analysis steps, nd design steps, ni

implementation steps, and nt testing steps. Let the correct analysis step be the very

first step a1. Let the correct design step be the very first step d1. Let the correct imple-

mentation step be the very first step i1. Let the system acceptance test be the very first

step t1. To satisfy the problem statement would require one analysis, one design, one

implementation, and one testing step. In this environment the WaterSluice software

engineering methodology will require only four steps. Thus the performance is O(1).

CHAPTER 5. FORMAL FOUNDATIONS 109

Corollary 4.4 (WaterSluice: Worst Case) The worst case performance of the

WaterSluice software engineering methodology is O(N) where N is the size of the

environment.

Proof 4.4.1 Let the environment consist of na analysis steps, nd design steps, ni

implementation steps, and nt testing steps. Let the system acceptance test be the

lowest priority step tnt. The number of steps to find a solution is na + nd + ni + nt

which is O(N).

Corollary 4.5 (WaterSluice: Average Case) The average case performance of

the WaterSluice software engineering methodology is an order-of-magnitude less than

N where N is the size of the environment.

Proof 4.5.1 Let d be the depth of the space. In the special case of this space d is 4.

Let b be the average fan out of a step in the space if there was no priority function.

If the space has N steps then

N = b0 + b1 + b2 + · · ·+ bd.

To a reasonable approximation, only the last term is significant and

N ≈ bd.

Consider the addition of a priority function. The best case priority function would

guide the algorithm directly to a solution. In this case, the fan out would be 1 and the

CHAPTER 5. FORMAL FOUNDATIONS 110

total number of steps would be O(1). A worst case priority function would not guide

the algorithm. Thus the fan out would be b and the total number of steps would be

O(N). In the average case, the priority function would trim the fan out by half. Thus

Naverage ≈
(
b

2

)d

≈ bd

2d

≈ N

2d

On average the performance of the algorithm is an order-of-magnitude less than

N.

CHAPTER 5. FORMAL FOUNDATIONS 111

Methodology Static Complete Dynamic Complete Non-monotonic Complete

sequential yes no no
cyclical yes yes no
WaterSluice yes yes yes

Table 5.1: Summary of Completeness

Methodology Best Worst Average

sequential O(N) O(N) O(N)
cyclical O(1) O(N) O(N)
WaterSluice O(1) O(N) order-of-magnitude less than N

Table 5.2: Summary of Performance

5.4 Summary Results from the Main Theorem

Theorem 1 Different software engineering methodologies have significant performance

variations depending on the given environment. A software engineering methodology

that is goal focused, manages conflicts, and differentiates between different priorities

is best suited for dynamic non-monotonic environments.

The proceeding theorems and corollaries generate several key results:

• All three categories of software engineering methodologies are complete for static

environments. See Theorems 2, 3, and 4.

• Only cyclical and WaterSluice are complete for dynamic environments. See

Corollaries 2.4, 3.4, and 4.1.

• Only WaterSluice is complete for non-monotonic environments. See Corollaries

2.5, 3.5, and 4.2.

• The best case performance of sequential software engineering methodology is

O(N). See Corollaries 2.1.

CHAPTER 5. FORMAL FOUNDATIONS 112

• The best case performance of cyclical and WaterSluice software engineering

methodologies is O(1). See Corollaries 3.1, and 4.3.

• The worst case performance of all three categories of methodologies are the

same. See Corollaries 2.2, 3.2, and 4.4.

• On average, the sequential methodology will find a solution in O(N). See Corol-

lary 2.3. On average, the cyclical methodology will find a solution in O(N). 5

See Corollary 3.3. On average, the WaterSluice will find a solution an order-of-

magnitude less than N. See Corollary 4.5.

The observations are summarized in Table 5.1 on page 111 and Table 5.2 on page

111.

5A more accurate average performance measurement for a cyclical software engineering method-
ology is N/2.

Chapter 6

An Analogy with Search

The formal foundation chapter presented results on methodologies and their perfor-

mance in various environments. These results are analogous to similar results from

search theory. See [82], [84], [83], and [98].

6.1 Search Background

There are three well-known search algorithms: breadth-first, depth-first, and

best-first. The basic background of these three algorithms are presented along with

their accompanying search space.

In a breadth-first algorithm, the search is concentrated at the high level and

not until a solution is found at this level does the algorithm go deeper into the lower

levels. This algorithm is queue-based, and almost the entire search space needs to

be searched before an answer is found. On the average, this algorithm is O(N) in

complexity where N is the number of nodes in the tree representing the search space.

Best case performance for a breadth-first algorithm is and worst case performance

are O(N).

113

CHAPTER 6. AN ANALOGY WITH SEARCH 114

In a depth-first algorithm, the search is concentrated at the lower levels. This

algorithm is stack-based, and a potential solution may be found early in the search.

The worst case performance is no better than a breadth-first algorithm, but on av-

erage a depth-first algorithm will find a feasible solution quicker. On the average,

this algorithm is O(N) in complexity where N is the number of nodes in the tree

representing the search space. Best case performance for a depth-first algorithm is

O(1), while worst case performance is O(N).

The depth-first algorithm has a problem around sections of the tree that represent

near solutions. The algorithm will get stuck on a local optimum and not find the best

solution until much later in the search. This problem is called hill climbing.

In a best-first algorithm, the search is concentrated on the next best move. All

next moves are prioritized by looking one move ahead and only the next best move is

taken. After each move, additional moves may be possible and are added to the list

of candidates. The process continues until an optimum solution is found. The search

space is searched in a jumping fashion as the algorithm hops between different areas

of higher interest. This algorithm is based on a priority queue that is usually based

on a partial order tree.

The best known of the best-first algorithms is called A*. The priority functions

are split into two components. One represents the known cost to get to a node in the

search space while the other represents the estimated cost of continuing towards the

goal. The estimated cost must be positive and must be an underestimation of the

actual cost. It can be shown that A* is the best of all best-first search algorithms.

The A* algorithm is more complex because it requires the definition of the priority

function. On the average, this algorithm is an order-of-magnitude less than N in

complexity where N is the number of nodes in the tree. Best case performance for a

CHAPTER 6. AN ANALOGY WITH SEARCH 115

best-first algorithm is O(1), while worst case performance is O(N).

There is an interesting tradeoff between the cost of visiting a node in the search

space and the cost of calculating the priority function. If the search space is small,

inexpensive to traverse, and the cost of calculating the priority function is expensive,

then the depth-first and breadth-first algorithms may have better total performance

over the best-first algorithm. The cost of calculating the priority function can be

controlled by varying the quality of the answers returned by the priority function. If

the search space is complex and large, then the cost of calculating a precise priority

function is negligible. On the other hand, some situations call for a cheap priority

function. In the limiting case, the priority function could be simply that all next

steps have the same priority and the algorithm becomes a breadth-first algorithm.

Alternatively, the priority function could reflect the depth of the search space and

the best-first algorithm would behave like a depth-first algorithm.

These search algorithms use a search space. A search space consists of a collection

of nodes or states. There are two special states called initial and goal. There is

a function that walks the search space using the primitive next step. Optionally,

the states may be labeled for later reference. The path from initial state to the

goal state is called the solution. Between a state and its reachable next states are

associated costs. Only the best-first algorithm uses this cost information for other

than summation or report generation reasons. In general, the algorithms produce a

directed acyclic graph as a result of the search.

CHAPTER 6. AN ANALOGY WITH SEARCH 116

6.2 Analogy: Search and Methodologies

These search algorithms and their accompanying search space can be extended to

apply to software engineering methodologies. By analogy, a sequential methodology

can be compared to a breadth-first search algorithm, a cyclical methodology to a

depth-first search algorithm, and the WaterSluice methodology to a best-first search

algorithm.

A solution in search space is the path from the initial node to the goal node. Many

nodes visited may not be included in the solution path. On the other hand, a solution

in software engineering methodology space is the entire DAG necessary to go from

the initial problem statement to the final acceptance test.

Since the space is much larger than the solution path it is imperative to prune

the search as much as possible. Pruning is affected by dynamic and non-monotonic

considerations when the entire search space cannot be pre-composed.

6.3 Conclusion

The results in this thesis on methodology performance are analogous to the associated

results in search theory. All three search algorithms are complete for a static search

space. The differences appear when the search space is dynamic. A breadth-first

search algorithm may miss a solution. Both a depth-first search algorithm and a best-

first search algorithm will find a solution in a dynamic search space. In some cases,

the best-first search algorithm will find a solution in less than or equal time to the

other two methodologies. The worst case performance of all three search algorithms

are the same. On average, the breath-first search algorithm will find a solution in

O(N). On average, the depth-first search algorithm will find a solution in O(N). On

CHAPTER 6. AN ANALOGY WITH SEARCH 117

average, the best-first search algorithm will find a solution is an order-of-magnitude

less than N.

Chapter 7

Project Surveys

Since a realistic quantifiable experiment on software engineering methodologies can-

not be carried out, this chapter presents projects from the author’s and colleagues

experiences. These experiences help formulate and substantiate the formal work of

this thesis.

7.1 Introduction

In this chapter, a survey form is presented. This survey form will help guide the

classification of various software engineering methodologies and their usage in a va-

riety of projects. The survey form is then completed for the three main categories

of sequential, cyclical, and WaterSluice software engineering methodologies. Survey

forms for the Boehm-waterfall and the Boehm-spiral are also completed. Several soft-

ware engineering projects are then presented along with their software engineering

methodology and completed survey form. Because there is a very limited number of

publications of real-life software engineering methodology usage, most of the exam-

ple projects are from the author’s experiences. Several projects are from well known

118

CHAPTER 7. PROJECT SURVEYS 119

systems such as Ada, UNIX, and X.

This survey is intended as an aid in understanding software engineering method-

ologies. This survey is not presented as the ultimate, definitive, scientific classification

schema for software engineering methodologies.

7.2 The Survey

The survey is a series of questions with a choice of alternative answers. The survey is

also presented in a summary tabular form. An accompanying information page helps

to clarify some of the questions and response options.

7.2.1 Software Engineering Methodology Phases

The first section of the survey deals with methodology phases and their usage. There

are four main phases of analysis, design, implementation, and testing. The analysis

phase establishes the requirements. The design phase establishes the architecture.

The system is built in the implementation phase while quality is assured in the testing

phase. See the sections on analysis, design, implementation, and testing in table 7.1

on page 121.

7.2.2 Software Engineering Methodology Composition

The next section of the survey deals with the composition of the four main phases.

ADIT is an acronym for analysis, design, implementation, and testing composed in

that order. There may be many cycles of ADIT.

In each phase, the alternatives may be prioritized. Change order control is a

process used to resolve conflicts. These conflicts may be non-monotonic in nature,

CHAPTER 7. PROJECT SURVEYS 120

where taking one action negates actions already accomplished. The ADIT cycles may

be used to create versions of the system where several baselines of the system are

established with potentially each baseline having more functionality. A baseline of

the system may be released in the sequence of internal prototype, external prototype,

alpha, and then beta releases. See the sections on cycles, priority, versions, and

change control in table 7.1 on page 121.

7.2.3 System Size Estimates

The next section of the survey deals with system size estimates in total number

of person years to build the system and in the calendar time. The person years

may include all work in analysis, design, implementation, and testing but excludes

customer usage. See the sections on duration and effort in table 7.1 on page 121.

7.2.4 Non-monotonic Characteristics

The last section of the survey deals with the non-monotonic characteristics of the

software engineering methodology. See table 7.2 on page 121.

7.2.5 The Tabular Form

The tables 7.1 and 7.2 starting on page 121 represent the questions in tabular form.

CHAPTER 7. PROJECT SURVEYS 121

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? number..
Effort? number..

Table 7.1: Survey Part 1: Basic Properties

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.2: Survey Part 2: Change Control

CHAPTER 7. PROJECT SURVEYS 122

7.3 Projects

7.3.1 TDS Health Care System

The TDS [92] health care system supported many health care applications including

order entry, result reporting, medication tracking and scheduling, vital signs, flow

sheets, active patient care, nursing support systems, day-to-day management of a

patient while in the hospital, short term medical information, laboratory orders and

result reporting, pharmacy, and day-to-day charting.

This system was built by Lockheed in the mid 1960s as a spin off of the space

program. Congress wanted to show that the same technology advancement that

landed a person on the moon could also have down to earth applications. The first

customer was a medium sized local hospital: El Camino Hospital.

The original Lockheed team had several hundred members and it took several

years to build the base system. It took several more years of hospital testing to make

the system useful and to establish high quality.

The architecture was tool based. In this tool based architecture, the system was

built around several authoring tools. One tool was used to author formularies and list.

Another tool was used to author application logic and presentation, while another tool

was used to author database records. A general purpose database and user interface

engine was provided. The content was authored by the tools and then interpreted by

the database. These and the user interface engine defined the application.

The applications were split into two halves. One half of the application defined the

database while the other half of the application defined the application logic and the

user interface. In fact, it would be more accurate to say that the user interface defined

the application logic. This was a client/server architecture with fat clients. Note that

CHAPTER 7. PROJECT SURVEYS 123

the GUI was displayed on dumb monitors and the client ran on the mainframe.

The database, called M1, was influenced by MUMPS. The underlying structure

of the database resembled artificial intelligence frames. Every record could have a

variable number of fields with each field having a facet. A facet defines how the field

of the record is to be obtained. A value facet would contain the data. A function

facet would contain an algorithm to calculate the data. Other facets included domain

checks, pre-conditions, post-condition, format information, and triggers. The trigger

facet was used to notify other associated records that a change in this data record

has occurred. Records need not have the same scheme nor be complete. A tool was

provided to manage the database. Features included the ability to view, update,

delete, and create the data.

The user interface, called M2, was also frame-based. One frame equals one screen.

The fields on the screen were controlled by the facets in the frames. These facets

governed display information, application logic, entry format constraints, default val-

ues, and screen navigation. A customer would click through screens and complete a

database frame. Once the frame was completed, the customer would save the frame.

The act of saving the frame may trigger other actions. A tool was provided to build

and manage frames.

The system had several technology innovations for the mid 1960s. These included

customixed light-pen, light-sensitive monitors, and networking cards. The system

was hand-crafted in assembly code.

Included with the system was an example hospital. This included several thousand

screens which represented several dozen health care applications. The system took

about a thousand person years to build and stabilize for the first hospital. Several

more thousands of person years were invested to clone the system into about 100

CHAPTER 7. PROJECT SURVEYS 124

other hospitals. Since this system was very expensive, millions of dollars per hospital

per year, only the largest hospital could afford such an investment. Each customer

required extensive training of several person months.

Once the system was built, many other hospitals could be cloned from the original.

Hospitals, and health-care in general, are about the same. They differ on details of

content but not so much on difference of functions. For example, every hospital has

a pharmacy where prescriptions are filled but the exact formulary differs greatly.

El Camino Hospital played a critical role as the very first customer. El Camino

Hospital provided high quality domain knowledge and acted as testers. By having

the system active in a working hospital gave credibility to the system and raised the

level of trust.

This system was stable for thirty years. The tool-based architecture allowed for

new content, new screens, and new application logic. The frame-based system allowed

for flexibility of information. After initial development, the system was moved from a

NASA project to a company. Individuals were given the option to follow the project

or to stay in the company.

The software engineering methodology was cyclical. Small changes were intro-

duced, tested in the example hospital, released to the customer, errors were incre-

mentally fixed, and new applications were incrementally developed.

The original team did not generate a requirement document nor an architecture

document. The original key individuals did not follow the system into productization.

The remaining team focused on content while the underlying tools and infrastructure

remained stagnate. Technology changes soon made the underlying infrastructure

obsolete. Attempts to change the infrastructure had the affect of converting the code

from a stable base to a fragile tangle of spaghetti code. The product disappeared in

CHAPTER 7. PROJECT SURVEYS 125

the late 1990s.

The tool-based architecture along with the underlying frame-based data model

allowed the product to reflect changes in content. The custom hardware, lack of

requirement and architectural knowledge, hand-crafted assembly code, and loss of

key individuals contributed to the product obsolescence.

The cyclical software engineering methodology generated a well focused, hospital-

base, short-term clinical information, nursing system but missed the bigger pictures

of including doctors, administration, and the electronic patient chart.

See tables 7.3 and 7.4 starting on page 125.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 35 years
Effort? greater than 5,000 person years

Table 7.3: Survey Part 1: Basic Properties TDS

CHAPTER 7. PROJECT SURVEYS 126

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.4: Survey Part 2: Change Control TDS

7.3.2 Digital’s Virtual Memory System (VMS)

VMS ([47], [80], [46]) is an operating system build for the (Virtual Address eXtension)

VAX instruction set hardware in the late 1970s. The operating system had a strong

following in the 1980s with a decline of usage in the 1990s. The original team was

very small, only a dozen or so very experienced individuals. The team quickly grew

to several hundred, and remained at that level for over a decade. For performance

reasons, the product was built in highly-structured assembly code. VMS was materi-

alized by tens of millions of lines of code and took days to compile. VMS was built to

be the leading-edge technology operating system targeted at leading-edge technology

customers. People would say, “Digital was an engineering company, run by engineers,

for engineers.” One only had to make a technology argument to add a new feature

to VMS. The Digital engineers built the system for themselves and then shared the

system, for a fee, with others.

VMS was one of the first major operating systems to support virtual memory, 32

CHAPTER 7. PROJECT SURVEYS 127

bit address space, 128 bit floating point number precision, and a complex instruction

set.

The software engineering methodology was best-first similar to the WaterSluice.

The requirement committee would prioritize requirements and establish a list of re-

quirements to be placed in the next version. For the most part, this list would be

placed under change control. The architecture group, the small core of original de-

velopers, would establish the design and high level development plans.

The engineering teams would implement the architecture in a two week cycle. One

week, called the red week, new development would be added to the code base. On

Friday, the code would be frozen and over the weekend the regression suites would test

the new features and make sure that already established features would not break.

The next week, the blue week, the engineering teams concentrated on bug fixes. This

short cycle consisting of build-a-week, followed by test-a-week, would quickly converge

to the next version of the operating system.

A large regression test suite was maintained. Not only testing for operating system

features, but the regression testing of all applications, numbering several hundred,

were also included. One of the best indications of a stable operating system are

stable applications on top of the operating system.

The engineering team would always be using their current build. Several months

before customer alpha release, the corporation would be placed on the new release.

An alpha customer would get a product that has been deployed for several months to

thousands of machines. The beta release would include bug fixes to the alpha release.

By the time the new version was released it was already relatively high in quality.

If you include development and internal testing, both regressing testing, and in-

ternal operational testing, each year thousands of person years were involved in VMS

CHAPTER 7. PROJECT SURVEYS 128

releases and development.

The version release of the product reflected the weekly two phase cycle. Versions

ending in even numbers, 1.0, 1.2, 1.4, etc., had new features while versions ending in

odd numbers, 1.1, 1.3, 1.5, etc., had bug fixes. The odd versions actually included

the new code for the next even version, but this code was disabled or running in

shadow mode only. Just the presence of new code, even disabled, would introduced

bugs associated with memory management, locking, and race conditions.

There were several decisions which eventually lead to the decrease in popularity

of VMS. First, the VAX instruction set was a member of the complex instruction

set families. In the late 1970s, instruction sets were getting more and more func-

tionality. This made the compilers easy to write. A compiler was not much more

then a pattern matcher with rewrite rules. As compilers got smarter, this allowed for

instruction sets to become simpler, and a new family, the RISC, of simple instruction

sets was introduced. This was welcome news to the hardware makers because it let

the hardware developers concentrate on speed and performance and let the compiler

handle complexity of translating algorithms and data structures into sequences of

simple instructions.

Second, VMS was written in VAX assembly language. This made translating the

millions of line of code a daunting task.

Third, architecture design of VMS had a major flaw. An operating system needs

to lock critical sections. In fact, the correctness of just about every line of code is

highly influenced by correct locking. VMS used a highly non-standard feature of

interrupt priority levels to get the affect of locking. There were only 32 such levels,

leading to only 32 major locks. The physical lock table was only 32 by 32 while the

effective lock table was more like thousands by thousands. Every lock was highly

CHAPTER 7. PROJECT SURVEYS 129

overloaded in meaning. This did not scale and made VMS more complex. After

a decade of development, VMS was moved to the alpha chip set, but only after the

alpha chip set was modified to support interrupt priority levels. Had the original team

separated out the locking mechanism to a more general architecture, this dependency

could have been avoided.

Fourth, only a few people understood the total picture of the locking scheme.

The effective lock table for VMS was in their heads. This knowledge was never

really captured in writing and really reflected years of experience of working with the

architecture of VMS.

See tables 7.5 and 7.6 starting on page 129.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 20 years
Effort? greater than 10,000 person years

Table 7.5: Survey Part 1: Basic Properties VMS

CHAPTER 7. PROJECT SURVEYS 130

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.6: Survey Part 2: Change Control VMS

7.3.3 Stanford University Infrastructure

The business functions of Stanford University are currently managed by a relatively

large group of developers and maintainers. The group numbers about 200. In the

early 1970s, this group began building an environment based on SPIRES ([94], [93],

[104]) a hierarchical text database system originally used to store scientific (high

energy physics) documents. On top of SPIRES was built an infrastructure to support

email, event messaging, work flow, forms routing, and digital signature. Using this

infrastructure, the two major applications, one centered around accounting and the

other centered around students information, were written.

The development of this system took about two and a half decades. This is an

example of a thousands of person year project.

The software engineering methodology followed was cyclical in nature. The builder’s

of the system and the customer’s of the system were almost one in the same. Small

incremental changes were made to meet small requirement changes. Testing was done

CHAPTER 7. PROJECT SURVEYS 131

by the staff at the help desk. If it worked on the examples in the help manual, it was

declared to be ready for deployment. Deployment was easy because it was only on

one machine. Customers would connect through terminals. Everything was custom

built to handle small-detailed changes.

There is no one requirement document. There is no one architecture document.

There is no one person who understands the complete system. This is a recipe

for pending disaster. Individual members in the development team knew only local

information.

The system served the university well until the wake-up call in the mid 1990s. The

federal government made charges against the university of major errors in billing. To

show otherwise would require a special query across the general ledger. This class of

queries was never before attempted and had to be written, in assembly code, from

scratch. It took over a year and about 10 person years worth of work to finish this

query that showed the university to be in compliance.

See tables 7.7 and 7.8 starting on page 132.

CHAPTER 7. PROJECT SURVEYS 132

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 25 years
Effort? greater than 1,000 person years

Table 7.7: Survey Part 1: Basic Properties Stanford

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.8: Survey Part 2: Change Control Stanford

CHAPTER 7. PROJECT SURVEYS 133

7.3.4 Independent Technology Inc. (ITI)

ITI built client-server applications using key components of networking, transaction

processing, graphical user interfaces, relational databases, UNIX, and object-based

programming. Their architecture paradigm was to build a common interface to the

key components. This common interface could then be layered on a particular ven-

dor’s solution. In this way, an application built on this common interface could easily

be migrated from similar but disparate vendor provided solutions. Hence the name

of the company: independence.

The biggest product built was a health insurance claims processing system. In-

ternal claims processing clients would process claims. The claims would be routed

through the system using a work flow graph. A claim would be represented as re-

lational data and images of the original form. The system was deployed to about

a thousand clients talking to a multi-processor server. This system took 50 person

years to build the tool kit and 15 person years to build the application.

The software engineering methodology used was cyclical. Small incremental changes

to the application were done, shown to the customer, and iterated upon. There was

no requirement document except for a very general one-page statement. The archi-

tecture was well defined by the tools.

What was missing was a total lack of quality assurance. Less than 0.5 person years

was spent on testing before the product went live at the customer’s site. Needless

to say, the system was not reliable and not well accepted. Now the company had

to concentrate on doing nothing but bug fixes. With no formal regression testing

suite, each bug fixed would most likely create, or uncover, another bug. After several

months, the system was rejected by the customer and the company soon went out of

business.

CHAPTER 7. PROJECT SURVEYS 134

The individual responsible for quality assurance would generate reports with the

same conclusion: performed as expected. To a casual reader this meant high quality

with no real problems. However, the quality assurance person meant something

entirely different. He expected low quality and found low quality. Hence the report:

performed as expected.

The tool kit was sold. Having gone through the first application, the tool kit was

some what real. The tool kit was also later abandoned. The architectural goal of

independence was not accomplished. The applications were independent of vendor

specific systems, but now the application was dependent on the tool kit. In fact, the

tool kit was just another vendor. A better approach to independence would have

been to use accepted standards as the foundation of the tool kit.

See tables 7.9 and 7.10 starting on page 134.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? three years
Effort? about 50 person years

Table 7.9: Survey Part 1: Basic Properties ITI

CHAPTER 7. PROJECT SURVEYS 135

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.10: Survey Part 2: Change Control ITI

7.3.5 Oceania

Oceania is a health care company founded by physicians. The physicians worked

in the emergency trauma center on weekends pulling a 48 hour shift. The income

derived from this endeavor was more than enough to support themselves and to fund

Oceania.

Oceania hired about a dozen college experienced but non-graduate junior-implementors.

This team, over a five year period, generated an impressive demo of a physician-centric

health care system based on the NeXT machine. The demo was impressive enough

to obtain venture capital investment and three signed customers. An additional year

passed with no shipped product; an experienced software engineer was needed.

There was no requirement document, no architecture document, and no testing

paradigm. In fact, the system only contained the GUI. There was no database and

no application logic. No wonder there was no product.

This situation is actually understandable. For the most part, customers are very

CHAPTER 7. PROJECT SURVEYS 136

GUI centric. What the customer sees on the screen, is the customer’s total view of

the rest of the application. The underlying infrastructure is assumed to exists if the

GUI is present. A junior engineering team, lead by GUI-centric physicians, would

build the best GUI in the world and not even realize the massive amount of missing

code.

The software engineering process in place was cyclical in nature, only iterating on

the GUI. This generated a wonderful GUI that could not be supported.

A more formal software engineering process was put in place. A requirement

document and architecture were established for the GUI, the application logic, and the

database components. A testing plan was put in place. The scope of the application

was grossly reduced. The signed customers were replaced with a hospice. In this way,

any error in the system would not have any affect on the outcome of any patient,

since all patients in the hospice are terminally ill. The product was shipped and went

live and was active for over a year without any customer discovered bugs.

The engineering process was turned back into the control of the physicians. Un-

fortunately, the physicians quickly reverted to their established previous behavior and

the company had difficulties in delivering another successful deployed product.

There is a fundamental difference between the training of a physician and the

training of an engineer. In the practice of health care, a physician must always

base his decisions on the most current known information and protocols. As new

information is discovered about the patient and as new procedures are established,

the corrective actions that a physician takes are different than the corrective actions

based on the outdated information. A physician acts in a non-monotonic fashion.

Current information is much more important than past historical information.

An engineer, on the other hand, acts in a monotonic fashion. Actions are based on

CHAPTER 7. PROJECT SURVEYS 137

facts. Work accomplished so far should not be thrown out without significant reasons.

A physician wants to base all actions on the most current information. Engineers need

to base actions on all information, both current and past.

The conflict between the two paradigms was the root cause of major problems for

Oceania. In particular, when one relational database vendor came out with a new

product, the physicians wanted to immediately change over and throw out the work

done on the other relational databases vendor product. The engineers agreed that

the new release was better than the old release, but why throw out all of that work

just for a little gain.

An important missing process concept in software engineering methodology was

apparent. Non-monotonic changes to a system needs to be carefully managed. Some

of the changes are necessary and should be allowed. Many of the changes are not

important enough to delay the shipping of the product. Even if the product does not

have the best current answer to all problems, a good answer is usually good enough.

See tables 7.11 and 7.12 starting on page 138.

CHAPTER 7. PROJECT SURVEYS 138

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? over 10 years
Effort? 100 person years

Table 7.11: Survey Part 1: Basic Properties Oceania

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.12: Survey Part 2: Change Control Oceania

CHAPTER 7. PROJECT SURVEYS 139

7.3.6 CONMOD

CONMOD stands for CONflict MODeling and was a government program to simulate

the battlefield. One battle could be simulated with different weapons, strategies,

soldiers, weather, and battle fields without the needless destruction of resources and

at a fraction of the cost.

The project was a follow on project to JANUS. JANUS had been around for

several decades and resisted many efforts to modernize.

CONMOD would be based on the technology of objects, Ada, relational databases,

large monitors with color GUIs, Digital’s VAX computers running VMS, and expert

systems.

There was no real software engineering methodology followed. There was no

requirement or architecture document. There was no testing paradigm. The military

would place about a dozen high level professional officers on a 12 month rotation.

The civilian programmers would get their daily work assignments from the officers.

A significant amount of time was spent on the random number generator. Since

this was a discreet simulation where every action would create an event with a prob-

abilistic outcome, the random number generator was considered high priority. Every

actor on the battle field, be it personnel or munitions, would have an event queue. As

time progressed, actions would trigger events. Everything was to be modeled except

for the command and control. Command and control would be provided by military

officers guiding the simulation.

CONMOD was to be a non-classified project using only military information gath-

ered from public sources. The military officers would have a private session on what

information to share with the civilians.

The project never accomplished more than a very simple simulation. There was

CHAPTER 7. PROJECT SURVEYS 140

a large gap on communication between the civilian programmers who wanted to talk

algorithms and data structures and the military officers who wanted to talk about

military campaigns. The project lasted five years with about 100 person years of

effort invested. See tables 7.13 and 7.14 starting on page 140.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 5 years
Effort? 100 person years

Table 7.13: Survey Part 1: Basic Properties CONMOD

CHAPTER 7. PROJECT SURVEYS 141

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.14: Survey Part 2: Change Control CONMOD

7.3.7 UNIX

UNIX ([124], [123]) is an operating system originating at AT&T Bell Labs in the

1970s. UNIX was one of the first operating systems written in the high level language,

C, and intended to be machine hardware independent. Many versions of UNIX exist

and the influence of UNIX on other operating systems is dramatic.

Versions of UNIX included virtual memory, multi-processing, symmetric multi-

processor, a file system, networking, the X windowing systems, and a script-based

user interface shells. Many versions of UNIX are free or near free and the source code

is readily available.

UNIX is very popular in university and research environments because of the

low cost, advanced features, and readily available source code. A large customer

community has contributed massive number of applications, free for the asking. The

UNIX distribution includes thousands of user applications.

The key architectural feature that has allowed UNIX to last for such a long time is

CHAPTER 7. PROJECT SURVEYS 142

the communication subsystem design. Everything in the communication subsystem

has an index entry called the inode. Given an inode entry, an application can read

and write bytes of data. The inode entry may be associated with a network, file

system, a process, or a keyboard. Inodes give UNIX applications hardware I/O

device independence and allows for dynamic redirection of I/O. A new I/O device is

easy to install. Just create an inode, write a device driver, and almost like magic, a

new I/O device is now on the system.

See tables 7.15 and 7.16 starting on page 142.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 30 years
Effort? greater than 10,000 person years

Table 7.15: Survey Part 1: Basic Properties UNIX

CHAPTER 7. PROJECT SURVEYS 143

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.16: Survey Part 2: Change Control UNIX

7.3.8 X

X ([109], [132], [118]) is a windowing system built for UNIX but is intended to be

machine and operating system independent. X is built on the client/server model.

The server side of X resides on the desktop computer and controls the monitor,

keyboard, and mouse. The client side of X may reside anywhere on the network.

These X clients are called X-applications. A protocol, the X protocol, is used to

communicate between X client and X servers.

X is a windowing system and not a user interface paradigm. Motif is the most

common accepted user interface paradigm specifying sliders, buttons, basic design of

windows, and other widgets.

X was created in the 1980s at MIT. The team was very small lead by Jim Gettys.

X is well documented and the source code is free and readily available.

There were two decisions which hampered the wide acceptance of X. The first

decision was not to dictate a common look-and-feel. This lead to many different

CHAPTER 7. PROJECT SURVEYS 144

windowing paradigms. Many times competition leads to better answers, but in this

case, competition lead to conflicts and interoperability between systems. Eventually,

the standards committee for X picked Motif.

The second decision was to break the inode paradigm of UNIX. This meant that

X could not be scripted. One application could no longer run another application

in a piped manor. Attempts to fix this problem are underway in the TCL scripting

language.

See tables 7.17 and 7.18 starting on page 144.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 15 years
Effort? 100 person years

Table 7.17: Survey Part 1: Basic Properties X

CHAPTER 7. PROJECT SURVEYS 145

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.18: Survey Part 2: Change Control X

7.3.9 Ada

Ada ([71], [5]) was created in the late 1970s to solve the problem of the software

programming bottle neck. Millions of lines of code needed to be written to support

government and commercial needs. Hardware has gotten faster and cheaper each year,

but software programming remained labor intensive and expensive. Furthermore,

many systems built in the 1950s through the 1970s were nearing their life cycle end

and had to be replaced. Because computer science is a relatively new field, solutions to

total life cycle management were not abundant. To make maters worse, the computer

science environment consists of a huge collection of heterogeneous hardware, software,

programming languages, operating system environments, file systems, and database

systems.

The hope of Ada was to create one independent environment, written in one

language, to support all applications.

CHAPTER 7. PROJECT SURVEYS 146

Ada is a strongly typed language supporting object-oriented programming, in-

formation hiding, modularization, concurrent programming, generalization through

generic classes, and a unified error and exception handling system. The hope was that

Ada was powerful enough to express a vast number of algorithms and data structures

as well as process control and parallelism. In 1983, Ada became a standard.

The development of Ada went though an extensive period of requirement gath-

ering, prototyping, and review. This was followed by huge amounts of funding for

compilers and supporting environments. All government contracts were to use Ada

as the language of choice.

Unfortunately, Ada did not eclipse the world. The developers of Ada created a

system that was difficult to master, hard to program, and un-forgiving to change.

Creating a language does not solve the bigger problems of software engineering

methodologies where analysis, requirements, design, and architectures are defined.

The strongly-typed pointer concept in Ada made many categories of programming

difficult, including algorithms in the fields of AI, databases, operating systems, and

file systems.

See tables 7.19 and 7.20 starting on page 147.

CHAPTER 7. PROJECT SURVEYS 147

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? 20 years
Effort? greater than 10,000

Table 7.19: Survey Part 1: Basic Properties Ada

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.20: Survey Part 2: Change Control Ada

CHAPTER 7. PROJECT SURVEYS 148

7.4 Software Engineering Methodologies

7.4.1 A Sequential Software Engineering Methodology

See tables 7.21 and 7.22 starting on page 148.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? short
Effort? little

Table 7.21: Survey: A Sequential Software Engineering Methodology: Part 1

CHAPTER 7. PROJECT SURVEYS 149

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.22: Survey: A Sequential Software Engineering Methodology: Part 2

7.4.2 The Boehm-Waterfall Software Engineering Methodol-

ogy

See tables 7.1 and 7.24 starting on page 150.

CHAPTER 7. PROJECT SURVEYS 150

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? short
Effort? little

Table 7.23: Survey: Boehm-Waterfall : Part 1

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.24: Survey: Boehm-Waterfall: Part 2

CHAPTER 7. PROJECT SURVEYS 151

7.4.3 A Cyclical Software Engineering Methodology

See tables 7.25 and 7.26 starting on page 151.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? yes..no
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? medium
Effort? medium

Table 7.25: Survey: Cyclical : Part 1

CHAPTER 7. PROJECT SURVEYS 152

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.26: Survey: Cyclical : Part 2

7.4.4 The Boehm-Spiral Software Engineering Methodology

See tables 7.27 and 7.28 starting on page 153.

CHAPTER 7. PROJECT SURVEYS 153

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? medium
Effort? medium

Table 7.27: Survey: Boehm-Spiral: Part 1

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.28: Survey: Boehm-Spiral: Part 2

CHAPTER 7. PROJECT SURVEYS 154

7.4.5 The WaterSluice Software Engineering Methodology

See tables 7.29 and 7.30 starting on page 154.

Question Response

Analysis? none..poor..fair..good..great
Design? none..poor..fair..good..great
Implementation? none..poor..fair..good..great
Testing? none..poor..fair..good..great
Cycles of ADIT? one..few..several..frequent
Priority? no..yes
Versions? no..yes
Change Order Control? no..yes
Internal Prototype? no..yes
External Prototype? no..yes
Alpha Release? no..yes
Beta Release? no..yes
Duration? many
Effort? high

Table 7.29: Survey: WaterSluice: Part 1

CHAPTER 7. PROJECT SURVEYS 155

Question Response

Did a new introduced requirement
ever negatively affect accomplished
work?

never..seldom..often..frequent

Did an architectural change ever
negatively affect accomplished
work?

never..seldom..often..frequent

Are new features introduced up to
product release?

never..seldom..often..frequent

Is there a dedicated period of qual-
ity assurance before the product is
released?

no..yes

Table 7.30: Survey: WaterSluice: Part 2

7.5 Summary

Here are some observations and thoughts from the surveys.

• Having a strong requirement process is a necessary condition for success but

not a sufficient condition.

• A strong architecture that supports change is necessary for longevity.

• Implementation details, as long as the code is of high quality, are not a governing

factor to long term life and success of a system.

• An overlooked requirement or architectural feature could lead to the downfall

of a system.

• Having the right people is very important, but having critical features dependent

on the performance of a few key individuals may lead to the downfall of the

system.

Chapter 8

Conclusion, Future, and Related

Work

The investigations that follow deal with software engineering elements that support

change. These include methodologies (WaterSluice), paradigms (Noema), architec-

ture (DADL), component composition (CHAIMS), and environments (DCE).

8.1 Methodologies

This thesis introduced the WaterSluice methodology. There are several potential

follow on projects.

• Provide a tool suite to automate the WaterSluice methodology.

• Build tools in the WaterSluice methodology using a process definition language.

• Simulate the WaterSluice methodology.

• Tie the methodology to component engineering.

156

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 157

8.2 Paradigms

8.2.1 Abstract

A traditional engineering paradigm is very hierarchical in nature. To understand a

whole, first understand the parts then combine the knowledge into an understanding

of the whole.

In a noemic paradigm, the understanding of the whole comes first. The under-

standing of the part is a projection of the whole. The noemic paradigm reflects life.

This section [31] proposes that modern software engineering built for highly dis-

tributed computing environments should be based on a noemic paradigm.

Life is an example of a Noema. A Noema is not a neural network which simulates

the learning process of the brain. A Noema is not a genetic algorithm which simulates

system evolution. A noemic paradigm is represented by the body chemistry of living

systems like the respiratory, circulatory, immune, and digestive systems.

This section will define the foundations of the noemic paradigm, give some ex-

amples, and support the conjecture that a Noema, though harder to build, supports

change.

In a Noema, the whole is greater than the sum of the parts.

8.2.2 The Noemic Paradigm

Background

Traditional western science and technology is strongly influenced by rationalism and

logical empiricism that can be traced back to Plato. A good summary of this paradigm

can be found in [131]. When faced with the problem of trying to understand a system,

the rationalistic tradition indicates that three basic steps are taken:

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 158

• Characterize the whole system in terms of identifiable sub-components with well

defined properties.

• Understand each sub-component by finding general rules that describe their

behavior.

• Combine the sub-components into the whole system, applying the rules of the

sub-components, to draw conclusions about the behavior of the whole and to

establish the understanding of the whole.

The rationalist approach requires complete knowledge of sub-components and

their actions and interactions. Decomposition of complex systems into simpler parts

is a natural scientific paradigm in the rationalist approach.

The rationalist approach is in contrast to hermeneutics [65]. Here the components

of a whole system are defined as an interpretation in the context of the whole and the

environment. There is no full and explicit understanding of neither the components

nor the whole system. The understanding is never complete.

The whole system defines to exists a hermeneutic circle where there are no absolute

facts but only interpretations of content within a context.

For example, try looking up a word in the dictionary. A word is defined in terms of

other words which eventually have definitions which circle back to the original word.

From Webster, the verb “to move” is defined as “to go from one place to another with

a continuous motion” while the verb “to go” is defined as “to move on a course.” Each

word is defined in a circular fashion having each other’s word used in each other’s

definition. The two words together form a noemic concept associated with motion.

Of course, there are many meanings of these two words, each dependent on a context.

These two words participate in many noemic concepts.

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 159

Hermeneutic circles are like fast spinning toy tops. An external observer, one

outside the toy top, is given the tasks of riding, or understanding, the toy top. His

first attempt is to step onto the toy top and is immediately thrown off. To be

successful, first the observer must gain momentum, and match the motion of the toy

top, and then, step onto the toy top. One can’t understand the hermeneutic circle

without first understanding the whole.

Edmund Husserl called the Hermeneutic circle paradigm a Noema [49]. Noema is

an antiquated Greek word for an intellect.

A Noema has the following characteristics:

• The implicit beliefs within a Noema and assumptions cannot all be made ex-

plicit.

• Practical operational understanding of a Noema is more fundamental than de-

tached theoretical understanding.

• A representation of a thing cannot be complete.

• Understanding is fundamentally in the context of the whole and cannot be

reduced to activities of individual sub- components.

• A sub-component cannot avoid its interactions with the whole.

• The effects of the sub-components cannot be absolutely predicted.

• All representations of the current state are ephemeral at best.

• Every representation of a sub-component is an interpretation with respect to

the whole.

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 160

• Every action of the sub-component affects the whole, even non action. The

presence of the sub-component affects the whole.

The traditional hard sciences have carved a very small domain out of the universal

Noema. The actions of one component affects the whole and cannot be taken in

isolation.

Traditional Engineering

Traditional engineering is decompositional in nature. To understand the whole, first

decompose the whole into the constituent parts. Then master the individual con-

stituent parts, put them back together again, and the whole is now understood. The

understanding of the whole is the sum of the understanding of the parts.

A good example of traditional engineering is a car. Break the car down into

its parts, such as the steering sub-system, the transmission, the engine, the brakes,

and many more sub-systems. The mastery of each of these sub-systems leads to the

mastery of the car. The whole or, in this case, the car, is completely mastered by

examining the parts in isolation and then looking at their combination to form the

whole.

Noema

A Noema is different from traditional engineering. Any one part cannot be understood

without the context of the whole. Changes in one aspect affect the whole. The role

of a part is a projection into the whole. In traditional engineering, first understand

the parts, then understand the whole. In a Noema, first understand the whole, then

understand the role of each part.

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 161

A good example of a Noema is the human body. It contains the sub-systems of

circulatory, digestion, nervous, and many others. But the role of each part is highly

interdependent on the other parts. One often hears a physician say, “I need to get the

total picture first before I can treat this patient.” A change in one subsystem cannot

be isolated from the other subsystems. Each individual cell acts independently, yet

the whole is much greater than the sum of the parts.

Distributed computer environments are a Noema. This environment contains

many highly interdependent components. Together they form a system.

Computer hardware is not a Noema. Hardware is based on hierarchical layering

techniques appropriate for traditional engineering. A database is not a Noema, again

for similar reasons. A life form is a good example of a Noema built over millions of

years with natural selection and evolution. An information based economy is another

example of a Noema.

My contention is that a Noema is the correct paradigm for the software engineering

of large distributed systems.

8.3 Distributed Architectures

8.3.1 Abstract

Many computer science languages have been developed over the years that have con-

centrated on language fundamentals for the definition of algorithms and data struc-

tures. These traditional computer science languages give little help in defining the

architecture of a system, especially a large distributed system. Architecture defines

the components of a system and their interfaces, methods of communication, and

behaviors. A Distributed Architecture Definition Language (DADL) [28] is proposed

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 162

that extends the existing paradigm used in programming to include architecture de-

scriptions for a particular class of distributed system architectures.

The architectural description language will provide fundamentals that concentrate

on the conversation, communication, contracts, and behaviors of elements in the

distributed system.

A DADL will be defined and used to describe a family of different distributive

architectures. A program written in DADL can be compiled into different materi-

alizations of the architecture. Each materialization has different performance and

resource characteristics leading to an optimizing choice.

It will be shown that large architectural variations can be described with minimal

changes, thus showing the elaboration tolerance of DADL programs.

8.3.2 Introduction

Distributed Architecture Definition Languages (DADLs) are emerging as tools for for-

mally representing the architecture of distributed systems. As architectures become a

dominant theme in large distributed system development, methods for unambiguously

specifying a distributed architecture will become indispensable.

An architecture represents the components of a large distributed software system

and their interfaces, methods of communication, and behaviors. It is the behaviors

of the components, the communication between the pieces and parts, that are under-

specified in current approaches. To date, distributed system architectures have largely

been represented by informal graphics in which the components, their properties, their

interaction semantics and connections, and behaviors are hand-waved in only partially

successful attempts to specify the architecture.

Traditional computer languages, like C, concentrate mainly on the definition of

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 163

the algorithm and data structure components by using language provided mecha-

nisms to specify type definitions, functions, and algorithm control. The interface is

under-defined by header files where function names, parameters, parameter types,

and parameter order are specified. This is short of specifying the behavior of the

interface. Traditional computer languages are much more suited to defining imple-

mentation than they are to defining architecture.

Consider the following simple C program where we calculate the sum of two inte-

gers. See Table 8.1 on page 163.

The implementation file:

#include <plus.h>
void main() {

int results ;
results = plus(1,2) ;

} ;

int plus (int n , int m) {
return n+m ;

} ;

The header file:

int plus (int n , int m) ;

Table 8.1: Example of a Traditional C Program with Header File.

Traditional programming languages easily define the data structures and the al-

gorithms. There is very limited help in defining the architecture. In fact, there is an

assumed architecture, so implicit that most languages don’t even define it as a fea-

ture. The functions main and plus communicate over a shared address space, memory

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 164

resident, ordered, highly reliable, synchronous, and error-free communication medium

materialized by using a call-frame stack.

The language of communication is defined by the call statement. The function

main sends two integers to the function plus and waits for an integer in reply. The

function plus receives two integers and replies with their sum. The implicit call and

return in the C language materialize this architecture.

This implicit architecture is appropriate for small and simple programs but as

applications become more complex, large, and distributed, the implicit call-frame

stack architecture is no longer appropriate. A distributed architecture might deal with

a disjoint address space, non-memory resident, unordered, non-reliable, asynchronous,

and error-prone communication mechanism. This is far from the assumptions of

traditional computer languages. It is no wonder that large systems are hard to define

using traditional programming languages.

Object based systems, like C++, extend the programming paradigm to include ob-

jects, sub-types, polymorphism, and inheritance. This powerfully extends the ability

of a language to define the data structures and algorithms. However, the underly-

ing implicit architecture does not change. The architecture still dictates memory

resident, ordered, highly reliable, synchronous, and error free communication over a

shared address space, that is materialized by a call-frame stack.

Another shortfall of the implicit object-based system architecture is in the defini-

tion of the behavior. Though the C++ interface defines the methods exported by a

class, it does not define the methods used or required by that class. Thus an imple-

mentation can perfectly match the interface but have an entirely different behavior

than another similar implementation because it is composed with different primitives.

Some of the founding object-based languages, such as SIMULA [77] and SmallTalk

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 165

[57], [85], [56], and [58], tried to replace the implicit architecture of a call-frame stack

with a message-passing queue. In this architecture, methods are evoked by passing

messages between objects. However, the architecture is still implicit and under-

defined, leaving no choice in alternative behaviors.

Distributed middleware support systems, like DCE [54], extend the programming

paradigm. The DCE Interface Definition Language (IDL) includes argument flow

(in or out parameters), interface identifiers, dynamic binding information, and ex-

ceptions. Using DCE, it is possible to define communication mechanisms for archi-

tectures that are in disjoint address spaces, non-memory resident, non-reliable, and

error prone. DCE accomplishes this by expanding the call mechanism. Asynchronous

communication is dealt with by providing threads while unordered communication is

provided by using network data grams under UDP. DCE replaces the traditional ar-

chitecture with one that is more suited for distributed computing, but it does not

allow a choice between alternative architectures.

CORBA [60] extends the programming paradigm to include messaging and dis-

tributed objects. Communication is done over an information bus where requests

are issued and brokers respond to satisfy those requests. CORBA is really directed

at building object models for a large class of applications under one, and only one,

request/broker architecture. Though this is extremely necessary for application de-

velopment, architectural needs go unfulfilled. CORBA is more like a detailed require-

ment specification, defining in detail the needs of a particular application domain.

Megaprogramming [130] extends the call mechanism to an asynchronous messag-

ing paradigm between large components called megamodules. The communication

between two megamodules is defined with language structures like setup, estimate,

invoke, extract, and examine.

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 166

Languages, like Rapide [89], extend the interface definitions to include events and

causal relationships between events. Using the paradigm of hardware design, the

behavior of the interface is governed by signals and events which are synchronized by

a clock. The interface has been extended to include both the generated and required

methods. This allows for the interface to act more like a meta-schema that governs

both actions and simple behavior.

In comparison, Rapide expands the role of the call statement into a directed

graph of causal events. Megaprogramming expands the call statement into a family

of asynchronous primitives. While the proposed DADL expands the call statement

into conversations, behaviors, and contracts concentrating on distributed systems.

Don’t confuse a DADL with a requirement language. The requirement is a state-

ment of the problem at a high level of abstraction. This is in contrast to a DADL,

which defines a generic plan that binds the requirements to the implementation.

Requirement languages, such as STATEMATE [63] and Modechart [74], define the

problem but not the solution.

This section proposes a DADL to specify architectures of distributed systems.

This is accomplished by first defining the attributes of large distributed systems that

distinguish a distributed system of other types of systems. Next, the DADL language

will be defined. DADL will then be used to specify several key architectures.

Other related work includes Rapide [89], UniCon [120], ArTek [64], Wright [4],

Code [97], Demeter [103], Modechart [74], PSDL/CAPS [90], Resolve [52] and Meta-

H [126].

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 167

8.4 Component Engineering

The Compiling High-level Access Interfaces for Multi-site Software (CHAIMS) is a

mega-programming language for software module composition [32]. The CHAIMS

compiler is to generate a variety of invocation sequences for current and developing

standards for software interoperation, with a focus on multi-computer, distributed

operation. The language will include the ability to set up module interfaces prior

to executions, request performance estimates from modules prior to their invocation,

schedule modules in parallel, monitor execution of invoked modules, interrupt inad-

equately performing modules, and provide data and meta-information to customer

interface modules.

CHAIMS supports a paradigm shift which is already occurring: a move from cod-

ing as the focus of programming to a focus on composition. This shift is occurring

invisibly to many enterprises, since there is no clear boundary in moving from sub-

routine usage to remote service invocation. There are hence few tools and inadequate

education to deal with this change.

8.5 Distributed Environments

Building a distributed application or infrastructure is tough. Many problems arise

including security, communications, reliability, availability, serviceability, scalability

and heterogeneity. OSF’s Distributed Computing Environment helps solve many of

these problems. See [30], [29], and [54].

Many organizations have distributed computing infrastructures where a large

number of computers are connected together by a network. Powerful workstations

are located in the offices of the employees serviced by even larger capacity servers.

CHAPTER 8. CONCLUSION, FUTURE, AND RELATED WORK 168

Applications take advantage of the farm of computers by splitting the apparition into

client/server partitions, where the graphical user interface resides on the workstation

and the application rules and databases reside on the servers. These applications can

communicate with each other and share information.

Many problems arise in distributed application engineering and systems. Some of

these include communication, authentication, authorization, data integrity, data pri-

vacy, sharing of information, heterogeneous environments, distributed management,

consistency of time, reliability, availability, parallel execution, and graceful degrada-

tion.

The Distributed Computing Environment (DCE) is a software component pro-

vided by the Open Systems Foundations (OSF) and supporting companies. Together,

they have built solutions to the distributed application problems.

Appendix A

Software Life Cycle

A.1 Introduction

A system has a lifecycle consisting of many cycles from initial development, through

deployment, operations, maintenance, legacy, and finally to discontinuation. The four

fundamental phases of analysis, design, implementation, and testing can be applied

to many different cycles and are not just limited to the development cycle as done in

details in this thesis. See Figure A.1 on page 170 for a visual representation of the

software engineering lifecycle.

The analysis phase establishes the goals. The design phase establishes the plan to

accomplish the goals. The implementation phase builds the system, while the testing

phase assures quality.

A brief sketch follows on the decomposition of other lifecycles into the phases of

analysis, design, implementation, and testing.

169

Appendix A: Life Cycle 170

The Lifecycle
Development

Development Deployment

Development Deployment Operations

Development Deployment Operations Maintenance

Deployment Operations Maintenance

Operations Maintenance

Legacy

Figure A.1: The Software Engineering Life Cycle

Appendix A: Life Cycle 171

A.2 Initial Development

Analysis

The analysis phase defines the requirements of the system.

Design

The design phase establishes the architecture of the system.

Implementation

The system is built in the implementation phase.

Testing

The testing phase improves the quality of the system.

A.2.1 GUI Development

Graphical User Interface (GUI) development is a special subcycle in the larger cycle

of development of a system.

Analysis

The goal of GUI development is to establish an interface between the system
and the customer that takes advantages of the powerful human-vision system.

Design

The architecture might include windows, icons, menus, sliders, check boxes,
and a vast collection of other available widgets. A custom design that reflects
current non-computer usage might be specified.

Implementation

In the implementation phase, the GUI is built.

Testing

Testing would include both improvements in the quality of the code and the
usability of the system to the customer.

Appendix A: Life Cycle 172

A.3 Version Deployment

Analysis

The goal of deployment is to make the system available for the customer.

Design

The design phase establishes a deployment plan and environment that will sup-
port the system.

Implementation

The plan is followed and the system deployed in the implementation phase.

Testing

Verify that the deployed system is operational.

A.4 Operations

Analysis

The goal of the operational cycle is to keep the system available to customer.
This might include a goal of limited down time and 24 by 7 operations.

Design

The design might include a staffing plan, a version control system, a help desk,
and a disaster recovery plan.

Implementation

The implementation phase is represented in the operations cycle by the avail-
ability of the system to the customer.

Testing

Reliability, Availability, and Serviceability (RAS) measures quality in the op-
erational cycle. A system is reliable if it yields the same results on repeated
trials. If a system is always available when the customer wants to accomplish
a task, then the system is said to have high availability. If a system is fit for
usage, it is said to have high serviceability.

Appendix A: Life Cycle 173

A.5 Maintenance

Analysis

In the maintenance cycle, a change needs to be introduced to the system. This
could be a new feature or a simple extension of an existing feature. The main-
tenance cycle may only provide corrections to discovered errors.

Design

The design phase in the maintenance cycle deals with how the change will be
incorporated into the system.

Implementation

The implementation phase in the maintenance cycle deals with building the
code that materializes the changes.

Testing

The regression test suite is modified to accommodated the change and is used
to measure quality.

A.6 Legacy

Analysis

The goal of the legacy cycle is to freeze the system and to place the components
of the system in escrow. No new changes are introduced, but the system needs
to be available for limited customer usage.

Design

The plan might include the steps to escrow the hardware, the code, and the
environments to run and build the system, possibly including the operating
system, compilers, linkers, and databases.

Implementation

The implementation phase would carry out the steps necessary to bring the
system to legacy status.

Appendix A: Life Cycle 174

Testing

There is limited testing because there is limited change.

A.7 Final Discontinuation

Analysis

The goal would be to discontinue the system from all customer usage.

Design

The design would be the plan. This plan might reflect the building of replace-
ment systems for discontinued services.

Implementation

The implementation would establish the replacements and turn off the system.

Testing

The testing phase would be limited.

Appendix B

The Supporting Engineering

Environment

B.1 Introduction

Having a good methodology is important, but the methodology is only one piece of

the whole solution. The engineering environment can be described in terms of groups.

Recall that there are four phases of analysis, design, implementation, and testing.

A task is one action item from any one of the phases. A temporal arrangement of

tasks is called a stage. The supporting engineering environment is established into

groups.

Table B.1 on page 176 summarizes the supporting engineering environment.

175

Appendix B: Environment 176

Groups Goals

People Start with high quality people.
Tools Give them powerful tools.
Strategies Surround them with consistent directions.
Measurements Measure their progress.
Feedback Improve their productivity.

Table B.1: Supporting Engineering Environment

B.2 People

The first group is people. One of the most important parts of an engineering envi-

ronment is to have the right people. If a project starts with the wrong people, then

nothing else really matters.

Given a small project with a small number of really good people, little else is

required. Good people will make things happen despite unforeseen difficulties. Un-

fortunately, having the right people does not scale for larger projects. As projects

grow in people size, communication and coordination between people becomes the

dominant controlling item.

B.3 Tools

The second group deals with tools. A person is only as good as the tools allow.

The list of tools might include compilers, CASE, debuggers, DCE, CORBA, version

control tools, project management tools, source control tools, life cycle tools, quality

assurance and testing tools, database and transaction processing tools, bug and error

report tracking systems, code test coverage tools, memory leak tools, change man-

agement, interface control, rapid prototyping, error and event management, event

Appendix B: Environment 177

simulation, information sharing and file systems, security, and many, many more.

Of course, two of the most important decisions are the operating system and the

hardware.

B.4 Strategies

The third group deals with strategies. A person with a good tool needs to have

direction and a strategy.

This includes methodologies which guide the generation of the requirement, ar-

chitecture, and implementation plan. This includes the architecture of the system

as well as points of view defined by the paradigms. A mission statement focuses

the goals. There should be conventions on how to use the tools. Software system

simulation and a test bed are a must.

There needs to be an understanding on how schedules, priorities, and decisions

are made and established. The resource allocation algorithm needs to be defined.

Task and skill definitions take place in this group, leading to potential staff training

or changes.

Risk assessment is essential.

A list of strategies might include methodology, architecture, paradigms, mission,

conventions, standards, schedules, priorities, decision process, resource management,

risk management, and life cycle phases.

This section of the thesis deals with methodology. Other sections deal with archi-

tectures and paradigms.

Appendix B: Environment 178

B.5 Measurements

It is impossible to control what can’t be measured. If we had no measurements, then

no metric would show the effect of a change in a control parameter. The fourth group

deals with collecting information about the environment. The measurements, results,

and reports are all defined at this group.

A list of metrics might include the number of faults both reported and fixed, lines

of code, closeness to plan, resource utilization, and performance. Lines of code is a

problematic metric that does not work well in many situations, including composition.

Many times the current progress is reported to be on plan, but when the plan indicates

a deliverable, it is late.

B.6 Feedback

The last group is feedback. Plans can be monitored, leading to re-planning or plan

repair. Ideally, plan optimization and the removal of chronic problems can be accom-

plished.

A list of feedback actions might include plan repair, re-planning, total quality

management, continuous quality management, process changes, and plan optimiza-

tion.

Appendix C

Requirements Gathering

C.1 Introduction

This chapter addresses the issues of modeling a real-world customer’s need using

requirement gathering techniques, fundamental doctrines, and tools.

The processes in a software engineering methodology transform a real-world cus-

tomer’s need into a computer system. The computer system is at best a model of the

real-world customer’s need. A close match between the computer system’s behav-

ior and the real-world customer’s need’s behavior enables the model to predict and

simulate.

This thesis recognizes the importance of establishing the computer system model

but can only give insights and not scientific guidance.

For more information on these topics see [3], [59], [70], [91], [108], [45], [125], [127],

[129], [9], [34], [35], [55], [69], [133], [111], and [72].

179

Appendix C: Requirements 180

C.2 Models

The distinction between declarative and imperative knowledge is well argued in com-

puter science circles, especially in the field of artificial intelligence. Declarative knowl-

edge represents the “what” knowledge, while imperative knowledge represents the

“how” knowledge. Both are needed to gain full understanding.

A model is a representation of a real-world system. A model may use simplifying

assumptions and approximations to capture only a portion of the real-world system.

Given a sequence of inputs, the model makes a prediction. If these predictions match

the real-world’s systems reactions to the corresponding inputs, then the model is

validated.

The customer has real-world needs. Requirement gathering generates a declar-

ative model of the customer’s needs. The architecture and implementation phases

transform the declarative model into an imperative model. The testing phase assures

that the generated imperative model matches and predicts the customer’s real-world

needs as expressed in the requirement’s declarative model.

See Figure C.1 on page 181 for the three basic models of a real-world customer

needs. See Figure C.2 on page 182 for the correspondence between the three basic

models and declarative and imperative knowledge. See Figure C.3 on page 183 for

the validation role of quality assurance.

C.3 Quality Assurance

There is no clean line between declarative knowledge and imperative knowledge. Fre-

quently, a mixture of both kinds of knowledge are present.

Requirements seldom contain purely one kind of knowledge. Rather, a mixture of

Appendix C: Requirements 181

Different Models

• Requirements

• Architecture

• Code

Models

Real-World System

Figure C.1: Three Basic Models

Appendix C: Requirements 182

Knowledge Levels

• Requirements

• Architecture

• Code

Models Knowledge

Declarative

Imperative

Figure C.2: Declarative and Imperative Knowledge

Appendix C: Requirements 183

Validation

Inputs System Outputs

Equal?
Real-World

Model

Figure C.3: Quality Assurance as Validation

Appendix C: Requirements 184

both kinds of knowledge are present. Some requirements are best modeled by declara-

tive knowledge, while other requirements are best modeled by imperative knowledge.

Some requirement gathering techniques and tools emphasize one kind of knowledge

over another. For example, The Fusion technique of D. Colemen et al defines the

system operation schemes as declarative knowledge only, while the interaction graphs

are defined as imperative knowledge only. This forced split becomes a hindrance for

many real-world problems.

Another technique of Recursive-iterative development: ‘Essays on Object-Oriented

Software Engineering’, Volume 1 by E.V.Berard, 1993, combines both kinds of knowl-

edge at each level of abstraction. As one abstraction is refined into another ab-

straction, the combination of declarative and imperative knowledge is replaced with

another combination of declarative and imperative knowledge.

The technique of Eiffel attaches declarative knowledge in the form of pre-conditions,

post-conditions, and invariants to imperative knowledge. The imperative knowledge

is materialized as algorithms and data structures.

Functional programming environments, like Mathematica, are declarative in na-

ture. The system and not the customer discovers the imperative steps to solve the

problem.

Mathematics also contains the two kinds of knowledge. The axioms and theorems

are examples of declarative knowledge, while the proof is an example of imperative

knowledge. Both are needed.

Appendix C: Requirements 185

C.4 Storyboard

A storyboard is a technique used to rehearse typical customer scenarios before the

application is built. It could consist of hand-drawn overheads used in a presentation

to the team building the requirement document, including the customers. The story-

board conveys a rough idea of the application’s behavior, the application’s interaction

with the customer, and visible components.

The typical scenarios of the system are rehearsed in this draft fashion. Often, sig-

nificant errors can be caught and prevented before they propagate into other phases

of the project. Alternatively, the storyboard might be a GUI-only version of the ap-

plication where pictures of the output screens are presented. These GUI-only screens

have no underlying application code but give an idea of what the customer will see

and feel while running the application. The GUI builder in NextStep is a good exam-

ple of a tool that generates high quality storyboards of an application complete with

limited functionality and application stubs. An application stub contains only the

interfaces and needs associated algorithms and data structures to complete the appli-

cation functionality. In this case, if the storyboard is acceptable, then the application

stubs can be implemented. See [122] and [6].

C.5 Some Fundamental Doctrines

The following levels of abstraction and points of views are taken from [36], [37], [39],

and [38].

Appendix C: Requirements 186

C.5.1 Abstraction

The process of establishing the decomposition of a problem into simpler and more

understood primitives is basic to science and software engineering. This process has

many underlying techniques of abstraction.

An abstraction is a model. The process of transforming one abstraction into a

more detailed abstraction is called refinement. The new abstraction can be referred

to as a refinement of the original one. Abstractions and their refinements typically

do not coexist in the same system description. Precisely what is meant by a more

detailed abstraction is not well defined. There needs to be support for substitutability

of concepts from one abstraction to another. Composition occurs when two abstrac-

tions are used to define another higher abstraction. Decomposition occurs when an

abstraction is split into smaller abstractions.

Information management is one of the goals of abstraction. Complex features of

one abstraction are simplified into another abstraction. Good abstractions can be

very useful while bad abstractions can be very harmful. A good abstraction leads to

reusable components.

Information hiding distinguishes between public and private information. Only

the essential information is made public while internal details are kept private. This

simplifies interactions and localizes details and their operations into well defined units.

Abstraction, in traditional systems, naturally forms layers representing different

levels of complexity. Each layer describes a solution. These layers are then mapped

onto each other. In this way, high level abstractions are materialized by lower level

abstractions until a simple realization can take place.

As Hoare [68] said,

The major achievement of modern science is to demonstrate the links

Appendix C: Requirements 187

between phenomena at different levels of abstraction and generality, from
quarks, particles, atoms and molecules right through to stars, galaxies,
and (more conjecturally) the entire universe. On a less grand scale, the
computer scientist has to establish such links in every implementation of
higher level concepts in terms of lower. Such links are also formalized as
equations or more general predicates, describing the relationships between
observations made at different levels of abstraction.

The general technique for crossing a level of abstraction is to define
the way in which an observation at one level of abstraction corresponds
to one or more observations at the other level. This relationship can itself
be described by a predicate (often called a linking invariant) which relates
an abstract observation (in the alphabet of the specification) to a more
concrete observation (in the alphabet of the implementation).

See Figure C.4 on page 188.

Abstraction can be accomplished on functions, data, and processes. In functional

abstraction, details of the algorithms to accomplish the function are not visible to

the consumer of the function. The consumer of the function need to only know the

correct calling convention and have trust in the accuracy of the functional results.

In data abstraction, details of the data container and the data elements may

not be visible to the consumer of the data. The data container could represent

a stack, a queue, a list, a tree, a graph, or many other similar data containers.

The consumer of the data container is only concerned about correct behavior of the

data container and not many of the internal details. Also, exact details of the data

elements in the data container may not be visible to the consumer of the data element.

An encrypted certificate is the ultimate example of an abstract data element. The

certificate contains data that is encrypted with a key not know to the consumer.

The consumer can use this certificate to be granted capabilities but can not view nor

modify the contents of the certificate.

Appendix C: Requirements 188

Abstractions
One Abstraction

Mapped to
another Abstaction

Figure C.4: Abstractions

Appendix C: Requirements 189

Traditionally, data abstraction and functional abstraction combine into the con-

cept of abstract data types (ADT). Combining an ADT with inheritance gives the

essences of an object based paradigm.

In process abstraction, details of the threads of execution are not visible to the

consumer of the process. An example of process abstraction is the concurrency sched-

uler in a database system. A database system can handle many concurrent queries.

These queries are executed in a particular order, some in parallel while some sequen-

tial, such that the resulting database can not be distinguished from a database where

all the queries are done in a sequential fashion. A consumer of a query which repre-

sents one thread of execution is only concerned about the validity of the query and

not the process used by the database scheduler to accomplish the query.

C.5.2 Point of Views

A point of view is a way of looking at a problem. Each point of view generates a

view. Views represent different ways in which the solution can be presented. Each

view describes a solution. These views coexist. One view is not layered on top of

another view; rather one view is expressed in terms of another view.

One of the views becomes the foundation view representation and the basis for

all other views. The other views are then expressed in terms of the foundation view.

See Figure C.5 on page 190.

For example, consider a relational database. There is one physical table architec-

ture. With the aid of SQL you can express views of these tables. The view table is

not physical but logical. The view table coexists with the other tables.

There is not just one view in a system, but many views. Each view describes the

solution from a particular perspective. One view maps onto another. See [36], [37],

Appendix C: Requirements 190

Point of Views

Mapping

One View Another View

Figure C.5: Point of Views

Appendix C: Requirements 191

[39], and [38].

Enterprise View

The enterprise view is used to capture and specify organizational requirements and

structure. These are expressed in terms of policies, enterprise objects, communities,

workflow, permissions, prohibitions, and obligations.

Information View

The information view is used to describe the data required. This is accomplished

though the use of schemes, which describe the state and structures.

Some tools currently used to define the information level of abstraction include

entity-relationship diagrams, conceptual schemes from OMT, and Z or other Formal

Definition Techniques.

Computational View

The computational view defines the architecture. In this view, the pieces, the parts,

interfaces, and behaviors are defined. Techniques such as encapsulation of data and

processing, offered by the object-based paradigm, will be quite useful. There may be

multiple interfaces and behaviors for any one part. The computational view is used

to specify the functionality of the system.

There are three main components to the computational abstraction. They include

the interface, the behavior, and the environment contract. The interface defines

the types and functions. The interface also includes the well-formed sentences that

are allowed. Some varieties of sentences could include a series of interrogations and

announcements; a stream of non-atomic actions that continue throughout the lifetime

Appendix C: Requirements 192

of the interface; or signals and expected responding signals.

The behavior is described by a set of action sequences. The behavior may in-

clude some internal actions and is constrained by the environment. The environment

contract includes quality of service constraints, real time constraints, usage and man-

agement constraints.

Infrastructure View

The infrastructure view defines the requirements for distribution and distribution

transparency. The infrastructure view is also known as the engineering view. Each

basic computational element corresponds to one or more basic distributed elements

implemented with components of the infrastructure. Infrastructure components in-

clude the concept of a communication channel with marshaling and persistence, the

concept of the hardware, the operating systems, the processes, and memory. A pro-

cess may support deactivation, checkpointing, reactivation, recovery and migration.

Technology View

The technology view defines the hardware and software components of the implemen-

tation.

C.5.3 Scale

The model is at a particular scale. The more abstract and general, the higher the

scale. The more concrete and detailed, the lower the scale. The scale might include

differences in space units and in time units.

Appendix C: Requirements 193

C.5.4 Classification

Classification is the systematic arrangement into groups or categories according to

some established criteria. Classification establishes the taxonomy.

C.5.5 Generalization

Several classifications may only differ by a few concepts. Sometimes these concepts

can be generalized into a more abstract representation; into a generalization. Many

times, solutions are easier to establish in the more general case and then specifying a

more detailed case.

C.5.6 Clustering

Sometimes several classifications may naturally be associated with each other, having

many concepts in common. These classifications form a cluster. The clustering may

be based on physical location.

In functional clustering, classifications are centered around functions. In data

clustering, classifications are centered around data, while in object based clustering,

classifications are centered around objects. The object based paradigm uses the

concept of class hierarchies to naturally express clustering.

Encapsulation is a concept similar to the concept of clustering. In encapsulation,

an enclosure is placed around a grouping and only threw well-defined openings are

interactions allowed. A cluster may not have such a well defined enclosure.

Appendix C: Requirements 194

C.5.7 Boundaries

Many interesting concepts have their most significant meaning at the boundaries. By

exploring the boundaries, the true nature of the classification may be uncovered and

understood.

C.5.8 Coupling

Coupling is the interdependence among individual components influenced by the in-

terfaces, the kind of connections, and the kind of communications.

There are many different kinds of coupling. In data coupling, two components

share the same data. Examples of data coupling include the usage of a data base

to connect two systems. In stamp coupling, two components share a common data

structure type which is passed in parameter calls. In common-environment coupling,

two components communicate through a third party: the common-environment. In

external coupling two components share a common-global data item.

C.5.9 Cohesion

Cohesion is the degree of closeness of the functions within a component. For example,

consider a library of functions. If the library contains similar functions, then it is said

to have high cohesion. A general purpose library, with many different functions, is

said to have low cohesion.

C.5.10 Observations

Higher quality observations may lead to a higher quality model.

Appendix C: Requirements 195

C.6 Components in a Requirement Document

A requirement document should contain the domain ontology, artifacts, actions,

states, typical scenarios, and atypical scenarios.

See Section 2.2 on the analysis phase located on page 6.

C.7 Techniques

There are many different modeling techniques used to establish requirements. They

include data models, process description, formal methods, textual specification, and

use-case driven analysis.

Data structures and algorithm are fundamental in the field of computer science.

Data modeling techniques concentrate on defining the data structures. Tools can

be used to establish entity-relationship data models. Process description techniques

concentrate on defining the algorithms. Tools can be used to establish flow charts.

The choice between these two techniques is driven by the task at hand. If the

data represents a very stable concept in the model, then data modeling techniques

will work best. If the processes represent a very stable concept in the model, then

process description techniques work best. In my experience, data modeling techniques

tend to be more fruitful than process description techniques.

A data modeling technique naturally leads to a database-centric system. A process

description technique naturally leads to a computational-centric system.

Formal modeling techniques are declarative in nature. Formal modeling techniques

may express the model in terms of mathematical logic predicates, usually based on

first order logic. The trick is to establish tautologies that are always true under all

interpretations and models.

Appendix C: Requirements 196

Once the formal model is established, theorems in the model represent programs.

A proof or deduction represents the algorithms and the structure of the model repre-

sents the data structure. A lemma represents a component and the corollary repre-

sents a reusable component.

A textual specification techniques establishes a model using a written natural

language. Adjectives and nouns form noun phrases that represent data while verbs

and adverbs form verb phases that represent algorithms or actions. The advantage of

a textual specification technique is the expressiveness of language. The disadvantage

is the ambiguity of language.

Use-case driven analysis techniques are centered around typical scenarios. This

technique naturally leads to the definition of objects: a collection of both data struc-

tures and algorithms.

A similar technique of using storyboards leads to the definition of objects, states,

and state transitions.

C.8 Summary

This chapter addressed the issues of modeling a real-world customer’s need using

requirement gathering techniques, fundamental doctrines, and tools.

Appendix D

Decision Making

Priority setting is only one of many decisions that are made on a project. A method-

ology does not state how a decision is made, just that a decision needs to be made.

The WaterSluice methodology only requires that the priority decision process be goal

directed to the final outcome of generating systems.

However, making decisions is so fundamental that a dedicated chapter is necessary

to establish mathematical viability. See [50] for more details.

D.1 Alternative Tasks

A large project is divided into smaller alternative tasks. These alternative tasks may

be independent or interdependent. Some alternative tasks may be inclusive while

others exclusive. Picking one alternative task to accomplish next represents a choice

and a decision point.

197

Appendix D: Decisons 198

Let

T1, T2, . . . , Tn

be the n alternative tasks.

D.2 Objectives

Objectives are used to measure the success of the system. Associated with each

objective is a positive numerical weight indicating the weighted contribution of this

objective to the final success of the system.

Let

O1, O2, . . . , Om

be the m objectives.

Let

W1,W2, . . . ,Wm

be the m weights.

D.3 Outcomes

An outcome is the estimated effect on the objective if an alternative task is ac-

complished. For every alternative task and for every objective is an outcome. The

alternative tasks and objectives build the outcome matrix.

Let O be the outcome matrix

Appendix D: Decisons 199

O =



O11O12 . . . O1m

O21O22 . . . O2m

...

On1On2 . . . Onm



where Oij is the outcome of the ith alternative task dealing with the jth objective.

D.4 Utility Function

A utility function transforms an outcome into a numerical value and measures the

worth of an outcome. The utility of an outcome may be negative or positive. This

utility function may be a simple table, a linear function, or a more complex function.

The outcome matrix is converted to the utility matrix using the utility function.

Let U be the utility matrix

U =



U11U12 . . . U1m

U21U22 . . . U2m

...

Un1Un2 . . . Unm



where Uij is the utility of the ith alternative task dealing with the jth objective.

D.4.1 Temporal Utilities

The utility matrix may be a tensor over time. In this case the effective utility matrix

is the temporal average.

Appendix D: Decisons 200

If there are p time intervals then

Uij =
p∑
q=1

(1/p)(Uijq)

D.4.2 Uncertain Utilities

The utility may be uncertain and risky. In this case, the effective utility matrix is a

probability weighted average.

Let p1 be the probability of an utility in state 1. Let p2 be the probability of an

utility in state 2 where p1 + p2 = 1

Then

Uij = p1(Uij)1 + p2(Uij)2

is the effective utility.

D.5 Decision Rules

D.5.1 Weighted Sums

For each alternative task Ti calculate the weighted sum Si.

Si =
m∑
j=1

WjUij

The alternative task associated with the highest weighted sum represents the

decision.

Appendix D: Decisons 201

D.5.2 Weighted Products

For each alternative task Ti calculate the weighted product Si.

Si =
m∏
j=1

Uij
Wj

The alternative task associated with the highest weighted product represents the

decision.

D.5.3 Deviation

For each alternative task Ti calculate the weighted norm Si.

Si =

 m∑
j=1

(WjUij)
2

1/2

The alternative task associated with the highest weighted norm represents the

decision.

D.6 The Decision Process

The decision process is simple.

1. Establish objectives.

2. Establish alternative tasks.

3. Establish outcomes. For each alternative task and for each objective establish
an outcome.

4. Establish utility. For each objective, establish the utility function and apply
the utility function to every outcome. If the utilities have a temporal nature,

Appendix D: Decisons 202

adjust to the effective utility. If the utilities have uncertainties, adjust to the
effective utility.

5. Apply a decision rule.

Appendix E

Network Operating System

The requirement document for a Network Operating System (NOS) follows.

E.1 Introduction

A typical network consists of thousands of heterogeneous computers, each running

their own operating system and managing their own peripheral devices and file sys-

tems. The computers share a common network with common services, but they are

independent machines that have been extended to use the network. The customer

can easily hop between machines. Logically, the network is thousands of indepen-

dent machines hooked together with a common communication interface. To each

machine, the network is just another peripheral communication device.

Now consider a network of thousands of heterogeneous computers, but under one

network operating system (NOS). The network is the computer. All physical devices

hanging onto the network, either CPUs or other peripherals, are network resources.

Logically, the network is one computer that happens to have thousands of machines,

peripherals, and services.

203

Appendix F: Network Operating System 204

A customer authenticates to the NOS and is granted capabilities. A capability

represents the permission to use a resource. The customer has control of all shared

resources on the NOS, including a vast collection of services. Where the services

are located is invisible to the customer. A customer’s job may be run on a variety

of available computers. From the customer’s perspective, the desktop machine is

transformed into a very powerful computer with a vast reservoir of resources.

Each desktop machine has a native operating system plus an extension that brings

the native operating system into the NOS. This extension is a new network transport

layer called principal to principal (PTP) that is layered on top of the existing TCP

and UDP network layers, providing principal to principal communication. This layer

provides a secure, authenticated, authorized, and private communication between two

principals. A principal could be a person, a computer, or an application.

Along with the PTP transport layer is a NOS finder. The NOS finder is the boot

application that knows how to find all other NOS applications.

A family of new protocols should be established that provide the underlying sup-

port for the NOS. These new protocols might include support for process management,

virtual memory management, locks, events, transactions, and peripheral management

to name a few. The NOS is message-based.

A desktop computer can be connected to the network in several ways. As a

foreign desktop computer, the network looks like a traditional network providing

basic network services and transport layers of communication. Nothing has changed

from the more traditional view of a network.

As a secure desktop computer, only secure access to a gateway NOS machine is

available. The secure desktop computer only needs encryption software to establish

a secure link over traditional TCP communication. The secure desktop computer

Appendix F: Network Operating System 205

establishes a secure link to a known NOS machine. This known NOS machine now

can act as a gateway for all other NOS services.

The NOS desktop computer is a peer member on the NOS. The NOS desktop

computer requires a full installation of the PTP transport layer and the NOS finder.

There are a collection of core computers which provide the services of the NOS.

A NOS consists of desktop computers under the control of the customer and a vast

reservoir of resources provided by the core infrastructure NOS machines.

E.2 Goals

E.2.1 Simple

Simple to install, maintain, update, manage, and use.

E.2.2 High Availability

From the customer’s perspective, the NOS should seldom be unavailable. The NOS

could be slow and lose some services, but only infrequently be unavailable.

A system that has high availability is not as reliable as a system that has fault

tolerance. Experience has shown that the cost-advantage tradeoffs favor high avail-

ability.

E.2.3 Support Change

As new technology becomes available, the NOS grows and bends to accommodate

change.

Appendix F: Network Operating System 206

E.2.4 Support Longevity

If something worked in the past, it should work now, though perhaps not with the

best performance. It should take a long time for a service to be completely removed

from the NOS.

E.2.5 Legacy Support

There should be an easy way to bring non-native NOS services into the NOS.

E.2.6 Local Machine Autonomy

Every local machine gets to determine the level of sharing with the NOS. Local

operating systems and applications will continue to run even if the machine is a

member of the NOS.

E.3 Components: Things and Actions

E.3.1 Universal Unique Identity (UUID)

Everything in the NOS has a UUID. The UUID is typed.

Actions on UUIDs include create, set type, get type, and check type.

E.3.2 Principal

People, machines, and services are principals. Every principal has a UUID, is authen-

ticated, and is granted capabilities by the authorization service.

There is one special principal: NOS root. Each machine has an identity of local

root.

Appendix F: Network Operating System 207

Every principal has a password. For non-human principals, the password is stored

in a local key table. Every principal has associated demographic information. Man-

aging principals is the basis for account management.

Actions on principals include create, modify, delete, disable, enable, authenticate,

and logout.

Actions on passwords include set and randomize.

Actions on key tables include create, modify, and delete.

E.3.3 Authentication

Given a principal’s name and password, the NOS security service authenticates this

principal using either public key or private key algorithms. Authentication is valid

for a finite period of time. Proxy and delegation are supported.

A proxy is a principal that acts on another principal’s behalf. For all practical

purposes, the proxy becomes the principal. The security system allows the proxy to

continue, but logs the fact that it was the proxy and not the principal that accom-

plished the task.

Delegation temporarily grants one principal’s capability to another principal.

Actions include login and logout, delegate, and proxy.

E.3.4 Authorization

The authorization service grants capabilities to principals. Protected objects in the

environment have access control lists (ACLs). Before access is granted to a pro-

tected object, the principal’s capability is compared to the ACL and the associated

permission is granted or denied.

ACL actions include create, modify, delete, and validate.

Appendix F: Network Operating System 208

E.3.5 Data Privacy

Communication is protected with an encryption algorithm. Alternatively, objects

may be encrypted. Digital signatures can verify the content.

Data privacy actions include encrypt, decrypt, sign, and verify.

E.3.6 Process Management

A process is a basic unit of execution. Each process has a principal identity and is

authenticated and authorized. A process may be on many machines on the network

and migrate to another machine for load balancing.

A process has a large sparse address space which is dynamically mapped.

Every process has a collection of ports used for communication. Each category of

communication is supported by a message-based protocol. The ports use only secure,

authenticated, and authorized communication. From the process view, the NOS is a

collection of processes where all communication is done through ports. This includes

process control, IO, exceptions, and faults.

Every process has a priority and at least one thread. A multi-threaded process

may be running on a processor group.

Processes provide the services of the NOS and may form groups of equivalent

services. The requesting customer gets one service from the group.

Process actions include create, delete, migrate, suspend, resume, and change pri-

ority.

Port actions include queue, dequeue, and wait.

Thread actions are similar to process actions.

Appendix F: Network Operating System 209

E.3.7 Network Binary

One significant component of a process is an image. An image is similar to an appli-

cation. The NOS associates an image with a process and then starts the execution.

Images are built for particular hardware instruction set, thus dictating the class of

machines that the image can run on. Some machines may have an instruction set

emulator, which allows for some images to run on non-native machines. There is no

universal network binary.

E.3.8 Distributed File System

The Distributed File System (DFS) provides for information sharing. Every principal

has a home directory which is network mounted.

Normal actions supported by a traditional file system are supported, including

record level access.

E.3.9 Disk Space Management

There are physical disk units under the control of the NOS.

Disk actions include seek, read, write, allocate, free, mount, and dismount.

E.3.10 NOS CPU Scheduling

A process may be on any machine in the NOS. Local scheduling is done by the local

OS. The NOS will move a process from one machine to another in order to load

balance the network. Of course, the cost of moving the process may be high, so the

expected benefit should also be high.

Appendix F: Network Operating System 210

Once a process is on a particular machine, the local operating system and scheduler

takes over.

E.3.11 System Commands and Shell

There is a collection of control commands used to gather information and control the

NOS. The command interface is programmed in a fashion similar to the UNIX shell.

System commands might include the UNIX equivalence of ps, jobs, cd, pwd, mkdir,

rm, rmdir, date, time, clear, man, passwd, logout, lpr, lpq, lprm, ls, more, page, head,

tail, mv, cp, file, chmod, chown, chgrp, <, |, >, &, >>, fg, bg, kill, echo, sleep, ctrl-z,

ctrl-d, ln, tee, find, grep, nohup, wait, nice, renice, exit, set, setenv, pushd, dirs,

popd, alias, uniq, sort, cmp, diff, tar, dump, restore, at, crontab, su, biff, compress,

uncompress, crypt, tr, od, mount, unmount, whoami, tty, style, spell, awk, make,

imake, sort, who, w, finger, talk, mesg, telnet, rn, and X.

Preferences could be stored in UNIX equivalent .login, .cshrc, .history, .plan,

.project, .rhosts, .signature, .forward, and .vacation.

E.3.12 Run Time Library Support

The equivalence of a run time library now becomes a collection of run time services.

Each service is a process running in least at one location in the NOS and potentially

many locations. There is a namespace of services.

The path variable is a list of locations for finding services. When a service is

requested, the path is walked to find the service. The elements in the path variable

correspond to locations in the distributed file system.

Appendix F: Network Operating System 211

E.3.13 Memory Management

The virtual memory system is now three-tiered. First, RAM on the local machine is

viewed, then disk on the local machine is viewed backed by disk on the NOS.

NOS memory actions are used to manage movement of pages from the NOS disk

to a local disk or local RAM.

E.3.14 I/O and Peripheral Device Management

Every peripheral device has a unique identity. A stub on the local machine under-

stands the NOS I/O port protocol and translates the protocol to the series of local

operating system calls to manage the local peripheral. The results are then returned

back through the port.

Sample peripheral devices might include printers, CDROMs, disks, tapes, CD

Recorders, and floppy disks.

Peripheral actions might include load or unload device driver and allocated or

unallocated device. Some device specific actions might include read, write, and seek.

E.3.15 Networking

Needless to say, all computers in the NOS are network smart.

E.3.16 Time

Clocks are maintained in a consistent fashion across the NOS.

Appendix F: Network Operating System 212

E.3.17 Transaction

There is a transaction manager to govern atomic actions. The transaction manager

should support at least two-phased commit.

E.3.18 Distributed Locks

There is a distributed lock manager.

Lock actions include set, check, and release a read or write lock.

E.4 States

The NOS maintains state in the list of all processes, services, authenticated principals,

peripherals, and machines.

Every principal has a family of states including authenticated, not authenticated,

enabled, and disabled.

The NOS maintains a list of all available services and their physical locations.

E.5 Typical Scenarios

E.5.1 Day-to-Day

A customer authenticates to the NOS on an existing NOS smart machine. At the

customer’s disposal is the local machine and the NOS services. The Distributed

File System contains the customer’s home directory with the customer’s preferences.

Regardless of which machine the customer authenticates on, the customer’s home

directory with the customer’s customizations are present. The customer can easily

Appendix F: Network Operating System 213

find a vast number of network resources. All resources appear local to the customer,

but in reality, they are scattered throughout the network. The customer is very happy

to find his favorite APL-based calculator still available for a quick matrix inversion.

The customer logs off the system when finished.

E.5.2 Machine Setup

To bring a machine into the NOS, the customer first establishes the native local op-

erating system. This might be Windows, NT, UNIX, Mac, Next, Mach, OS2, or any

other existing operating system. The PTP transport is installed along with the NOS

finder. The NOS finder is an application which can locate all other NOS applica-

tions. Using a boot program and the customer identity, the rest of the installation is

completed.

E.5.3 Customer Setup

A customer will have to create a NOS principal identity.

E.5.4 Service Setup

The service is established in the service namespace defining the demographical infor-

mation. The associated files are loaded into the DFS. If the service is NOS smart, no

additional steps are needed.

If the service is NOS dumb, then the service needs to be wrapped into the NOS.

This is accomplished by creating NOS peripheral stubs for the terminal, key board,

mouse, hard disk, and any other needed peripherals. The NOS dumb service will

be running on a NOS smart machine. When the service is activated, the peripheral

Appendix F: Network Operating System 214

stubs will send the information to the requesting customer machine.

E.5.5 NOS Setup

The NOS is a collection of core services. The network is established with the PTP

transport layer. The core services include authentication, authorization, namespace

management, DFS, process management, port management, virtual memory man-

agement, and peripheral device management.

E.5.6 Peripheral Device Setup

A peripheral device is installed onto a NOS smart computer. The device is given an

identity in the namespace and a peripheral wrapper, making the device NOS smart.

E.5.7 NOS development

A developer works with a thread-smart language. The NOS development environment

is similar to any other operating system development environment. An API family,

now based on messages, ports, and protocols, is provided.

To create a NOS service is as easy as creating a run time library. The dynamic

link process is replaced with a NOS smart finder.

E.6 Atypical Scenarios

E.6.1 Bring the NOS Down

Shut down all core services on the network. The remaining machines on the network

still understand TCP or UDP but no other NOS network services are available.

Appendix F: Network Operating System 215

E.6.2 Remove a Machine or Service

Remove the associated files and reboot.

Appendix F

Documentation

Table F.1 on page 216 summarizes the components of the generated customer manual

and their origins.

Existing Document Customer Manual
Requirements Introduction

Definitions of all components.
Definitions of all actions.
Definitions of all states.

Scenarios How to accomplish ...?
Architecture How does it work?
Implementation Screen shots

Table F.1: The Customer Manual

The requirement documents, the usage scenarios, and the architecture documents

have already been completed in the four phases. If documentation is accomplished

during the four phases, the customer manual is easy to generate. Simply cut and

paste sections of the already existing requirement and design documents along with

screen shots from the application into a consistent customer guide.

216

Appendix G

Glossary

Analysis : The software engineering process that generates the requirements.

Architecture : The components of a system, their behavior and interaction.

Change Management : A software engineering process that controls changes to

a system once a feature freeze has been invoked.

Change Order Control : When a component is completed, changes to the com-

ponents are placed under this process to manage changes.

Component Testing : Testing major components of the system or the entire

system with simple usage.

Critical Error : An error in the system that prevents the functioning of a usage

scenario with no known work-around. Many features of the system may be

working, but a critical error prevents the scenario from functioning under certain

situations.

Critical Task : The element of a plan for building a system, upon which the success

217

Appendix I: Glossary 218

or failure of the rest of the system hinges. A system may have many critical

tasks.

Design : The software engineering process that generates the architecture.

Feedback Level : The fifth level in a software engineering methodology support

environment. Once measurements are available, parameters can be varied and

their effects monitored.

Gold Standard : The expected and trusted results of the system against which all

other results are compared. Current results that differ from the gold standard

indicates an error condition.

Internal Testing : Testing at the lowest level of the system.

Implementation : The software engineering process that establishes the code for

the system with the aid of people and tools.

Life Cycle : The cradle-to-grave existence of a software system from initial con-

ceptions through development, deployment, version releases, and final phase

out.

Measurement Level : The fourth level in a software engineering methodology

support environment. This level deals with metrics. Measurement is the first

step in gaining the ability to control.

Methodology : The body of methods, rules, postulates, procedures, and processes

that are used to manage a software engineering project. An algorithm that finds

a solution with a given performance in a given environment.

Appendix I: Glossary 219

Ontology : The high level definitions of the objects, their actions, and behavior

in a system. Sometimes objects are defined by their noun phrases and their

actions defined by their verb phrases, while their behavior is defined by the

communications.

Paradigms : A point of view about how to understand and solve a problem.

People Level : The first level in a software engineering methodology support

environment. Having the right people on the project is very important.

Product : A system which is ready for general release to the market place.

Proof of Principle : When enough of the system is built that the developers can

convince themselves that the rest of the development of the system can proceed,

the system is said to be in a proof of principle state. This usually includes the

successful implementation of the critical tasks.

Project Management : The software engineering process aided by tools which

helps the expedition of a plan. Resources, priorities, tasks, schedules, and

dependencies are coordinated.

Prototype : The system is ready for customer testing but not fully functional.

There may be an early prototype called alpha and a later prototype called

beta. Enough of the system is completed to convince customers that a real

product will soon follow.

Regression Test : A testing technique where a suite of test cases are evaluated

against the system to assure the expected behavior as established by the gold

standard.

Appendix I: Glossary 220

Requirements : The necessary capabilities and behavior of a system from the

customer perspective defines the functional requirements. Non-functional re-

quirements, for the most part, are introduced as an artifact of the design.

Risk Analysis : The software engineering process that defines the pro and con for

each decision point and an estimate of probability for success and failure. Often

a fall back position or an exit strategy may be defined.

Scenarios : A description of the typical and atypical usage of a system.

Screen Shots : A captured GUI window from a running system.

Source Control : The software engineering process aided by an application, defin-

ing the code versions and baselines of the system. The source control application

also coordinates the changes done by a team of individuals.

Spiral : A cyclical software engineering methodology where the analysis, design,

implementation, and testing phases follow each other in an iterative fashion as

they spiral towards a solution.

State : A sequence of settings and values which distinguishes one time-space snap

shot of a system from another.

Story Board : A software engineering process used to walk through a usage of a

system, usually before major components are completed, to raise confidence in

usability.

Stress Testing : Testing the system under a load which is higher than expected in

actual usage.

Appendix I: Glossary 221

Strategy Level : The third level in a software engineering methodology support

environment. Given people with powerful tools, a direction is still needed as

well as underlying foundations abput how to accomplish the task.

Testing : The process that assures a level of confidence in the quality of a product.

Test Plan : The sequence of steps needed to raise the level of confidence in the

quality of the product.

Tools Level : The second level in a software engineering methodology support

environment. High quality tools enhance the performance of the team and

place a high water mark on the complexity of the systems which can be built.

Unit Testing : Testing related groups of functions.

Versions : A system can be defined as a queue of many stable versions. Potentially,

each version reflects new functionality or improvements in quality.

Waterfall : A sequential software engineering methodology where the analysis,

design, implementation, and testing phases proceed one after another, like water

flowing over a fall.

WaterSluice : A best-first software engineering methodology where the analysis,

design, implementation, and testing phases proceeded in a prioritized fashion,

going after the gold nuggets first. As the method process proceeds, choices are

constrained. The WaterSluice borrows the iterative nature of the spiral method

along with the steady progression of the waterfall method.

Appendix H

Acronym Key

ACL Access Control List

ADIT Analysis Design Implementation Testing

CDROM Compact Digital Read Only Memory

CHAIMS Compiling High-level Access Interfaces for Multi-site Software

CPU Central Processing Unit

DADL Distributed Architecture Description Language

DCE Distributed Computing Environment

DFS Distributed File System

GUI Graphical User Interface

GUIWIMP Graphical User Interface, Windows, Icons, Mouse, and Pointer

IO Input and Output

NOS Network Operating System

NT New Technology operating system from Microsoft

OS2 Operating System Two from IBM

222

Appendix J: Acronym Key 223

OSF Open Systems Foundations

PTP Principal to Principal network layer

RAM Random Access Memory

RAS Reliability, Availability, and Serviceability

SQL Sequal Query Language

TCP Transport Control Protocol

UDP User Datagram Protocol

UML Universal Modeling Language

UNIX AT&T trademark for THE Operating System

UUID Universal Unique Identity

Bibliography

[1] J. R. Abrial. On constructing large software systems. In Algorithms, Software,

Architecture. Information Processing 92. IFIP 12th World Computer Congress,

volume A-12, pages 103–12, 7-11 September 1992.

[2] Hira Agrawal. Mining system tests to aid software maintenance. IEEE Com-

puter, 31(7):64–73, July 1998.

[3] O. Al-Saadoon. Aura-cfg/e: An object-oriented approach for acquisition and

decomposition of dfds from end users. Seventh International Conference on

Software Engineering and Knowledge Engineering, Skokie, Illinois: Knowledge

Systems Institute, pages 1–7, June 1995.

[4] R. Allen and D. Garlan. Beyond definition/use: Architectural interconnection.

Proceedings, Workshop on Interface Definition Language, January 1994.

[5] American National Standards Institute. Reference Manual for the Ada Pro-

gramming Language, February 1983. ANSI/MIL-STD 1815A. Also published

by Springer-Verlag as LNCS 155.

[6] S. Andriole. Storyboard prototyping for requirements verification. Large Scale

Systems, 12:231–247, 1987.

224

BIBLIOGRAPHY 225

[7] Atria Software, Inc. Beyond version control: Evaluating software configuration

management systems. Technical report, Atria Software, Inc., 24 Prime Park

Way, Natick, Massachusetts 01760, February 1994.

[8] Stéphane Barbey, Didier Buchs, and Cécile Péraire. Overview and theory for

unit testing of object-oriented software. In Tagungsband “Qualitätsmanagement

der objektorientierten Software-Entwicklung”, pages 73–112, Basel, October 24

1996.

[9] Barros. Requirements elicitation and formalism through external design and

object-oriented specification. IEEE International Workshop on Software Spec-

ification and Design, Los Alamitos, California: IEEE Computer Society Press,

December 1993.

[10] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York,

1983.

[11] B. Beizer. Software Testing Techniques, second edition. Van Nostrand Reinhold,

New York, 1990.

[12] Dorothea Beringer. The model architecture frame: Quality managment in a

multi-method environment. In M. Ross, C. A. Brebbia, G. Staples, and J. Sta-

pleton, editors, SQM’95 Third International Conference on Software Quality

Management, volume 1, pages 469–480, Seville-Spain, 1995. Also available as

Technical Report (EPFL-DI-LGL No 95/111).

[13] B. Boehm. Software engineering – as it is. In Proceedings of the 4th Inter-

national Conference on Software Engineering, pages 11–21. IEEE Computer

Society Press, September 1979.

BIBLIOGRAPHY 226

[14] B. Boehm. Software architectures: critical success factors and cost drivers.

In Proceedings of the 16th International Conference on Software Engineering,

pages 365–365. IEEE Computer Society Press, May 1994.

[15] B. Boehm and R. Ross. Theory-w software project management: a case study.

In Proceedings of the 10th International Conference on Software Engineering,

pages 30–40. IEEE Computer Society Press, April 1988.

[16] B. W. Boehm. Guidelines for verifying and validating software requirements

and design specifications. EURO IFIP79, pages 711–719, 1979.

[17] B. W. Boehm. Software process management: Lessons learned from history. In

Proceedings of the 9th International Conference on Software Engineering, pages

296–298. IEEE Computer Society Press, March 1987.

[18] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of soft-

ware quality. In Proceedings of the 2nd International Conference on Software

Engineering, pages 592–605. IEEE Computer Society Press, October 1976.

[19] Barry W. Boehm. Software and its impact: a quantitative assessment. Data-

mation, pages 48–59, May 1973.

[20] Barry W. Boehm. Software engineering. IEEE Transactions on Computers,

100(25):1226–1241, 1976.

[21] Barry W. Boehm. Software engineering. IEEE Transactions on Computers,

C-25(12):1226–1241, December 1976.

[22] Barry W. Boehm. A spiral model of software development and enhancement.

Computer, 21(5):61–72, 1988.

BIBLIOGRAPHY 227

[23] Barry W. Boehm. Software Risk Management. IEEE Computer Society Press,

1989.

[24] B.W. Boehm. Using the winwin spiral model: A case study. IEEE Computer,

31(7):33–44, July 1998.

[25] B.W. Boehm, P. Bose, E. Horowitz, and M. J. Lee. Software requirements as

negotiated win conditions. Proceedings of ICRE, pages 74–83, April 1994.

[26] Grady Booch. Object Solutions. Addison-Wesley, 1995.

[27] A.W. Brown, D.J. Carney, E.J. Morris, D.B. Smith, and P.F. Zarrella. Prin-

ciples of CASE Tool Integration. Oxford University Press., New York, NY,

1994.

[28] Ron Burback. A distributed architecture definition language: a dadl.

http://www-db.stanford.edu/b̃urback/, 1997.

[29] Ron Burback. Distributed computing environment architecture. DECORUM97,

page B12, March 1997.

[30] Ron Burback. Distributed Computing Environment Lectures. Stanford, 1997.

ISBN 0-18-205-549-3.

[31] Ron Burback. An engineering paradigm: Noema. http://www-

db.stanford.edu/b̃urback/, 1997.

[32] Ron Burback, Louis Perrochon, and Gio Wiederhold. A compiler for composi-

tion: Chaims. Fifth International Symposium on Assessment of Software Tools

and Technologies (SAST’97), June 1997.

BIBLIOGRAPHY 228

[33] Robert N. Charette. Software Engineering Risk Analysis and Management.

McGraw-Hill, NY, 1989.

[34] P. Ciaccia. From formal requirements to formal design. Seventh International

Conference on Software Engineering and Knowledge Engineering, Skokie, Illi-

nois: Knowledge Systems Institute, pages 23–30, June 1995.

[35] P. Ciancarini. Engineering formal requirements: An analysis and testing method

for z. Annals of Software Engineering, 1997.

[36] International Standards Committee. Information technology – basic reference

model of open distributed processing – part 1: Overview. Technical Report ISO

10746-1/ITU-T X.901, International Organization for Standardization, May

1995.

[37] International Standards Committee. Odp reference model part 2: Foundations.

Technical Report ITU-T X.902 — ISO/IEC 10746-2, International Organization

for Standardization, May 1995.

[38] International Standards Committee. Odp reference model part 3: Architectural

semantics. Technical Report ITU-T X.904 — ISO/IEC 10746-4, International

Organization for Standardization, May 1995.

[39] International Standards Committee. Odp reference model part 3: Architecture.

Technical Report ITU-T X.903 — ISO/IEC 10746-3, International Organization

for Standardization, May 1995.

[40] Dan Conde. Bibliography on version control and configuration management.

ACM SIGSOFT Software Engineering Notes, 11(3):81–84, July 1986.

BIBLIOGRAPHY 229

[41] A. C. Coombes and J. A. McDermid. A tool for defining the architecture of

Z specifications. In Z User Workshop, Oxford 1990, Workshops in Computing,

pages 77–92. Springer-Verlag, 1991.

[42] Trevor D. Crossman. Inspection teams, are they worth it? In Proceedings of

the 2nd National Symposium on EDP Quality Assurance, Chicago, IL., March

1982.

[43] Siddhartha R. Dalal and Allen A. McIntosh. When to stop testing for large soft-

ware systems with changing code. IEEE Transactions on Software Engineering,

20(4):318–323, April 1994.

[44] W. Decker and Jon Valett. Software management environment (SME) concepts

and architecture. Technical Report SEL-89-103, NASA Goddard Space Flight

Center, Greenbelt MD 20771, September 1992.

[45] M. Von der Beeck. Method integration and abstraction from detailed semantics

to improve software quality. International Workshop on Requirements Engi-

neering: Foundations of Software Quality, June 1994.

[46] Digital. Vax/VMS Users Introduction. Bedford, 1982.

[47] Digital. Vax/VMS System Software Handbook. Bedford, 1985.

[48] James H. Dobbins. Handbook of Software Quality Assurance, chapter Inspec-

tions as an Up-Front Quality Technique, pages 137–177. New York: Van Nos-

trand Reinhold, 1987.

[49] Hubert L. Dreyfus. What Computers Can’t Do: A Critique of Artificial Reason.

New York: Harper and Row, 1979.

BIBLIOGRAPHY 230

[50] Allan Easton. Complex Managerial Decisions Involving Multiple Objectives.

Wiley Press., New York, NY, 1973.

[51] Robert G. Ebenau. Inspecting for software quality. In Proceedings of the Second

National Symposium in EDP Quality Assurance, 12611 Davon Drive, Silver

Springs, MD 20904, 1981. DPMA Educational Foundation, U.S. Professional

Development Institute, Inc.

[52] S. Edwards, W. Heym, T. Long, M. Sitarman, and B. Weide. Specifying com-

ponents in resolve. Software Engineering Notes, 19(4), October 1994.

[53] Christer Fernström, Kjell-Hȧkan Närfelt, and Lennart Ohlsson. Software factory

principles, architecture, and experiments. IEEE Software, 9:36–44, March 1992.

[54] Open Software Foundation and Open Group. The Distributed Computing En-

vironment, 1996.

[55] M. Fraser. Formal and informal requirements specification languages: Bridging

the gap. IEEE Transactions on Software Engineering, 17, 5, pages 454–466,

May 1991.

[56] Goldberg and Adele. Smalltalk-80: The Interactive Programming Environment.

Addison-Wesley, 1984. ISBN 0-201-11372-4.

[57] Goldberg, Adele, and David Robson. Smalltalk-80: The Language and Its Im-

plementation. Addison-Wesley, 1983. ISBN 0-201-11371-6.

[58] Goldberg, Adele, and David Robson. Smalltalk-80: The Language. Addison-

Wesley, 1989. ISBN 0-201-13688-0.

BIBLIOGRAPHY 231

[59] L. Goldin and D. Berry. Abstfinder: A prototype abstraction finder for natural

language text for use in requirements elicitation: Design, methodology and

evaluation. IEEE International Conference on Requirements Engineering, Los

Alamitos, California:, 1994.

[60] Object Management Group. Common Object Request Broaker Architecture,

1996.

[61] Dick Hamlet. Foundations of software testing: Dependability theory. ACM

SIGSOFT Software Engineering Notes, 19(5):128–139, December 1994.

[62] Dick Hamlet. Software quality, software process, and software testing. In Mar-

vin V. Zelkowitz, editor, Advances in Computers, vol. 41, pages 191–229. Aca-

demic Press, 1995.

[63] Harel, Lachover, Naamad, Pnueli, Politi, Sherman, and Shtul-Trauring. State-

mate: a working environment for the development of complex reactive systems.

Proceedings of the 10th International Conference on Software Engineering, Sin-

gapore, April 1988.

[64] Terry Hayes-Roth, Erman Coleman, and Devito Papanagopoulos. Overview

of technowledge’s dssa program. ACM SIGSOFT Software Engineering Notes,

October 1994.

[65] Martin Heidegger. What is Called Thinking? New York: Harper and Row,

1968. Translated by Fred D. Wieck and J. Glenn Gray.

[66] B. Hetzel. Program Test Methods. Prentice-Hall, N.J., 1973.

BIBLIOGRAPHY 232

[67] B. Hetzel. The Complete Guide to Software Testing. QED, Information Sciences,

Wellesley, Mass., 1988.

[68] C. A. R. Hoare. Mathematical models for computing sci-

ence. Copy is available at ftp.comlab.ox.ac.uk under directory

/pub/Documents/techpapers/Tony.Hoare named mathmodl.ps.Z, August

1994.

[69] P. Hsia. A formal approach to scenario analysis. IEEE Software, 11, 2, March

1994.

[70] P. Hsia and A. Gupta. Incremental delivery using abstract data types and re-

quirements clustering. 2nd IEEE International Conference on Systems Integra-

tion, Los Alamitos, California: IEEE Computer Society Press, pages 137–150,

June 1992.

[71] J. D. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-Brueckner, O. Roubine,

and B. A. Wichmann. Reference manual and rationale for the ada programming

language. ACM SIGPLAN Notices, 14(6), June 1979.

[72] I. Jackobson. Object-Oriented Software Engineering, A Use-Case Driven Ap-

proach. Addison-Wesley, 1992.

[73] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.

Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-

Wesley, 1992. ISBN 0-201-54435-0.

[74] F. Jahanian and A. Mok. Modechart: A specification language for real-time sys-

tems. IEEE Transactions on Software Engineering, 20(12):933–947, December

1994.

BIBLIOGRAPHY 233

[75] W. D. Jones. Reliability models for very large software systems in industry. In

International Symposium on Software Reliability Engineering, page 35, Austin,

Texas, 1991. IEEE Computer Society Press, Los Alamitos, California.

[76] Stanley M. Sutton Jr. and Leon J. Osterweil. The design of a next-generation

process language. Technical Report Technical Report 96-030, Department of

Computer Science, University of Massachusetts at Amherst, January 1997.

[77] Nygaard K. and Dahl O.J. The Development of the SIMULA Languages. Nor-

wegian Computing Centre (NCC) in Oslo, 1962.

[78] C. Kaner. Testing Computer Software. Tab Books, Blue Ridge Summit, Pa.,

1988.

[79] C. Kaner, J. Falk, and H. Q. Nguyen. Testing Computer Software. Van Nostrand

Reinhold, New York, 1993.

[80] L. J. Kenah and S. F. Bate. Vax/VMS Internals and Data Structures. Digital

Press, Bedford, 1984.

[81] B. Kitchenham, editor. Software Engineering for Large Software Systems. Cen-

tre for Software Reliability, City University, Northampton Square, London

EC1V OHB, UK, 1990. ISBN 1-85166-504-8.

[82] D. E. Knuth. The Art of Computer Programming I: Fundemental Algorithms.

Addison–Wesley, Reading, Massachusetts, 1968.

[83] D. E. Knuth. The Art of Computer Programming III: Sorting and Searching.

Addison–Wesley, Reading, Massachusetts, 1973.

BIBLIOGRAPHY 234

[84] D. E. Knuth. The Art of Computer Programming II: Seminumerical Algorithms.

Addison–Wesley, Reading, Massachusetts, second edition, 1981.

[85] Krasner and Glenn. Smalltalk-80: Bits of History, Words of Advice. Addison-

Wesley, 1983. ISBN 0-201-11669-3.

[86] Philippe Kruchten. A rational development process. CrossTalk, 9 (7), pages

11–16, July 1996.

[87] Ronald Lange and Robert Schwanke. Software architecture analysis: A case

study. In Peter H. Feiler, editor, Proceedings of the 3rd International Workshop

on Software Configuration Management, pages 19–28, Trondheim, Norway, June

1991.

[88] Ytzhak Levendel. Reliability analysis of large software systems: Defect data

modeling. IEEE Transactions on Software Engineering, 16(2):141–152, 1990.

[89] Luchham and Vera. An event-based architecture definition language. to appear

in IEEE Transactions on Software Engineering, 1996.

[90] Luqi, Shing, Barnes, and Hudhes. Prototypeing hard real-time ada systems in

a classroom environment. Proceedings of the Seventh Annual ADA Software

Engineering Education and Training (ASEET), Monterey, January 1993.

[91] N. Maiden and A. Sutcliffe. Requirements critiquing using domain abstractions.

IEEE International Conference on Requirements Engineering, Los Alamitos,

California: IEEE Computer Society Press, pages 184–193, April 1994.

BIBLIOGRAPHY 235

[92] Martin. Policy implications of medical information systems. Technical report,

Office of Technology Assessment, Washinton, D.C. U.s. Government Printing

Office, 1977.

[93] T. H. Martin and E. B. Parker. Designing for user acceptance of an in-

teractive bibliographic search facility. Interactive Bibliographic Search: The

User/Computer Interface. Montvale NJ: IFIPS Press, 1971.

[94] Tom Martin. SPIRES. PhD thesis, Department of Communications, Stanford

University, June 1974.

[95] John McCarthy. Circumscription—a form of non-monotonic reasoning. Artifi-

cial Intelligence, 13:27–39, 1980.

[96] G. J. Meyers. The Art of Software Testing. John Wiley and Sons, New York,

1979.

[97] Newton and Browne. The code 2.0 graphical parallel programming language.

Proceedings, ACM International Conference on Super Computing, July 1992.

[98] N. Nilsson. Principles of Artificial Intelligence, chapter 2. Morgan Kaufmann

Publishers, Inc., Los Altos, CA, 1980.

[99] T. Olson, N. Reizer, and J. Over. A software process framework for the software

engineering institute capability maturity model. Technical report, The Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1993.

[100] Leon J. Osterweil. Software processes are software too. In Ninth International

Conference on Software Engineering (ICSE’87), pages 2–13, Monterey, CA,

March 1987.

BIBLIOGRAPHY 236

[101] Leon J. Osterweil. Software processes are software too, revisited. In Nineteenth

International Conference on Software Engineering (ICSE’97), pages 540–548,

Boston, MA, May 1997.

[102] M. A. Ould and C. Unwin. Testing in Software Development. Cambridge

University Press, 1986.

[103] Palsberg, Xiao, and Lieberherr. Efficient implementation of adaptive software

(summary of demeter theory). Northeastern University, Boxton, 10, January

1995.

[104] Edwin B. Parker. SPIRES, stanford physics information retrieval system. Tech-

nical report, Stanford University, Institute. for Communication Research, De-

cember 1967.

[105] Parnas. Why software jewels are rare. COMPUTER: IEEE Computer, 29, 1996.

[106] David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular

structure of complex systems. IEEE Transactions on Software Engineering,

11(3):259–266, 1985.

[107] Mark Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis. The Capa-

bility Maturity Model: Guidelines for Improving the Software Process. Addison-

Wesley, 1995. ISBN 0-201-54664-7.

[108] C. Potts and I. Hsi. Abstraction and context in requirements engineering:

Toward a synthesis. Annals of Software Engineering, 1997.

[109] Veleria Quercia and Tom O’Reilly. X-Window System User’s Guide. O’Reilly,

Sebastopol, 1991.

BIBLIOGRAPHY 237

[110] J. Rader, E.J. Morris, and A.W. Brown. Investigation into the state-of-the-

practice of case integration. In Software Engineering Environments. IEEE Com-

puter Society, pages 209–221, July 1993.

[111] B. Regnell, K. Kimbler, and A. Wesslen. Improving the use-case driven ap-

proach to requirements engineering. Second IEEE International Symposium on

Requirements Engineering, 1995.

[112] RMS Ross Corporation, 44325 Yale Rd West, Chilliwack, B.C., Canada, V2R

4H2. Ross Box System, 1997.

[113] G. Rothermel and M. J. Harrold. A framework for evaluating regression test

selection techniques. In Proceedings of the 16th International Conference on

Software Engineering, pages 201–210. IEEE Computer Society Press, May 1994.

[114] W. W. Royce. Managing the development of large software systems: Concepts

and techniques. In Proc. WESCON, 1970.

[115] W. W. Royce. Managing the development of large software systems: concepts

and techniques. In Proceedings of the 9th International Conference on Software

Engineering, pages 328–339. IEEE Computer Society Press, March 1987.

[116] Winston W. Royce. Managing the development of large software systems: Con-

cepts and techniques. In WESCON Technical Papers, v. 14, pages A/1–1–A/1–

9, Los Angeles, August 1970. WESCON. Reprinted in Proceedings of the Ninth

International Conference on Software Engineering, 1987, pp. 328–338.

[117] J. Rumbaugh, M. Blaha, W. Permerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling and Design. Prentice Hall, 1991.

BIBLIOGRAPHY 238

[118] R. W. Scheifler and J. Gettys. X Window System. Digital Press, USA, 1990.

[119] G. Gordon Schulmeyer and James I. McManus. Handbook of Software Quality

Assurance. Van Nostrand Reinhold, 1987.

[120] Shaw, Deline, Klein, Ross, Young, and Selesnik. Abstraction for software ar-

chitectures and tools to support them. Carnegie Mellon University, February

1994.

[121] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.

Young, and Gregory Zelesnik. Abstractions for software architecture and tools

to support them. IEEE Transactions on Software Engineering, 21(4):314–335,

April 1995.

[122] M. Shurtleff. Storyboarding and the human interfacel. Software Development,

pages 55–56, July 1994.

[123] Mark G. Sobell. A Practical Guide to UNIX System V. The Ben-

jamin/Cummings Series in Computer Science. Benjamin/Cummings, New York,

N.Y., 2 edition, 1991.

[124] Douglas Troy. UNIX Systems. Computing Fundamentals Series. Addison-

Wesley, New York, N.Y., 1990.

[125] I. Vessey and S. Conger. Requirements specification: Learning object, process,

and data methodologies. Communications of the ACM, 37, 5, pages 102–113,

May 1994.

BIBLIOGRAPHY 239

[126] S. Vestal. Mode changes in a real-time architecture description language. Pro-

ceedings, Proc. International Workshop on Configurable Distributed Systems:

Honeywell Technology Center and the University of Maryland, 1994.

[127] G. Weinberg. Just say no! improving the requirements process. American

Programmer, October 1995.

[128] P. Westmacott. Process support environments and their application to large

scale systems. In B. A. Kitchenham, editor, Software Engineering for Large

Software Systems, London, 1989. Elsevier Science Publishers Limited.

[129] S. White. A pragmatic formal method for computer sstem definition. Computer

Science Ph.D. Dissertation, Polytechnic University, 1987.

[130] G. Wiederhold, P. Wegner, and S. Ceri. Towards megaprogramming. Commu-

nications of the ACM, 35(11):89–99, 1992.

[131] Terry Winograd and Fernando Flores. Undersanding Computers and Cognition:

A New Foundation for Design. Ablex Publishing Corporation, Norwood, New

Jersey, 1985.

[132] Douglas A. Young. The X Window System - Programming and Applications

with X (OSF-Motif Edition). Prentice Hall, Englewood Cliffs, 1990.

[133] L. Zorman. Requirements envisaging by utilizing scenarios (rebus). University

of Southern California Computer Science Department Ph.D. Dissertation, Los

Angeles, California, August 1995.

Index

abstraction, 189

alpha, 41

analysis, 6, 63, 64, 221

architecture, 12, 14, 165, 221

average case

cyclical, 98

sequential, 92

WaterSluice, 112

best case

cyclical, 97

sequential, 91

WaterSluice, 111

beta, 41

booch, 53

boundary, 198

CHAIMS, 169, 171

change management, 1, 221

change order control, 43, 221

classification, 197

clustering, 197

cohesion, 198

complete, 84

component, 171

component testing, 221

composition, 189

CORBA, 169

coupling, 198

critical error, 19, 221

critical task, 13, 15, 221

cyclical, 1, 31, 79, 83, 94

average case, 98

best case, 97

dynamic complete, 98

non-monotonic incomplete, 98

static complete, 94

worst case, 97

DADL, 165

data model, 199

DCE, 169, 171

decision making, 201

240

INDEX 241

declarative knowledge , 184

decomposition, 189

deployment, 173, 176

design, 12, 13, 63, 64, 222

development, 173, 175

discontinuation, 173, 178

documentation, 220

dynamic complete

cyclical, 98

WaterSluice, 110

sequential, 92

engineering environment, 179–182, 222,

223, 225

environment, 63, 76

formal model, 199

generalization, 197

gold standard, 16, 21, 222

imperative knowledge , 184

implementation, 18, 63, 64, 222

implementation plan, 14

internal testing, 222

legacy, 173, 177

lifecycle, 1, 173, 222

maintenance, 173, 177

megaprogramming, 169

methodology, 1, 28, 31, 34, 79, 83, 84,

222

cyclical, 31

sequential, 28

WaterSluice, 34

model, 184

Noema, 161, 164

non-monotonic

complete: WaterSluice, 111

incomplete: cyclical, 98

incomplete: sequential, 93

NOS, 207

noun phrase, 9

observation, 198

OMT, 54

ontology, 8, 223

operations, 173, 176

paradigm, 1, 161, 223

performance, 84

problem statement, 63, 75

process description, 199

product, 42, 223

INDEX 242

project management, 1, 223

proof of principle, 40, 223

prototype, 40, 223

Rapide, 169

Rational Objectory, 55

refinement, 189

regression test, 21, 223

requirements, 6, 189, 199, 224

risk analyses, 1, 224

scale, 196

scenario, 1, 9–11, 189, 224

screen shots, 220, 224

search, 116

sequential, 1, 28, 79, 83, 86

average case, 92

best case, 91

dynamic incomplete, 92

non-monotonic incomplete, 93

static complete, 86

worst case, 92

solution, 79

feasible, 81

optimal, 81

partial, 79

source control, 1, 224

space, 63, 70

dynamic, 63, 73

monotonic, 63, 73

non-monotonic, 63, 74

static, 63, 70

spiral, 49, 224

state, 9, 10, 224

static complete

cyclical, 94

sequential, 86

WaterSluice, 101

step, 63, 65

atomic, 63, 65

complex, 63, 68

compound, 63, 66

sibling, 63, 68

storyboard, 189, 224

stress testing, 224

system acceptance test, 63, 75

test plan, 1, 16, 225

testing, 19, 20, 63, 65, 225

component, 24

internal, 22

stress, 25

unit, 22

INDEX 243

textual specification, 199

unit testing, 225

use-case driven analysis, 199

verb phrase, 9

version, 51, 225

view, 189, 193, 195, 196

waterfall, 46, 225

WaterSluice, 1, 34, 79, 83, 84, 101, 160,

225

average case, 112

best case, 111

dynamic complete, 110

non-monotonic complete, 111

static complete, 101

worst case, 112

WinWin, 59

worst case

cyclical, 97

sequential, 92

WaterSluice, 112

